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 Federal legislation such as No Child Left Behind mandated that students with 

disabilities be included in accountability standards, creating an important responsibility to 

fairly assess all students, even those with disabilities.  Consequently, a sense of urgency 

was placed on the entire educational system to ensure that these students had a fair 

chance at being adequately tested, to ensure equity and access.  Alternate assessments 

and accommodations are a part of access for these students in the testing realm.  This 

study, which centered around fairness, focused on psychometrically comparing three 

subject exams administered to eighth grade students who received accommodations as 

opposed to those who did not.   Covariance matrices, dimensionality, factor structure, and 

item functioning were all compared across groups to examine invariance and show that 

the use of accommodations did not affect the validity or fairness of the testing program.   

Analyses revealed that for each of the tests, there was a significant difference in 

the covariance matrices, but unidimensionality held across groups implying that the 

dimensionality structure was the same for both groups.  The factor structure was tested 

only for the math exam and the one-factor structure held for accommodated and non-

accommodated students, again confirming unidimensionality.  Despite consistent 

dimensions being measured for both groups, DIF did manifest but without actual test 

items it could not be attributed to bias. 
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CHAPTER I 

INTRODUCTION 
 
 

The implementation of No Child Left Behind has placed more responsibility on 

the major facets of the educational system—schools, teachers, and students.  Regulations 

have made improvement and growth a requirement creating ambivalent feelings toward 

testing and accountability.  Needless to say the demands of accountability are viewed 

both positively and negatively by many.  Testing has been continually dissected to find 

its worth and its flaws.  Standardized tests are sometimes considered high stake because 

results are used to make important decisions about graduation exit requirements, college 

admissions, certification, and licensure, thus making validity a central issue.  

Assessing students to see what they know and what they have learned is logical 

because it informs teachers about the effectiveness and success of educating students, yet 

people still contest that testing is unfair and ineffective.  In turn, testing companies feel 

the heavy burden of responsibility when it comes to standardized tests because test 

makers have the duty of making sure that tests prove to be fair for all students.  Fairness 

is one of the biggest issues concerning testing.  Fairness should extend across gender, 

race, socioeconomic status (SES), and exceptionalities implying that only ability should 

be the deciding factor in test scores.  Several testing opponents such as Berlak (2001) 

often refer to standardized tests as “culturally and racially biased” declaring that the bias 

is “lodged in the content or language of individual test items.”  He places heavy emphasis 
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on the racial achievement gap, which should undoubtedly be of great concern.  But since 

No Child Left Behind mandates accountability, eliminating testing is not a favorable 

option, but rather a solution that would eliminate the tool which has the power to reveal 

the achievement gaps that exist across different subgroups.  

 In addition to research on race and testing, there has been much gender research 

pertaining to standardized testing because the topic of differential performance between 

males and females has been a long standing controversial issue.  Research in this area 

continues as the achievement gap between males and females still exists.  However, this 

gap is not consistent across subjects.  For years males have been said to be better at math 

and science whereas females outperform males in reading and writing.  There is no quick 

solution to this gap since a compound of factors contributes to this gap—motivation, 

teacher expectations, SES, etc.  SES is also a variable by which testing populations are 

often grouped and compared.  This study will use data that contains demographic 

information such as ethnicity, gender, and SES, but the main subgroup of interest here is 

exceptionality.  Exceptionalities range from academically gifted to severely disabled.  

However, this study will specifically focus those students who are learning disabled but 

still take traditional assessments as opposed to an alternate assessment.   

When looking at race and gender of students with disabilities, the trend of 

disproportionate representation of minority students in special education emerges and is a 

long standing issue (Beratan, 2008).  More specifically, African American male students 

are overrepresented in the learning disabled population and underrepresented in those 

classified as gifted (Hosp & Reschly, 2004).  This problem has been in existence for the 
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past four decades and much research has been done on the issue (Hosp & Reschly, 2004; 

Salend, Duhaney, & Montgomery, 2002).  Research to analyze this concern has stemmed 

from the disproportionate ratios of African Americans, American Indians, and Latinos to 

Caucasians.  Such patterns should prompt research on the identification process of special 

education students.  Hosp & Reschly (2004) discussed how the disproportionate number 

of minority students in special education was a result of minority students consistently 

performing significantly lower on achievement measures.  Given that poverty and 

academic achievement have been identified as one of the most important predictors of 

identification for special education services, minorities are overidentified as needing 

these services more so than Whites, who tend to be overrepresented in gifted programs.  

As a result, minorities are a large portion of the students who are labeled with disabilities.  

The particular notion of proportionality was examined briefly within the data sample of 

this study. 

Improvement of testing practices warrants extensive innovative research in the 

areas of psychometrics, validity, and test taking populations.  Furthering research in this 

area will undoubtedly lead to more critics, but more importantly, to more plausible 

solutions as well.  Psychometric research has already led to the development of several 

DIF detection procedures, which flag potentially biased test items. These procedures aim 

to identify and eliminate malfunctioning items from tests.  So even though testing is a 

controversial topic, procedures are in place to make sure that items remain invariant 

across subgroups with respect to irrelevant aspects of the testing population.  Addressing 
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issues such as fairness and test validity is a popular way to substantiate that test scores are 

valid and can be interpreted accurately.   

When it comes to students who are classified as exceptional, the task of creating a 

set of fair standardized tests becomes more complex as they must be appropriate for the 

targeted population.  Because of accountability standards, mandated end-of-course (EOC) 

and end-of-grade (EOG) tests are now standard.  As the accountability standards were 

raised, states have had to adopt alternate ways of assessing students who were not able to 

take traditional assessments.  However only up to 2% of a state’s student population is 

allowed to achieve proficiency for Adequate Yearly Progress (AYP) by taking an 

alternate assessment (U.S. Department of Education, 2007).  Alternatives such as projects 

and portfolios are still popular and widely used, even though they are subject to inter-

rater reliability issues.  However, all students with exceptionalities are not qualified to 

take alternate assessments and are sometimes mainstreamed and end up taking traditional 

assessments with accommodations, reinforcing the need for these tests to be well-

designed, reliable, and fair.  Just as alternate assessments must evolve, the standardized 

traditional assessments also have to be continually researched and improved as students 

with disabilities are no longer exempt from the accountability system.  It is very 

important that when students with disabilities are tested, they are given the fair 

opportunity to demonstrate concept mastery, whether this be through a traditional or 

alternate assessment.  Promoting equity in this way demonstrates that students with mild 

learning disabilities to those with severe cognitive disabilities are capable of being tested 

and that we are able to adequately measure their abilities. 
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What exactly makes testing students with disabilities fair and equitable?  First is 

access to a universally designed education so that they are properly taught before being 

tested.  As described by the Center for Universal Design (CUD), universal design (UD) is 

a term that originated in architecture by Ron Mace in order to emphasize creating 

buildings that are usable by all people (King-Sears, 2009).   Burgstahler (2009) notes that 

UD in education stresses diversity and inclusion.  The guiding principles of UD that have 

transferred from architecture to education include: equitable use, flexibility in use, 

perceptible information, simple and intuitive use, tolerance for error, low physical effort, 

and, size and space for approach and use (Burgstahler, 2009; King-Sears, 2009).  Putting 

these principles to use in a classroom setting allow for all students, including students 

with learning disabilities, to have a more natural acclimation to the educational 

environment (King-Sears, 2009).  Although these changes can occur to the physical 

classroom setting, King-Sears (2009) and Passman and Green (2009) reinforce that the 

principles should be applied to pedagogy and syllabi as well, so that delivery of 

instruction is considered universally designed and suitable for all students. 

Another way to ensure fairness is the concept of testing individualization, which 

is an attempt to cater to the learning and testing needs of particular students.   As students 

with exceptionalities often learn differently from those without, they are consequently 

tested differently.   Alternate assessments are an attempt to fairly measure the knowledge 

base of students with severe cognitive disabilities.  Standard achievement tests paired 

with accommodations are another attempt to equalize the testing process and assist 

students with exceptionalities.  Accommodations normally include options such as 
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extended test time, modified test items, a different testing environment, or read-aloud test 

administration.  These options are chosen based on the examinee’s particular learning 

needs, which help to articulate the direct link between how a student learns and how the 

student is assessed.  It must also be noted that adding these options should not create an 

unfair advantage for those who receive the accommodations. 

When students are assessed, they have to take what they have learned and apply 

that knowledge in a testing situation.  Tests are designed to measure a specific set of 

academic skills and all other skills are seen as “invalid” and therefore are not constructs 

of interest (Ackerman, 1994).  For example, consider a math test designed to measure if a 

student has mastered multiplication.  If the multiplication problem is hidden in a word 

problem, a student with a learning disability may have trouble reading and sifting through 

the language to find the appropriate mathematical information necessary to multiply; or, 

this student may just take a little longer to read through the problem to fully comprehend 

the objective.  If this student is provided with the appropriate accommodations (e.g., 

sheltered English or extended time) then he/she will be better able to demonstrate if 

he/she has mastered multiplication.  With multiplication being the “valid” skill intended 

to be measured, reading ability should not confound the student’s ability to correctly 

answer the test items.  Therefore, it is necessary to be clear on what a test is intended to 

measure in order for scores to be valid and appropriately interpreted.     

Psychometric techniques allow for validation of achievement tests.  Item response 

theory (IRT) is a probabilistic way of describing how an examinee interacts with an item, 

assuming that one skill or the same composite of skills is being used to answer each item 
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on the test (Ackerman, 1994).  However, this notion of unidimensionality is improbable, 

especially when looking at students who have disabilities versus those who do not.  These 

groups of students learn differently, making it plausible that they may interact with test 

items differently.  Students with exceptionalities may use different sets of skills to 

compensate for a lack of one skill, which leads to the notion of multidimensionality.  

Under the assumptions of multidimensional item response theory (MIRT), items on a 

given assessment may actually measure different composite of abilities.  This is typically 

not problematic as long as the assessment is primarily measuring the same or a similar 

composite for all students.  On some assessments the student-item interaction could result 

in different composites of ability being measured for different groups of students—in this 

case students with exceptionalities and those without.  

The purpose of this research is to extend the literature on the fairness of testing of 

students with disabilities and exceptionalities by using a framework that incorporates 

differential item functioning (DIF) and MIRT dimensionality techniques.   Although a lot 

of research has been done on special education (Bachor, 1990; Byrnes, 2008; Salvia, 

Ysseldyke, & Bolt, 2006), alternate assessments, and accommodations, this study intends 

to add to the literature on students with disabilities who take regular assessments with 

accommodations.  The substantial amount of research previously done on these topics 

does not show consistent findings (Abedi, Leon, and Kao, 2008; Willingham et al., 

1988), meaning more work is still needed in the area.  Emerging literature has generally 

used DIF alone and does not combine psychometric techniques as this study will attempt 

to do.  Reckase (1997) succinctly summarized the connection between MIRT and DIF: 
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MIRT has been used to help understand the skills required to successfully respond 
to test items, the extraneous examinee characteristics that affect the probability of 
response to items (DIF), and the complexities behind equating test forms, among 
other applications. 
 
 

For this reason, MIRT software will be used to examine differential dimensionality to 

reveal the latent abilities used by the different groups, though possibly shedding light on 

how to better educate them.  If the dimensionality is found to be different, then research 

explaining the possible causes of this difference can be done.  In addition to dimensional 

analyses, a DIF analysis will be performed to further differentiate between these two 

populations and how they interact with specific items on a standardized assessment.  

These methodologies were selected because they were most appropriate for answering 

the research questions.    

Research Questions 

The current study has its basis around the essential topic of testing fairness and 

validity for one state’s eighth grade educational assessment program.  A technical report 

has used the complete data to evaluate the validity, dimensionality, and other areas of the 

assessment program for grades 3-8 in State A.  However this study focuses on a specific 

grade level and a specific split of the students.  Only data from grade eight was used 

because this grade level is known as a transition period that is extremely pivotal 

(Gutman, 2006; Isakson & Jarvis, 1999; Neild, Stoner-Eby, & Furstenburg, F, 2008; 

Reyes, Gillock, Kobus, & Sanchez, 2000).  Through the use of this data this study will 

address the following research questions: 
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1. Is there a statistically significant difference in the covariance structure for 

students who were accommodated and for those who were not? 

2. Does the assessment measure the same dimensional construct(s) for those 

students who have disabilities and use accommodations versus those who do 

not?  Is there differential dimensionality across the groups? 

3. Is there measurement invariance across the two groups (accommodated versus 

non-accommodated students)?  Does the same factor structure hold? 

4. Is there a difference in item functioning for those students with disabilities 

who received accommodations versus those without?  

 

The results are intended for test makers, psychometricians, state officials, 

teachers, and anyone else involved with a standardized testing system.  Besides 

emphasizing fair testing, this study intends to place an emphasis on identifying students 

who are disabled and need to take alternate assessments or receive accommodations.  

