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Herbivorous zooplankton feed on seston, including algal, detrital, and bacterial 

components.  However, many studies have found that Daphnia δ13C is more depleted 

than seston δ13C, and selective feeding on seston algal components has been 

hypothesized.  We hypothesized that low zooplankton δ13C was due to utilization of 

methane-derived carbon (MDC).  Lake Brandt data indicated a strong seasonal effect on 

the δ13C of Daphnia when compared to seston.  During summer stratification, carbon 

signatures of Daphnia were more depleted than bulk seston, while during winter mixing 

Daphnia were more enriched.  We conducted an experiment to assess utilization of MDC 

as a possible mechanism of depleted Daphnia δ13C.  At low methane concentrations, 

methane δ13C was more enriched than at high concentrations, indicating isotopic 

fractionation by methanotrophs.  Daphnia δ13C was slightly enriched compared to seston 

at low methane concentrations, but was depleted compared to seston at high methane 

concentrations, consistent with incorporation of MDC.  An antibiotic appeared to limit 

methanotrophs in the water column resulting in enriched Daphnia δ13C.  MDC 

contribution to the diet of Daphnia was estimated as almost 32% of assimilation.  Our 

study provides strong evidence that assimilation of MDC resulted in depleted Daphnia 

δ13C relative to seston.  We suggest that this phenomenon is widespread in freshwater 

ecosystems, explaining the consistently light δ13C of grazing zooplankton relative to bulk 

seston.
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CHAPTER I 

INTRODUCTION 
 
 

 Trophic dynamics of lakes have been of interest for decades.  Lindeman (1942) 

described a lacustrine feeding cycle by assigning trophic levels to the biotic components 

of the ecosystem.  The intricate relationships between producers and consumers were 

quantified in terms of energy transfer.  Each discrete level depends on the preceding 

trophic level for energy (Lindeman 1942).  Burns (1989) pointed out that these 

interactions are even more complicated because some species may be feeding at multiple 

trophic levels and/or simultaneously incorporating decomposers into their diet. 

 Stable isotope analysis has been used recently as a tool to characterize feeding 

behavior and trophic status of individual species in an ecosystem (Peterson and Fry 

1987).  The examination of 15N/14N and 13C/12C ratios, expressed in parts per thousand, as 

δ values, in biotic components of an ecosystem has been used for the classification of 

trophic levels and identification of food sources of individual species.  Increases in δ 

values indicate retention of the heavier isotope, whereas, decreases indicate that the 

lighter isotope is abundant.  To estimate the trophic level of a species, the 15N/14N ratio 

can be used.  Animals metabolize and excrete the light isotope (14N) faster than 15N, 

making a species 2.2-3.4‰ more enriched than its food source (Fry 2006).  However, 

with carbon isotopes fractionation is minimal, showing only 0-1‰ enrichment in 13C in 
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the consumer, such that δ13C is often used to determine food sources for consumers 

(Peterson and Fry 1987). 

Many trophic studies of freshwater systems have used stable isotope analysis to 

construct aquatic food webs.  In these studies seston or particulate organic mater (POM) 

in the water column is assumed to be the base of the food web and is thought to consist 

mainly of algae with both bacteria and detritus also present (Moss 1970).  Daphnia and 

other herbivorous zooplankton feed on seston, or components of seston (del Giorgio and 

France 1996).  Because “you are what you eat,” with respect to carbon stable isotope 

analysis, we assume that the carbon signature of a consumer would match or be slightly 

enriched when compared to its food source.  However, a paradox has been repeatedly 

recorded in many aquatic trophic analyses: the δ13C values of seston from freshwater 

systems are consistently more enriched (+ 2-20‰) than the δ13C values of Daphnia (del 

Giorgio and France 1996; Jones et al. 1999).  It would be expected that since Daphnia are 

suspension feeders, the δ13C values of Daphnia would be slightly enriched or the same as 

the seston, which does occur in the stable isotope signatures of herbivorous zooplankton 

in marine systems (del Giorgio and France 1996).   

Jones et al. (1999) found that herbivorous zooplankton, including several species 

of Daphnia were generally depleted in 13C when compared to seston.  The Daphnia spp. 

were 3-17‰ more depleted than the seston of the associated lake (Jones et al. 1999).  

Twenty-eight temperate lakes yielded the same trend in δ13C depletion of herbivorous 

zooplankton (del Giorgio and France 1996).  Algal cells, bacteria, and detrital content 

have all been assumed to contribute to the diet of Daphnia (Edmondson 1957; 
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Brendelberger 1991; Salonen and Hammar 1986; Hessen et al. 1990).  Yet, this seems 

inconsistent with the phenomenon of Daphnia being considerably depleted in 13C when 

compared to seston.   

There are three potential explanations for the paradox.  The first involves 

selective assimilation of an isotopically light fraction of the seston.  The second 

explanation is differential metabolic fractionation by Daphnia, resulting in a more 

depleted δ13C value than their food.  However, based on extensive research of stable 

isotope analysis by Fry (2006), it has been accepted that all consumers only fractionate 

their carbon source 0-1‰ toward the heavier isotope (Peterson and Fry 1987).  The third 

potential explanation is that the Daphnia in freshwater systems are incorporating an 

isotopically light carbon source that is not represented in the measures of δ13C of seston. 

Historically, Brooks and Dodson (1965) described Daphnia spp. as “food 

collectors”, suggesting an inability to selectively discriminate between food sizes.  They 

noted that the size of the incorporated food was pre-determined by the dimensions of the 

filtering structures used by individual zooplankton (Brooks an Dodson 1965).  Food 

particles ranging from 1-15 µm can be captured by all herbivorous zooplankton species, 

while larger cladocerans and copepods may capture particles up to 50 µm (Brooks and 

Dodson 1965).  Burns (1968) found a correlation between the carapace length of 

cladocerans and the maximum size of the food particle that can be ingested during an 

experiment using plastic beads.  The resulting correlation is y = 22x + 4.87, where x is 

the carapace length in millimeters and y is diameter of largest bead that could be 

incorporated by the zooplankton (Burns 1968).  Other feeding experiments have found 
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that the filtering mesh of some cladocerans can capture smaller food particles, such as 

bacteria, as small as 0.05 µm but the size of the smallest particle captured is not related to 

carapace length (Peterson et al. 1978).  Note that particles < 0.7 µm can pass through the 

glass fiber filters typically used to collect seston for stable isotope analysis. 

Although these herbivores cannot modify the range of their food sizes, they can 

select which food particles to reject during feeding (DeMott 1982).  Cladocerans perform 

suspension feeding, in which their thoracic legs create a water current within the 

carapace, bringing in water and suspended particles.  Here, the limbs filter the particles 

and transport them up the ventral food groove toward the mouth where they are formed 

into a food bolus, or mass, which is then ingested (Watts and Petri 1981; Gophen and 

Geller 1984).  At the mouth, Daphnia and Bosmina may reject an unsuitable bolus before 

ingestion using the postabdominal claw (DeMott 1982).  The shape, size, and quality of 

the food are usually the factors that determine which food is rejected (Quiblier-Llobéras 

et al. 1996).  However, because this mass of food may contain many kinds of particulates, 

the assumption of selective rejection is arguable. 

