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FOREWORD 

 

 The organization and formatting of this thesis strictly follows the instruction to the 

author for manuscript submission to Gene Expression Patterns, the official journal of The 

International Society of Developmental Biologists. The general organization of the text is 

similar to that of a Nature letter, with the whole text in a single main section headed “Results 

and Discussion.” 
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ABSTRACT 

 

IDENTIFICATION AND DEVELOPMENTAL EXPRESSION OF THE ZEBRAFISH 

ZGC:154061 GENE, A CONSERVED YET UNCHARACTERIZED MATERNALLY 

EXPRESSEDMEIS2 LINKED GENE 

(May 2010) 

 

Brandon Scott Carpenter, B.S., Appalachian State University 

 

M.S., Appalachian State University 

 

Chairperson:  Ted Zerucha 

 

 We have identified a novel and previously undescribed gene, zgc:154061, located 

directly downstream of the zebrafish meis2.2 gene. We have identified putative orthologs of 

this gene in all animals that we have been able to examine. The zgc:154061 gene and its 

vertebrate orthologs are organized in a convergently transcribed manner with respect to the 

Meis2 gene in all species we have examined (meis2.2 in teleosts). It appears that the 

homologs of Meis and zgc:154061 are also linked in amphioxus and sea urchins but that this 

linkage is not present in urochordates, nor in protostomes. During zebrafish development, 

transcripts of zgc:154061 are observed in every cell of the embryo from the earliest stage 

through the shield stage indicating this gene is a maternal transcript since its expression 

precedes the activation of the zygotic genome at the midblastula transition. Expression of 

zgc:154061 gradually decreases from its peak value at 0 hpf until 8 hpf and then is observed 

to be activated again at 12 hpf throughout the neural tube before becoming restricted to the 

retina and tectum opticum by 48 hpf. 
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The vertebrate Meis homeobox-containing gene family consists of at least three 

members in vertebrates. The products of the Meis genes appear to function as cofactors, 

directly interacting with other homeodomain proteins as well as DNA to facilitate 

transcriptional regulation. During the process of searching for cis-regulatory elements 

associated with Meis2 using phylogenetic footprinting, we identified a novel conserved gene 

sequence located directly downstream of Meis2 in every vertebrate examined. While this 

novel gene appears to be present in every animal we have been able to examine, nothing is 

known concerning its function or expression. Here we report the first spatial and temporal 

expression pattern to date for any ortholog of this gene, in zebrafish. 

 

1.  RESULTS and DISCUSSION 

 

1.1 Identification of zgc:154061 

 

 In zebrafish, the zgc:154061 gene is found directly downstream of the meis2.2 gene 

on chromosome 17 (Fig. 1A), the two genes separated by approximately 10.9-Kb. The 

zgc:154061 gene codes for the production of a transcript 1914-nt in length (Fig. 1B) that is 

convergently transcribed with respect to meis2.2 and is predicted to be encoded by 9 exons 

using the NCBI Model Maker tool for genomic sequence analysis. It does not appear that 

there is a second paralog of zgc:154061, associated with the second zebrafish Meis2 homolog 

meis2.1 or elsewhere in the zebrafish genome for that matter, based on BLAST analysis 
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against the available zebrafish genome. The gene encodes an open reading frame that would 

be predicted to produce a protein 300 amino acids in length (Fig. 1B). This protein has been 

previously reported as hypothetical protein LOC767755 as part of a large scale gene 

identification effort (Strausberg et al., 2002), and a cDNA clone of the gene made available 

through Open Biosystems, from whom we obtained it. Nothing else has been reported 

concerning this gene or its product in any species. 

 

We have identified predicted orthologs of zgc:154061 in all vertebrates with publicly 

available genome data that we have been able to examine. These vertebrate orthologs are 

present in the same convergently transcribed orientation directly adjacent to that species’ 

Meis2 ortholog, although the spacing separating the two genes varies between species. An 

amino acid alignment of representative vertebrate species is shown in Fig. 2 and summarized 

also in Table 1. As shown in Fig. 3, phylogenetic analysis revealed that the translated 

zebrafish zgc:154061 protein is most closely related to the Takifugu ortholog amongst all 

species examined. The zebrafish predicted protein represents the longest protein from the 

orthologs examined. Furthermore there seems to be some variability in the amino terminus of 

the orthologous proteins with several different translation start points. The mouse and 

chicken proteins have similar start and stop sites as do the human and Takifugu proteins. The 

zebrafish protein includes an 18-aa amino terminal sequence not found in tetrapods. In 

addition the chicken protein appears to have an 11-aa deletion compared to human, mouse 

and zebrafish. There does not appear to be any similarity between zgc:154061, nor any of its 

