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Abstract: 

Alternative reproductive tactics are common in males but rather rare in females. In this respect, 

ants are apparently an interesting exception. Ant queens can either start a new colony on their 

own or utilize the work force of existing colonies for dependent colony founding. As the success 

of these different options depends on body reserves of the queens, the finding of two different 

classes of alate queens in some ant species that differ only in size strongly suggests alternative 

modes of reproduction. Studies of queen size polymorphism from a number of ant species differ 

in scope and also in their results. Nevertheless, across taxa evidence exists that small queens 

found dependently while their larger conspecifics found colonies on their own. However, in most 

cases it is not clear whether the small queens exploit unrelated colonies (intraspecific “social 

parasitism”) or return to their natal colonies. In some ant species the queen size polymorphism 

might constitute an evolutionary transition to either interspecific social parasitism or a mor-

phologically more pronounced queen polymorphism linked to dispersal. In others, queen size 

polymorphism might be a stable phenomenon. Although it is important in this context whether 

queen size polymorphism is caused by a genetic polymorphism or phenotypic plasticity, so far 

no conclusive evidence about proximate mechanisms of size determination has been presented. 

Some considerations are made about the question why female alternative reproductive tactics 

correlated with morphological adaptations are comparatively widespread in ants. 
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Article: 

Introduction 

In many animal species across the major taxa, males use alternative tactics to increase their 

reproductive success: some males attempt to monopolize mating with a large number of females 

by aggressively defending a harem against their rivals, whereas others engage in quick, 

unnoticed “sneak“ copulations with females (Thornhill and Alcock, 1983; Andersson, 1994; 

Taborsky, 1994; Choe and Crespi, 1997). A famous example is provided by the marine isopod 

Paracerceis sculpta in which three alternative tactics coexist (Shuster, 1992): large α-males 

defend cavities in sponges (spongocoels) as territorial breeding sites to which females are 

attracted, middle-sized β-males mimic females in morphology and behavior to gain access to 

these and tiny γ-males are capable of sneaking into the spongocoels just because of their small 
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size. This system exemplifies well that body size might be considered as one of the most 

prevalent parameters for the adoption of alternative reproductive tactics (Clutton- Brock et al., 

1979; Eberhard, 1980; Gross, 1985; Thornhill and Alcock, 1983; Crespi, 1988; Danforth, 1991): 

smaller males often follow sneak tactics while larger males are competitive and often territorial. 

 

Alternative reproductive phenotypes are widespread among males, but much less is known about 

this phenomenon in females (Carroll and Loye, 1986; Gross, 1996; Cunningham and Birkhead, 

1997). Although some purely behavioral alternative tactics in female reproduction have been 

reported (Caro and Bateson, 1986), very few alternative female morphotypes have been 

described. And even though there is considerable variability in female body size, typically the 

only biological significance that is related to it are fertility effects (Roff, 1992; Stearns, 1992; 

e.g., Kim, 1997). Recently, however, evidence is accumulating that in social Hymenoptera, 

particularly in ants, female alternative reproductive tactics are exceptionally abundant (Heinze 

and Tsuji, 1995) and that they often are correlated with differences in female body size. 

 

Therefore, we will examine the significance of this parameter per se, reviewing the phenomenon 

of queen size polymorphism in ants (other polymorphisms are reviewed elsewhere: Buschinger 

and Heinze, 1992), after giving a short overview over alternative reproductive tactics in females 

that are related to morphology. It will be shown that ants in general and queen size-dimorphic 

species specifically might provide a particularly promising system for a detailed investigation of 

the evolution and the ecological significance of alternative reproductive tactics in females. 

 

Most cases of female-specific polymorphism are as yet known from insects and they are related 

to a) the evolution of mimicry, b) dispersal polymorphism, or c) alternating life cycles. In some 

species of butterflies (Cook et al., 1994) and damselflies (Fincke, 1994 and references therein) 

male- mimicking females coexist with cryptic, ordinary females. This system of female 

polymorphism is probably stable because male-like females evade sexual harassment at high 

male concentrations but have lower mating chances when males are scarce (Hinnekint, 1987; for 

an alternative view see Johnson, 1975). The evolution of an alternative form of non-dispersing 

females in insects is often linked to the loss or the reduction of wings (aptery and brachyptery; 