This front end process is also very critical in establishing the validity of testing programs 

for these students.  If students are incorrectly identified or given the wrong 

accommodations, test results will be flawed and could result in a loss of internal and 

external validity.   
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CHAPTER II 

REVIEW OF THE LITERATURE 
 
 

Recent legislature has placed heavy demands on the field of educational testing.   

With the 1997 amendments to the Individuals with Disabilities Education Act (IDEA) 

and the implementation of No Child Left Behind in 2001, equity and accountability have 

become mandated for all students.  Across each state, standardized achievement tests in 

reading, mathematics, and science are mandated for students in all districts. States have a 

certain level of autonomy on the specific assessment program they choose to administer.  

However, federal accountability unites the states by holding them all to one common 

metric—Adequate Yearly Progress (AYP), even though specific computations used by 

the states are not the same.   

In order to comply with federal mandates that address equity education for these 

students, having alternate ways of assessing students with learning disabilities and severe 

cognitive disabilities is required for school districts (Goh, 2004; Schafer & Lissitz, 2009; 

Sireci, 2009).  Because of the current legislation, all students with disabilities—mild, 

significant, or severe—must be accounted for, so different procedures have to be 

implemented to create a fair testing situation depending on the nature of the student’s 

disability.  These approaches can be summed up into three categories—alternate 

assessments, enhanced assessments, or accommodations to traditional assessments.  It is 

important to know the difference between the three and each will be discussed. 
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To include students with significant disabilities in Adequate Yearly Progress 

(AYP), the U.S Department of Education announced in 2003 that states may be held to 

new alternate achievement standards (Yovanoff & Tindal, 2007).  The goal of an 

alternate assessment is to assist educators in evaluating a more direct and authentic 

measure of student learning and progress as opposed to a traditional standardized 

achievement test (Goh, 2004).  Thus, when is it appropriate to use alternate assessments?  

According to previous research, alternate assessments are used when students with 

disabilities or English Language Learners (ELLs) cannot take tests under standard 

administration and must be assessed by alternative procedures (Lam, 1993).  Students 

typically needing an alternate assessment are students with severe cognitive disabilities 

and/or students with minimum English language proficiency who are unable to take tests 

under standard administration, even if the tests are accompanied by accommodations 

(Goh, 2004).   

Some alternate assessments are very similar to traditional tests and allow students 

to choose an answer, but others permit a student to demonstrate his or her knowledge 

learned in the classroom through oral examinations, hands-on assessments, or projects.  

Bintz & Harste (1994) noted that an authentic assessment, performance assessment, and 

portfolio assessment are all types of alternate assessments that can be used to measure the 

achievement of students.  According to Goh (2004), performance assessment and 

authentic assessment are sometimes used interchangeably.  A performance assessment is 

a type of assessment that allows students to perform, demonstrate, and/or develop a 

product or solution based on the subject material learned.  There were five important 
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elements of the performance assessment identified by Elliott and Fuchs (1997): (1) 

linking assessment tasks that are clearly aligned or connected to what has been taught to 

the students, (2) presenting the scoring criteria of the assessment task to students prior to 

their working on the task, (3) sharing with students standards and modes acceptable and 

exemplary performance prior to assessment, (4) encouraging students to complete self-

assessments of their performances, and (5) comparing students’ performance to 

predetermined standards as well as to the performances of other students.  Authentic 

assessments are similar to performance assessments in which there is a direct focus on the 

examination of a student’s performance and/or work product.   In addition to the 

performance aspect, an authentic assessment measures the behaviors and skills that are 

required to survive in the real world.  Moreover, others also seem to view a portfolio 

assessment as a subcategory of performance assessment.  Portfolio assessments are used 

to reflect a student’s accomplishments by using procedures to plan, collect, and analyze 

multiple sources of data such as work samples, journal entries, performance, exhibitions, 

teacher ratings, student assessments, and so on.  Darling-Hammond (1994) argued that 

portfolio assessments take into account the unique characteristics and backgrounds of 

diverse learners which are tailored to the assessment needs of these students.   

For students with disabilities who have Individualized Education Programs 

(IEPs), alternate testing options with modifications are necessary to promote fairness and 

equal opportunity.  Goh (2004) noted that the traditional psychometric methods of 

evaluating standardized tests may not apply to alternative assessment strategies and 

suggests that rethinking the issues of reliability and validity of alternate assessments may 
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be necessary.  It is important that these alternate methods be deemed just as reliable and 

valid as traditional standardized tests.  Addressing validity, Elliot and Roach (2007) 

referred to Wilson (2004) who discussed the role a teacher’s control plays in validating 

alternate assessments.  From Wilson’s control chart for assessment, it was concluded that 

the less control a teacher has in the task specification and evaluative judgments, then 

there is perceptively more psychometric validity and comparability (Wilson, 2004).  

Performance and portfolio assessments, along with rating scales of achievement were 

examined by Elliot and Roach (2007) to analyze the features that influenced the 

psychometric quality and validity.  However, Bintz and Harste (1994) suggested that 

educators should focus less on the method and more on the attainable outcome of the 

method and ask what do we want these methods to tell us about learning?  Their 

concentration on the relationship between alternate assessments and the curriculum 

emphasized that the two are not separate entities and must be properly aligned to equally 

coexist in order to demonstrate validity (Bintz & Harste, 1994).  There is a limited source 

of information regarding the technical validity of alternate assessments.  Goh (2004) 

noted that alternate assessments have relatively high face validity, but face validity does 

not assure accurate measurement and test interpretation.  It is suggested that an abundant 

of research is needed to provide other types of validity evidence.  Empirical data is 

needed to make instructional decisions or educational placement decisions.  It is also 

needed to assure that alternate assessments can actually measure high-order thinking.   

Creating alternate assessments that demonstrate accommodation validity takes 

planning and careful alignment to appropriate curriculum standards, hence why the first 
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study on validating an alternate assessment reported several inadequacies (Johnson and 

Arnold, 2004).  These assessments are meant to be extensions of standard assessments 

which test the general population, therefore should be designed with the same 

measurement precision so results will be meaningful.  There is also a limited source of 

information regarding the technical validity of alternate assessments.  Goh (2004) noted 

that alternate assessments have relatively high face validity, but face validity does not 

assure accurate measurement and test interpretation.  It is suggested that an abundant of 

research is needed to provide other types of validity evidence.  Empirical data is needed 

to make instructional decisions or educational placement decisions.  It is also needed to 

assure that alternate assessments can actually measure high-order thinking.  

Not quite considered alternate assessments, enhanced assessments are another 

type of inclusive assessment that target identified gap students (Salvia, Ysseldyke, & 

Bolt, 2006).  The method is similar to accommodations but a little more involved and 

state programs are just beginning to explore this alternative.  This type of assessment is 

seemingly more holistic and comprehensive.  Grants have been funded specially for 

enhanced assessment initiatives to improve the quality, reliability and validity of state 

assessment programs so that all students, even students that fall in the gap, can be fairly 

tested. 

Accommodations are another way testing can be modified to suit the special 

needs of students with disabilities.  They are somewhat less complex because the process 

does not involve creating an entire new assessment form, but that does not lessen the 

value of previous and future research done on them.  Accommodations are usually given 
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to students with mild learning disabilities or ELLs and according to Camara (2009), and 

vary with individual circumstances.  Accommodations should be handed out selectively 

after careful consideration due to the volume of requests for these accommodations 

(Ofiesh & Bisagno, 2008).  They are designed to make testing more accessible to these 

students and reduce the impact of “invalid” skills to the construct being tested.  Byrnes 

(2008) referred to accommodations as a means of removing the barriers caused by 

disabilities so that a student with a disability can have the same access as a student 

without.  In other words accommodations create a level playing field because they do not 

equate to instant success, but rather help for students who need them in order to 

effectively demonstrate what they have learned (Byrnes, 2008).  It is important that 

accommodations are properly chosen by a qualified individual.  Most often they are 

recommended by a teacher, learning specialist, or through Individualized Educational 

Program (IEP) teams (Gibson, Haeberli, Glover, & Witter, 2005).  Fuchs, Fuchs, and 

Capizzi (2005) provided a thorough overview of accommodations that addressed validity, 

but the study emphasized a system that extensively described how to identify 

accommodations appropriately as the task is complex because there is no one 

accommodation that is suitable for every student.  They presented a tool called DATA, 

The Dynamic Assessment of Test Accommodations, which presents teachers with a way 

of identifying which accommodations will result in differential improvements for 

specified individual students in grades 2-7 for the subjects of reading and math (Fuchs & 

Fuchs, 2001).   
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There are several different types of accommodations which can be administered 

alone or in combination with others and some research suggests that accommodations 

should be used in “packages” (Elliott, Kratochwill, & McKevitt, 2001).  First, changes 

can simply be made to the content of test items or the format of the test can be altered.  

This may sometimes be considered a modification, but nevertheless modifications are an 

attempt to make the test more accessible.  Modifications and accommodations are often 

used interchangeably, but some might note a slight technical difference.  However, some 

modifications are indeed accommodations.  Kettler, Elliott, and Beddow (2009) 

examined how to modify test items in order to get a better sense of what students with 

disabilities know.  The study introduced a new tool that provides educators with a 

systematic way of modifying grade-level tests so that items would consistently be fair 

and appropriate (Kettler, Elliott, & Beddow, 2009).  Students who qualify for 

accommodations can also be given an extended testing period, the most frequently used 

accommodation (Fuchs & Fuchs, 2001).  However, this accommodation has proved to 

increase scores for general and special education students (Fuchs, Fuchs, Eaton, Hamlett, 

Binkley, & Crouch, 2000) and research shows there has been little evidence to prove that 

students with disabilities are the sole beneficiary of the testing boosts from having 

extended time (Tindal & Fuchs, 2000).   Students with disabilities who had trouble 

reading did show large test score gains from extended time (Fuchs, Fuchs, Eaton, 

Hamlett, & Karns, 2000).  Lewandowski, Lovett, and Rogers (2008) also studied the 

effects of extended time on a reading test and found that the extra time benefited the 
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students with disabilities and allowed them to attempt as many questions as students 

without disabilities who took the exam in the standard amount of time allotted. 

Another type of accommodation that can occur is a change in administration.  

There are two instances of this type of accommodation with the first being that an 

examinee can receive an oral administration of the exam.  Orally presenting the test to a 

student means a teacher reads the test directions and items to a student.  Bolt and 

Thurlow (2006) conducted a longitudinal study across different grade levels that 

examined the item-level effects of this accommodation on math and reading test items.  

They found that performance on some items was positively affected, although not so 

much on others.  Other research studies on the effects of this particular accommodation 

also showed mixed results, but students with disabilities have shown an increase in their 

math scores when items are read aloud to them (Tindal, Heath, Hollenbeck, Almond, & 

Harniss, (1998).  Fuchs et al. (2000) attempted to prove the validity of this 

accommodation by showing that oral administration resulted in more score gains for 

students with disabilities than those without.  Huynh and Barton (2006) studied the 

effects of oral administration on the South Carolina High School Exit Exam (HSEE) by 

administering the test with the accommodation and without the accommodation to 

students with disabilities.  Results showed that the factorial structure of the test remained 

stable across the groups and that the accommodation did create equitable testing 

conditions for those who fittingly qualified (Huynh & Barton, 2006).  In a meta-analysis, 

Elbaum (2007) found that oral accommodations resulted in higher math scores for 
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students with disabilities than for those without, but found the converse true for 

secondary students.   

The other common administration change is setting. That is, the exam can be 

administered in an alternate location so that students can be tested in an environment that 

has fewer students than a regular classroom.  The purpose of this is to limit the amount of 

distractions.  This accommodation is often paired with others such as oral administration 

and extended time.  There is little to no empirical research on the effect of an alternate 

location used as an accommodation.  However, if tests are delivered using the proper 

protocol under equitable standardized conditions as in regular classrooms, then this 

change should not prove to be an unfair accommodation by falsely driving up scores 

(Fuchs, Fuchs, & Capizzi, 2005). 

Accommodations allow inclusion in the accountability system for those students 

who were excluded for a long time until recent legislation.  For this reason 

accommodations are directly linked to testing fairness and validity.   A fair and valid 

accommodation has been defined as providing help to students with disabilities so that 

they can demonstrate what they know on tests that produce meaningful scores and can be 

evaluated on the same constructs that are measured in the testing of nondisabled peers 

(Fuchs & Fuchs, 2001; Fuchs, Fuchs, & Capizzi, 2005; Phillips, 1994).  Elliott, 

Kratochwill, McKevitt, and Malecki (2009) allowed accommodations to be rated and 

deemed fair by testing experts.   

Sireci, Scarpati, and Li (2005) performed a thorough review on testing 

accommodations and the previous research that has been done on them.  More 
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specifically, Lang, Elliott, Bolt, and Kratochwill (2008) examined the effects of testing 

accommodations on a group of fourth and eighth-grade students, with and without 

disabilities.  In the study they gave all of the students a reading and math test with and 

without accommodations and also administered a questionnaire to find out the students’ 

perceptions of test accommodations.  Results revealed that students perceived 

accommodations as fair for all students but even more fair for students with disabilities.  