orthologs, to any previously described gene to provide any clues to functional domains coded 

for by this gene or about the function of this gene in general. 
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 Putative homologs of zgc:154061 have also been identified in the urochordate Ciona 

intestinalis, the cephalochordate Branchiostoma floridae and the echinoderm 

Strongylocentrotus purpuratus. A comparison of representative homologs of the translated 

product of these genes is included in Table 1. In C. intestinalis, based on the available 

genome data, it appears that the zgc:154061 ortholog and the Meis ortholog are on different 

chromosomes. However, in the amphioxus genome, the zgc:154061 ortholog and the Meis 

ortholog are found adjacently on scaffold 120 and in the sea urchin the two genes are found 

adjacent to one another but it appears that they are transcribed from the same strand of DNA 

as opposed to the convergently transcribed orientation observed in vertebrates. Putative 

homologs of zgc:15406 have also been identified in a number of invertebrate species, based 

on sequence similarities, including fruit fly (Drosophila melanogaster) as indicated in Table 

1 and Fig. 3. It appears that all nonvertebrate putative orthologs of the product of zgc:154061 

share several short conserved domains in the C-terminal region as indicated in Fig 2 but none 

of the protostome orthologs appear to be adjacent to the invertebrate Meis orthologue 

homothorax in any of these species. Together this suggests that the genomic organization and 

linkage of Meis2 and orthologs of zgc:154061 is ancient and arose early in the deuterostome 

lineage, although this organization seems to have been lost in urochordates. 

 

1.2 Spatial and temporal expression of zgc:154061 

 

 As a first step in characterizing zgc:154061, we examined the spatial and temporal 

expression of this gene using whole mount in situ hybridization (Fig. 4 and Fig. 5) and 

quantitative real-time PCR (Fig. 6) between the zygote and early larva periods. Strong 
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expression is observed at the one cell stage and expression persists ubiquitously in every cell 

beyond the onset of transcription of the zygotic genome, at the midblastula transition, to the 

shield stage (Fig. 4A-C). By 9 hpf, expression of zgc:154061 is observed to be very low and 

almost undetectable by whole mount in situ hybridization (Fig. 4D). These observations are 

supported by quantitative real-time PCR where we see the quantity of transcripts of 

zgc:154061 steadily decrease from their maximum level at the earliest stage of development 

to barely detectable levels at 8 hpf (Fig. 6). These observations would be consistent with that 

of a maternal transcript that is present in the zygote and that gradually degrades over time 

while not being replenished by new transcriptional activity. This is not unexpected since at 

least the first 3 h of zebrafish development are not accompanied by transcription of the 

embryo’s genome. Transcripts of the zebrafish ß-actin gene, used as endogenous control for 

the quantitative real-time PCR experiments, have been reported to be present at nearly even 

levels throughout most of development, although with an inexplicable slight increase in 

expression observed prior to the onset of embryonic transcription (McCurley and Callard, 

2008). The decrease in expression of zgc:154061 relative to the steady expression ß-actin 

prior to activation of transcription of the embryo’s genome suggests varying half lives of 

these two transcripts, or perhaps the existence of a mechanism by which zgc:154061 is 

actively reduced. Following epiboly, low expression of zgc:154061 is again observed, this 

later expression peaking at 12 hpf based on quantitative real-time PCR (Fig. 6). Whole mount 

in situ hybridization reveals that this expression is largely restricted to the developing neural 

tube. Expression is observed throughout the neural tube and the optic vesicle until 24 hpf 

(Fig. 4G and Fig. 5C,D) becoming more anteriorly restricted by 48 hpf of development 

where expression is observed throughout the forebrain, the tectum of the midbrain and very 
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faintly in the anterior hindbrain (Fig. 5G,H). The strongest expression at 48 hpf is observed 

in the retina and tectum opticum (Fig. 5H,J,K). Following 48 hpf, zgc:154061 expression 

gradually decreases in these areas to below observable levels for the remainder of 

development. 

A reasonable explanation for the conservation of the genomic linkage of Meis2 and 

orthologs of zgc:154061 would be that the two genes are sharing cis-regulatory elements.  

