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Abstract: 

Workers of the ant Cylindromyrmex whymperi display mass trail recruitment. Bioassays show 

that the trail pheromone originates from a unique gland between abdominal sternites 6 and 7. The 

gland has a hitherto unknown structural organization. Upon leaving the secretory cell, the duct 

cell widens to form a sclerotized pear-shaped reservoir chamber, lined with multiple duct cells. 

Each duct thus forms a miniature reservoir for the secretions of each single secretory cell, a 

novel structural arrangement in exocrine glands of social Hymenoptera.   

 

Article: 

Introduction 

Communication among colony members is one of the most important traits in social insects. In 

ants, chemical communication through the emission of pheromones plays a major role in all 

aspects of colony life. Many species of ants use trail pheromones to recruit nestmates to new 

nests or food sources. The active substances can originate from a variety of exocrine glands, 

located either in the abdomen or on the legs (Billen and Morgan 1998). According to their 

structural organization, two major gland types can be distinguished among the social insects: 

epithelial glands and glands formed by bicellular units. The latter comprise one secretory cell 

and one duct cell, with the duct cell invariably containing a narrow cuticular channel that 

transports the secretory products from the secretory cell to a common reservoir for temporary 

storage or directly to the outside (Billen and Morgan 1998). 

 

Little is known about the biology of ants of the neotropical cerapachyine genus Cylindromyrmex. 

These rare ants (Delabie and Reis 2000) generally nest in cavities in decaying wood or live stems 

(Brown 1975; Andrade 1998). Workers are often found in termite galleries, and at least one 

species, Cylindromyrmex striatus, is a known specialist termite predator (Overal and Bandeira 

1985). Since termites are social, they represent a prime example of a clumped resource. 

However, the resource is probably short-lived, since termites cover their foraging paths with soil 

galleries, and any gaps are quickly repaired. Additionally, termite galleries are well-defended by 
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termite workers and soldiers, so a solitary ant predator would quickly be outnumbered (Stuart 

1969). Ants preying on other social insects often possess a mass recruitment system, such as 

chemical trails to the food source (Wilson 1958; Hölldobler et al. 1994). Therefore, we expect a 

form of recruitment in Cylindromyrmex. We discovered the presence of massive trail recruitment 

in Cylindromyrmex whymperi, and elucidated the glandular origin and the putative chemical 

nature of its secretions. 

 

Materials and methods 

About 70 workers and one dealate queen were collected from a raiding column with about 100 

workers on the forest floor at Rincon de la Vieja NP, Acguanacaste, Costa Rica, and kept in a 

plastic nestbox (7x7 cm) with a moist plaster floor, connected to a foraging arena (40x50 cm). 

Food items (sugar water and freshly killed crickets, cockroaches and termites) were placed in the 

arena, about 40 cm from the nest entrance. Preliminary bioassay trail tests indicated that workers 

readily follow trails made with abdomen extracts. To test for the exact origin of trail substances, 

we killed ants by freezing and several abdominal glands were dissected. We extracted possible 

trail substances by squashing two glands, originating from two workers, in 20 µl of hexane, after 

which we laid 10 cm-long artificial trails on plain white paper. We always waited 2 min for the 

solvent to evaporate before allowing ants on the trail. Each such trail was presented only once at 

the nest entrance, and the response of the first ant to encounter such a trail was recorded. An ant 

was recorded as following the trail when it followed it for more than 5 cm. Replicates were 

therefore the trails of gland extracts of different pairs of workers. Once we had determined the 

sternal gland to be the origin of the trail pheromone, we presented the extracts of the sternal 

gland and different glands in a pairwise comparison (two trails angling away from each other at 

45°; the side of the sternal gland extract was changed in each trial) to avoid possible effects of 

contamination during dissection. Ants were allowed on the trail by placing the nestbox with the 

entrance in front of the start of the V-shaped trails. Again, each double trail was presented to the 

ants only once, and the response of the first worker was recorded and analysed with a one-tailed 

binomial test. 

 

The posterior part of the abdomen as well as dissected sternites of workers for morphological 

examination were fixed in 2% glutaraldehyde in sodium cacodylate buffer. After post-fixation in 

2% osmium tetroxide and dehydration in a graded acetone series, tissues were embedded in 

araldite. Semithin sections for light microscopy were stained with methylene blue and thionine. 

Thin sections for electron microscopy were viewed in a Zeiss EM900 microscope. Tissue 

arrangement was examined in a Philips XL30 ESEM microscope on air-dried material as well as 

on material prepared overnight in a 5% KOH solution to macerate soft tissues. 

 

Sternal glands were dissected and sealed in a soft glass capillary, as described by Morgan (1990) 

and analysed by gas chromatography using the solid-sampling method described by Morgan and 

Wadhams (1972). Chromatography was carried out with a Hewlett-Packard 5890 gas 

chromatograph directly coupled to a 5970B Mass Selective Detector and HP 5970C 

Chemstation. 