Selectivity of cladocerans feeding has been highly debated.  DeMott (1982) 

studied the feeding selectivities of Daphnia and Bosmina with 14C-labeled algae and 3H-

labeled bacteria.  He found that while Daphnia may be able to reject certain food 

particles with the postabdominal claw, it was a relatively nonselective suspension feeder, 

incorporating both the algae and bacteria regardless of their relative abundance (DeMott 

1982).  However, Bosmina preferentially selected the algal cells over the bacteria cells 

even when the algae were in low abundance, suggesting that Bosmina may have 
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physiological or behavioral mechanisms that make it a more efficient selective feeder 

than Daphnia (DeMott 1982).  Another study explored cladoceran and rotifer selectivity, 

measured by algal cell ingestion rates with and without clay particles.  Kirk (1991) found 

that although the presence of clay particles decreased the algal ingestion rates of 

cladocerans, cladocerans and rotifers showed significant selectivity of algal cells over 

clay particles (p < 0.05).  Within the cladocerans, algal selectivity had a positive 

correlation with body size, resulting in greater selectivity for algal cells in larger 

cladocerans (Kirk 1991).   

Further selectivity studies have been used to categorize the types of algae and 

bacteria that are ingested most efficiently by cladocerans.  Edmondson (1957) presents a 

detailed summary of suitable and unsuitable algal food sources for Daphnia.  He presents 

conditions that may limit food ingestion including cell size and shape associated with 

filtering mesh size and the ability of the Daphnia to digest the algal cell based on the 

thickness of its cell wall (Edmondson 1957).  Knisely and Geller (1986) also found that 

Daphnia preferentially graze on algal sources based on different cell characteristics.  The 

size of ingested algal cells was based on the size of the feeding apparatus, where 

extremely small particles were not retained on the filtering appendages and large cells 

were unable to enter the carapace or the mouth opening (Knisely and Geller 1986).  They 

also found that Daphnia ingested more flagellated algal cells than coccoid cells and 

suggested that flagellated cells may be caught in the filtering appendages more efficiently 

(Knisely and Geller 1986).  Furthermore, Brendelberger (1991) found that bacterial cell 

ingestion was also highly correlated with the filter mesh size of the feeding appendages 
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of Daphnia.  Based on these studies, active selectivity toward depleted carbon food 

sources seems unlikely suggesting that ingestion of a light carbon source is passive. 

Two hypotheses have been offered to explain the depleted δ13C values of 

Daphnia.  Hamilton et al. (1992) found that microalgae were considerably depleted in 13C 

compared to bulk POM and suggested that these microalgae were the major food source 

for macroinvertebrates.  Alternatively, the highly depleted carbon source being 

assimilated by Daphnia may be methane-derived carbon, which is known to have a very 

depleted δ13C value (Bunn and Boon 1993; Kankaala et al. 2006).  Bunn and Boon (1993) 

used stable isotope analysis to determine the major carbon source for three flood-plain 

lakes.  They measured the carbon signatures of emergent, floating, and submerged 

aquatic plants including bulk POM and found that the δ13C signatures of zooplankton, 

including Daphnia, were more depleted than any potential food source that was measured 

within the lakes.  They concluded, like many other studies, that zooplankton must have 

been utilizing a highly depleted food source, perhaps in addition to algae and detritus 

(Bunn and Boon 1993).  A reasonable sink of highly depleted carbon resides in methane-

derived carbon and ingestion of methane-derived carbon may explain the depleted carbon 

signatures of the zooplankton.   

Methanogenic bacteria produce methane using an anaerobic microbial pathway, 

while methanotrophic bacteria oxidize the methane produced (Whalen 2005).  Biogenic 

methane has a δ13C value of -80 to -52‰ in freshwater habitats and if these methane-

associated prokaryotes are abundant in the habitat, they may be fed upon by zooplankton, 

resulting in a more depleted carbon signature (Bunn and Boon 1993).  Kankaala et al. 
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(2006) conducted an investigation of this hypothesis by enriching Daphnia cultures with 

biogenic methane and by performing an in situ study in a polyhumic lake.  They 

concluded that the decrease in the δ13C signature of the Daphnia could not be attributed 

to selective algal feeding, but instead was due to the incorporation of methanotrophic 

bacteria into the diet of the zooplankton (Kankaala et al. 2006).  

Using stable isotope analysis, we investigated utilization of methane-derived 

carbon and metabolic fractionation of food sources in Daphnia from a temperate 

reservoir, and estimated the relative impact of methane-derived carbon on their δ13C 

signature. 

  The overall goal of our research was to evaluate how different carbon sources in a 

reservoir impact the δ13C signature of Daphnia.  We hypothesized that the depleted 

carbon signature of Daphnia relative to seston is due to the assimilation of methane-

derived carbon.  Our first objective was to identify the natural δ13C signatures of Daphnia 

spp., seston, and methane in Lake Brandt.  Our second objective was to establish the 

methane concentration and abundance of methanotrophic and methanogenic bacteria in 

the reservoir.  Our third objective was to determine the carbon isotope signature of 

Daphnia magna, when only algae are available as a carbon source.  We predicted that the 

δ13C signature of Daphnia to be 0-1‰ more enriched than the δ13C signature of the algae.  

Finally, our last objective was to identify the relative impact of methanogenic and 

methanotrophic bacteria on the carbon signature of Daphnia.  We predicted that the 

presence of methanogenic and methanotrophic bacteria would result in a δ13C signature 

of Daphnia that is more depleted than the δ13C signature of the seston. 
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CHAPTER II 

METHODS 
 
 

 Lake Brandt, an 816-acre municipal reservoir in northern Greensboro, NC 

(36.18764 N, -79.81226 W), was sampled for this study.  The reservoir is classified as 

temperate monomictic, with thermal stratification occurring during the summer.  

Complete mixing of the water column occurs during winter and spring, directly after fall 

turnover.  Lake Brandt drains 151.3 km2 of land and is almost completely surrounded by 

a forested buffer.  Water samples, sediment samples, and zooplankton were collected 

from the lacustrine section of the reservoir. 

Sampling and techniques 

Sampling from Lake Brandt was done in the lacustrine section of the reservoir on 

three winter sampling dates from October to November of 2009.  During each sampling 

time, two 1.5 m tows using a 153 µm zooplankton net were taken.  Using a horizontal 

Van Dorn, 8 L of water were collected from 1.5 m and placed into 4 L cubitainers.  In the 

lab, 100 Daphnia were counted and picked from the net sample.  They were put into 4x6 

tin capsules and placed in a drying oven at 60°C for 24 hours.  To establish the δ13C of 

the seston, 300 mL of the water was filtered on grade 40 Millipore glass fiber filters (0.7 

µm pore size) and put into tin foil wrappers and allowed to dry for 24 hours in the drying 

oven.  Both Daphnia and the filters were then packaged and sent to the Marine Biological 

Laboratory in Woods Hole, Massachusetts for carbon stable isotope analysis.  A 10 mL
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syringe was used to extract 7 mL of water from a 1.5 m and a 4 m Van Dorn sample for 

analyses of methane concentration and methane δ13C in the reservoir.  The 7 mL water 

samples were injected into helium-evacuated 12 mL exetainers that had been injected 

with 0.1 mL of 1N HCL to arrest microbial activity.  After injection, the water samples 

were shaken vigorously and stored upside down.  In lab, samples were refrigerated until 

further use.  One sample was sent to UC Davis Stable Isotope Facility in Davis, 

California for analysis of δ13C of methane.  The other was taken to UNC-Chapel Hill and 

analyzed for methane concentration (ppm) using gas chromatography.  