This logic has been used to help explain the clustered organization of Hox genes (Harding et 

al., 1985; Gould et al., 1997; Mann, 1997; Sharpe et al., 1998; Prince, 2002) as well as the 

clustered organization of the Dlx gene family, for example, which are found as convergently 

transcribed gene pairs in vertebrates (Ellies et al., 1997; Zerucha et al., 2000). If Meis2 and 

zgc:154061 orthologs are sharing cis-regulatory elements, one would predict that they should 

exhibit overlapping patterns of expression. Comparing the expression of zgc:154061 

described here to that of meis2.2 shown here (Fig. 5) and reported previously (Waskiewicz et 

al., 2001; Thisse, 2005; Bessa et al., 2008; Santos et al., 2010), it appears that there is some 

overlap between these two genes in the developing eye as well as anterior neural tube and 

brain leading up to and at 24 hpf and particularly in the retina at 48 hpf. Specifically, meis2.2 

is expressed throughout the optic vesicle from 15 to 18 hpf (Bessa et al., 2008) but is 

completely lost from the eye by 24 hpf as shown in Fig 5A and as reported previously (Bessa 

et al., 2008). We see zgc:154061 expressed throughout the optic vesicle during this same 

time frame (Fig. 4G and Fig. 5C,D), however its expression persists to 24 hpf whereas 

meis2.2 expression has disappeared by this point.  Expression of meis2.2 is also observed in 

the forebrain at 24 hpf (Fig. 5A,B) and zgc:154061 is expressed throughout the neural tube at 

this same time, including the forebrain (Fig. 5C,D). By 48 hpf, meis2.2 expression reappears 
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in the retina and tectum of the midbrain and exhibits overlapping expression with zgc:154061 

in these regions (Fig.5E-H). The highly conserved nature of meis2.2 and zgc:154061 

expression, particularly at 48 hpf in the retina suggests the possibility that these genes are 

sharing cis-regulatory elements, at least for one directing expression in the developing eye. 

Examples consistent with our observations of expression of meis2.2 and zgc:154061 earlier 

in development, such as at 24 hpf, also exist however, where tandem genes are thought to 

share cis-regulatory elements but do not share perfectly overlapping patterns of expression, 

likely because of interactions between the shared enhancers and the promoters as well as 

developmental stage-specific repressors associated with each gene (Irvine et al., 2007). It is 

also possible that the organization of these genes has been preserved because of the presence 

of cis-regulatory elements within introns of one of the genes but directing expression of the 

other gene, such as that which is seen for the limb-specific long range enhancer controlling 

sonic hedgehog expression and that is found in an intron of the Lmbr1 locus (Lettice et al., 

2002). 

Recently, conserved syntenic regions containing long-range cis-regulatory elements 

distributed over long distances and encompassing conserved developmental regulatory genes 

as well as phylogenetically and functionally unrelated “bystander” genes have been termed 

genomic regulatory blocks, or GRBs (Kikuta et al., 2007). It has been proposed that 

following the whole genome duplication in teleosts, certain GRBs that contain conserved 

developmental genes have been maintained in only one of the duplicated syntenic regions, 

suggesting that evolutionary pressure acts to maintain only a single-copy of the GRB. For 

example Pax6, a highly conserved gene involved in vertebrate retinal and central nervous 

system development, has been duplicated in teleosts and as a result zebrafish contain two 
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copies, pax6.1 and pax6.2. Using enhancer detection, Kikuta et al. (2007) located a region 

~68 kb downstream of pax6.2 within an intron of a neighboring gene, elp4, that was able to 

recapitulate the expression pattern of pax6.2. This suggests that the cis-regulatory sequence 

driving pax6.2 expression exists within the elp4 gene despite elp4 expression being more 

wide spread and consequently not appearing to be regulated by the regulatory elements 

within its own introns. Interestingly, elp4 was only maintained downstream of pax6.2 similar 

to what we report here in terms of zgc:154061 being maintained downstream of meis2.2 but 

there being no paralog associated with meis2.1. Thus, the presence of any putative cis-

regulatory element within an intron of zgc:154061 may explain why this gene is maintained 

downstream of meis2.2. It is possible that the single-copy GRB containing zgc:154061 and 

meis2.2 is protecting this locus from chromosomal breakage while any paralogous regulatory 

region associated with meis2.1 has been lost by neutral evolution; a phenomenon predicted 

by the duplication degeneration complementation model (Force et al., 1999). 

We have described here a novel zebrafish gene zgc:154061 that is highly conserved 

amongst vertebrates in terms of sequence identity and linkage to the Meis2 (meis2.2 in 

zebrafish) homeobox gene. It appears that the genomic organization of the zgc:154061 and 

Meis2 genes arose early in the deuterostome lineage as it is also observed in 

cephalochordates and echinoderms. The amino acid alignment of the vertebrate orthologs of 

zgc:154061 indicates a very well conserved C-terminal region, which may very well 

represent a functional domain. This gene is maternally expressed and also expressed in the 

developing neural tube and eye in a manner at least partially overlapping with its genomic 

neighbor meis2.2. The role of zgc:154061 and its orthologs remain to be investigated and we 
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are currently exploring RNA over-expression and morpholino knockdown experiments in 

zebrafish to pursue this. 
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2.  EXPERIMENTAL PROCEDURES 

 

2.1 Zebrafish Husbandry 

 

 Zebrafish embryos were obtained by pair-wise breeding of adult AB line fish housed 

in an enclosed Z-Mod system (Aquatic Habitats) and maintained at 28 °C on a 16 h light / 8 h 

dark cycle. Embryos were staged according to (Kimmel et al., 1995). All experimental 

procedures involving zebrafish were approved by the Appalachian State University IACUC. 