Also, the accommodations had an overall positive impact on test scores (Lang, Elliot, 

Bolt, & Kratochwill, 2008).   

Willingham (1986) investigated admissions testing and how the procedures could 

negatively affect those with disabilities if not modified properly.  Whereas admissions 

tests are for the realm of higher education, tests with such high stakes particularly 

emphasize the importance of fairness for the disabled population.  According to 

Geisinger (1994), most laws concerning educational testing affected tests associated with 

college admissions.  Most standardized assessments are usually attached to high stakes 

whether it is at the examinee, teacher, school, or district level.  Willingham et al. (1988) 

took his research on “testing handicapped people” a step further by implementing the 

measurement technique of differential item functioning (DIF) to compare items across 

students with and without disabilities and there was ultimately no DIF found.  The 

premise behind DIF is that examinees of the same achievement level (latent ability) 

should have the same probability of correctly responding to an item.  Therefore, DIF is 

said to be present when a certain group of students performs lower on a test item than a 

comparable reference group of students after controlling for the ability being measured.  
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These subgroups are commonly divided by conventional splits such as Race/Ethnicity or 

gender.  Ackerman (1992) reasoned that standardized tests must have a level of 

discrimination to differentiate between examinees of different ability levels.  However, 

this type of discrimination should not be an artifact of culture, race, or gender.  Other 

Reference and Focal group splits have often been researched as well, like the 

aforementioned split on disability or a split on native language to see whether items show 

DIF for those students whose primary language is not English (Haugers & Sireci, 2008; 

Mahoney, 2008; Martiniello, 2008; Sinharay, Dorans, & Liang, 2009).   

Abedi, Leon, and Kao (2008) examined DIF in reading assessments for students 

with disabilities.  In this study a logistic regression approach to DIF was used in order to 

answer the primary research question—do items on a reading assessment exhibit DIF for 

students with disabilities?  They found that a number of items did indeed show signs of 

uniform and non-uniform DIF for students with disabilities more so in the latter parts of 

the subscales in the reading exam (Abedi, Leon, & Kao, 2008).    

More recent research using DIF with this topic has compared various groups of 

students with disabilities on exams that range across different content areas (Barton & 

Finch, 2004; Bolt, 2004; Bolt & Bielinski, 2002; Cahalan-Laitusis, Cook, Cope, & 

Rizavi, 2004; Camara, 2009; Finch, Barton, & Meyer, 2009).  For example Finch, 

Barton, & Meyer (2009) used the split of accommodated versus non-accommodated 

students on math and language items and found both uniform and non-uniform DIF.  

Clearly to this point there have been mixed findings as to whether accommodations 

create a bias or unfair testing advantage.  Although some studies provide evidence to 
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support the finding, others do not deem this to be the case.  A number of the studies using 

this DIF framework concluded that the DIF was related to a difference in skill and not to 

the accommodation factor, as the direction of the DIF did not favor any group 

consistently (Finch, Barton, & Meyer, 2009).  This is where DIF becomes intertwined 

with assessing skills and specified constructs.  Camara (2009) reiterated the common and 

important notion that accommodations should not change the intended construct being 

measured.  This study will examine that notion through the use of dimensionality 

software, which is rooted in MIRT, to attempt to use a different methodology than in 

previous research.  If constructs change across groups, then this further affects the 

validity of the assessments and dimensionality is not population invariant. 

Over the past years, there has been a lot of research done on the theoretical 

framework of MIRT.  Reckase (1997) summarized the historical antecedents of MIRT 

with factor analysis and unidimensional item response theory (IRT) being the main 

predecessors.   He followed up describing the works of contributors such as Spearman, 

Thurstone, Lord and Novick, and Samejima (Reckase, 1997).  Ackerman, Gierl, and 

Walker (2003) looked at the applicability of MIRT and discussed using the method to 

evaluate educational tests.  The underlying assumption is that tests are naturally 

multidimensional, meaning they often measure more than one construct.  A valid 

construct is what a tests purports to measure and is described by tests developers in 

detailed test blueprints.  Consequently, there are valid and invalid constructs.  Items on a 

given measure usually measure a composite of abilities, all of which may not be intended 

to be measured as specified by the test blueprint.  If an item is not sensitive enough to 
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measure more than one skill or if examinees vary on the same skills, then the examinee-

item interaction will behave unidimensionally (Ackerman, 1992).  Thus, dimensionality 

is not of great importance when the same composite is being measured for all students.  

However, when studying students with disabilities, this variance in dimensionality could 

very well be present due to the fact that these students may use different levels of 

compensation which causes them to interact with the items differently than nondisabled 

students.  This method is informative because it shows if the same constructs for both 

populations are being measured or it would reveal differential dimensionality and 

possibly non-valid dimensions.  If the same constructs are not being measured 

consistently then more emphasis needs to be placed on what exactly we are trying to 

accomplish when testing alternate populations (Bintz and Harste, 1994).   

According to the work of Stout, Habing, Douglas, Kim, Roussos, & Zhang 

(1996), doing a test of multidimensionality serves the purpose of refuting 

unidimensionality and identifying a test’s multidimensional structure.  Simple structure is 

important in detecting multidimensionality and requires that items can be assigned to 

distinct homogeneous clusters showing that they measure only one dimension.  The 

number of item clusters equals the number of dominant dimensions (Stout et al., 1996).  

This can be done using factor analytic techniques or by substantive expert review.  

Determining if a test is factorially simple or complex is one of the purposes of using a 

multidimensional framework.  In MIRT a two-dimensional plane represents a two-

dimensional latent space.  Analysis of response data and item parameters reveals the item 

location with respect to the coordinate axes, explaining what items are measuring and 
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how.  The angle of the vector represents the composite, the length of the vector represents 

the discrimination and the location of the item denotes the item’s difficulty. 

Stout et al. (1996) discussed three multidimensionality assessment procedures.  

The first procedure, HCA/CCPROX (Roussos, 1995) is a method referred to as a sorting 

algorithm that gives several groups of items that could potentially be differ in 

dimensionality, but does not do a formal statistical test of the distinctness of the items 

from the rest of the test items (Stout et al., 1996).  Unlike HCA/CCPROX, DIMTEST is a 

statistical hypothesis test that assesses the conditional covariance relationship between 

two previously identified clusters of items on an exam and determines if they are 

dimensionally distinct.  Moreover, Stout et al. (1996) discussed DETECT (Zhang & 

Stout, 1999b) as the third procedure which is a “specialized estimation procedure” which 

is different from the previous two because it measures the amount of 

multidimensionality.  It too uses conditional covariances to partition items into 

dimensionally homogeneous and distinct clusters.  The reported DETECT index is 

estimated by a complex algorithm and is fairly subjective and can be evaluated by 

specified criteria (Stout et al., 1996). 

Stout’s work in the field has allowed for continuous research on the topic of 

dimensionality using the discussed procedures (Douglas, Kim, Roussos, Stout, & Zhang, 

1999; Froelich & Habing, 2008; Nandakumar, 1994).  Reckase (1997) suggested that 

because most educational tests likely assess multiple skills, more research needs to be 

done in the area of MIRT to establish a solid base for a methodology that is still in its 

early stages compared to other psychometric techniques.  However, MIRT research has 
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been the gateway that examines the importance of dimensionality research with the 

expressed purpose of confirming or refuting unidimensionality.  If a test is 

unidimensional for one group, it may or may not be for another group.  Thus, the issue of 

invariant dimensionality is so important for the valid interpretation of test results when 

multiple subpopulations are involved. 
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CHAPTER III 

METHODOLOGY 
 
 

Data 

 Preexisting test data allowed for the development and completion of this study.  

The data source is a small Northeastern state that is predominantly Caucasian.  For 

purposes of anonymity, this study will refer to the state as State A.  The data were 

obtained from the 2007-08 academic year of State A’s traditional educational assessment 

program and only includes grade eight.  The entire sample included 15,274 participants in 

each of the required subjects—math, reading, and science.   

 To get a snapshot of the students in this sample, there was a number of 

demographic variables collected including gender, ethnicity, Title I status, and national 

school lunch program participation.  Of the 15,274 examinees, 7,338 (48.0%) were 

female and 7,936 (52.0%) were male.  A majority of the students were Caucasian 

(94.7%), whereas the remaining students were Asian/Pacific Islander (N=186; 1.2%), 

African American (N=368; 2.4%), Hispanic (N=139; 0.9%), or American Indian/Native 

American (N=120; 0.8%).  Only 829 (5.4%) had Title I status and 14,445 (94.6%) did 

not.  Of the total 15,274 students, 5,420 (35.5%) participated in the national school lunch 

program and the remaining 9,854 (64.5%) did not.   In the data 2.1% of the students were 

listed as currently as having a Limited English Proficiency (LEP). 



 

26 
 

Per No Child Left Behind, each state is required to asses each student in grade 

levels 3 through 8 and in high school in math, science, and reading. Usually one of three 

avenues is used: standard administration, standard administration with accommodations, 

or through alternate assessment.  The subgroup of interest was composed of those 

students who were administered the standard eighth grade subject exams with 

accommodations. This group was compared with those who did not use accommodations.  

In all, there were 12,766 (83.6%) students who were not identified as having a disability 

and 2,508 (16.4%) who were.  Some of the specific types of disabilities are attention 

deficit hyperactivity disorder (ADHD), articulation disorder, auditory processing 

disorders, dyscalculia, dyslexia, expressive language disorder, and visual processing 

disorder.  Of the 2,508 who were identified as having a disability, 5.6% were minorities. 

The specific ethnic/racial breakdown is as follows:  0.6% Asian/Pacific Islander; 2.5% 

African American; 1.2% Hispanic; 1.3% American Indian/Native American; 94.4% 

Caucasian; 17.3% and 16.4% of all minorities and non-minorities, respectively, in this 

sample are identified as having a disability.  Of the minority population, 64.5% are male 

and 35.5% are female.  These values are slightly different from national percentages 

which report the Race/Ethnicity breakdown of those with disabilities as 1.3% American 

Indian/Native American; 1.8% Asian/Pacific Islander; 20.3% African American; 13.7% 

Hispanic; 62.9% Caucasian (U.S. Department of Education, 2001).  Concerning the issue 

of proportionality, a chi-square was performed to test if the Race/Ethnicity demographics 

were different across the two groups—students identified as having a disability versus 

those who were not.  A chi-square value of 22.306 with four degrees of freedom resulted 
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in a significant value less than 0.05 denoted significant differences between the two 

groups. 

Accommodation types and rules vary across states, but in State A 

accommodations must be approved by a team and be a part of the student’s daily 

instructional program.  In this sample, on the science subject test 2,197 (14.4%) students 

tested with accommodations and 12,710 (83.2%) tested without.  In the math subject test 

2,227 (14.6%) students used accommodations and 12,694 (83.1%) did not.  For the 

reading exam, 2,221 (14.5%) students tested with accommodations and 12,703 (83.2%) 

did not.  The specific types of accommodation given to each student are listed in 

Appendix A on Table 12 along with user frequencies.  The accommodations range across 

four different areas of testing—timing, setting, how the test is presented, and how the 

students may respond.   The most frequently used accommodations were extended time 

(same day), different testing site other than the student’s regular classroom, small group 

administration, and verification that the student understood the directions.  It should also 

be noted that specific accommodation types were not mutually exclusive, as some 

students received more than one.  For the purposes of this study, all accommodations 

were grouped together.  There were other special circumstances on the participation 

status of some students, but for the purposes of this study these students were excluded 

because the interest is the effect of an examinee having or not having access to an 

accommodation.  This exclusion decreased the sample size for each subject test to 

N=14,921, N=14,924, and N=14,907 for math, reading, and science, respectively. 
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Each subject’s exam included multiple choice (MC) and constructed response 

(CR) items and the math exam also included short answer (SA) items.  The items used in 

this study were only items released by State A.  Because of the chosen analyses used in 

this study, only the multiple choice items and responses from each exam were used. 

These items were dichotomously scored as 0 or 1, for incorrect and correct responses 

respectively.  Correct responses were consequently summed for each examinee to create 

a revised total score which reflected only items used. 

On the complete exam which used all item types, each item had a maximum score 

value which resulted in total raw score that determined the examinee’s performance level.  

Multiple choice items received a maximum of one point for a correct answer.  