Braune, 1983; Roff, 1986) but not always (e.g., Lindquist and Walter, 1988). In some cases, such 

as the cricket Gryllus firmus a central trade-off between fecundity and dispersion capability 

appears to be responsible for the reduction of wings (Roff, 1984). Finally, when species change 

their reproductive tactic between generations due to strong environmental fluctuations, this may 

also be correlated with differences in morphology, as shown in aphids (e.g., Moran, 1992), 

gerbils (Clark et al., 1986), waterfleas (Lynch, 1980) or rotifers (Gilbert, 1980). Still, examples 

of body size related differences in female reproductive behavior are few, apart from varying 

number (Parker and Begon, 1986) and sex (Clutton-Brock et al., 1984) of the offspring. 

 

Alternative reproductive strategies in ant queens 

Like in other Hymenoptera, the general life cycle of ants leaves males with few options but death 

shortly after copulation (but see Fortelius et al., 1987; Kinomura and Yamauchi, 1987; Heinze et 

al., 1998). Females play the major role in reproduction facing the formidable quest of 

establishing a new reproducing unit, the ant colony. This can be achieved in two fundamentally 

different ways (Fig.1): the classic life cycle of all Formicidae is presumed to involve independent 

colony founding: mature colonies release sexuals into mating swarms to find a partner for 



copulation. After being inseminated, the young queens disperse to suitable spots where they 

produce their first worker offspring in isolation. These independently and claustrally founding 

queens rely completely on their body reserves during the initial phase of colony growth and thus 

are typically well-equipped with fat, muscle tissue to histolyze, storage proteins and 

carbohydrates 

 

(Keller and Passera, 1989, 1990; Hölldobler and Wilson, 1990; Wheeler and Buck, 1995). In 

some species queens hold less body reserves which forces them to forage occasionally during the 

colony founding phase (independent, semi- and non-claustral colony founding), despite the high 

mortality risk. In any case, the success rate of solitarily founding queens typically appears to be 

low (Hölldobler and Wilson, 1990). 

 

In contrast, in a broad variety of species colonies are founded in a dependent way (Buschinger, 

1974; Hölldobler and Wilson, 1977). Here, young queens seek adoption into already established 

colonies, which they either join permanently as additional reproductives or subsequently leave to 

found a new colony assisted by workers from this colony (colony budding or fission). Although 

the costs of producing those queens are smaller because they need fewer body reserves and 

consequently a smaller body size (Buschinger, 1974; Keller and Passera, 1989; Stille, 1996), 

investment in those workers that join young queens in the budding process must at least in part 

be added to the reproductive investment (Trivers and Hare, 1976; Macevicz, 1979; Bulmer, 

1983), thus considerably augmenting the per propagule cost of dependent reproduction. Socially 

parasitic species, where young queens invade alien colonies and temporarily or permanently 

exploit their work force to rear their own young, have the lowest investment cost per propagule 

because queens neither need large body reserves, nor assistance by workers of their mother 

colony. 

 

To conclude, ant colonies invest their resources either into numerous queens or into a few 

propagules consisting of queens and workers, depending on environmental conditions and 



demographic factors. Nowhere in the animal kingdom is this central life history trade-off 

between number and size of offspring as apparent as in ants: while a single mature fire ant 

colony consisting of 200000 workers releases thousands of virgin queens during one summer 

(Hölldobler and Wilson, 1990, p.145), an army ant colony of even greater size may split in only 

two units, each with a single queen (Hölldobler and Wilson, 1990, p. 583). Ants thus provide a 

promising study system for the investigation of the factors influencing parental investment and 

resulting female reproductive tactics. This seems particularly rewarding in species where queens 

may use both independent and dependent colony founding (e.g., Hölldobler and Carlin, 1985), 

because without genetic separation between the different forms, a dynamic equilibrium has to be 

stabilized by current selective forces. 