To measure the concentration of methanotroph and methanogen DNA in the 

reservoir, an additional water sample was taken from a 1.5 m Van Dorn sample and 

placed into a 250 mL Nalgene sample bottle.  In lab, 100 mL was filtered on a 25 mm 

Whatman glass microfiber filter (0.7 µm pore size).  The filter was preserved in a 15 mL 

capped polypropylene test tube with 2 mL of 2x CTAB buffer until DNA extraction for 

real-time PCR occurred.  Using an Eckman grab, a sediment sample was taken to 

determine methanotroph and methanogen DNA concentration.  Oxic sediment from the 

sediment-water interface was placed into a 15 mL polypropylene test tube, while anoxic 

sediment from 12 cm was placed into a different test tube.  Both were labeled, capped, 

and frozen until DNA extraction occurred. 

Genomic DNA was extracted from both water (100 mL) and sediment (0.25 g) 

samples using the CTAB extraction method (Schaefer 1997).  The abundance of DNA 

(ng/µL) within each sample was measured using a Thermo Scientific NanoDrop 
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Spectrometer®.  Samples were then diluted to 1:10, 1:100, and 1:1000 aliquots, 

depending on the amount of DNA present.   

Real-Time PCR was run on an Applied Biosystems StepOne Real-Time PCR 

System® using SYBR® Green, a fluorogenic dye that binds to double stranded DNA.  To 

measure the concentration of methanotroph DNA, the forward primer A189 (5’-

GGNGACTGGGACTTCTGG-3’) and reverse primer mb661 (5’-

CCGGMGCAACGTCYTTACC-3’) were used with DNA standards (0.5, 0.05, and 0.005 

ng/µL) derived from Methylococcus capsulatus.  This primer targets the pmoA enzyme 

gene that is essential for methane oxidation in all methanotrophic bacteria (Holmes et al. 

1995), and we used this as an index of methanotroph abundance.  Methanogen DNA 

concentration was measured in collected samples using the forward primer Met86 (5’-

GCTCAGTAACACGTGG-3’) and reverse primer Met1340 (5’-

GGTGTGTGCAAGGAG-3’) (Wright and Pimm 2003), with Methanosarcina 

acetivorans genomic DNA (0.5, 0.05, and 0.005 ng/µL) for positive control standards in 

each run.  We used the methanogen DNA as an index of methanogen abundance.  

Optimizations for each primer set were adapted from Gentzel (2010). 

Each reaction well on the 48-well PCR plate received 20 µL of a master mix made 

up of 500 µl of Power SYBR® green mix (Applied Biosystems), 400 µl of sterile water, 

50 µl of forward primer, and 50 µl of reverse primer.  1 µl of sample genomic DNA was 

then introduced into wells to assay for field and laboratory samples.  Other wells received 

1 µl of the DNA standard as a positive control and to construct a standard curve, while 1 

µl of sterile water was introduced into additional wells as a negative control.  Samples, 
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standards, and negative controls were run in triplicate.  The real-time PCR protocol began 

with initial denaturation at 95°C for 15 minutes, followed by forty cycles of: 15 seconds 

at 95°C, 30 seconds at 55°C, 1 minute at 72°C, and 15 seconds at 80°C.  Quantification 

of DNA abundance was calculated using the standard curve and given in the well table 

read-out provided by the Applied Biosystems StepOne Real-Time PCR System®. 

Laboratory experiments 

 Laboratory experiments were conducted to examine metabolic fractionation of 

Daphnia and the effects of prokaryotic presence on the δ13C of Daphnia.  To assess 

metabolic fractionation, Daphnia were introduced into treatment tanks of filtered water 

with only algae added as the available food source.  In the second treatment, unfiltered 

water from Lake Brandt was used to examine the effect of non-methanotrophic and non-

methanogenic bacteria on the carbon signature of Daphnia.  Finally, treatment tanks with 

both sediment and unfiltered water established whether methanotrophs and methanogens 

are responsible for the depleted carbon signature of Daphnia. 

Three replicates of each treatment were constructed in lab.  Nine glass 10 L tanks 

were divided in half and fit with a plexi-glass tops that prevented contamination.  Each 

top was outfitted with one hole on each side of the divided tank.  The hole allowed tubing 

to be submerged into the treatment water and served as a stirring apparatus to jostle the 

water twice daily in order to ensure particle suspension.  A bacterial filter was placed on 

the outflow of the tube to eliminate contamination. 

For treatment one, approximately 15 L of lake water was filtered on grade 40 

Millipore glass fiber filters (0.7 µm pore size) to remove suspended particles and 
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introduced into each side of the divided tank.  Fifty mL of a Chlorella culture from 

Carolina Biological Supply Company was added to each side and allowed to grow in the 

water for about two-weeks until substantial algal growth was visible.  The tank was 

sealed off from any contamination with the fitted top.  After substantial algal growth was 

established, the experimental side of the tank was spiked with 100 µg/mL of ampicillin 

(1.325 g), a broad spectrum antibiotic that suppresses many gram-negative and gram-

positive bacteria including methanotrophic bacteria (Campbell et al. 2004; Schnell and 

King 1995; Carolina Biological Supply Company personal communication).  Twenty-

four hours after spiking, directly before introduction of Daphnia, two water samples were 

taken from both sides of the tank and examined for methane concentration and the δ13C 

signature of any methane present in the water column, using the techniques described 

previously. 

During the 24-hour period after the addition of antibiotic, 75 Daphnia magna 

from Carolina Biological Supply Company were separated from bulk samples and 

washed of external and internal bacteria to avoid introduction of excess microbes.  For 

this wash process, the Daphnia were placed into sterile, filtered lake water without 

available food sources for 24 hours.  During the first 12 hours, they were transferred to 

uncontaminated water every 2 hours.  In the last 12 hours, transfer occurred every six 

hours.  This process allowed the Daphnia to clear their guts and expel previous ingested 

food particles and bacteria (Gophen and Gold 1981).  After this 24-hour period, 75 

washed Daphnia were introduced into each side of the tank and allowed to feed on the 

Chlorella for four days.  This four-day period ensured adequate tissue turnover that 
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allowed the Daphnia to obtain a carbon signature of the targeted food source (Chopelet et 

al. 2008).   

After the four days, the experiment was terminated.  Daphnia were sieved from 

the tank, placed in tin capsules, and allowed to dry for 24 hours.  Additionally, 300 mL of 

water from each side of each tank was filtered on grade 40 Millipore glass fiber filters 

(0.7 µm pore size) and dried for 24 hours.  Both the filters and Daphnia were analyzed 

for carbon and nitrogen (δ15N not discussed, see Table 10 for data) stable isotopes at the 

Marine Biological Laboratory in Woods Hole, Massachusetts.  Three water samples were 

taken to measure methane concentration, the δ13C signature of methane, and the 

concentration of methanotroph and methanogen DNA in each side of each tank, 

following the same procedures noted previously.  