 

Results 

We observed mass recruitment once in the field. A column of C. whymperi was moving along a 

distinct "street", although it was unclear whether this served for foraging or nest relocation. In 



the laboratory, however, when dead termites were discovered by a single Cylindromyrmex 

worker, it returned to the nest and recruited nestmates (n=3). Within 10 min, all workers had left 

the nestbox and were investigating the area around the termites. However, not a single dead 

termite was taken or carried towards the nest in the next 30 min. Only when we placed dead 

termites directly into the nest were they quickly eaten. We never observed recruitment to 

crickets, cockroaches or sugar water (n=10), nor were these eaten when placed in the nestbox 

(n=5). 

 

Workers leaving the nestbox were frequently followed in their exact paths by subsequent 

workers. All workers continuously drag their abdomen over the substrate as we could see when 

they walked over a glass surface stained with candle smoke. All tested workers clearly followed 

artificial trails made from extracts of the conspicuous sternal gland between sternites 6 and 7 

(n=5 trails). Workers never followed extracts of the venom gland (n=5), the tergites (n=5), the 

hindgut (n=5) or pure hexane controls (n=10). However, extracts from the Dufour gland and of 

sternite 7 without the sternal gland attached elicited short (i.e. less then 5 cm) following 

responses in 1 and 2 out of 5 trials, respectively. 

 

To avoid effects of possible contamination during dissection, we presented the gland extracts in a 

choice experiment. The sternal gland extract was invariably chosen over all other extracts by 

foragers leaving the nest as well as over the hexane control (binomial test: 6 out of 6 choice 

trails, P<0.015). In detail, ants always preferred sternal gland extract over both Dufour gland 

extract (binomial test: 6 out of 6, P<0.015) and sternite 7 extract (sternal gland removed, 5 out of 

5, P<0.031). Unfortunately, we could not make enough replicates with venom gland, tergites and 

hindgut extracts to obtain statistical significance (each 4 out of 4, P=0.062), but we feel 

confident that these glands can be omitted as a possible source of the trail pheromone since they 

were never followed in the single trail trials. 

 

The sternal gland appears as a large paired structure at the articulation between the 6th and 7th 

abdominal sternites. The left and right parts of the gland closely touch each other, which results 

in their appearance as one large glandular cluster (Fig. 1a). The gland contains numerous 

rounded secretory cells with a diameter of around 30-35 µm. Each cell has a rounded nucleus 

and an end apparatus that continues in a sclerotized duct as is usual in class-3 gland cells (Noirot 

and Quennedey 1974). The numerous duct cells open to the outside through the intersegmental 

membrane between the 6th and 7th sternite (Fig. 1b, c). The most peculiar feature of the gland is 

that each duct, upon leaving the secretory cell, abruptly widens to form a sclerotized pear-shaped 

reservoir chamber with a diameter of about 20 µm and a length of 30-40 µm (Fig. 1d, e). Each 

secretory cell thus has its own individual reservoir. The epithelial wall of the reservoir chambers 

has a thickness of roughly 2 µm, of which 0.5 µm is occupied by the apical cuticular lining. It 

appears that more than one cell is involved in the formation of the reservoir chamber/duct 

complex. No muscles are associated with these ducts. Ultrastructural examination of the 

secretory cells revealed the presence of a vesicular cytoplasm due to the development of smooth 

endoplasmic reticulum.  

 



 
Fig. 1. a Scanning micrograph of anterior portion of 7th sternite showing the sternal gland (scale 

bar 100 µm). b Semithin cross section through anterior part of 7th sternite showing secretory 

cells, reservoir chambers and ducts opening through intersegmental membrane (arrows), scale 

bar 100 µm. c Detail of ducts opening through intersegmental membrane between 6th and 7th 

sternite (scale bar 20 µm). d Detail showing arrangement of secretory cells, reservoir chambers 

and ducts (scale bar 20 µm). e Scanning micrograph of cuticular part of lining reservoir 

chambers and end apparatus after maceration of soft material with KOH treatment (scale bar 

10 µm). d Ducts, ea end apparatus, rc reservoir chamber, sc secretory cells, S7 7th sternite 

 

Gas chromatographic analysis of duplicate samples of the sternal gland secretion of C. whymperi 

showed very close agreement. Seven compounds (A to G) could be quantified in the secretion. In 

order of elution, the percentage composition was: A, 2.9%; B, 1.4%; C, 73.9%; D, 7.0%; E, 

0.7%; F, 1.1%; G, 12.9%. Compound A was identified as 2,7-dimethyl-7-octenoic acid. 