 

The intraspecific degree to which individual queens are specialized for dependent or independent 

reproduction varies considerably: in several species, worker-like queens which have secondarily 

lost adaptations to independent colony founding, such as wings, ocelli and the bulky thorax with 

well-developed flight muscles, coexist with conventional, winged queens (e.g., Monomorium 

spp., Briese, 1983; Leptothoraxsp. A, Heinze and Buschinger, 1987, 1989; Heinze, 1993; for a 

summary see Buschinger and Heinze, 1992). In the fire ant, Solenopsis invicta, externally indis-

tinguishable queens may differ only in weight and behavior (Howard and Tschinkel, 1978; 

Tschinkel, 1996) and in the queens of some species no morphological correlates of differences in 

reproductive tactic have been reported (e.g., Leptothoraxacervorum; Douwes et al., 1987; Stille 

and Stille, 1993). Intraspecific size dimorphism of ant queens might represent a (probably stable) 

intermediate stage in the evolution of a stronger morphological divergence between dispersing 

and non-dispersing forms. However, it may as well be the morphological manifestation of a 

facultative, intra- specific social parasitism: small queens might be efficient searchers of existing 

unrelated colonies without having the body reserves necessary for independent colony founding. 

 

Case studies 

In a small number of species from at least eight different genera in four ant subfamilies queen 

size is reportedly dimorphic, with small “microgynes“ and large “macrogynes“, which only 

differ, almost isometrically, in size (e.g., Fig. 2). Apart from ants, female size polymorphism in 

social insects is also known from termites (Nasutitermes princeps (Isoptera: Termitidae), Roisin 

and Pasteels, 1985) and stingless bees (Imperatriz-Fonseca and Zucchi, 1995; Nogueira-Ferreira 

et al., 1996). In the following we examine the cases of size dimorphism in ants individually. 

 

Myrmica 

The myrmicine genus Myrmica probably provides some of the best studied examples of queen 

size polymorphism (Bourke and Franks, 1991): in Myrmica rubra, the micro- gyne form seems 

to parasitize the work force produced by macrogynes and is now considered to be a separate 

species, 



 

M. microrubra (Seifert, 1996; but see Buschinger, 1997): the gene pools are separated (Pearson 

and Child, 1980), thus the queen morph is presumably genetically determined, despite an effect 

of the queen/worker ratio in a colony on the size of queens it produces (Elmes, 1974). The 

microgynes generally co-occur with macrogynes and specialize in sexual reproduction (Elmes, 

1976; Pearson and Child, 1980). They produce nearly forty times as many queens as macrogynes 

(Elmes, 1976) probably because microgynes induce gyne suppression while their daughters are 

immune to this effect (facilitated by their smaller size: Nonacs and Tobin, 1992). Com-

plementary data on reduced survival of colonies with only microgynes and a distinct 

development of microgyne offspring have been collected from a Belgian population (Cammaerts 

et al., 1987). 

 

By contrast, Myrmica ruginodis constitutes a single species in which the dichotomous queen size 

has been attributed to a dispersal polymorphism (Elmes, 1991b). Direct observation of the 

mating biology (Brian and Brian, 1955; Kasugai et al., 1983) and a close link between social 

structure and queen morph (monogynous macrogynous versus polygynous microgynous 

colonies) suggest that microgynes preferentially return to their mother colonies after mating in 

the vicinity (secondary polygyny). However, Elmes (1991 b) reports that microgynes are found 

in mating swarms without indication for assortative mating, and there is no evidence for a 

genetic differentiation between the two morphs (Seppä, 1992, 1994). In European populations 

the two forms show overlapping size distributions and occur sympatrically probably throughout 

the range of M. ruginodis (Elmes, 1991 b; Seppä, 1992). In Britain, about 25% of nests contain 

both queen types, however the majority of microgynes live and produce workers independently 

(Bourke and Franks, 1991). M. kotokai (considered a subspecies of M. ruginodis by Onoyama, 



1989) also has macro- and microgynes (Mitzutani, 1981), and one population lacks macrogynes 

altogether (Kasugai et al., 1983). 

 

Solenopsis 

Alternative queen forms have been described in two species of fire ants, Solenopsis geminata 

(McInnes and Tschinkel, 1995) and S. invicta (Tschinkel, 1996), both, however, only from a 

single population. The two „morphs‟ in S. invicta differ only in weight (30%), while in S. 

geminata true microgynes are found. As the social structure in both investigated populations is 

strictly monogynous, this case is fundamentally different from Myrmica: the authors suggest that 

the lighter or smaller queens are not capable of independent colony founding but instead take 

over orphaned colonies. As these will mostly be unrelated, this strategy amounts to an 

intraspecific, temporal parasitism (Tschinkel, 1996). Microgynes also might accidentally become 

unfertilized replacement queens in their natal colonies when their mother has died. In both 