The second and third treatments were set-up simultaneously directly after 

completion of the first treatment.  For the second treatment, unfiltered water from Lake 

Brandt was introduced into the tanks, without the addition of Chlorella.  The same 

variables were measured and processes were followed, including antibiotic spiking in the 

experimental side of each tank.  This treatment distinguished the effect of Daphnia 

feeding on the natural seston from the effect of feeding on Chlorella only (treatment 

one), while also separating the effect of methanotrophs and methanogens on the δ13C 

signature of Daphnia magna. 

To examine the effects of methanotrophs and methanogens, 5 cm of sediment 

from Lake Brandt were introduced into each side of the tank followed by 15 L of 

unfiltered lake water containing algae, detritus, and bacteria.  The tank was allowed to sit 
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10-12 days to allow the sediment to become anoxic and methane production to occur.  

The tank was sealed and vented as in the other treatments.  After this waiting period, the 

experimental side of the tank received 100 µg/mL of ampicillin (1.325 g) to inhibit 

methane uptake by methanotrophic bacteria (Schnell and King 1995).  In the control 

treatment, we expected methanotrophic and non-methanotrophic bacteria to proliferate 

without the addition of antibiotic.  The antibiotic was expected to inhibit the growth of 

methanotrophic bacteria in the experimental treatments. 

Twenty-four hours after the addition of antibiotic, water samples were taken to 

determine the methane concentration and the methane δ13C signature in the water 

column.  Seventy-five washed Daphnia magna were then introduced into each side of the 

tank, as described above.  After 4 days, Daphnia were extracted and 300 mL of water 

from each treatment was filtered on grade 40 Millipore glass fiber filters (0.7 µm pore 

size) and both were packaged, dried, and sent for stable isotope analysis.  After Daphnia 

removal, three additional water samples from each tank were analyzed for methane 

concentration, the methane δ13C signature, and the concentration of methanotroph and 

methanogen DNA.  Oxic sediment samples were extracted from the sediment-water 

interface and anoxic sediment samples were taken from 4-5 cm and analyzed using real-

time PCR to determine the concentration of methanotroph and methanogen DNA. 

Data analysis  

For Lake Brandt data, normality and homogeneity were examined.  The isotopic 

shifts between Daphnia and seston in Lake Brandt were calculated for winter sampling 

dates and previously unpublished summer sampling dates.  An independent samples t-test 
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was used to compare the mean isotopic shifts between seasons.  A two-way ANOVA and 

subsequent independent samples t-tests were used to assess the differences in methane 

concentration and δ13C of methane between sampling depths (1.5 m and 4 m).  Mean 

sediment methanotroph and methanogen DNA values were compared in oxic and anoxic 

sediment using independent samples t-tests. 

For experimental data, normality and homogeneity of each measured variable was 

also assessed.  Unequal variances between the three treatment groups were a serious issue 

with most of the data.  To solve this problem, natural log transformation was first used.  

If this did not solve the problem, means of measured variables in filtered water and 

unfiltered water treatments were examined with an independent samples t-test and these 

treatments were pooled if no difference was found (S. N. Gupta, UNCG Department of 

Mathematics and Statistics, personal communication).  If homogeneity was still lacking, 

independent samples t-tests were run between pairs of individual treatments depending 

on antibiotic presence.  Resulting p-values were compared to a Bonferroni corrected 

rejection criteria of < 0.017.  A non-parametric permutation test was used to assess the 

mean difference between treatment groups for the methane concentration difference 

variable due to non-normality and unequal variances following transformation.  A 

significant difference was found, therefore, consecutive permutation tests were run to 

compare means between pairs of treatment groups.  Resulting p-values were compared to 

the Bonferroni corrected p-value of 0.017 (Ramsey and Schafer 2002). 

Normality and homogeneity of variance occurred for one variable, the δ13C of 

seston.  After natural log transformation, the final methane concentration values and the 



	
   16	
  

concentration of water column methanogen DNA values became homogenous.  A two-

way ANOVA was then used to assess the effect of treatment, antibiotic presence, and 

their interaction on these variables.  The two-way ANOVAs for both δ13C of seston and 

final methane concentration yielded significant main effects and a significant interaction.  

Therefore, one-way ANOVAs and Tukey’s test were run separately on values with and 

without antibiotic inoculation to assess differences between treatment groups.  For 

methanogen DNA concentration, only treatment was found as a significant predictor.  A 

one-way ANOVA and Tukey’s test were then run to determine differences among 

treatments.   

When transformation did not resolve homogeneity, pooling of filtered and 

unfiltered water values occurred if no significant difference in means existed between 

these treatments.  Pooling occurred on two variables: the isotopic difference between 

Daphnia and seston and the natural log of the concentration of methanotroph DNA 

within the water column.  A two-way ANOVA was then used to assess the effect of 

treatment, antibiotic presence, and their interaction on all measured variables.  Both 

pooled two-way ANOVAs yielded significant main effects and interactions.  Therefore, 

independent samples t-tests were run separately on values with and without antibiotic 

inoculation to examine the difference between pooled water treatments and the sediment 

treatment.  

Sediment methanotroph and methanogen DNA concentrations in the sediment 

treatment were analyzed using a two-way ANOVA to examine the effects of oxygen 

availability and antibiotic presence and the interaction of these factors.  
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Neither transformation nor pooling of treatments resolved the problem of unequal 

variances with the carbon signature of Daphnia.  Therefore, a Bonferroni corrected 

individual significance rate was calculated for the data (p = .017).  Independent samples 

t-tests were then run separately between treatments based on antibiotic presence and 

assessed using this significance level.   

The unequal variances of the methane concentration difference variable could not 

be solved by transformation and, in addition, distribution was non-normal.  Therefore, 

non-parametric permutation tests were used to evaluate the difference between 

treatments, as described above.  SPSS and SAS statistical packages were used to analyze 

data.  Reported significant relationships have a p-value < 0.05, excluding δ13C of 

Daphnia and the difference of initial and final methane concentrations, where Bonferroni 

corrected rejection criteria of 0.017 was used.  All mean values are reported with ± one 

standard error. 

A two-source mixing model was used to estimate the relative contribution of 

methane to the diet of Daphnia magna using the following equation: pmethane = (δ13CDaphnia 

– δ13Cseston – f1 – f2)/(δ13Cmethane – δ13Cseston), where pmethane is the proportion of methane in 

the diet of Daphnia, f1 is the fractionation value of Daphnia, and f2 is the fractionation 

value of methanotrophs (Bunn and Boon 1993).  The average carbon signatures for 

Daphnia and methane in the sediment treatment without antibiotic addition were used.  