 

2.2 In situ hybridization 

 

 The full length 1914-bp cDNA clone of zgc:154061 was isolated by the Zebrafish 

Gene Collection (ZGC), an NIH initiative, in conjunction with the NIH Mammalian Gene 

Collection (MGC) project (Strausberg et al., 2002) and made available through Open 

Biosystems (Clone Id:  8334609, Accession:  BC124527) from whom we purchased it. So as 

to utilize a smaller probe size for our in situ hybridizations, a partial 393-bp fragment of the 

zebrafish zgc:154061 gene (underlined in Fig. 1B) corresponding to positions 608-1000 of 

the full length cDNA clone was isolated by PCR using the primer sequences 

GGTCTGGAACATGAAGAC and CCTCATGCCATCAGAAAC (locations indicated in 

Fig. 1B). The PCR amplification was performed with Phusion High-Fidelity DNA 

Polymerase (New England BioLabs), the product subcloned into the pGEM-T Vector System 

(Promega, Madison WI) and confirmed by sequencing. An antisense DIG-labelled riboprobe 
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was synthesized directly from this subclone using T7 RNA Polymerase after linearizing the 

plasmid with NotI. A sense DIG-labelled riboprobe, used as a negative control, was 

synthesized from the same construct using SP6 RNA Polymerase after linearizing the 

plasmid with SacII. Whole mount in situ hybridization was performed as described by Thisse 

and Thisse (2008) (Thisse and Thisse, 2008). Embryos were photographed using a Leica 

MZ6 dissecting microscope, Leica DFC320 digital camera and the Leica Application Suite 

Version 3.3.1.  Images were compiled for Figures 4 and 5 using Adobe Photoshop 7.0. For 

sectioning, 48 hpf embryos were positioned in 1.5% agarose melted in 5% sucrose in PBS 

following in situ hybridization. Agarose blocks were incubated in 30% sucrose in PBS at 4°C 

overnight. Agar blocks were frozen in optical cutting temperature (O.C.T.) media and 20μm 

sections were cut using a Leica CM 1100 cryostat. Images of sections were obtained using an 

Olympus IX81 inverted microscope and processed with MicroSuite Biological Suite 

software.  Images were compiled for Fig.5J,K using Adobe Photoshop 7.0. 

 

2.3 RNA Extraction And Quantitative real-time PCR 

 

Total RNA was extracted from 30-100 staged embryos by homogenizing with RNase, 

DNase-, pyrogen-free disposable pestles (Kontes) in TRIzol (Invitrogen) and following the 

protocol described by (Chomczynski and Mackey, 1995). RNA quality and quantity was 

determined by NanoDrop and denaturing gel electrophoresis. Reverse transcription of RNA 

samples into cDNA were performed using the Applied Biosystems High Capacity RNA-to-

cDNA Master Mix and following the manufacturer’s instructions. 
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 Relative Quantitative real-time PCR was performed to analyze temporal expression of 

zgc:154061 during zebrafish development using the Applied Biosystems 7300 real-time PCR 

System. For each stage examined, 200 ng of cDNA was used as template together with 

TaqMan Universal PCR Master Mix (Applied Biosystems) and gene specific primers and 

probe: zgc:154061 forward 5’-GCAGACGCACTTCACACATCTC-3’; zgc:154061 reverse 

5’–TGCGCTTCATTCTCTTCTGGTA-3’; zgc:154061 probe 5’-FAM-

CGCGTCCACTCTGCTGAGCATCTTC-TAMRA-3’ (see Fig. 1B for locations of primers 

and probe). The zebrafish ß-actin gene was used as an internal control with gene and specific 

primers and probe: ß -actin forward 5’–GCTGTTTTCCCCTCCATTGTTG-3’; ß-actin 

reverse 5’–TTTCTGTCCCATGCCAACCAT-3’; ß-actin probe 5’-FAM-

CCCAGACATCAGGGAGTG-TAMRA-3’. Primers and probes were designed using Primer 

Express (Applied Biosystems) and purchased from Operon. The following amplification 

protocol was used:  50°C for 2 m; 95°C for 10 m; 95°C for 15 s, 60°C for 1 m repeated for 