Solenopsis species macro- and microgynes swarm in different seasons, however the timing of 

microgynous swarming flights differ between the two species, as does the extent to which the 

microgynous tactic is adopted: In S. invicta few lighter gynes are produced (Tschinkel, 1996) and 

the frequency of colony usurpation was estimated to be 0.7% per colony per year (DeHeer and 

Tschinkel, 1998), frequent enough for the authors to suggest that “the origin of polygyny in 

North-American Solenopsis invicta could be explained by the adoption of multiple replacement 

queens into orphaned monogynous colonies.“ In Solenopsis geminata the population allotment of 

energy to microgynes, as well as the percentage of colonies headed by them are as high as 35 %. 

Thus fitness payoffs for both alternative tactics may be equal (McInnes and Tschinkel, 1995) 

which has also been reported for S. invicta. 

 

From observations that queens produce mainly daughters of the same morph as themselves the 

authors conclude that there may be a genetic basis to the queen size dimorphism in S. geminata 

(McInnes and Tschinkel, 1995). However, this needs further testing, as one in seven colonies 

generated both morphs and maternal or social effects are known to play a role in the 

determination of queen phenotype in S. invicta (Keller and Ross, 1993). 

 

Leptothorax 

In addition to several cases of pronounced queen polymorphism in the subgenus Leptothorax(s. 

str.) (L. sphagnicolus from Québec, L. sp. A from northeastern North America, 

Leptothorax“muscorum” H from Colorado, and probably also L. oceanicus from East Siberia, 

Francoeur, 1986; Heinze 



 

and Buschinger, 1987, 1989; Heinze, 1989; Kupyanskaya, 1990), the genus Leptothoraxprovides 

several examples of queen size polymorphism which have been investigated to various degrees. 

Microgyny has been claimed for several Leptothoraxspecies (Wheeler, 1937; Stitz, 1939). 

However, it appears that in Leptothorax(s. str.) most, if not all microgynes are in fact separate 

socially parasitic species (e.g., Fig. 3), such as L. faberi, L. goesswaldi, L. kutteri, and L. pacis 

(in part previously considered to belong to an own genus, Doronomyrmex, Heinze, 1995) 

(Kutter, 1945, 1967; Buschinger, 1965, 1982). 

 

Some data exist on microgyny in the European species L.(M.) interruptus and L.(M.) corticalis 

(Seifert, 1996; unpublished): while the small data set for L. corticalis only indicates high 

variability in queen size, the queen size distribution of L. interruptus seems to be bimodal and 

non-overlapping. As in Myrmica ruginodis, microgyny appears to be correlated with polygyny 

(Seifert, pers. comm.). Herbers (1984) presents some data on the highly variable queen size in L. 

(M.) longispinosus, yet the bimodality of the size frequency distribution is not clear. 

Furthermore, in a Mexican Leptothorax(Myrafant) species a strong queen size variability has 

recently been found (Rüppell, pers. obs.), however, no accurate data are available so far. 

 

The best studied examples in this group are L.(M.) spinosior (Hamaguchi and Kinomura, 1996) 

from Japan and the North-American L.(M.) rugatulus (Rüppell et al., 1998): in both species the 

queen size is clearly bimodally distributed and fits two overlapping normal distributions (e.g., 

Fig. 4). Despite the fact that some colonies with both macro- and microgynes exist, most 

monogynous colonies are headed by a single macrogyne, while polygynous colonies most often 

contain several microgynes. In the population studied by Hamaguchi and Kinomura (1996) 

microgynes constitute 



 

about two thirds of all queens collected. In L. rugatulus, the frequency distribution of queen size 

appears to be the opposite: averaged over 14 populations, macrogynes are twice as common as 

microgynes. However, in two sample sites, microgynes were found more commonly. While 

morphological investigations on L. rugatulus did not reveal any reductions of flight relevant 

structures in microgynes, preliminary microsatellite data in both species suggest restricted 

dispersal because queens within colonies are highly related (Hamaguchi and Kinomura, 1996; 

Rüppell, unpubl.). No genetic separation between the two morphs are reported. In L. rugatulus 

the ovaries of both queen morphs consist of a total of eight ovarioles, as opposed to two in 

workers and neither egg size differs between macro- and microgynes, nor does the size of 

workers and males they produce (Rüppell et al., 1998). Generally, there was a good correlation 

between mother and daughter size in both species, although occasionally microgynes matured in 

colonies with only macrogynes. 