Constructed response items were scored 0, 1, 2, 3, or 4, with 4 being the maximum point 

value.  Short answer items appeared only on the math exam and 2 points represented the 

maximum value.  With this scoring methodology, the maximum number of points was 56 

for each subject exam.  The performance levels ranged from the Level 1 to Level 4, 

lowest to highest.  Table 1 shows the distribution of students across the performance 

levels and is based on scaled scores that took sets of items into consideration, not all of 

which are included in computing the raw scores averaged in Table 1.  It is clear that the 

group who tested with accommodations have higher percentages of students in Levels 1 

and 2 than those students who tested without accommodations.  Table 2 shows the 

average scores of the students across all three subjects and includes all item types 

previously mentioned with a maximum score value of 56.   There is a notable score 

differential between those who received accommodations and those who did not.  
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Average scores for both students with and without accommodations proved to be highest 

on the reading subject test and the lowest on the math.  

 
 
Table 1.  Distribution of Students Across Performance Levels 
 
 Level 1 Level 2 Level 3 Level 4 

Students tested with accommodations 
Math 62.5% 21.6% 14.5% 1.3% 
     
Reading 42.4% 31.1% 23.6% 2.9% 
     
Science 37.9% 30.1% 28.6% 3.3% 

Students tested without accommodations 
Math 17.2% 25.6% 44.4% 12.8% 
     
Reading 5.3% 15.9% 52.4% 26.5% 
     
Science 7.1% 19.8% 55.1% 18.1% 
     

 

 
Table 2.  Mean Scores on Subject Tests 
 
 Students tested 

w/ accommodations 
Students tested 
w/o accommodations 

   
Math  17.78 (8.86) 29.64 (10.89) 
   
Reading 26.23 (9.37) 38.73 (8.19) 
   
Science 23.35 (9.19) 33.07 (8.76) 
   
Note: Standard deviation in ( ); Includes all item types; Maximum score = 56. 
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The mean differences displayed in Table 2 were statistically significant (p-value = .000; 

power =1.0) for the math, reading, and science exams, with small effect sizes of .137, 

.220, and .132, respectively (Cohen, 1988). 

 

 

Procedures 

 In order to answer the research questions of interests, specific analyses were 

employed.  Initially, to test the homogeneity of the covariance matrices of the dependent 

variables (test items) across groups (accommodated versus non-accommodated), a 

straightforward Box’s M statistic tested at p = 0.001 was used because of the test’s 

sensitivity to normality assumptions.  This method tests the null hypothesis that the 

observed covariance matrices of the dependent variables are equal across groups.  If a p-

value less than 0.001 is found, then the covariance matrices are significantly different and 

the null is rejected, which is to be expected in this study.  The Box’s M test was done for 

each subject exam—math, reading, and science. 

To answer the remaining research questions, more complex analyses were 

necessary.  In determining if there is differential dimensionality for those who have 

disabilities and use accommodations versus those who do not, select dimensional 

analyses will be used.  The logical order of some of the procedures can be tracked in the 

flow chart provided in Figure 1.   
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Figure 1.  Flow Chart of DIMPACK Procedures 
 

 

  identify feed   fed into    

 

 

 

If the test is not unidimensional, the first task is to attempt to locate a 

dimensionally distinct subset of items from the original test in question.  To increase 

power, it is suggested that this previously identified of subset of items be homogenous 

(Stout et al., 1996).  This task can be accomplished through the use of techniques such as 

a substantive expert content review, HCA/CCPROX (Roussos, 1995; Roussos, Stout, & 

Marden, 1998) or factor analysis and are often used in combination with other MIRT 

programs such as DIMTEST (Zhang & Stout, 1999a) or DETECT (Kim, 1996; Zhang & 

Stout, 1999b).   Hierarchical item cluster analysis, HCA, was used to produce 

dendrograms to cross validate the dimensionality structure.  This analysis, done in SPSS, 

was the agglomerative method which progressively merges all individual clusters until 

one cluster remains. The options chosen for this analysis were the average linkage 

method, which was selected because of its ability to deal with small variances, along with 

squared Euclidean distance as the distance measure.  

Additionally, an exploratory factor analysis (EFA) with scree plots was also used 

in selecting the appropriate assessment subtest for DIMTEST since the main purpose of 

an EFA, as defined by Harman (1976), is to resolve a set of variables into a smaller 

Factor 
analysis 

 
DIMTEST 

DETECT  

Set of 
suspect 
items HCA/ 

CCPROX 
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number of “factors” or categories.  Through the use of SPSS Statistics 18 a principal 

components analysis was done to identify a group of items that cluster together.  Using 

dichotomous item data for factor analytic procedures has been controversial in research 

because results may be based solely on item distribution similarity.  Research studies 

such as Shapiro, Lasarev, and McCauley (2002) observed that the use of dichotomous 

data in factor analysis procedures could be problematic because continuous multivariate 

normal data is expected and often suggest the use of tetrachoric correlations.  Since item-

level data rarely meets these criteria, this study followed the suggestion of Kim and 

Mueller (1978) which deemed the use of dichotomous data permissible in EFA if 

correlations between the variables were less than 0.7.  

For the math exam only, the invariance of factor structure was formally tested 

across groups through the use of a multi-group structural equation model also using the 

LISREL program (Joreskog & Sorbom, 1993b).  To take into account the use of 

dichotomous data in structural equation modeling, Joreskog and Sorbom (1993a) 

suggested obtaining the necessary covariance and asymptotic covariance matrices 

through the program PRELIS to obtain appropriate tetrachoric correlation values from the 

raw item response data since product- moment correlations are not recommended.  Use of 

the asymptotic covariance matrix in the input file prompts LISREL to use the Weighted 

Least Squares (WLS) estimation method, which is appropriate for dichotomous or ordinal 

data.  In determining if the factor structure holds across the accommodated and non-

accommodated subjects, the hypotheses being tested are: 
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H0: The factor structure is the same for each group 

     or 

H1: The factor structure is different for each group 

 

Loosening certain constraints in the measurement models allowed different factor 

scenarios to be tested and then compared using the fit statistics produced by LISREL.   

 The DETECT program was used as a specialized estimation procedure that 

measures the amount of multidimensionality.  It uses conditional covariances to partition 

items into widely spread dimensionally homogeneous clusters.  This program also 

requires a data file that contains examinee responses.  The reported DETECT index is 

estimated by a complex algorithm that takes into account the number of latent abilities 

required to make the inter-item conditional covariances approach zero.  The DETECT 

index is somewhat subjective and ranges from 0 to values well over 1.  Values near 0.1 

indicated unidimensionality and greater than 1 indicate sizeable multidimensionality.  In 

this study the index will be evaluated by the following criteria per Stout et al., 1996. 

 Values around 0.1-0.5 indicate unidimensionality 

 Values between 0.6-0.8 indicate moderate multidimensionality 

 Values near and above 0.9 indicate sizeable multidimensionality 

DETECT output gives the maximum DETECT value which will be compared across the 

subgroups and different subject assessments. 

After assessing the structure, confidently identifying a subset of suspect items 

using a cluster analytic approach is an important step before continuing to the DIMTEST 

which makes use of two distinct subsets of items—AT1 (assessment subtest) and PT 



 

34 
 

(partitioning subtest).  Froelich and Habing (2008) noted that it is favorable if the item 

vectors of AT1 are widely spread from the item vectors of the PT subtest as shown in 

Figure 2.  The recommended minimum for the AT1 subset is three items and the 

minimum for PT is fifteen (Stout et al., 1996).  In this study, a group of suspect items was 

to be identified for all three subject tests. 

 
 

Figure 2.  Example of a Good AT1 Selection for the DIMTEST Program 
     ɵ2         ɵAT 

 

    

            ɵPT         

          ɵ1 

 

After identifying a distinct set of suspect items, the next step is to statistically test 

if these items are dimensionally distinct from the remaining items on the test through the 

DIMTEST procedure, which tests the hypothesis: 

H0: AT1 ∪ PT satisfies d = 1, where d is the number of test dimensions 

     or 

H0: AT1 ∪ PT is one-dimensional and there is no dimensional difference 

 

The DIMTEST procedure requires the input of an item level data file with examinee 

responses.  The specific option in DIMTEST used in this study is to hand enter pre-

selected items for AT1.  Once items are entered, AT1 is tested against PT.   The result is 
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the DIMTEST statistic, T, which is normally distributed and can be interpreted like a z-

statistic.  A p-value less than 0.05 indicates that the two item clusters are significantly 

different in dimensionality—or dimensionally distinct.  The T-statistics and p-values will 

be compared across subject tests for those students who tested with accommodations and 

those who did not in order to get a comprehensive view of the differences in 

dimensionality.  

 Following the dimensionality analyses, differential item functioning (DIF) was 

used to assess the issue of item fairness as a function of receiving an accommodation or 

not.  The DIF-detection was performed through the use of the non-parametric 

Simultaneous Item Bias Test, SIBTEST (Stout & Roussos, 1995).  This approach was 

chosen because the method uses a multidimensional perspective to calculate the size of 

DIF.  The statistical test that assesses this degree of DIF in SIBTEST is uniB̂ .  The 

statistical null hypothesis for SIBTEST is: 

H0: B(T) = PR(T) - PF (T) = 0 

where B(T) is the difference in the probability of a correct response on an item for the 

Reference and Focal groups; PR(T) is the probability of a correct response on an item for 

the Reference group; PF(T) is the probability a correct response on an item for the Focal 

group; and T is the match criteria, true score.  Simply stated, the hypothesis posits that 

there is no difference in the probability of correctly answering an item for the Reference 

and Focal groups after controlling for ability, hence why the difference B(T) = 0.  The 

alternative hypothesis is: 

H1: B(T) = PR(T) - PF (T) ≠ 0. 
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Similar to DIMTEST, SIBTEST also uses two subsets of items—a suspect set of items 

which are the items believed to be biased and a valid set of matching items.   

To run the program, SIBTEST first requires the use of SIBIN in order to create a 

control file to serve as the input file for SIBTEST.   Several options must be chosen in 

order for SIBTEST to be run properly for a specific study.  The specific options that this 

study employed were to analyze all items, use pooled weighting and Bonferroni p-values 

for all runs, and to test bias against either group.  SIBTEST also needs separate item 

response files for the Reference and Focal groups.  For this study, the split between the 

groups was based on testing with or without an accommodation.  The Reference group 

included the non-accommodated students and the Focal group consisted of the 

accommodated students.  The procedure was run three times, once for each of the subject 

tests to flag items that are potentially biased according to this split of the sample.  

SIBTEST outputs both a SIB-uni z-statistic and a Mantel-Haenszel chi-square, both with 

p-values and indication of whether the direction of the DIF is against the Reference or 

Focal group.  Along with the items that are flagged as exhibiting DIF, these statistics 

were examined across the different subject tests in the results section.  Also, path 

coefficients from the best fitting SEM model were compared with the DIF flagged items 

from the math exam to cross-validate the results. 
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CHAPTER IV 

RESULTS 
 
 

The purpose of this study was to psychometrically evaluate a set of standardized 

subject tests taken by eighth grade students—some who used accommodations and some 

who did not.  This research revolved around the issue of test fairness because of the fact 

that some students with disabilities were appropriately accommodated whereas traditional 

students were not.  It is important to determine if the tests fairly served both groups and 

to do this covariance structure, measurement invariance, dimensionality, and item 

functioning were examined.  This chapter will provide an overview of the classical item 

statistics and reveal the statistical results for the psychometric analyses. 

 
 

Item Analyses 

 Classical item and test statistics were obtained for each test and group (non-

accommodated and accommodated) through the use of the program ITEMAL 6 

(Ackerman, 2010) using only the dichotomously-scored multiple choice items.  Table 3 is 

a summary table including averages and the complete item statistics are reported in 

Tables 13 through 18 in Appendix A.  Looking at the overall test distributions graphically 

for each subject exam highlights the differences in then scores of the two groups (see 

Figures 3, 4 and 5 in Appendix A).   
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Table 3. Average Item and Test Statistics 

 
 

Avg. 
Item 
Diff. 

 
Avg. Item 

Discrimination 

Avg. 
Point  

Biserial 

 
Avg. Test 

Score 

 
 

Reliability 

 
 

Skewness 
Math 
  Accommodated  
 

0.363     0.322 0.329 11.6(4.9) .738 1.057 

  Non-accommodated 0.551 0.469 
 

0.408 15.6(6.1) .841 0.166 

Reading 
  Accommodated  0.525 0.428 

 
0.407 16.8(6.4) .837 0.207 

  Non-accommodated 0.768 0.358 
 

0.389 24.6(5.1) .815 -0.931 

Science 
  Accommodated  0.511 0.443 

 
0.379 15.9(5.7) .803 0.221 

  Non-accommodated 0.691 0.389 
 

0.377 21.4(5.1) .796 -0.493 

       
Notes: Item difficultly = % correctly answering item; Standard deviation in ( ) 
 

 

On the math exam, the accommodated group averaged a score of 11.6 compared to a 17.6 

by the non-accommodated group.  The distribution of the accommodated group was 

positively skewed.   The average item difficulty was 0.363 for the accommodated group 

as opposed to 0.551 for the non-accommodated group.  This item difficulty pattern held 

across each subject exam.  The non-accommodated group on average consistently had a 

higher proportion of examinees who correctly responded to the test items.  This resulted 

in higher mean test scores for the non-accommodated group across each test as well.  The 

mean differences between the two groups were tested for each subject exam and results 

showed p-values of .000, indicating a statistically significant mean difference for 

accommodated and non-accommodated students. Power was equal to 1.0 for each 
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analysis and small effect sizes of .113, .211, and .125 were reported for the math, reading, 

and science exams respectively. 