The δ13Cseston was calculated from the unfiltered water treatment with antibiotic spiking 

because this value reflects the carbon signature of natural seston without a significant 

methane contribution.  Normal fractionation between food sources and Daphnia (1‰) 
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was assumed as suggested by Peterson and Fry (1987).  The mean fractionation value for 

methanotrophs was calculated from the difference between the final methane δ13C values 

with and without antibiotic in the sediment treatment.  Antibiotic spiking halted methane 

oxidation, therefore, the difference between δ13C of methane in antibiotic and control 

tanks reflected isotopic fractionation by methanotrophs.  The fractionation factor 

calculated was -0.38‰.  However, because of a wide range of reported methanotrophic 

fractionation in the literature, pmethane was also estimated using hypothetical fractionation 

values for methanotrophs (f2) of 1‰, 16‰, and 30‰ (Whiticar 1999).   
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CHAPTER III 
 

RESULTS 
 
 

Methane concentration 
 

In Lake Brandt, mean methane concentrations were low (<8.5 ppm).  A 

significant interaction between sampling date and depth was found to effect the methane 

concentration in Lake Brandt (Two-way ANOVA, R2 = 0.966).  Methane concentration 

did not differ between depths on the first 2 sampling dates (Independent samples t-test, t 

= -0.326, df = 4, p = 0.761; t = 2.455, df = 4, p = 0.070, respectively, Table 1).  However, 

methane concentration in Lake Brandt was significantly higher at 4 m than at 1.5 m on 

the November 9th sampling date (Independent samples t-test, t = -10.352, df = 4, p < 

0.001, Table 1).   

The mean difference in methane concentration before addition and after extraction 

of Daphnia was significantly different between filtered and unfiltered water and highly 

suggestive of a difference between water treatments and the sediment treatment (Pair-

wise permutation test, filtered water-unfiltered water, p = 0.001, unfiltered water-

sediment, p = 0.021, filtered water-sediment, p = 0.021, Table 2).  Average methane 

increased by 435.32 ppm in the sediment treatments, while the concentration was near 

zero in water treatments (<1.3 ppm).  Treatments with sediment had significantly more 

final methane (ppm) than those with only water, with and without antibiotic (One-way 

ANOVA, p < 0.001, 0.001; Tukey’s test, filtered water-unfiltered water, p = 0.905, 0.919, 
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unfiltered water-sediment, p < 0.001, 0.001, filtered water-sediment, p < 0.001, 0.001, 

respectively, Table 3).  Ampicillin failed to limit methane production in filtered and 

unfiltered water treatments (Independent samples t-test, t = 0.262, df = 4, p = 0.807, t = 

0.098, df = 4, p = 0.927, respectively).  However, final methane concentration was 

significantly higher in the sediment treatment when antibiotic spiking occurred 

(Independent samples t-test, t = -4.999, df = 4, p = 0.007, Table 3).  

δ13C of methane 

Methane carbon signatures in Lake Brandt did not differ between depths during 

winter mixing (Independent samples t-test, t = 0.454, df = 4, p = 0.673, Table 1).  For 

experimental data, because final methane concentration was <0.5 ppm in both water 

treatments, methane δ13C values were eliminated from analysis in those treatments.  In 

the sediment treatment, the presence of ampicillin did not affect the final methane carbon 

signature (-58.93‰ without inoculation, -58.55‰ with inoculation) (Independent 

samples t-test, t = -0.174, df = 1.161, p = 0.887). 

Methanotroph and methanogen DNA 

Methanotroph and methanogen DNA concentrations in the Lake Brandt water 

column at 1.5 m are reported in Table 4.  In Lake Brandt sediment, methanotroph 

concentration did not differ between oxic and anoxic zones (Independent samples t-test, t 

= 0.870, df = 4, p = 0.433, Table 5).  However, methanogen concentration was ~2-fold 

greater in anoxic sediment (Independent samples t-test, t = -11.923, df = 4, p < 0.001, 

Table 5). 
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Concentrations of both methanotroph and methanogen DNA in water were higher 

in sediment treatments, while ampicillin limited methanotroph concentration.  Filtered 

and unfiltered water samples had very low amounts of methanotroph and methanogen 

DNA consistent with the low concentrations of methane regardless of whether ampicillin 

was present, and water in the sediment treatment has similarly low levels of 

methanotroph DNA in the presence of ampicillin (Independent samples t-test, t = -1.825, 

df = 7, p = 0.111, Table 6).  Regardless of antibiotic presence, concentration of 

methanogen DNA was significantly different between all treatments (One-way ANOVA, 

p < 0.001; Tukey’s test, filtered water-unfiltered water, p = 0.004, unfiltered water-

sediment, p < 0.001, filtered water-sediment, p < 0.001, Table 6).  However, 

methanotroph DNA concentration was very low (< 0.7 ng/100 mL) in both filtered and 

unfiltered water, and much higher (78.61 ng/100 mL) in the sediment treatment water 

with no ampicillin (Independent samples t-test, t = -12.21, df  = 7, p < 0.001, Table 6). 

In the sediment treatment, the presence of an antibiotic did not affect the 

concentration of methanotroph or methanogen DNA present in sediment (Two-way 

ANOVA, no significant predictor, Table 7).  Furthermore, methanotroph and methanogen 

concentrations were not significantly different between oxic and anoxic samples (Two-

way ANOVA, no significant predictors, Table 7).   

δ13C of seston 

Seston was significantly 13C depleted (~6‰) in the sediment treatment when an 

antibiotic was not present (Figure 1) and very similar in all other treatments.  A 

significant interaction between treatment and antibiotic was found to affect the seston 
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carbon signature (Two-way ANOVA, R2 = 0.927).  In the presence of ampicillin, there 

was no significant difference in carbon signature between treatments (One-way ANOVA, 

p = 0.360, Figure 1).  However, without an antibiotic, the sediment treatment had a much 

more depleted carbon signature than water treatments (One-way ANOVA, p < 0.001; 

Tukey’s test, filtered water-unfiltered water, p = 0.320, unfiltered water-sediment, p = 

0.001, filtered water-sediment, p < 0.001, Figure 1). 

δ13C of Daphnia 

Without ampicillin, the Daphnia carbon signature was considerably more 

depleted (~12‰) in the sediment treatment compared to both filtered and unfiltered water 

treatments (Bonferroni-corrected independent samples t-test, filtered water-unfiltered 

water, p = 0.140, unfiltered water-sediment, p = 0.011, filtered water-sediment, p = 

0.001, Figure 2).  There was no significant difference between treatments when an 

antibiotic was present (Bonferroni-corrected independent samples t-test, filtered water-

unfiltered water, p = 0.028, unfiltered water-sediment, p = 0.249, filtered water-sediment, 

p = 0.546, Figure 2).   

Isotopic carbon shift 

In Lake Brandt during summer stratification, Daphnia carbon signatures were 

more depleted than those of seston (~1-4‰).  However, carbon signatures of Daphnia 

became more enriched when compared to seston during winter mixing (~1‰).  The mean 

isotopic difference of Daphnia and seston between summer and winter sampling dates 
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were significantly different (Independent samples t-test, t = 4.504, df = 2.157, p = 0.040, 

Table 8).   

The carbon signature of Daphnia was 1-2‰ more enriched than the seston in all 

treatments except the sediment treatment without antibiotic, which was 1.56‰ more 

depleted than the seston (Table 9).  δ13C shifts between Daphnia and seston were not 

significantly different between treatments when an antibiotic was used (Independent 

samples t-test, t = -0.706, df = 7, p = 0.462).  However, without ampicillin, the isotopic 

shift between Daphnia and seston was statistically different between water and the 

sediment treatments (Independent samples t-test, t = 3.247, df = 7, p = 0.014).   