 

Other examples 

Well established other examples of queen size polymorphism are taxonomically dispersed. Satoh 

(1989) presents a tri- modal pattern of queen sizes in the Camponotus nawai complex. However, 

the largest queens, found in monogynous nests only, represent a distinct species, Camponotus 

nawai (s. str.) (Terayama and Satoh, 1990). Still, queens from polygynous nests (= C. yamaokai) 

separate into two size groups, which differ over 10 % in their mean head width. Indiscriminately, 

Satoh (1989) suggests budding as the reproductive mode of the polygynous form and high levels 

of within- colony genetic relatedness (Satoh et al., 1997) support the hypothesis of secondary 

polygyny by readoption in this species. As the second documented example from the Formicines, 

the queens of an Australian weaver ant, Polyrhachis cf. doddi, have been reported as size-

dimorphic (Bellas and Hölldobler, 1985). However, a subsequent study, found that thorax 



structure and wing development varied strongly with size (Heinze and Hölldobler, 1993). 

Furthermore, bimodality of queen size distribution is not well substantiated. 

 

Two other reports of queen size polymorphism exist from two further subfamilies: Ectatomma 

ruidum (Ponerinae) and Pseudomyrmex veneficus (Pseudomyrmecinae) are both clearly queen-

dimorphic. Despite their worker-like size, the microgynes of Ectatomma ruidum seem capable of 

starting their own colonies independently because they forage during colony founding (semi-

claustral colony founding), even if the success of macrogynes is probably higher (Schatz et al., 

1996a). This is reflected in fecundity: macrogynes possess more ovarioles. On the other hand, 

microgynes are reported to have better flight abilities (Schatz et al., 1996b). Smaller colonies 

seem to produce microgynes while larger specialize on macrogynes, suggesting that the body 

size of queens is determined by non-genetic factors in this species. Schatz et al. (1996b) report 

functional monogyny in polygynous nests, however they do not convey any information about 

whether one of the morphs predominates reproduction in mixed nests. Pseudomyrmex veneficus 

might be only one species among several in its genus with size-polymorphic queens (Janzen, 

1973; Ward, pers. comm). Like E. ruidum its both morphs do not overlap in size. Microgynes are 

believed to have advantages when entering the thorns of acacia trees which in this species are 

used as nest sites, and collection data suggest that microgynes explore the immediate 

surroundings, while macrogynes potentially specialize on long-range dispersal. 

This could parallel the reproductive strategy of the acacia trees (Janzen, 1973). 

 

Sundström (1995) reports that queens from polygynous and monogynous colonies of Formica 

truncorum differ in mating behavior and in head width. However, the latter difference is so small 

that a clear bimodality is unlikely. For some further ant species only minimal data exist, if at all. 

Some reports exist of occasional production of microgynes under aggression in Acromyrmex 

crassispinus (Fowler, 1977) or laboratory culture in Atta cephalotes (Jutsum and Cherret, 1978). 

The queens of the African pseudomyrmecine Tetraponera tessmani (formerly Viticola tessmani) 

were reported to be size-dimorphic (Wheeler, 1922; Bequaert, 1922 in Janzen, 1973) and the 

palaearctic formicine Formica fusca was mentioned by Donisthorpe (1927). Additionally, queen 

size in some Tetramorium species seems unusually variable (Sanetra, pers. comm.). 

 

Conclusions 

Queen size polymorphisms in ants clearly relate to alternative reproductive tactics which lead to 

different life histories of macro- and microgynes. However, the only common conclusion that 

emerges so far is that the microgynes preferentially employ some form of dependent colony 

foundation while macrogynes mainly found their colonies independently. The heterogeneity of 

findings beyond this point is partly explained by the heterogeneity of the underlying studies. 

Furthermore, the number of cases to be included is debatable, as data on the queen size 

distribution are not available for all species (e.g., Donisthorpe, 1927), or its bimodality has not 

been tested (e.g., Herbers, 1984). Moreover, microgynes might represent a distinct socially 

parasitic species co-occurring with the macrogyne host queens in some cases (Buschinger, 1990; 

Bourke and Franks, 1991). Nevertheless, we will discuss the evidence for the major hypothesis 

(dispersal polymorphism and social parasitism), draw some general conclusions and suggest 

where fruitful experiments might and need to be done. 