The reliabilities ranged from 0.738 to 0.841, with the lowest and highest both 

occurring on the math test.  Discrimination values were also reported for each item and 

were calculated using the following formula: 

d = pu - pl  

where pu is the proportion of the upper group that answered the item correctly and pl is 

the proportion of the lower group that correctly answered the item (Crocker & Algina, 

1986).  The average discrimination, ranged from 0.322 to 0.469.  As noted in Classical 

Test Theory (CTT), the reported point biserials are also a measure of discrimination. In 

order to properly obtain averages of the point biserial correlations, the Fisher’s z' 

transformation was used to convert the correlations to a normally distributed z', and 

numbers were then converted back to correlations. Note that conversion calculators for 

this transformation exist, but the formula for transformation to z' is: 

z' = .5[ln(1+r) - ln(1-r)] 

The average point biserials for the items ranged from 0.329 to 0.408.  The non-

accommodated groups had negatively skewed distributions on both the reading and 

science exams (see Figures 4 & 5). 

 

Analysis 1: Box’s M 

First, it was important to have a hypothesis test that tested the covariance structure 

of the two separate groups.  To address this, the Box’s M statistic was used.  The null 
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hypothesis for this statistic tests the equality of the covariance matrices for the 

accommodated versus non-accommodated students.  The procedure was repeated for the 

math, reading, and science exam.  

The results in Table 4 show that for each of the three subject exams, there was a 

statistically significant difference in the covariance matrices across the groups.  The p-

value was tested at the 0.001 level. 

 

Table 4.  Box’s M Results 
 
 Box’s M Significance 
   
Math  3355.48 .000* 
   
Reading 8740.39 .000* 
   
Science 5532.38 .000* 
   
   
Note: * denotes a significant p-value at the p = .001 level 

 
 

The statistical significance across all three tests showed that accommodated students and 

non-accommodated students did not have homogenous covariance matrices.  However, 

this test is quite often statistically significant due to its sensitivity to the number of 

covariances and large sample sizes. 

 

 
Analysis 2: Dimensionality 

 
The Box’s M statistic tested whether the dimensionality and the structure were the 

same.  Although the results provided evidence that there may be some inherent 
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differences between the groups, dimensionality was then further investigated alone 

through a set of dimensionality techniques.  Dimensionality was examined to be 

compared across groups to see if there was differential dimensionality. 

First, an exploratory factor analysis (EFA) was run on the correlation matrices of 

the dichotomous data, and as mentioned earlier this method may be better employed 

through the use of tetrachoric correlations.  An EFA was done separately for each group 

(accommodated and non-accommodated) to determine if the items on each subject exam 

could be condensed into smaller groups.  This dimension reduction technique indicated 

that the correlational structure suggested that the subject exams were written as 

unidimensional and this was the case for both accommodated and non-accommodated 

students.  Although the exploratory factor analysis extracted several components, factor 

loadings and scree plots (see Figures 6-8)   confirmed the unidimensional nature of the 

tests.   The scree plots were evaluated by determining the number of components above 

the break from linearity, which seemingly revealed one.  For math, there was a slight 

difference between the scree plot for the accommodated and non-accommodated group. 

In the resulting component matrices, the factor loadings showed that the 

correlation between the observed items and the factors were highest on one main 

component even though few items did have a stronger correlation with other extracted 

components.  The amount of explained variance was also reported (see Table 5).  In the 

EFA done with the accommodated students on the math subject test, the main component 

explained 11.7% of the 42.9% explained by all ten extracted components.  For the non-

accommodated group, over half of the variance was explained by the use of one 
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component.  For the reading test with the accommodated group, the dominant component 

extracted explained nearly half (17.3%) of the variance given that the seven components 

explained a total of 37.7% of the variance. For the EFA performed with the non-

accommodated student data, the main component explained well over half of the total 

cumulative variance explained by the four components extracted.  In the science 

accommodated group, the EFA extracted eight components which explained a total 

variance of nearly 40%, but the major component alone explained 15.2%.  For the non-

accommodated group, five components explained 28.7% of the total variance and the 

major component explained half of that variance at 14.7%. 

 
 
Table 5. Principal Components Analysis Results 
 

 
Test & Group 

# of Extracted 
Components 

# of items loading on 
major component 

Explained 
Variance* 

Math    
  Accommodated  10 21 of 32 11.7% 
  Non-accommodated 5 29 of 32 17.2% 
Reading    
  Accommodated  7 22 of 32 17.3% 
  Non-accommodated 4 30 of 32 15.9% 
Science    
  Accommodated  8 21 of 31 15.2% 
  Non-accommodated 5 23 of 31 14.7% 
    
Note: * Explained variance of major component 

 

 

To further analyze the clustering of the items on each of the subject tests, 

dendrograms (see Figures 9 to 11 in Appendix A) and HCA/CCPROX were used.  The 

dendrograms varied in appearance for each groups on all three exams suggesting different 
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clustering patterns of the items, so another clustering technique was used for more 

validation because it is expected that dendrograms produced from unidimensional data 

have long stems of equal length.  The order of the items listed on the dendrograms reveal 

which items are most similar.  The closer items are the more similar they are and the 

further apart the items are listed the less similar they are.  For each subject exam, the item 

location on the vertical axis of the dendrograms varied for accommodated versus non-

accommodated students.  As determined by examining their respective p-values, the 

items seemingly clustered according the difficulty level, which could also indicate 

unidimensionality. 

The output from HCA/CCPROX showed that starting with the one-cluster 

solution and working backwards, items only began forming one to two item clusters, 

varying across groups and subject tests.  Looking at the various cluster solutions, it was 

clear that there was no distinct clustering of items that looked to form a complete second 

factor or dimension.  Consequently, the use of DIMTEST became moot.  The purpose of 

DIMTEST was to statistically test a group of suspect items, but due to the unidimensional 

nature of the data, this group of items could not be precisely identified and the DIMTEST 

procedure is most powerful when there is a wide clear-cut partition between the groups of 

tested items.   

Running the DETECT program to measure the amount of multidimensionality 

further confirmed that each subject exam was unidimensional.  Table 6 summarizes the 

results. 
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Table 6.  DETECT Results 
 

 
Test & Group 

# of Dimensions that 
maximized DETECT 

DETECT 
value 

 
Ratio r 

Math    
  Accommodated  5 0.271 0.588 
  Non-accommodated 5 0.236 0.699 
Reading    
  Accommodated  5 0.260 0.540 
  Non-accommodated 5 0.158 0.630 
Science    
  Accommodated  5 0.241 0.536 
  Non-accommodated 4 0.153 0.574 
    
 
 

Performing an exploratory DETECT analysis for each test resulted in a number of 

dimensions that maximized the DETECT value.  The closer a DETECT value is to the 

zero minimum, the more likely the data is to be unidimensional and values near and 

above 1 indicate multidimensionality.  Even though four to five dimensions were found, 

the maximal DETECT value never went above 0.3, with the non-accommodated group on 

the math exam having the highest value of 0.271.  The lowest value was 0.153 for the 

non-accommodated group on the science exam.  DETECT values of this low magnitude 

do not implicate multidimensionality.  Ratio r is a quantitative measure of the notion of 

simple structure.  Values greater than 0.8 generally indicate simple structure, but in this 

study the maximum ratio r was only 0.699.  Thus, again DIMTEST was not employed to 

evaluate the dimensionally distinctness of the DETECT clusters given their low DETECT 

values. 
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Analysis 3: Measurement Invariance 
 

 After using Box’s M test to examine the covariance structure and after confirming 

the dimensionality of the tests, the next research question involved measurement 

invariance across the multiple groups.  This analysis was only performed on the math 

exam since previous analyses seemed to provide the most evidence that this exam is most 

likely to show differential dimensionality.   

First, to confirm the unidimensional structure of the math exam, a confirmatory 

factor analysis (CFA) in LISREL was used and showed that a one-factor model structure 

fit both the accommodated and non-accommodated data.  Again, because the data were 

dichotomous, asymptotic covariance matrices and the WLS estimation method were used.  

RMSEA values of 0.021 and 0.020 showed that this structure was a good fit to both 

groups.  To further investigate the measurement invariance across the two groups, four 

different factorial structures were modeled and tested in LISREL with the math data, 

using a multi-group approach.  The Chi-Square, Root Mean Square Error of 

Approximation (RMSEA), and Comparative Fit Index (CFI) are summarized in Table 7 

for comparison purposes.  The table includes four models that range from completely 

restrictive (Model A) to a model that allows both factor loadings and error variances to be 

freely estimated (Model D).  The factor correlation is not used as a parameter because 

there is only one factor.  Model B allowed factor loadings to be estimated for each group 

independently, whereas Model C allowed the same for error variances. 
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Table 7.  Fit Statistics Summary of Measurement Invariance Models 

 Global Goodness of Fit Statistics 

Model Chi-square RMSEA CFI 

Model A: 
Factor loadings & 
Error variances 

Invariant 
 

3430.37* 
(992) 

 

 
0.023 

 
0.99 

 

Model B: 
Error variances 

Invariant 
(Factor loadings free) 

 

3189.58* 
(960) 

 
0.022 

 
0.99 

Model C: 
Factor loadings 

Invariant 
(Error variances free) 

 

3361.32* 
(960) 

 
0.023 

 
0.99 

Model D: 
Factor loadings & 

Error variances Free 

3116.47* 
 (928) 

 
0.023 

 
0.99 

Note: degrees of freedom in ( ) 
 

 

Each of the four models showed good fit by the normal standards of RMSEA and CFI.  

An RMSEA less than 0.05 and a CFI greater than 0.9 indicates acceptable fit implicating 

no measurement invariance across the groups.  However, here the chi-square differences 

are important because this measure takes the chi-square and degrees of freedom of the 

most restrictive model and subtracts the next restrictive model (see Table 8).  After 

computing the differences and p-values, the objective was to see if a less restrictive 

model had better fit.   Model D, the least restrictive model, seemed to be most 

appropriate. 
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Table 8. Chi-square Difference 

 Chi-Square 
χ2 

Model difference χ2 
difference 

Model A: 
Factor loadings & 
Error variances 

Invariant 
 

3430.37* 
(992) 

 

Model A - Model B 240.79* 
(32) 

Model B: 
Error variances 

Invariant 
(Factor loadings free) 

 

3189.58* 
(960) 

Model A - Model C 69.05* 
(32) 

Model C: 
Factor loadings 

Invariant 
(Error variances free) 

 

3361.32* 
(960) 

Model B - Model D 73.41* 
(32) 

Model D: 
Factor loadings & 

Error variances Free 

3116.47* 
 (928) 

Model C - Model D 244.85* 
(32) 

Note: degrees of freedom in ( ); * denotes significant p-value 
 

 

 To further analyze Model D its item path coefficients for both groups were compared to 

see how different they were across groups.  Table 19 in the appendix displays the path 

coefficients.  Large differences in these coefficients could possibly hint at which items on 

the math exam are more likely to exhibit differential item functioning when using the 

accommodation split. 
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Analysis 4: Differential Item Functioning 

 When looking at the differential item functioning across accommodated and non-

accommodated students, the program SIBTEST was used to see if there were any 

indications of differential performance due to the use of accommodations.  SIBTEST 

outputs the statistic of interest, SIB-uni, as well as the Mantel-Haenszel (MH) statistic 

which is also a nonparametric approach for determining the degree of DIF.  Beta-uni, the 

average p-value difference between the Reference and Focal group is also reported.  In 

testing the significance of these statistics, a p-value = 0.01 was used.  Tables 20, 21, and 

22 show the complete results of the SIBTEST runs for each of the three content areas.   

Table 9 shows the summary of items flagged with significant p-values (p<0.01) 

by both the SIBTEST SIB-uni and MH statistic.  The table also explains the number of 

items that favor the Reference and Focal groups, which was determined by the sign of the 

SIB-uni statistic.  A positive value indicates the Reference group is being favored while a 

negative value indicates the Focal group is being favored.   

 

Table 9.  DIF Results Summary 

 
 

 
# of flagged items 

 
# of items favoring 

  
Sib-uni 

 
MH 

Reference 
group 

Focal 
group 

     
Math 11 13 4 7 

     
Reading       10       12        6       4 

     
Science       15       16        9       6 

     
Note: Reference group = non-accommodated students 
          Focal group = accommodated students 
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Overall, the total number of items flagged by the DIF detection procedure varied 

for each subject exam and ranged from 10-15 when referring to the SIB-uni p-values.  