40 cycles. All reactions were performed in triplicate twice and two separate RNA extractions 

from each stage of development examined. Results were interpreted and are shown as level 

of relative expression calibrated to expression in an adult zebrafish using the 2
-ΔΔCt

 method 

(Livak and Schmittgen, 2001). 
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FIGURE LEGENDS 

 

 

Fig. 1  Genomic organization and sequence of zgc:154061  (A)  Position of zgc:154061 with 

respect to meis2.2 in zebrafish. Vertical lines/boxes represent exons. Arrows indicate the  

direction of transcription. The predicted exons of the Zgc:154061 gene and its location with 

respect to meis2.2 were identified using the publicly available genome sequence and the 

Model Maker tool in the NCBI Database. (B)  Nucleotide and translated sequence of the 

zgc:154061 gene. The sequence used as a probe for in situ hybridization is underlined and the 

primer sites used to amplify this sequence are double underlined. The primer sites used for 

quantitative real-time PCR are indicated by red double underlines and the site of the probe by 

a red single underline. Amino acid sequence is shown above each codon. Start and stop 

codons are indicated by boxes. 

 

Table 1.  Amino acid sequence identity percentages based on pairwise comparisons between 

putative, representative homologues of zgc:154061 that we have been able to identify based 

on searches of that organisms’s corresponding publicly available genome data. Species 

examined are:  human (Homo sapien - Hs);  mouse (Mus musculus - Mm);  chicken (Gallus 

gallus - Gg);  African clawed frog (Xenopus laevis - Xl);  zebrafish (Danio rerio - Dr);  

pufferfish (Takifugu rubripes - Tr);  tunicate (Ciona intestinalis - Ci);  lancelet 

(Branchiostoma floridae - Bf);  sea urchin (Strongylocentrotus purpuratus – Sp);  fruit fly 

(Drosophila melanogaster - Dm). Amino acid sequences were obtained from publicly 

available genome sequences through the NCBI database (accession numbers:  Hs - 

NP_115888.1;  Mm - XP_001480310.1;  Gg - NP_001026371.1;  Xl - NP_001090210.1;  Dr 

- NP_001070190.1;  Ci - XP_002128870.1;  Bf - XP_002221176.1;  Sp - XP_780639.1;  

Dm - NP_648806.1) except that of Takifugu rubripes which was obtained from the IMCB 

Fugu Genome Project database (gene:SINFRUG00000137928 

transcript:SINFRUT00000146276). 

 

Fig. 2.  Amino acid sequence alignments of products of zgc:154061 orthologues for:  human 

(Homo sapiens - hypothetical protein LOC84529);  mouse (Mus musculus - hypothetical 

protein LOC399568);  chicken (Gallus gallus - hypothetical protein LOC423293);  African 

clawed frog (Xenopus laevis - hypothetical protein LOC779112);  pufferfish (Takifugu 

rubripes – translation of SINFRUT00000146276 ) and;  zebrafish (Danio rerio - hypothetical 

protein LOC767755). Yellow shaded regions represent complete identity amongst all six 

species, blue shading indicates identity between at least three of the species shown. Amino 

acid sequences are based on publicly available genome sequences though the NCBI database 

except that of Takifugu rubripes which was obtained from the IMCB Fugu Genome Project 

database. Amino acid alignments were generated using Vector NTI Advance Version 11.0 

Align X (Invitrogen) with the following pairwise settings: K-tuple size-1, number of best 

diagonals-5, gap penalty-3 and multiple alignment settings: gap opening penalty-10, gap 

extension penalty-0.05, Gap separation penalty range-40, % identity for alignment delay-40.  

Underlined regions indicate domains that are also found in putative invertebrate orthologs of 

zgc:154061. 
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Fig. 3. Phylogenetic tree of zgc:154061 orthologous amino acid sequences. The phylogenetic 

tree was constructed using Phylogeny.fr (http://www.phylogeny.fr/) using MUSCLE 3.7 for 

multiple sequence alignment, GBlocks 0.91b for alignment refinement, PhyML 3.0 aLRT for 

phylogeny, and TreeDyn 198.3 for tree rendering (Dereeper et al., 2008). Numbers on 

branches represent the percentage of how many times clades grouped following 500 

replications.  Species examined are:  human (Homo sapien);  chimp (Pan troglodytes); mouse 

(Mus musculus); dog (Canis familiaris); cow (Bos taurus) chicken (Gallus gallus);  African 

clawed frog (Xenopus laevis);  zebrafish (Danio rerio); pufferfish (Takifugu rubripes); 

tunicate (Ciona intestinalis);  lancelet (Branchiostoma floridae); sea urchin 

(Strongylocentrotus purpuratus);  fruit fly (Drosophila melanogaster). Amino acid sequences 

were obtained from publicly available genome sequences through the NCBI database 

(accession numbers:  Homo sapien - NP_115888.1; Pan troglodytes - XP_510289.2; Mus 

musculus - XP_001480310.1; Canis familiaris - XP_849922.1; Bos taurus - 

NP_001015668.1; Gallus gallus - NP_001026371.1;  Xenopus laevis - NP_001090210.1; 