 



Microgyny presumably has the potential to evolve to both social parasitism and a 

morphologically more pronounced dispersal polymorphism that might entail speciation into 

polygynous and monogynous sibling species (Hölldobler and Wilson, 1977; Brian, 1983; but see 

Ward, 1989). On the other hand, the co-occurrence of macro- and microgynes over a large 

geographical range in some species (M. ruginodis and L. rugatulus) suggests that in these cases 

the dimorphism is rather stable and not a mere transitory stage. A possible scenario is that mating 

occurs on the wing, but the mode of colony founding has changed, although it is difficult to see 

why dependent colony founding should not eventually entail a reduction of mating flight and 

wings in females, given the difficulty to relocate the natal colony and the flexibility of this trait 

(Sundström, 1995). In any case, that of a stable polymorphism or of an evolutionary switchpoint, 

we might be able to understand the involved selection pressures in more detail. 

 

Microgynes as “intraspecific parasites” 

Both studies in Solenopsis explicitly propose small body size of queens to be an adaptation to 

intraspecific social parasitism. A large-scale mark-recapture experiment or genetic investigations 

would provide unambiguous evidence that microgynes do not return (preferentially) to their natal 

colonies. This seems particularly important since, at least in S. invicta, queen morphology also 

differs between monogynous and polygynous colonies (Porter et al., 1988) and thus correlates 

with differences in dispersal. In contrast to other size-polymorphic species, different queen 

morphs in the two Solenopsis species swarm in different seasons. This mechanism of pre-mating 

isolation between different size classes might lead to sympatric speciation and to inter- specific 

parasitism (see Buschinger, 1990). In South America, Solenopsis is indeed parasitized by several 

workerless species which apparently are closely related to their hosts (Silveira-Guido et al., 

1973; Wojcik, 1990). From theoretical considerations and the comparison between S. invicta and 

S. geminata, Tschinkel (1996) concludes that “a shift from independent to parasitic founding is 

driven by the degree of habitat saturation to which the species is typically exposed”. However, 

exactly this line of argument has been put forward to explain the transition from monogyny to 

secondary polygyny (Herbers, 1986; Bourke and Franks, 1995; DeHeer and Tschinkel, 1998, see 

below). 

 

The conclusion that microgyny is a likely stepping stone in the evolution of inquilinism has also 

been reached in the genus Myrmica (Pearson, 1981; Buschinger, 1990; Bourke and Franks, 

1991): the abundance of small inquilines in this group provides suggestive evidence and the case 

of intra- specific social parasitism is well supported in M. rubra/ microrubra. 

 

Size polymorphism as morphological correlate of alternative dispersal tactics 

In Myrmica ruginodis, Leptothoraxspinosior and L. rugatulus, no genetic differentiation between 

the two queen morphs could be shown. Moreover, some genetic evidence exists in these species 

and additionally in Camponotus yamaokai that in polygynous colonies queens are on average 

highly related. This strengthens the hypothesis that readoption of related queens instead of 

intraspecific parasitism is much more important for the establishment of polygynous (mixed) 

colonies in these species with size-polymorphic queens. However, a high average relatedness 

coefficient between queens does not exclude rare adoption events of unrelated queens (Stille and 

Stille, 1993). In order to evaluate the facultative tactic of parasitizing macrogynes it needs to be 

shown how often unrelated microgynes are adopted and whether they produce more than their 

proportional share of sexuals. 



 

Readoption of daughter queens was also suggested for Polyrhachis doddi (Bellas and Hölldobler, 

1985) and Pseudomyrmex veneficus (Janzen, 1973), though genetic data are missing, and hostile, 

intrusive behavior was observed in the former (Bellas and Hölldobler, 1985). Nevertheless, P. 

doddi might classify as an intermediate between species with wing-dimorphic and size-

dimorphic queens and hence could provide in future studies excellent evidence for the hypothesis 

of a causal link between the two. 