 In the sediment treatment when no antibiotic was used, methane-derived carbon 

contributed to the diet of Daphnia.  At our calculated fractionation rate of -0.38‰, 

methane-derived carbon accounted for 31.95 ± 3.5% of Daphnia diet.  At a 

methanotrophic fractionation rate of 1‰, methane accounted for 36.55 ± 3.6% of 

Daphnia diet.  This percent increased to 86.60 ± 4.7% and 133.30 ± 5.8% as fractionation 

was increased to 16‰ and 30‰, respectively. 
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CHAPTER IV 

DISCUSSION 
 
 

 Depleted carbon signatures relative to seston in crustacean zooplankton have been 

repeatedly observed in freshwater systems (del Giorgio and France 1996; Jones et al. 

1999; Grey et al. 2000).  However, the trophic basis of the relatively low δ13C for 

freshwater zooplankton remains unclear.  As of yet, no study has experimentally 

evaluated the impact of sediment methane production and subsequent methane-oxidation 

on the δ13C of Daphnia magna, while also suppressing methane uptake by 

methanotrophic bacteria.   

Implications of methane concentration and DNA analysis 

Methane concentrations over the three winter sampling dates from October to 

November of 2009 in Lake Brandt only differed between depths on November 9th (Table 

1).  However, this difference is likely unimportant to Daphnia because methane 

concentrations were low during winter mixing (<8.5 ppm) and Daphnia δ13C was not 

depleted relative to seston at that time.  This is probably due to mixing and colder 

temperatures during winter in the monomictic reservoir.  Methane accumulates in the 

hypolimnion during summer stratification but sharply decreases during winter mixing 

(Eckert and Conrad 2007).  Rudd and Hamilton (1978) found that over 90% of 

hypolimnetic methane remains until winter turnover.  Moreover, during summer 

stratification, methanogenesis was also much higher (568 mg/m2/day) in the lacustrine 
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section of Lake Brandt than during winter/spring mixing (25 mg/m2/day) (Wade 2007).  

Methanogenesis varies in lakes based on many factors, including temperature and organic 

carbon inputs.  However, all factors are not known.  Decreased rates of methanogenesis 

during winter mixing in Lake Brandt may be due to colder bottom waters in the reservoir, 

slowing metabolic rates of methanogens (Zeikus and Winfrey 1976).  Furthermore, 

increased inorganic sedimentation rates during winter may inhibit methanogenesis (Wade 

2007).  Therefore, thermal stratification in the reservoir influenced vertical methane 

distribution and various factors, such as temperature and sedimentation rates, may 

account for low methane concentrations on our sampling dates.   

The presence of anoxic sediment facilitated the production of methane in the 

experimental system (Table 2).  Average methane concentration almost doubled during 

the four-day incubation in sediment treatments, whereas methane concentration was 

initially near zero and decreased in the both water treatments over the experimental 

period (Table 2).  Without sediment, no methane production occurred and that present 

initially would have diffused from the tanks during the experiment or been oxidized 

resulting in a decrease in methane concentration.  During winter sampling dates in Lake 

Brandt, we found that methane concentration was much lower than measured in the 

sediment treatment (Table 1).  A previous Lake Brandt study measured methane 

production over a 24-hour period from cores collected during winter/spring mixing and 

also found much lower methane concentrations than detected in this experiment (< 3 

ppm) (Wade 2007).  Longer sediment incubation time before initial measurements (10-12 

days) may account for higher methane accumulation in this experiment.  Furthermore, 
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greater incubation temperatures of sediment treatments (~25°C) when compared to Lake 

Brandt temperatures at 4 m (~18°C) may have attributed to greater methane production 

(Kelly and Chynoweth 1981). 

In Lake Brandt sediment, methanogens were more abundant in anoxic than oxic 

environments (Table 5).  This finding is to be expected given that methanogens are strict 

anaerobes and during winter mixing, superficial sediments may be partially oxidized.  

Surprisingly, methanogens also were present in the aerobic water column (Table 4).  

During the winter sampling dates, it was fairly windy and turbidity in the reservoir was 

high.  This high turbidity may have caused superficial sediments to become disturbed, 

increasing the flux of methanogenic cells into the water column. 

Real-time PCR analysis detected considerable amounts of methanogen DNA in 

both oxic and anoxic sediments with no antibiotic effect in the experimental system 

(Table 7).  Also, methanogen DNA in the water column of the sediment treatment was 

greater than in treatments without sediment (Table 6).  This may be due to dispersal of 

cells from the sediment or the high sediment suspension within this treatment caused by 

daily jostling of the water column.  The unfiltered water treatment had significantly more 

methanogen DNA present than filtered water (Table 6).  Despite this difference, 

methanogen DNA was very low in both treatments that lacked sediment.  Paerl (1975) 

found that available particulate substrates increase attached microbial growth in both 

marine and freshwater systems.  Therefore, methanogens attached to suspended sediment 

and particles in the unfiltered water likely accounts for this difference.  However, since 
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methanogens are strict anaerobes and the aquarium water was aerobic, the methanogen 

DNA would not have been derived from live cells. 

Methanotroph DNA concentration in Lake Brandt water column was low 

compared to the sediment treatment without ampicillin (Table 4).  A possible reason for 

this is the relatively low methane concentrations in the reservoir during winter mixing.  

Previous studies have found that methanotroph abundance decreases considerably when 

methane concentrations are limited because of a lack of a sustainable energy source 

(Harrits and Hanson 1980; Schnell and King 1995).  Furthermore, because of complete 

oxygenation of the water column and low rates of methanogenesis during winter, rates of 

methanotrophy were, most likely, higher at the sediment water interface where methane 

availability was greater.  Wade (2007) found that, in the lacustrine section of Lake 

Brandt, methane oxidation was much lower during mixing (4 mg/m2/day) than during 

summer stratification (381 mg/m2/day), consistent with the difference in methanogenesis.  

However, Rudd and Hamilton (1978) found an immediate increase in methane oxidation 

during fall turnover, noting that over 90% of yearly methane oxidation occurred during 

fall turnover.  Consequently, increased methane oxidation and ebullition during and 

directly after fall turnover will lead to the eventual decline in methane concentration, 

inhibiting the methanotroph population within the lake (Harrits and Hanson 1980). 

Methanotrophic bacterial abundance was extremely low in water treatments when 

compared to the control sediment treatment due to low methane concentrations (Table 6).  

Minimal amounts of methane limit the available energy source for methanotrophs, 

resulting in a smaller sustainable population in the water column.  However, 
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methanotrophs were numerous when methane concentrations were high and an antibiotic 

was not present.  

Methanotrophic bacteria in the water column of the sediment treatments were 

limited by ampicillin, while sediment methanotrophs were unaffected (Tables 6 and 7).  