Danio rerio - NP_001070190.1; Ciona intestinalis - XP_002128870.1; Branchiostoma 

floridae - XP_002221176.1;  Strongylocentrotus purpuratus - XP_780639.1;  Drosophila 

melanogaster - NP_648806.1) except that of Takifugu rubripes which was obtained from the 

IMCB Fugu Genome Project database (gene:SINFRUG00000137928 

transcript:SINFRUT00000146276).  

 

Fig. 4. Whole-mount in situ hybridization on analysis of early zebrafish zgc:154061 

expression. Embryos are shown as whole mounts with the anterior to the left. (A)  16-cell 

(1.5 hpf),  (B)  4 hpf,  (C)  6 hpf,  (D)  9 hpf (90% epiboly),  (E)  14 hpf,  (F)  20 hpf,  and 

(G)  20 hpf dorsal view with yolk removed. e, eye. 

 

Fig. 5. Whole-mount in situ hybridization on analysis of late zebrafish zgc:154061 and 

meis2.2 expression. Embryos are shown as whole mounts the anterior to the left. (A) 24 hpf 

meis2.2, (B) 24 hpf  meis2.2 dorsal view with yolk removed, (C) 24 hpf zgc:154061, (D) 24 

hpf zgc:154061 dorsal view with yolk removed, (E) 48 hpf meis2.2, (F) 48 hpf meis2.2 dorsal 

view with yolk removed, (G) 48 hpf zgc:154061, (H) 48 hpf zgc:154061 dorsal view with 

yolk removed, (I) 48 hpf zgc:154061 sense RNA probe negative control. (J) and (K) 

represent 48 hpf zgc:154061 transverse sections through the brain and retina following in situ 

hybridization.  e, eye;  fb, forebrain;  r, retina;  teo, tectum opticum. 

  

Fig. 6. Quantitative real-time PCR analysis of zgc:154061 expression. Total zebrafish mRNA 

was isolated from 30-100, 0 hpf to 120 hpf embryos. Expression of zgc:154061 relative to 

that of the β-actin endogenous control at each developmental stage indicated is shown, 

calibrated to expression in an adult zebrafish using the 2
-ΔΔCt

 method. Error bars reflect 

standard error of the mean for each sample. Each value on the graph is significantly different 

from the neighboring values as determined by t-test (p 0.05). 
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Fig. 1B 