The number of flagged items slightly increased when using the MH statistic.  On the 

math exam, 11 significant items were identified with seven of those items favoring the 

focal group.  For the reading and science exams, most of the items flagged favored the 

Reference group.  On the reading exam, 10 items were flagged with only four favoring 

the Focal group and six favoring the Reference group.  On the science exam, a total of 15 

items were flagged and of that total nine favored the Reference group.   

Using published item information for the math and reading exams, flagged DIF 

items were linked back to their original content specifications.  These results are 

summarized in Tables 10 and 11 to show the DIF items with their respective content and 

the group favored.   

 
 
Table 10.  Math Items Exhibiting DIF with Matching Content Specifications 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

Note: Reference group = non-accommodated student; Focal group = accommodated students 
  

Item 
No. 

Group 
Favored 

 
Content Specification 

1 Focal Mathematical Decision Making: Probability 
9 Focal Patterns: Mathematical Communication 
11 Focal Patterns: Mathematical Communication 
13 Reference Shape and Size: Measurement 
14 Reference Mathematical Decision Making: Probability 
16 Reference Shape and Size: Measurement 
20 Reference Shape and Size: Geometry 
21 Focal Mathematical Decision Making: Data Analysis & Statistics 
22 Focal Mathematical Decision Making: Data Analysis & Statistics 
23 Focal Mathematical Decision Making: Probability 
28 Focal Numbers and Operations: Numbers & Number Sense 



 

50 
 

On the math exam of the 7 items favoring the Focal group, 4 were labeled as 

Mathematical Decision Making problems.  Three of the 4 items favoring the Reference 

group were in the Shape and Size content area. 

 
 
Table 11.  Science Items Exhibiting DIF with Matching Content Specifications 

     Note: Reference group = non-accommodated students; Focal group = accommodated students 
 
 
 

On the science exam, of the 9 items favoring the Reference group, 5 were in the Earth 

and Space Sciences content area.  There were 6 items that favored the Focal group and 

half of those items were in the Nature and Implications of Science content area. 

 

Item 
No. 

Group 
Favored 

 
Content Specification 

7 Focal Nature & Implications of Science: Communication 
11 Reference Earth & Space Sciences: The Universe 
13 Reference Earth & Space Sciences: Continuity & Change 
14 Reference Earth & Space Sciences: Continuity & Change 
15 Reference Nature & Implications of Science: Communication 
16 Focal Nature & Implications of Science: Inquiry & Problem Solving 
17 Focal Physical Sciences: Motion 
18 Focal Physical Sciences: Structure of Matter 
19 Focal Life Sciences: Classifying Life Forms 
22 Reference Physical Sciences: Energy 
23 Reference Life Sciences: Ecology 
26 Focal Nature & Implications of Science: Inquiry & Problem Solving 
27 Reference Nature & Implications of Science: Implications of Science & Technology 
30 Reference Earth & Space Sciences: The Universe 
31 Reference Earth & Space Sciences: Continuity & Change 
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CHAPTER V 
 

CONCLUSIONS 
 

 
In the past testing has been the subject of a wide body of research.  However, it is 

also important to research impact of the testing identifiable subpopulations.  In particular, 

this study looked at a state’s eighth-grade assessment program to see if and how those 

exams behaved differently across students with disabilities who used testing 

accommodations and those students who did not.  Comparing populations across tests can 

shed light on a number of test issues that affect fairness and validity but in this 

comparison study there was no psychometric evidence to conclude that the use of 

accommodations provided an advantage.  This chapter will discuss perceived study 

limitations and directions for future research, but will first summarize the findings of the 

previously posed research questions: 

1. Is there a statistically significant difference in the covariance structure for 

students who were accommodated and for those who were not? 

2. On a given assessment, is there differential dimensionality across the 

groups? 

3. Does the same factor structure hold across the two groups? 

4. Is there a difference in item functioning for those students with disabilities 

who received accommodations versus those without?
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First, looking at classical item and test statistics revealed noticeable differences on 

each subject exam for accommodated and non-accommodated students.  Average 

discrimination values were higher for accommodated student except for on the math 

exam.  Total test scores were significantly different across the two groups on all three 

subject exams.  P-values for non-accommodated students tended to be higher which 

explains the higher mean scores for this group, because the sum of the p-values is equal 

to the mean. 

The second step in this study was to compare accommodated to non-

accommodated students was to examine the covariance structure of the data using a 

Box’s M statistic which tests the null hypothesis that there is no difference between the 

covariance matrices of the two groups being tested—i.e., homogeneity of covariance 

matrices.  With the distinct differences between the groups being highlighted in the 

classical item and test statistics, it was to be expected that Box’s M would detect a 

significant difference between the covariance matrices.  The response data differed 

enough for each of the groups so that Box’s M yielded a statistically significant 

difference.  After determining that the groups did not have equal covariance matrices, it 

was natural to then test whether the dimensionality and the structure were the same across 

groups. 

 Examining the differential dimensionality across groups included several analyses 

and procedures in order to be thorough.  First an exploratory factor analysis was 

performed and to extract the principal components for each of the subject tests.  The EFA 

was done separately for accommodated and non-accommodated students for each test to 
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examine the presence of differential dimensionality.  For both groups on the reading test, 

factor loadings and scree plot evidence favored unidimensionality, but scree plots for the 

math and science exams could have been interpreted in a way that suggested a second 

dimension.  On the scree plots for science test (see Figure 8) the break from linearity for 

both the accommodated and non-accommodated groups suggested a possible second 

dimension.  On the math test, the scree plot for the non-accommodated group suggested 

only one dominant dimension while the scree plot for the accommodated group looked 

slightly different and suggested a possible second dimension (see Figure 6).   This 

difference on the math exam was a hint of possible differential dimensionality.  The 

dendrograms output in the hierarchical cluster analysis from SPSS also looked different 

for the two groups on each of the three different exams, but strikingly different on the 

math exam.  Because of the varied results, the use of other dimensionality and clustering 

techniques were used for cross-validation. 

 Using software from MIRT that was created to assess dimensionality allowed for 

further exploration of differential dimensionality and detection of multidimensionality.  

HCA/CCPROX was used in addition to the dendrograms as another item clustering 

technique.  For each group on the three different tests, the two-cluster solution did not 

show that a distinct group of items clustered together and neither did the three-cluster or 

four-cluster solutions.  Largely, individual items formed single item clusters.  Given that 

the EFA, hierarchical cluster analysis, and HCA/CCPROX did not confidently lead to a 

concluding set of items that formed a separate distinct dimension, the use of DIMTEST 

became illogical.  Consequently, the DETECT program was used in an exploratory 
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manner because it computes a statistic that measures the amount of multidimensionality 

and the tests were seemingly unidimensional.  The DETECT program found the number 

of dimensions that maximized the DETECT statistic for accommodated and non-

accommodated students on each test.  For each run the DETECT value never exceeded 

0.3, and values near and above 1.0 indicate multidimensionality.  Therefore, it was safe to 

conclude that there was no evidence of multidimensionality or differential 

dimensionality.  If there was in fact a second dimension or factor, it is likely that the 

factors were so highly correlated that the tests functioned in a unidimensional fashion.  If 

two factors are highly correlated, it is difficult to argue that they are truly different factors 

measuring a different set of skills. 

 The application of SEM was used next on the math exam to test the factor 

structure across the groups to target the concept of measurement invariance thoroughly 

discussed by Horn and McArdle (1992).  Initially a one-factor CFA was used to confirm 

unidimensionality for both groups.  Next a series of SEM multi-group models that 

loosened constraints on the factor loading and error variances were performed and 

indicated no measurement invariance across the groups.  This analysis also revealed that 

the most restrictive model which kept factor loadings and error variance invariant did fit 

the data.  However, the less restrictive models also had acceptable fit indices.   

Furthermore, to compare the models a chi-square difference test was used to 

evaluate the change in fit as model constraints were relaxed.  The most constrained model 

was compared to the next most constrained model and assessed to determine if relaxing 
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the constraints improved model fit significantly.  Because a more relaxed model is better 

to preserve parsimony, Model D seemed to be the most appropriate model choice overall.  

The path coefficients from the SEM Model D were further examined to compare 

the coefficients across groups in order to see if items with the largest differences across 

groups would be the items to exhibit DIF.  However, it turned out that the items flagged 

through SIBTEST did not have the largest differences between the two sets of path 

coefficients (see Table 19).  To further examine the relationship between SEM and DIF, 

future studies could opt to examine various SEM multisample models to see how path 

coefficients change across groups and how that relates to differential item functioning. 

After examining the covariance structure, dimensionality, and factor structure 

across groups, the last psychometric analysis that was performed to compare the two 

different testing populations was differential item functioning (DIF).  This analysis was 

done to compare the item functioning across groups.  SIBTEST was used as the DIF 

detection procedure which calls for the split of examinees into a Reference and a Focal 

group, and in this case the group split was based on receipt of a testing accommodation.  

The split resulted in the non-accommodated students being the Reference group and the 

accommodated students being the Focal group.  After running three separate DIF 

analyses for each subject exam, it became evident that some items did function 

differently across groups.  Like previous DIF studies that looked at students with 

disabilities, there was no clear consensus on if one group benefited more (Abedi, Leon, & 

Kao, 2008; Finch, Barton, & Meyer, 2009; Willingham et al., 1988).  There were 11, 10, 

and 15 items flagged on the math, reading, and science exams, respectively.  For the 
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reading and science exams, the majority of the DIF items favored the Reference group, 

while on the math exam most of the items favored the Focal group.  There was a major 

overlap between the items flagged by the SIBTEST method and those items flagged 

using the Mantel-Haenszel (MH) method, however MH consistently flagged more items.   

Although approximately one-third up to nearly one-half of the items were flagged 

as exhibiting DIF, without substantive analysis of the items, it is not possible to 

conclusively determine whether the DIF is due to bias or impact.  As defined by Guhn, 

Gaderman, and Zumbo, 2007, impact is due to true ability differences, which is what a 

test intends to measure, whereas bias is due to irrelevant differences.   

Having used dichotomous test data proved to be somewhat of a limitation 

although this problem was manageable.  Not examining actual test items was a severe 

limitation to this study, but having content specifications for each item on the math and 

science exams allowed this DIF analysis to be further explored.  When doing a DIF 

analysis access to the content of the items is very important in order to draw conclusions 

about flagged items because only then can the items be compared and grouped with 

respects to their common features such as content, cognitive processes, or skills used to 

correctly answer the items.  On the math exam, the majority of the items exhibiting DIF 

favoring accommodated student were in the Mathematical Decision Making content area, 

while items in the Shape and Size content area tended to favor the non-accommodated 

students.  On the science exam, the majority of items that favored the non-accommodated 

students were Earth and Space Sciences problems.  Items favoring the accommodated 

students were in the Nature and Implications of Science content area.  This information 
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can be used to extend the research into why these types of items would show tendency to 

favor one group more often than another.  To further analyze the source of the DIF, other 

information such as sentence structure or distractor length could be examined when 

actually looking at the test items. 

Accommodations have to be used and distributed fairly.  Does simply prescribing 

an accommodation equal instant fairness?  The answer appears to be no because 

recipients must be appropriately identified and the format and delivery must be 

standardized so use of accommodations do not falsely inflate test scores (Fuchs, Fuchs, & 

Capizzi, 2005; Ofiesh & Bisagno, 2008).  However, Camara (2009) emphasized a very 

important point that was significant in driving this research study—that accommodations 

should not ever change the intended construct being measured, but they should only make 

information more accessible to those students at a disadvantage due to a learning 

disability.  In other words, accommodations are an attempt at equality and should only be 

employed to level the playing field.   

In this research study, although unidimensionality and factor structure seemed to 

hold across the groups of accommodated and non-accommodated students, there was a 

marked difference in test score distributions.  Accommodated students scored 

significantly lower than non-accommodated students on each of the subject exams. This 

naturally raises the question of the utility of accommodations if their intent is indeed to 

level the playing field.  However, it would be premature to attribute the large difference 

in test scores to ineffective accommodations or to even say that accommodations have 
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not served their purpose because there just may be a true difference in latent ability for 

the two groups.  

Knowing that accommodations should not alter test constructs (Camara, 2009), 

this study examined dimensionality, DIF, and structural invariance across groups.  

Testing for differential dimensionality directly related to Camara’s notion and sought out 

to determine whether or not accommodated students were being tested on different 

constructs than non-accommodated students.  It is important to remember that constructs 

are a function of student-item interaction and perception of what is being measured.  For 

this reason, tests makers must clearly articulate valid constructs.  This study found that 

across the math, reading and science tests, there was strong evidence to prove that the 

tests measured one dimension for both accommodated and non-accommodated students.  

In other words, the one-factor structure held for both groups.  This structural or factor 

invariance is important to scientific validity (Horn & McArdle, 1992).  The only 

difference that should matter on a test is difference in ability, not differences in race, 

gender, SES, or exceptionality status.  Equal dimensionality and factor invariance speaks 

to a well designed test. 