However, Schnell and King (1995) found that ampicillin (0.5 mg/mL) limited methane 

uptake by almost 50% by methanotrophs in forest soils.  Use of a lower concentration of 

ampicillin (100 µg/mL) in the present experiment may have resulted in relatively low 

antibiotic concentration below superficial sediment layers.  However, it was clearly 

effective in limiting methane oxidation in the water column, and this concentration of the 

antibiotic was used because it was found to have no negative effect on the physiological 

state of Daphnia (Campbell et al. 2004; personal communication with Carolina 

Biological Supply Company), whereas effects of increased concentrations have not been 

evaluated.   

A higher concentration of methanotroph DNA was detected within both oxic and 

anoxic sediment than was present in the water treatments (Tables 6 and 7).  This is 

consistent with Rothfuss et al. (1997), who examined several bacterial groups in the 

sediments of Lake Constance and found methanotrophs present 30 cm below the 

sediment surface.  Limited methane oxidation occurred down to 7.5 cm below the 

sediment surface, but dormant cells below this depth could be stimulated to begin 

methane oxidation when presented with oxygen (Rothfuss et al. 1997).  Therefore, we 

assume that within oxic sediment methanotrophs were actively oxidizing methane that 
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was being produced in anoxic sediment, while methanotrophs in anoxic sediment were 

dormant. 

 Methane oxidation was found to occur in the sediment treatment when an 

antibiotic was not used.  Methane concentration of the sediment treatment when 

ampicillin spiking occurred was almost 3 times greater than without an antibiotic (Table 

3).  This result implies that ampicillin limited methanotrophic bacteria, therefore, halting 

methane oxidation, leading to an accumulation of methane within the water column.  

When methanotrophs were not limited, however, methane concentration was much lower, 

indicating active methane oxidation.  Similarly, Wade (2007), using dimethyl fluoride to 

limit methane oxidation in Lake Brandt sediment cores, found that during summer 

stratification, methane concentration was 3-7 times higher in treated cores than control 

cores.   

Carbon stable isotope values 

Lake Brandt methane carbon signatures did not differ between 1.5 and 4 m 

depths, consistent with a mixed water column (Table 1).  The methane carbon signatures 

measured within the lake were fairly enriched (-46 to -37‰) when compared to reported 

biogenic methane values (-80 to -52‰) (Bunn and Boone 1993).  Our data are consistent 

with relatively high fractionation associated methane oxidation and diffusion, resulting in 

depleted 12C of methane in the water column.  Bastviken et al. (2003) found that the 

carbon signature of methane was more enriched in surface waters of several small 

Swedish lakes when compared to bottom waters during both summer stratification and 

winter mixing, inferring abundant methane oxidation all year.  In this study at 4 m depths, 
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methane carbon signatures were not depleted leading to the assumption that methane 

oxidation was occurring at greater depths, most likely, at the sediment water interface. 

In laboratory experiments, addition of an antibiotic did not affect the carbon 

signature of methane in the sediment treatment.  Therefore, fractionation by 

methanotrophs within the control treatment was low.  The calculated value for 

methanotrophic fractionation was negative (-0.38‰), indicating enrichment in 12C 

instead of 13C during methane oxidation in our study.  However, note that replicate 

measurements of δ13C methane overlapped broadly between tanks with and without 

antibiotic, so this cannot be interpreted as a meaningful negative fractionation value; 

negative methanotrophic fractionation has not been reported in the literature (review: 

Whiticar 1999) and would not be expected. 

The isotopic shift between Daphnia and seston is affected by seasonality in Lake 

Brandt.  During winter turnover, Daphnia carbon values are slightly enriched compared 

to seston, consistent with expected carbon fractionation in the diet.  However, during 

summer stratification, Daphnia were 13C depleted when compared to seston (Table 8).  

During stratification of eutrophic lakes, methane oxidation is greatest at the anoxic-oxic 

boundary in the thermocline but can also occur throughout the epilimnion (Rudd and 

Hamilton 1978; Harrits and Hanson 1980).  Vertical migration of Daphnia to this 

boundary may allow ample foraging on methanotrophic bacteria during summer 

stratification (Taipale et al. 2007).  When winter turnover occurs, as discussed previously, 

a high volume of trapped methane should be oxidized or evaded from the lake surface.  

Eventually, low methane concentrations within lakes will result, reducing substrate 
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availability for methanotrophic bacteria in the water column.  This, in turn, limits this 

potential food source for Daphnia during mixing.  Methanotroph availability for Daphnia 

may also be limited because methanotrophic abundance is highest at the sediment-water 

interface during winter.  Furthermore, increased inorganic carbon loading in the winter 

may inhibit methanogenesis, decreasing the available carbon source for methanotrophs.  

An alternate hypothesis for this Daphnia carbon depletion in the summer is the 

incorporation of depleted microalgae (Hamilton et al. 1992).  However, in our 

experimental data, we show that methane-derived carbon played an important role in 

carbon depletion of Daphnia when compared to bulk seston, and under the experimental 

conditions, algae were not isotopically light. 

The impacts of seasonal stratification and turnover events on Daphnia carbon 

signatures have been examined elsewhere.  Three separate studies conducted on Lake 

Mekkojärvi, a small humic lake in Finland, found that during autumn turnover Daphnia 

consumption of methanotrophic bacteria was very high compared to summer 

stratification (Kankaala et al. 2006; Taipale et al. 2007; Taipale et al. 2009), in contrast to 

the pattern for Daphnia δ13C that we have observed in Lake Brandt.  This difference may 

be due to much higher rates of methane oxidation (peak 495 mg/m2/day) in Lake 

Mekkojärvi during mixing when compared to Lake Brandt (4 mg/m2/day).  

The carbon signature of seston was highly depleted when sediment but no 

antibiotic was present within experimental treatments (Figure 1).  Without an antibiotic, 

there was high methanotroph DNA concentration in the water column of this treatment.  
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Therefore, attachment of methanotrophic bacteria to POM explains the depletion of the 

seston carbon signature. 

  Like the δ13C of seston, the carbon signature of Daphnia was associated with the 

abundance of methanotrophic bacteria within the water column.  δ13C of Daphnia was 

highly depleted when methanotroph abundance was high, which resulted from high 

methane production from the sediment and no limitation by ampicillin (Figure 2). 

Furthermore, average Daphnia carbon signature was depleted when compared to the 

carbon signature of the seston only in this treatment (Table 9).  As Daphnia should be 0-

1‰ more enriched than their food source, we assume that Daphnia are assimilating 

isotopically depleted methane-derived carbon in the sediment treatment when an 

antibiotic did not limit methanotroph presence.  Daphnia in treatment groups without 

abundant methanotrophs fractionated carbon (0-1‰ more enriched) as expected by 

Peterson and Fry (1987). 

 In this study, the two-source mixing model estimated that methane contributed to 

31-87% of Daphnia diet in the experimental sediment treatment when an antibiotic was 

not used.  Percent contribution of methane to the diet of Daphnia was >100% when the 

methanotroph fractionation value of 30‰ was used.  Therefore, we assume that this is an 

impractical methanotroph fractionation factor in this study.  With the calculated 

fractionation value of -0.38‰, methane contributed to almost 32% of Daphnia diet.  The 

other fractionation values of methanotrophs yielded percentages (37% and 87%) that fell 

between previously reported ranges of methane contribution.  Previous studies examining 

the potential impact of methane-derived carbon on Daphnia have also found significant 
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evidence of incorporation of methane-derived carbon through consumption of 

methanotrophic bacteria by Daphnia.  In bottle experiments, Kankaala et al. (2007) found 

that as Daphnia densities were increased, methanotroph abundance decreased.  