 
   1 gtcgcgtgtgctgcagaactggagcttgtacagtgttattggtgctgtttgtgttgcaga 

  60 gttgtgaaat 

  M   D   A   V   S   G   G   S   A   T   G   T   G   E   Q 

  71 ATG GAC GCA GTG TCA GGC GGC AGC GCC ACA GGA ACA GGT GAA CAG 

  V   N   N   L   R   I   C   R   A   E   Y   R ··S   I   S 

 116 GTG AAT AAT CTG AGG ATC TGC AGG GCA GAA TAC AGG AGC ATC AGC 

  R   F   V   E   Q   L   R   P   T   R   Q   C   M   K · T 

 161 AGG TTT GTG GAG CAG CTG CGT CCC ACA CGG CAG TGC ATG AAG ACC 

  L   Q   T   H   F   T   H   L   P   A   S   T   L   L   S 

 206 CTG CAG ACG CAC TTC ACA CAT CTC CCC GCG TCC ACT CTG CTG AGC 

  I   F   S   Q   E   Y   Q   K   R   M   K   R   S   M   A 

 251 ATC TTC TCC CAG GAG TAC CAG AAG AGA ATG AAG CGC AGT ATG GCC 

  R   H   H   S   P   E   V   L   R   V   Y   Y   Q   R   Y 

 296 AGA CAT CAC TCT CCT GAG GTG CTC AGA GTG TAT TAT CAG AGG TAT 

  R   D   E   A   E   T   R   A   T   E   P   L   L   L   E 

 341 CGA GAT GAA GCT GAG ACC AGA GCC ACA GAA CCA CTG CTG CTG GAG  

  L   A   N   Q   V   D   L   S   P   A   L   L   A   R   L 

 386 CTC GCT AAC CAG GTG GAT CTA TCT CCA GCT CTT TTG GCT CGT CTG 

  M   L   E   C   F   L   E   E   R   N   A   S   V   P   S 

 431 ATG CTG GAG TGT TTC CTA GAG GAG CGC AAC GCT TCA GTC CCT TCC  

  R   Q   V   L   N   N   M   L   R   E   P   Y   L   I   P 

 476 AGA CAA GTC CTC AAC AAC ATG CTG CGT GAG CCG TAT TTA ATT CCA  

  D   L   V   L   A   K   H   I   E   Q   C   T   V   N   D 

 521 GAT CTG GTG TTA GCC AAG CAC ATC GAG CAG TGC ACA GTA AAT GAC 

  C   C   Y   G   P   L   V   D   C   I   K   H · A   I   G 

 566 TGC TGT TAT GGA CCG CTG GTC GAC TGC ATC AAA CAT GCC ATC GGT 

  L   E   H   E   D   T   L   R   D   K   L   R   E   R · N 

 611 CTG GAA CAT GAA GAC ACT CTG AGA GAC AAA CTC AGA GAG AGG AAC 

  L   S   F   L   D   E   N   Q   L   R   V   K   G   Y   D 

 656 CTG TCG TTT TTA GAT GAG AAT CAG CTG CGG GTC AAA GGA TAC GAC 

  K   T   P   D   I   I   L   E   V   P   I   A   V   D   G 

 701 AAA ACC CCG GAC ATC ATC CTG GAG GTG CCG ATC GCT GTT GAT GGC 

  H   I · V   H   W   I   E   S   K   A   S   F   G   D   D 

 746 CAC ATC GTT CAC TGG ATC GAG AGT AAA GCT TCA TTT GGA GAT GAT 

  H   S   H   N · T   Y   L   N   E   Q   F   W   S   Y   C 

 791 CAC AGT CAC AAC ACA TAC CTG AAC GAG CAG TTC TGG AGC TAC TGC 

  N   R   F   G   P   G   L   V   I   Y   W   F   G   F   I 

 836 AAC AGG TTT GGT CCG GGT CTG GTC ATC TAC TGG TTC GGC TTC ATC 

  S   E   L   D   C   Q   R · E   R   G   I   L   L   K   D 

 881 TCA GAG CTG GAC TGC CAG CGG GAG CGA GGG ATC CTG CTG AAG GAC 

  G   F   P   T   D   I   S   S   L   C   A   G   P   Q   R 

 926 GGC TTC CCC ACG GAC ATC AGC AGC CTG TGT GCG GGA CCC CAG CGC 

 971 TGAggacggggcgtttctgatggcatgaggatccggaagcaatttaagctttcctgcagc 

1031 cagagactctgacaaacatgtgctgtgaactccatctgaaccatctgtgtgagtgtgtgt 

1091 gtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgc 

1151 tggttacactttatttgaagtctccttaactactatataggtacatttcaactactcatt 

1211 gaaactgcacagtaaatgcaagtttttgtctggtgtttggtccagatatctgtgaactct 

1271 taaataaagaagcatttttggatgtgcactgaatgtagtgttgttttcagaggtgatgtg 

1331 ctaaagtgaagtgagtttttaattagagcaggctgaataatctgccagtgggggaagcag 

1391 aataatcttatgtgtaaaggaaaaagccagtgatttccctcaccccactggcggattatt 

1451 ctgcttgttttgaggtaggactctctttattttggctcgttatttctgtaaacaacactg 

1511 tattttatccctgtctataaaatgcttcctgatttaagaacgttcagatatttataccaa 

1571 aaacaagacgaactctctaagaatacgtcagttttactgcgttgtactaatattttgaaa 

1631 tcttttgcatgtaattacaatttttccgttaataattacaccctctcttacaccttaacc 

1691 cactcttaacccttcccatatcactaaacctgtcaacaacccaaccccgatcccagatta 

1751 atagcaccataactgttctgcaatgcattataaacaggaggagtacattgtgctgatgtt 

1811 ttgatggtagttattgtgacttcaaataaagtgtatgattgtgttacatgctgatatgga 

1871   ataaataaagagtattcttcgtaaaaaaaaaaaaaaaaaaaaaa 
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Table 1 

 

 Hs Mm Gg Xl Dr Tr Ci Bf Sp Dm 

Hs  94 82 76 70 77 42 52 51 38 

Mm   82 72 61 77 34 44 50 27 

Gg    68 59 74 32 42 58 24 

Xl     64 70 38 44 52 31 

Dr      76 34 41 50 26 

Tr       42 49 50 38 

Ci        36 41 28 

Bf         54 33 

Sp          36 

Dm           
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Fig. 2 
 

      Homo sapien    (1) ------------------------------------------------------------ 

     Mus musculus    (1) ------------------MILTKAQYEEIAQCLVSVPPTRQSLRKLKQRFPSQSQATLLS 

    Gallus gallus    (1) ------------------MKLTKAQYDEIAQFLGHVQPTRQSLRKLKEKFPSQSQSTLLS 