Compounds B and C were clearly a pair of isomers, molecular mass 196. Compound C, by far 

the major constituent, had a mass spectrum showing strongest ions at m/z 57, 43, 85 and 82, in 

order of decreasing intensity, and a most probable molecular formula of C12H20O2 Compounds D 

and G appear to belong to the same group as B and C, but are of higher mass and again a pair of 

isomers (M
+
 210). Compounds E and F were too weak to identify. Unfortunately, we could not 

further identify or test any of these compounds in bioassays to determine which are active in trail 

recruitment. 

 

Discussion 

Our experimental observations clearly revealed that C. whymperi workers use trail pheromones 

to recruit large numbers of nestmates. Indeed, the ants were collected while walking in a distinct 

column. This suggests raiding as a predominant foraging style, which makes sense in a genus 

thought to be foraging mainly on termites (Brown 1975; Overal and Bandeira 1985). Termites 



are an abundant, but ephemeral resource, and as much prey as possible must be collected before 

the termite gallery is sealed or defended (Hölldobler and Wilson 1990). During our observations, 

C. whymperi workers fed only on termites, although we cannot exclude the possibility that in 

nature other prey is hunted for. 

 

Unlike true army ants that always forage in groups (Gotwald 1995), C. whymperi shows group 

predation induced by a single returning forager. Similar mass recruitment is found in the related 

genus Cerapachys (Hölldobler 1982). Legionary behaviour has two fundamental components: 

migration and group predation (Wilson 1958). Our results suggest that a certain degree of 

legionary behaviour is common in the entire cerapachyine tribe, supporting morphological and 

molecular evidence (Baroni Urbani et al. 1992; Sullender 1998) that they are a sister group of the 

true army ants. 

 

We found that C. whymperi workers readily follow artificial trails made of sternal gland extracts. 

Some minor trail-following response was elicited by Dufour gland and pure sternite 7 (without 

the sternal gland) extracts. This mild response might be due to contamination during dissection, 

since these structures lie in close contact with the sternal gland. The choice experiment 

confirmed that the sternal gland is the source of the trail pheromone. Although only measured on 

a single colony, we feel confident that the sternal gland secretes the trail substance in C. 

whymperi, since the use of trail pheromones and their glandular sources are species-specific traits 

(Billen and Morgan 1998). In related Cerapachys, an orientating component of the trail 

pheromone originates from the poison gland, while some additional stimulatory effects are 

released from the pygidial gland (Hölldobler 1982). The source of the trail substance in the true 

army ants varies equally (postpygidial gland in Aenictinae, venom gland in Dorylinae, and an 

epithelium internally lining the 7th sternite in Ecitoninae; Billen and Gobin 1996). The ecitonine 

epithelium is functionally similar to the sternal gland in C. whymperi, but structurally very 

different. In the taxonomically more remote ponerine ant, Onychomyrmex, an unpaired sternal 

gland between the 5th and 6th sternites - without a reservoir - secretes the trail pheromone 

(Hölldobler et al. 1982). The sole fully identified chemical component of the sternal gland 

secretion bears no resemblance to known pheromones (Billen and Morgan 1998) while, 

unfortunately, the identification of the other compounds is too tentative to allow structural 

comparison. 

 

Although sternal glands are known in many ants (Hölldobler and Engel 1978), not all have 

reservoirs. A sternal gland with reservoir between sternites 6 and 7 is known in only three other 

ponerine genera: Leptogenys, Harpegnathos (Hölldobler and Engel 1978; Jessen et al. 1979) and 

Myopias (J. Billen and F. Ito, unpublished). The general pattern in such glands is that several 

secretory cells discharge their secretion through ducts into a common reservoir. This reservoir is 

an invagination of the intersegmental membrane and consists of cuticle lined with flattened 

epidermal cells. The sternal gland in C. whymperi is very unusual, however, in that each 

secretory cell has its own reservoir chamber (Fig. 2). The secretory cells contain large amounts 

of vesicular endoplasmatic reticulum, which is in accordance with the secretion of pheromones. 

The reservoir chambers appear to be more than a mere widening of the proximal parts of the duct 

cells, as more than one cell occurs in the epithelial lining of each reservoir chamber and duct. 

This unique type of gland organization has so far never been found among ants, as ducts in 

species of this family are always formed by one single duct cell. In other insect groups more cells 



can be found, in some cases the canal may even have a small inflated ampulla or bulb 

(Quennedey 1998), but the occurrence of a conspicuous reservoir chamber such as we found in 

Cylindromyrmex has not been found before. There are no muscles associated with the reservoirs, 

suggesting that an active control mechanism for release of secretion is absent. The size of each 

reservoir would, however, allow temporary storage of the trail pheromone through capillary 

forces. Dragging the glandular pores over a substrate should alter these forces, thus releasing the 

pheromone. This agrees with the observation of continuous dragging of the abdomen during 

trail-laying in this species.  

 

 
Fig. 2. Schematic survey showing organization of glandular unit of sternal gland. d Duct, ea end 

apparatus, N nucleus, rc reservoir chamber, sc secretory cell 
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