Methanotrophic bacterial contribution to Daphnia diet was also found to be between 5-

15% in three small Swedish lakes and as high as 87% in a small humic lake during 

autumn turnover (Bastviken et al. 2003; Taipale et al. 2007).  Therefore, incorporation of 

methane-derived carbon into the diet of Daphnia in this study is corroborated. 
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CHAPTER V 
 

CONCLUSION 
 
 

Results of this study indicate that seasonal changes within water bodies may 

change methane production and oxidation in turn affecting Daphnia diet composition.  

Additionally, it was found that increased methane concentrations within the water column 

can sustain large populations of methanotrophic bacteria.  When methanotroph 

abundance is high, incorporation of methane-derived carbon into the diet of Daphnia 

occurs, resulting in depleted carbon isotopic signatures of Daphnia when compared to 

bulk seston.  However, when methanotroph abundance is limited, carbon signatures of 

Daphnia reflect expected fractionation values (0-1‰) between seston and Daphnia.  

Results of this study, therefore, suggest that methane-derived carbon can account for the 

depleted carbon signatures of Daphnia observed throughout freshwater systems.  

Research of methane-derived carbon influences on zooplankton feeding regimes 

is limited in scope, especially in reservoirs.  However, we do know that methane-derived 

carbon within pelagic food webs is important in freshwater carbon cycling (Bastviken et 

al. 2003; Bastviken et al. 2008; Kankaala et al. 2006; Kankaala et al. 2007).  As global 

warming has become an important focus of scientific studies, further research is needed 

to examine the implications of the consumption of methane-oxidizers and the resulting 

impact on methane fluxes into the atmosphere from freshwater systems.   
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APPENDIX A. TABLES 

 

 

Sampling Date Sampling Depth 
Methane 

Concentration 
(ppm) 

δ13C of Methane 
(‰) 

Oct-14-09 1.5 m 7.07 ± 0.37 -45.17 

 4 m 7.27 ± 0.45 -45.05 

    

Oct-28-09 1.5 m 3.44 ± 0.10 -38.02 

 4 m 2.23 ± 0.26 -37.69 

    

Nov-9-09 1.5 m 5.79 ± 0.07 -41.01 

 4 m 8.46 ± 0.25 -46.02 
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Treatment Time Methane Concentration 
(ppm) 

Filtered Water Before 0.48 ± 0.05 

 After 0.42 ± 0.03 

  - 0.06 ± 0.06 

   

Unfiltered Water Before 1.22 ± 0.09 

 After 0.38 ± 0.02 

  - 0.84 ± 0.09 

   

Unfiltered Water + 
Sediment Before 749.01 ± 263.47 

 After 1184.33 ± 235.63 

  + 435.32 ± 250.13 
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Treatment Antibiotic Methane Concentration 
(ppm) 

Filtered Water - 0.43 ± 0.06 

 + 0.41 ± 0.07 

   

Unfiltered Water - 0.38 ± 0.01 

 + 0.38 ± 0.04 

   

Unfiltered Water + 
Sediment - 695.14 ± 184.95 

 + 1673.52 ± 63.97 
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Sampling 
Date 

Average 
Methanotroph 

DNA 
(ng/100 mL) 

Average 
Methanogen 

DNA 
(ng/100 mL) 

Oct-14-09 2.26 ± 0.30 4.09 ± 0.67 

Oct-28-09 2.64 ± 0.29 5.75 ± 0.86 

Nov-9-09 2.32 ±0.38 4.82 ± 1.88 
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Sampling Date Oxygen 
Presence 

Average 
Methanotroph DNA 

(ng/0.25g) 

Average 
Methanogen DNA 

(ng/0.25g) 

Oct-14-09 Oxic 13.23 ± 2.54 81.23 ± 20.04 

 Anoxic 4.09 ± 0.08 151.88 ± 9.68 

    

Oct-28-09 Oxic 4.49 ± 0.94 87.81 ± 21.67 

 Anoxic 9.81 ± 1.61 149.61 ± 37.92 

    

Nov-9-09 Oxic 7.14 ± 0.31 74.87 ± 22.81 

 Anoxic 1.75 ± 0.24 138.83 ± 30.37 
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Treatment Antibiotic 
Presence 

Average 
Methanotroph DNA 

(ng/100 mL) 

Average 
Methanogen DNA 

(ng/100 mL) 

Filtered Water - 0.14 ± 0.04 0.12 ± 0.02 

 + 0.14 ± 0.05 0.10 ± 0.04 

    

Unfiltered Water - 0.39 ± 0.18 0.47 ± 0.14 

 + 0.50 ± 0.67 0.69 ± 0.18 

    

Unfiltered Water 
+ Sediment - 78.61 ± 53.96 13.79 ± 5.35 

 + 0.98 ± 0.70 2.53 ± 0.34 
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Oxygen 
Presence 

Antibiotic 
Presence 

Average  
Methanotroph DNA 

(ng/0.25 g) 

Average 
Methanogen DNA 

(ng/0.25 g) 

Oxic Sediment - 8.58 ± 3.38 37.19 ± 20.53 

 + 12.88 ± 2.31 74.90 ± 6.67 

    

Anoxic 
Sediment - 4.40 ± 2.26 41.00 ± 21.24 

 + 5.97 ± 4.99 57.81 ± 30.03 
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Sampling Date Average Carbon Isotopic Shift 
between Daphnia and Seston (‰) 

Oct-14-09 + 1.12 

Oct-28-09 + 1.67 

Nov-9-09 + 1.40 

  

Aug-9-07 - 3.88 

April-3-08 - 1.35 

April-10-08 - 1.62 
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Treatment Antibiotic Presence 
Average Carbon Isotopic 
Shift between Daphnia 

and Seston (‰) 

Filtered Water - + 1.94 ± 1.10 

 + + 1.98 ± 0.46 

   

Unfiltered Water - + 1.49 ± 0.44 

 + + 1.31 ± 0.13 

   

Unfiltered Water + 
Sediment - - 1.56 ± 0.96 

 + + 1.94 ± 0.27 
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Treatment Antibiotic 
Presence 

δ15N of Seston 
(‰) 

δ15N of Daphnia 
(‰) 

Filtered Water - 4.20 ± 0.90 10.95 ± 1.00 

 + 4.79 ± 0.43 13.67 ± 1.94 

    

Unfiltered Water - 3.72 ± 0.38 11.51 ± 1.05 

 + 4.63 ± 0.16 13.16 ± 0.30 

    

Unfiltered Water + 
Sediment - 2.46 ± 0.70 3.25 ± 0.90 

 + 3.81 ± 0.72 5.15 ± 0.22 

    

Lake Brandt (Oct-14-09)  5.26 5.89 

Lake Brandt (Oct-28-09)  4.51 4.04 

Lake Brandt (Nov-9-09)  4.18 3.92 
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APPENDIX B. FIGURES 
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