   Xenopus laevis    (1) ------------------------------------------------------------ 

Takifugu repribes    (1) ------------------------------------------------------------ 

      Danio rerio    (1) MDAVSGGSATGTGEQVNNLRICRAEYRSISRFVEQLRPTRQCMKTLQTHFTHLPASTLLS 

 

      Homo sapien    (1) --------------------------------------------------------MARL 

     Mus musculus   (43) IFSQEYQKHIKRTHAKHHTPEAIESYYQRYLNGVGKNGAAPVLLELANEVDYAPSLMARI 

    Gallus gallus   (43) IFSQEYQKQIKRTHAKHHTAEAVETYYQRYLNGVMKNAAAPVLLELANEMDFAPSLMARI 

   Xenopus laevis    (1) ------------------------MYYARYLNEVARDPKVPILLELANEVDFSPALMART 

Takifugu repribes    (1) --------------------------------------------------------MARV 

      Danio rerio   (61) IFSQEYQKRMKRSMARHHSPEVLRVYYQRYRDEAETRATEPLLLELANQVDLSPALLARL 

 

      Homo sapien    (5) ILERFLQEHEETPPSKSIINSMLRDPSQIPDGVLANQVYQCIVNDCCYGPLVDCIKHAIG 

     Mus musculus  (103) ILERFLQGHEQTPPSKSVINSMLRDPSQIPDGVLANQVYQCIVNDCCYGPLVDCIKHAIG 

    Gallus gallus  (103) VLERFLQEQEQAIPSKTLINSMLRDPSQIPDGVLANQIYQCTVNDCCYGPLVDCIKHFIN 

   Xenopus laevis   (37) VLERFLQDHDGQPPTKPVLSSMLRDPSLIPDPVLANQVHLCIINDCFNGPLVDGIKHAIG 

Takifugu repribes    (5) ILDRFLQDLEGEMPSKTVLNSMLKEPSLIPDLILAQNIQQCTVNDCCYGPLVDCIKHAVG 

      Danio rerio  (121) MLECFLEERNASVPSRQVLNNMLREPYLIPDLVLAKHIEQCTVNDCCYGPLVDCIKHAIG 

 

      Homo sapien   (65) HEHEVLLRDLLLEKNLSFLDEDQLRAKGYDKTPDFILQVPVAVEGHIIHWIESKASFGDE 

     Mus musculus  (163) YEHEVLLRDLLLKKNLSFLDEDQLRAKGYDKTPDFILQVPVAVEGHIIHWIESKASFGDE 

    Gallus gallus  (163) -NR----------SCSLCVAEDQLRAKGYDKTPDFILEVPVAVEGHIIHWIESKASFGDE 

   Xenopus laevis   (97) HEHEVLLRQKLKEHNLAFLDEDQLRLKGYDKTPDVILEVPVAVDGHVIHWIESKASFGDE 

Takifugu repribes   (65) QEHEVLLCDKLKERNLSFLDETQLRAMGYDKTPDIILEVPVAVEGHIIHWIESKASFGDD 

      Danio rerio  (181) LEHEDTLRDKLRERNLSFLDENQLRVKGYDKTPDIILEVPIAVDGHIVHWIESKASFGDD 

 

      Homo sapien  (125) CSHHAYLHDQFWSYWNRFGPGLVIYWYGFIQELDCNRERGILLKACFPTNIVTLCHSIA- 

     Mus musculus  (223) CSHHAYLHGQFWSYWNRFGPGLVIYWYGFIQELDCNRERGILLKASFPTDIVTLCHSTA- 

    Gallus gallus  (212) SSHQAYLQDQFWSYWNRFGPGLVIYWYGFIEELDCHRERGILLKDCFPTDIVTLRHSMAQ 

   Xenopus laevis  (157) ASHKTYLHDQFWSYWNRFGPGLVIYWYGFIEDLDCNRERGILLKDGFPETLVMLGSCMAQ 

Takifugu repribes  (125) HSHRNYLNEQFWSYWNRFGPGLVIYWYGFIGELDCQRDRGILLKDCFPTDIVTLCHA--- 

      Danio rerio  (241) HSHNTYLNEQFWSYCNRFGPGLVIYWFGFISELDCQRERGILLKDGFPTDISSLCAGPQR 

 

      Homo sapien  (184) --------------------- 

     Mus musculus  (282) --------------------- 

    Gallus gallus  (272) R-------------------- 

   Xenopus laevis  (217) TDEHGQHTKNCLNETHQETES 

Takifugu repribes  (182) --------------------- 

      Danio rerio  (301) --------------------- 
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Fig. 3  
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Fig. 4 
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Fig. 5 
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Fig. 6 
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