It may initially seem counterintuitive that DIF still manifests itself if 

dimensionality and factor structure are equal.  However, items were flagged as 

statistically exhibiting DIF in this study but it cannot immediately be concluded that 

those particular items were biased even though SIBTEST identified the direction of the 

DIF.  Bias implies that an irrelevant construct was being measured, which cannot be 

convincingly stated without actual test items.  Accommodated and non-accommodated 
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students appeared to interact with the items differently, showing that DIF is a result of 

more than just a dimensionality difference.  Due to the variety of DIF detection 

procedures available, future studies could opt to compare the results of those across 

groups.  Some other DIF methods that could be used are DFIT or the CDM (cognitive 

diagnostic model) Mantel-Haenszel method in which examinees are matched on an 

attribute mastery profile as opposed to being matched on total test score. 

An alternative to DIF that could extend the foundation of group comparison 

involves the use of a distractor analysis that would shed more light on how 

accommodated and non-accommodated students interacted differently with specific test 

items.  The analysis could be done for all items or specifically for items exhibiting DIF.  

Kopriva, Cameron, Carr, and Taylor (2008) discussed the limits of DIF and how 

examining distractors and their distributions could possibly provide more insight on 

problematic items.  Looking at distractors could also reveal valuable diagnostic 

information. 

The literature review of this research study reviewed several different 

accommodation types, but treated all of them as one to prevent possible low sample size 

issues.  Future research may look at group differences across the different types of 

accommodations such as oral administration or extended time.  More nuanced differences 

may be found in when separating students by the specific type of accommodation 

received.  It may also be interesting to see how impact of accommodations varies across 

grade level.  This study included only eighth grade student data because it was felt that 

this was a pivotal year in educational growth and that dimensionality differences, if 
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present, might be greatest at this level (Gutman, 2006; Isakson & Jarvis, 1999; Neild, 

Stoner-Eby, & Furstenburg, F, 2008; Reyes, Gillock, Kobus, & Sanchez, 2000). 

Although accommodations are only one way of creating a fair testing 

environment for students with disabilities, it is important not to disregard alternate 

assessments in future dimensionality research.  The dimensional structure should be the 

same across groups of students who use accommodations and those who do not, but 

should also be the same for students who qualify to take alternate assessments and those 

who take traditional assessments.  This scenario is slightly different, but compares similar 

populations in which dimensionality should certainly be invariant if an alternate 

assessment claims to measure the same constructs as a traditional assessment.  The 

dimensionality of alternate assessments as compared to their standard counterparts would 

allow for further documentation of the psychometric properties of such type of alternate 

assessments, since it is currently minimal. Looking at the dimensionality across various 

alternate and standard assessment pairs could provide valuable insight into what 

developmental methods work best, which allows for advancement in the field.  Showing 

that the two different tests measure the same constructs is a step closer to being able to 

link or equate the test scores. 

Future studies should explore using additional SEM models that purposely 

constrain specific items or allow previously identified suspect items to be freely 

estimated across groups.  More specifically, if a set of items proved to be dimensionally 

distinct, the path coefficients of those particular items could be set to free in attempts to 
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find a better fitting SEM model.  Comparing this methodology across groups would be 

particularly interesting to see if any noticeable group differences emerged.  

Exploring the psychometric characteristics of state exams deepens the literature of 

applied psychometrics, so any future analysis would be valued.  Researching students 

with disabilities has become increasingly important since the inclusion of this population 

in national accountability standards created by legislation such as No Child Left Behind.  

These students have often been the subject of various research topics ranging from how 

they learn to how they are tested.  This study subset the population to compare students 

who received and used testing accommodations to those who did not.   Despite the 

methodology or subgroup, it is important that educational research on this population 

continues in order to improve the quality of their education. 
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APPENDIX A. TABLES AND FIGURES 
 
 

Table 12: 2007-08 Approved Accommodations: Usage Frequencies 
 
 Grade 8:  Subject 
Timing Accommodations Reading Math Science 
Extended time (same day) 1,416 1,414 1,394 
Extended time (several days) 249 253 251 
Multiple or frequent breaks 477 472 460 
Beneficial time of day/week 146 145 143 
Flexibility in content area order 171 174 167 
Setting Accommodations    
Site other than regular classroom 1,005 1,012 996 
Out-of-school setting 27 26 25 
Presentation Accommodations    
Individual administration 212 216 213 
Small group administration 1,808 1,812 1,786 
Using a human reader 526 837 827 
Using sign language 6 8 8 
Opportunity to move, stand, or pace 169 163 159 
Alternative assistive technology 8 7 7 
By school personnel other than teacher 797 803 798 
Large print version 21 19 20 
Braille version 2 2 2 
Word-to-word bilingual dictionary 19 20 20 
 “Sheltered English” 102 105 103 
Response Accommodations    
Using a scribe or recording device 300 263 288 
Alternative assistive communication devices 13 14 12 
Other assistive devices 189 251 200 
Student use of word processor 244 204 223 
Student use of brailler 2 3 2 
Student use of visual aids 14 13 13 
Word-to-word bilingual dictionary 11 12 11 
Verification of comprehension of directions 1,234 1,243 1,227 
Side-by-side placement of 2 test booklets 31 30 29 
Rewrite of illegible student responses 26 22 27 
Other Accommodations    
Other accommodations not documented 1 1 1 
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Table 13.  ITEMAL Results: Non-Accommodated Math 

 

  

Item P-Value Dis. Biserial Pt. Biserial Reliability 
1 .9045 .1855 .4625 .2662 .0782 
2 .3919 .5181 .5615 .4412 .2154 
3 .7710 .2706 .3725 .2670 .1122 
4 .6827 .4280 .4924 .3761 .1751 
5 .5774 .5455 .5624 .4452 .2199 
6 .3257 .4893 .5686 .4355 .2041 
7 .3828 .5364 .5800 .4551 .2212 
8 .5253 .5343 .5558 .4430 .2212 
9 .7990 .3080 .4508 .3154 .1264 

10 .2697 .3197 .4160 .3086 .1369 
11 .6588 .4605 .5044 .3902 .1850 
12 .6561 .5404 .5952 .4596 .2183 
13 .4658 .4434 .4713 .3754 .1873 
14 .2463 .3053 .4278 .3122 .1345 
15 .5587 .6893 .6948 .5520 .2741 
16 .5935 .6058 .6202 .4894 .2404 
17 .4387 .4767 .4996 .3965 .1968 
18 .5836 .6480 .6635 .5241 .2584 
19 .5036 .6810 .6819 .5441 .2720 
20 .3106 .4109 .4894 .3723 .1723 
21 .5165 .5882 .5962 .4753 .2375 
22 .5358 .5075 .5197 .4140 .2065 
23 .7914 .3602 .5296 .3715 .1510 
24 .5923 .5335 .5610 .4425 .2175 
25 .3795 .3392 .3796 .2974 .1443 
26 .5253 .4748 .4889 .3896 .1946 
27 .6966 .5609 .6516 .4940 .2271 
28 .8306 .3226 .5306 .3559 .1335 
29 .5833 .5161 .5512 .4353 .2146 
30 .6081 .4455 .4881 .3836 .1872 
31 .3848 .4411 .4953 .3882 .1889 
32 .5332 .5335 .5516 .4393 .2191 
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Table 14.  ITEMAL Results: Accommodated Math 

 

  

Item P-Value Dis. Biserial Pt. Biserial Reliability 
1 .6659 .4951 .5353 .4128 .1947 
2 .1944 .2453 .4891 .3377 .1336 
3 .6731 .2206 .2632 .2023 .0949 
4 .4621 .4039 .4586 .3651 .1820 
5 .3085 .4142 .5504 .4174 .1928 
6 .2030 .1078 .2800 .1951 .0785 
7 .2232 .2551 .4535 .3230 .1345 
8 .3327 .2782 .3953 .3038 .1432 
9 .6022 .4051 .4235 .3337 .1634 

10 .1810 .1773 .3370 .2287 .0881 
11 .3772 .4709 .5357 .4189 .2031 
12 .4086 .4306 .5086 .4010 .1971 
13 .3857 .1767 .2626 .2057 .1001 
14 .1958 .1822 .3729 .2590 .1028 
15 .3076 .3365 .5305 .4027 .1858 
16 .3934 .3896 .4970 .3903 .1906 
17 .3018 .2688 .3910 .2969 .1363 
18 .3350 .4323 .5808 .4476 .2112 
19 .2793 .3072 .5049 .3773 .1693 
20 .2398 .2378 .3950 .2869 .1225 
21 .2753 .2144 .3995 .2980 .1331 
22 .3121 .3266 .4255 .3249 .1505 
23 .5712 .4223 .4649 .3687 .1825 
24 .3687 .4283 .5246 .4094 .1975 
25 .2636 .1452 .2229 .1644 .0725 
26 .3691 .2893 .3363 .2624 .1266 
27 .4041 .5023 .5903 .4651 .2282 
28 .6098 .3954 .4212 .3312 .1616 
29 .3633 .4108 .4884 .3811 .1833 
30 .4055 .3716 .4129 .3260 .1601 
31 .2771 .2056 .3168 .2359 .1056 
32 .3314 .3692 .4783 .3680 .1732 
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Table 15. ITEMAL Results: Non-Accommodated Reading 

 

  

Item P-Value Dis. Biserial Pt. Biserial Reliability 
1 .6697 .3386 .3876 .2985 .1404 
2 .7726 .1406 .2097 .1507 .0632 
3 .7574 .3417 .4840 .3526 .1511 
4 .7924 .3844 .6204 .4361 .1768 
5 .9133 .1548 .5006 .2777 .0781 
6 .6676 .2738 .3135 .2410 .1135 
7 .7960 .2536 .4058 .2847 .1147 
8 .7110 .3324 .4236 .3187 .1445 
9 .7811 .4115 .6156 .4382 .1812 

10 .7406 .5166 .6819 .5024 .2202 
11 .6187 .5185 .5496 .4303 .2090 
12 .8810 .2631 .6422 .3944 .1277 
13 .7770 .4438 .6698 .4773 .1987 
14 .7144 .3377 .4495 .3375 .1524 
15 .6917 .4683 .5751 .4362 .2014 
16 .7537 .4933 .6811 .4971 .2142 
17 .8514 .2626 .5402 .3492 .1242 
18 .7974 .3440 .5730 .3997 .1606 
19 .7456 .4464 .6265 .4585 .1997 
20 .8534 .2874 .6137 .3947 .1396 
21 .7896 .3141 .5057 .3565 .1453 
22 .9121 .2206 .7054 .3943 .1116 
23 .7199 .4363 .5428 .4052 .1820 
24 .7749 .3846 .5776 .4133 .1726 
25 .9181 .2144 .7461 .4075 .1117 
26 .8504 .3242 .6544 .4262 .152 
27 .6979 .4464 .5634 .4276 .1964 
28 .8981 .2557 .7200 .4186 .1266 
29 .6397 .4996 .5455 .4248 .2040 
30 .8036 .3831 .6294 .4366 .1735 
31 .6561 .5350 .6192 .4782 .2271 
32 .6299 .4335 .5006 .3904 .1885 
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Table 16. ITEMAL Results: Accommodated Reading 

 

  

Item P-Value Dis. Biserial Pt. Biserial Reliability 
1 .4863 .2750 .2874 .2292 .1146 
2 .6371 .2396 .2839 .2208 .1062 
3 .5367 .4854 .5048 .4019 .2004 
4 .4520 .5853 .6064 .4820 .2399 
5 .7226 .4685 .5572 .4147 .1857 
6 .5308 .3318 .3392 .2703 .1349 
7 .5633 .4040 .4371 .3471 .1722 
8 .4611 .4025 .4271 .3401 .1696 
9 .5056 .4854 .5078 .4051 .2025 

10 .4475 .5207 .5618 .4463 .2219 
11 .4183 .3886 .4302 .3404 .1679 
12 .6578 .5653 .6059 .4684 .2222 
13 .4611 .4716 .5068 .4036 .2012 
14 .5232 .5300 .5419 .4321 .2158 
15 .4462 .5407 .5654 .4494 .2234 
16 .4993 .5806 .5885 .4695 .2348 
17 .5957 .5806 .6080 .4791 .2351 
18 .5002 .5392 .5669 .4523 .2261 
19 .4548 .5791 .6094 .4847 .2414 
20 .5534 .5776 .5908 .4695 .2334 
21 .5340 .4762 .5102 .4064 .2027 
22 .6898 .5284 .6272 .4773 .2208 
23 .5178 .3948 .4006 .3194 .1596 
24 .5092 .5269 .5415 .4320 .2159 
25 .6339 .6559 .6978 .5436 .2619 
26 .5894 .5238 .5639 .4453 .2191 
27 .4822 .4762 .5067 .4041 .2019 
28 .6497 .5515 .5979 .4634 .2211 
29 .4606 .3318 .3733 .2973 .1482 
30 .5389 .5361 .5594 .4455 .2221 
31 .3674 .4455 .5056 .3949 .1904 
32 .3791 .4562 .5035 .3946 .1915 
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Table 17. ITEMAL Results: Non-Accommodated Science  