 

The data currently available on Ectatomma ruidum do not allow any firm conclusion about the 

underlying life history tactics: the microgynes certainly have the potential for independent 

(semiclaustral) colony founding, however it remains to be shown whether this is their preferred 

mode of reproduction. We would like to note that a more favorable wing load (= body mass per 

unit wing area) of microgynes (which has also been found in L. rugatulus: Rüppell et al., 1998) 

does not necessarily imply a better dispersal capability because absolute as well as relative 

physical parameters account for flight performance (Ellington, 1984; Vogel, 1994). The rela-

tionships between relative queen size and the mode of colony founding across species 

(Buschinger, 1974; Stille, 1996) and between social system and queen size within many species 

(Brian and Brian, 1949; Sundström, 1995; Hamaguchi and Kinomura, 1996; Rüppell et al., 1998) 

argue otherwise: small queens are typically found where dependent founding is common, and 

larger queens presumably disperse and attempt independent founding. Some queen size-

dimorphic species in which macrogynes may also be found in polygynous nests (e.g., Myrmica 

ruginodis: Wardlaw and Elmes, 1996; Leptothoraxrugatulus: Rüppell et al., 1998) provide a 

rigorous test system for comparing dispersal behavior of the different morphs, irrespective of 

social structure. 

 

Dispersal polymorphisms are expected to evolve in spatial and/or temporal heterogeneous 

habitats in which it is highly successful for the offspring to stay at home (Emlen, 1991) and 

profit from the local environment, but dispersers have the potential to colonize uninhabitated 

areas. When both behavioral options are successful, disruptive selection is caused leading to a 

distinct dispersal polymorphism with two (or more) selective optima. These, if existing long 

enough, will eventually be reflected by correlated phenotypes. This reasoning explains the 

evolution of wing polymorphisms in insects in general (Roff, 1986) and in some ant species in 

particular (Buschinger and Heinze, 1992; Heinze and Tsuji, 1995). It can be extended to queen 

size polymorphisms in ants, with microgynes providing the means for successfully exploiting the 

local patch by budding, as do wingless, intermorphic queens in wing-polymorphic species 

(Briese, 1983; Heinze, 1993a). Budding is particularly important when competitive pressure on 

young colonies is strong due to high population density. 

 

Dependent colony founding commonly leads to polygyny by philopatry (Keller, 1991) and to 

potentially immortal colonies. This space-perenniality (Nonacs, 1993), increasing the habitat 

saturation even further, might create a positive feedback loop on local social structure. However, 

certain authors (Sundström, 1995; Hölldobler and Wilson, 1977) stress that local habitat 

saturation (i.e., high colony densities) should favor dispersal, like in some other, non-social 

organisms (Begon et al., 1991). Interestingly, this is a question of whether selection is stronger 

within a patch (favoring depen dent colony founding) or between patches (favoring independent 

colony founding and dispersal to reach new patches), assuming metapopulation structure 



(Olivieri et al., 1995). In uniform habitats (many of which are man-made), selection between 

patches is weak or absent, and hence dependent colony founding is strongly favored. This 

hypothesis is supported by the fact that tramp species, which mainly found new colonies by 

budding, displace the native ant fauna in many parts of the world (e.g., Yamauchi and Ogata, 

1995), following the “homogenization” of habitats by man. 

 

To summarize, a positive correlation between population density and microgyny cannot be taken 

as evidence for either, microgynes as adaptation to secondary polygyny or social parasitism, as 

both might be favored by habitat saturation. 

 

Intraspecific parasitism and philopatry 

In the end, secondary polygyny and intraspecific parasitism might not be so different as it is 

commonly perceived: one may evolve from the other (Bourke and Franks, 1991; Bourke and 

Heinze, 1994; Ross and Keller, 1995; DeHeer and Tschinkel, 1998) and both processes, colony 

usurpation and queen readoption, might co-occur in one species. In fact, the latter largely 

facilitates the former as secondary polygyny involves by definition readoption of young queens. 

The difference to social parasitism is simply the degree of relatedness, and an alien queen might 

overcome the colony recognition more easily in species where the behavioral repertoire of 

acceptance of newly mated queens exists at all. Likewise, the adoption of unrelated queens in 

polygynous colonies of Solenopsis invicta might be explicable in proximate terms only, i.e., by 

their genetic homogeneity in North America. Viewed under a population perspective, both pure 

tactics might represent only ends of a continuum. In this case, the distinction between readoption 

and intraspecific social parasitism would only be quantitative. However, it would be insufficient 

to ask whether more queens are adopted into alien or natal colonies, but (at least in theory) the 

question has to be answered which phenomenon has the higher evolutionary (fitness) impact in 

the population. 