 

  

Item P-Value Dis. Biserial Pt. Biserial Reliability 
1 .9373 .1295 .4984 .2505 .0607 
2 .7623 .2966 .4231 .306 .1303 
3 .5997 .4484 .4754 .3742 .1833 
4 .6843 .3655 .4406 .3370 .1567 
5 .7464 .4107 .5511 .4038 .1757 
6 .7051 .4585 .5581 .422 .1924 
7 .7973 .4016 .6046 .4216 .1695 
8 .4990 .5805 .5803 .4630 .2315 
9 .8311 .2748 .4822 .3239 .1213 

10 .4511 .4375 .4544 .3612 .1798 
11 .6374 .2829 .3176 .2470 .1188 
12 .7564 .2308 .3311 .2409 .1034 
13 .6600 .4859 .5427 .4185 .1982 
14 .6189 .4411 .4754 .3722 .1807 
15 .5650 .5377 .5653 .4484 .2223 
16 .6086 .4391 .4792 .3766 .1838 
17 .3957 .4604 .4856 .3820 .1868 
18 .6687 .3618 .4116 .3167 .1491 
19 .9176 .1818 .6057 .3344 .0920 
20 .6129 .4551 .4888 .3838 .1870 
21 .5646 .3968 .4268 .3385 .1678 
22 .7746 .4480 .6429 .4598 .1921 
23 .6019 .4831 .5070 .3994 .1955 
24 .7886 .4183 .6241 .4393 .1794 
25 .8613 .2362 .5044 .3214 .1111 
26 .7876 .4431 .6691 .4739 .1938 
27 .8619 .3251 .6784 .4331 .1494 
28 .7984 .3479 .5518 .3856 .1547 
29 .8109 .3404 .5725 .3925 .1537 
30 .3701 .4158 .4512 .3519 .1699 
31 .7409 .5266 .6692 .4933 .2161 
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Table 18. ITEMAL Results: Accommodated Science 

 

  

Item P-Value Dis. Biserial Pt. Biserial Reliability 
1 .7915 .3931 .5780 .4056 .1648 
2 .5644 .4998 .5312 .4212 .2089 
3 .4046 .3686 .3890 .3064 .1504 
4 .5075 .4337 .4513 .3601 .1800 
5 .5234 .5381 .5639 .4496 .2246 
6 .4520 .5018 .5327 .4234 .2107 
7 .5740 .4799 .5014 .3972 .1964 
8 .3209 .3889 .4653 .3561 .1662 
9 .6204 .5676 .6018 .4715 .2288 

10 .2626 .3199 .4265 .3150 .1386 
11 .5853 .2867 .3165 .2501 .1232 
12 .6340 .3552 .4076 .3175 .1529 
13 .4939 .4343 .4587 .3660 .1830 
14 .4957 .4892 .4984 .3976 .1988 
15 .3828 .4885 .5364 .4209 .2046 
16 .4133 .2728 .3062 .2421 .1192 
17 .2057 .1956 .3173 .2219 .0897 
18 .4829 .3725 .3965 .3162 .1580 
19 .7278 .4605 .5811 .4325 .1925 
20 .4597 .2903 .3292 .2620 .1306 
21 .4274 .3930 .4245 .3362 .1663 
22 .5931 .5806 .6070 .4790 .2353 
23 .5020 .4331 .4515 .3602 .1801 
24 .5640 .5737 .5816 .4612 .2287 
25 .6964 .4939 .5700 .4320 .1986 
26 .5244 .5406 .5448 .4341 .2168 
27 .6545 .6047 .6500 .5034 .2394 
28 .5922 .5443 .5597 .4415 .2169 
29 .5781 .5394 .5621 .4451 .2198 
30 .2913 .2797 .3700 .2793 .1269 
31 .5421 .6026 .5964 .4747 .2365 
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Table 19: Model D Path Coefficients Comparison Across Groups 
 
 
  

 Path Coefficients  
Item 
No. 

Group 1 
(non-accommodated) 

Group 2 
(accommodated) 

Path Coefficient 
Difference 

1 .41 .52 -.11 
2 .52 .43 .09 
3 .30 .15 .15 
4 .43 .40 .03 
5 .52 .52 .00 
6 .53 .18 .35 
7 .54 .39 .15 
8 .51 .32 .19 
9 .39 .36 .03 
10 .36 .25 .11 
11 .45 .50 -.05 
12 .56 .47 .09 
13 .41 .16 .25 
14 .37 .29 .08 
15 .68 .48 .20 
16 .58 .45 .13 
17 .45 .32 .13 
18 .63 .55 .08 
19 .67 .44 .23 
20 .43 .31 .12 
21 .56 .33 .23 
22 .47 .36 .11 
23 .48 .42 .06 
24 .51 .48 .03 
25 .31 .12 .19 
26 .43 .25 .18 
27 .61 .55 .06 
28 .48 .37 .11 
29 .49 .43 .06 
30 .42 .33 .09 
31 .43 .21 .22 
32 .51 .42 .09 
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Table 20. Complete DIF Summary: Math 

  
 
 
 
 
 
 
 
 

  SIBTEST Mantel-Haenszel 
Run No. Beta-uni SIB-uni   

z-statistic 
SIB-uni  
p-value 

Chi-square p-value (D-DIF) 

1 .061 6.982 .000 E 97.97 .000 E -1.65 
2 .018 1.162 .245 E 1.79 .181 E -.22 
3 .020 1.457 .145 E 1.52 .218 E .18 
4 .030 2.166 .030 E 4.85 .028 E -.30 
5 .040 2.632 .008 E 11.85 .001 E -.50 
6 -.002 -.144 .886 E 3.98 .046 E .33 
7 -.020 -1.272 .203 E 6.03 .014 E .39 
8 .010 .658 .510 E .51 .475 E .10 
9 .041 3.159 .002 E 8.65 .003 E -.43 

10 -.030 -2.114 .035 E 4.23 .040 E .35 
11 .063 4.243 .000 E 29.60 .000 E -.76 
12 .017 1.249 .212 E .38 .538 E -.09 
13 -.044 -2.868 .004 E 29.36 .000 E .74 
14 -.077 -4.919 .000 E 36.79 .000 E 1.01 
15 -.002 -.183 .855 E .18 .669 E .07 
16 -.032 -2.332 .020 E 10.46 .001 E .46 
17 -.023 -1.459 .145 E 10.46 .001 E .47 
18 -.014 -1.064 .287 E .61 .435 E .12 
19 -.008 -.525 .600 E 1.79 .181 E .21 
20 -.084 -5.551 .000 E 40.97 .000 E .99 
21 .064 4.217 .000 E 6.48 .011 E -.38 
22 .046 2.911 .004 E 4.33 .038 E -.30 
23 .036 2.973 .003 E 9.55 .002 E -.45 
24 -.011 -.843 .399 E .08 .781 E .04 
25 .034 2.118 .034 E .09 .764 E .05 
26 .019 1.205 .228 E 1.93 .164 E .19 
27 .028 2.209 .027 E 9.27 .002 E -.44 
28 .059 4.857 .000 E 21.02 .000 E -.67 
29 .011 .696 .486 E .22 .641 E .07 
30 .034 2.105 .035 E .25 .616 E -.07 
31 -.026 -1.676 .094 E 12.52 .000 E .52 
32 -.009 -.613 .540 E .60 .437 E .11 
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Table 21. Complete DIF Summary: Reading 

 

  SIBTEST Mantel-Haenszel 
Run No. Beta-uni SIB-uni  

z-statistic 
SIB-uni  
p-value 

Chi-square p-value (D-DIF) 

1 .039 2.309 .021 E .88 .349 E -.14 
2 .067 4.162 .000 E 4.83 .028 E -.33 
3 -.010 -.702 .483 E 1.37 .242 E .18 
4 .058 3.918 .000 E 21.19 .000 E -.70 
5 .003 .326 .744 E 4.56 .033 E -.41 
6 .003 .151 .880 E 2.65 .104 E .23 
7 .057 3.676 .000 E 11.93 .001 E -.52 
8 .053 3.225 .001 E 8.73 .003 E -.43 
9 .005 .393 .694 E .82 .366 E -.14 

10 -.030 -2.351 .019 E .88 .347 E .15 
11 -.049 -3.099 .002 E 15.81 .000 E .59 
12 -.026 -2.438 .015 E 1.20 .273 E .20 
13 .028 1.987 .047 E 7.61 .006 E -.42 
14 -.063 -4.574 .000 E 15.99 .000 E .61 
15 -.061 -4.389 .000 E 10.32 .001 E .49 
16 -.062 -4.968 .000 E 19.50 .000 E .70 
17 .008 .669 .503 E 2.55 .110 E -.27 
18 .025 1.743 .081 E 7.69 .006 E -.43 
19 -.017 -1.220 .222 E .56 .455 E .12 
20 .031 2.465 .014 E 17.84 .000 E -.68 
21 .002 .175 .861 E 3.85 .050 E -.30 
22 -.016 -1.849 .064 E .01 .912 E -.03 
23 -.019 -1.240 .215 E 5.70 .017 E .36 
24 -.008 -.586 .558 E .01 .917 E -.02 
25 .016 1.727 .084 E 15.27 .000 E -.74 
26 -.012 -1.169 .242 E .54 .463 E -.13 
27 -.056 -3.854 .000 E 19.52 .000 E .67 
28 .000 -.020 .984 E 1.27 .260 E -.20 
29 -.053 -3.559 .000 E 22.35 .000 E .70 
30 -.016 -1.266 .206 E .26 .610 E .08 
31 .004 .269 .788 E .00 .946 E .02 
32 -.007 -.402 .688 E .21 .650 E .07 



 

83 
 

Table 22. Complete DIF Summary: Science 
  SIBTEST Mantel-Haenszel 

Run No. Beta-uni SIB-uni  
z-statistic 

SIB-uni  
p-value 

Chi-square p-value (D-DIF) 

1 .018 2.437 .015 E 18.06 .000 E -.87 
2 .022 1.731 .084 E 4.69 .030 E -.31 
3 .031 2.184 .029 E 3.46 .063 E -.26 
4 .005 .402 .688 E .05 .831 E -.03 
5 .001 .108 .914 E 2.37 .124 E -.22 
6 .028 2.165 .030 E 13.85 .000 E -.53 
7 .033 2.735 .006 E 6.42 .011 E -.37 
8 -.028 -2.013 .044 E 4.02 .045 E .30 
9 .008 .756 .449 E 11.31 .001 E -.53 

10 .029 1.968 .049 E 5.86 .016 E -.36 
11 -.043 -2.977 .003 E 25.74 .000 E .68 
12 .005 .348 .728 E .34 .561 E .09 
13 -.034 -2.607 .009 E 4.90 .027 E .31 
14 -.088 -7.043 .000 E 26.09 .000 E .72 
15 -.039 -2.802 .005 E 9.20 .002 E .43 
16 .065 4.421 .000 E 8.28 .004 E -.39 
17 .074 5.467 .000 E 17.08 .000 E -.65 
18 .049 3.361 .001 E 5.67 .017 E -.32 
19 .027 2.974 .003 E 19.16 .000 E -.80 
20 .011 .759 .448 E .86 .354 E .13 
21 -.029 -2.009 .045 E 7.02 .008 E .36 
22 -.055 -5.053 .000 E 13.87 .000 E .57 
23 -.089 -6.690 .000 E 51.93 .000 E 1.01 
24 -.003 -.265 .791 E .96 .328 E -.15 
25 -.012 -1.251 .211 E .19 .665 E -.08 
26 .035 2.976 .003 E 12.09 .001 E -.51 
27 -.024 -2.847 .004 E .02 .885 E -.03 
28 .000 .008 .994 E .84 .360 E -.14 
29 .027 2.345 .019 E 10.18 .001 E -.48 
30 -.078 -5.436 .000 E 25.15 .000 E .74 
31 -.054 -4.927 .000 E 12.98 .000 E .55 
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Figure 3. Graphical Score Distributions for Math 
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Figure 4. Graphical Score Distributions for Reading 
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Figure 5. Graphical Score Distributions for Science 
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Figure 6. Non-accommodated Versus Accommodated Math Scree Plots 
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Figure 7. Non-accommodated Versus Accommodated Reading Scree Plots 
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Figure 8. Non-accommodated Versus Accommodated Science Scree Plots 
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Figure 9. Math Dendrograms: Accommodated and Non-accommodated 
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Figure 10. Reading Dendrograms: Accommodated and Non-accommodated 
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Figure 11. Science Dendrograms: Accommodated and Non-accommodated 
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