 

The co-occurrence of readoption and intraspecific social parasitism is also likely from a 

mechanistic point of view. If microgynes perform mating swarms as is suggested by their flight 

capability (Elmes, 1991; Schatz et al., 1996a; Rüppell et al., 1998), the mother colony might be 

difficult to relocate but other nests might accidentally be found. This is probably also the case in 

oligogynous ant species (Gadau et al., 1999). 

 

Proximate factors underlying size polymorphism 

Apart from the ultimate factors, the proximate causation of alternative tactics is of general 

interest (Austad, 1984; Gross, 1996): queen size and related to it the mode of reproduction could 

be based on a genetic polymorphism, environmental effects, or a combination of both. As 

mentioned above, the weight of queens in Solenopsis invicta is mainly due to the social structure 

of the nest in which they are raised, hence this “cultural transmission” can be viewed as adaptive 

phenotypic plasticity. This is in sharp contrast with reports on species where wing dimorphism in 

queens is brought about by the inheritance of a single locus or a closely linked set of loci as 

demonstrated both by breeding experiments and quantitative genetic analysis (Buschinger, 1975, 

1978; Heinze and Buschinger, 1989; Heinze, 1998). Generally, body size is considered a 

quantitative trait to which environmental factors as well as numerous loci contribute (Stearns, 

1992; Roff, 1997). So far, in queen size-dimorphic ant species the knowledge on proximate 

determinants of queen size is only based on occasional observations: McInnes and Tschinkel 



(1995) conclude a genetic basis from the fact that queens produce daughters of the same morph 

as themselves. While this is also true for Leptothoraxspinosior and L. rugatulus, in these cases 

the same conclusion is not drawn, because of high variability in offspring size from single 

colonies in L. spinosior and some exceptional small queens produced in large- queened colonies 

in L. rugatulus. The high overall correlation of body size in mothers and offspring in natural 

colonies (Hamaguchi and Kinomura, 1996; Rüppell et al., 1998) might result from genotype-

environment covariance, i.e., relatives sharing not only genes, but also the same micro-

environment (Falconer, 1989), or from maternal effects (Bernardo, 1996). The fact that gyne size 

seems to be related to colony size in E. ruidum gives some support for the hypothesis that queen 

size is a plastic response. 

 

In particular this area of research should be emphasized in the future, as quantitative, carefully 

controlled investigations on mechanisms not only are virtually absent, but also may allow for 

inferences on ultimate causation and might be of general interest in the current discussion of 

adaptive phenotypic plasticity (Sakwinska, 1997; Callahan et al., 1997). Furthermore, it provides 

an excellent study system to re-evaluate the importance of body size in female caste deter-

mination in ants. 

 

Alternative reproductive tactics in social insects 

Social insects, and ants in particular, exhibit many different examples of alternative reproductive 

tactics in females (Hölldobler and Wilson, 1990; Bourke and Franks, 1995; Heinze and Tsuij, 

1995). Apart from socially parasitic queens that enter foreign colonies and exploit their work 

force to gain a headstart in reproduction (Buschinger, 1986) and flightless queens that mate near 

their natal nest and return to it (e.g., Buschinger and Heinze, 1992; Heinze and Tsuji, 1995), 

some species have lost the queen caste altogether (Peeters, 1991 a), again others even reproduce 

unisexually by (thelytokous) parthenogenesis (Pristomyrmex pungens, Itow et al., 1984; Tsuji, 

1988). However, the most variable trait of ant reproduction is the number of queens per colony 

(Keller, 1993). An ever increasing number of species is reported that show, at least to some 

extent, intraspecific variation in this trait. As demonstrated, not only the number of queens but 

also their size varies in some species. This is particularly interesting because a central trade-off 

between offspring number and size occurs, which has to be balanced by different selective forces 

acting upon the alternative reproductive tactics that the different morphs are specialized for. 

 

Why are alternative reproductive tactics in post-copulatory female life history more common in 

ants than in other animals? Ant colonies can be compared to sedentary organisms 

(superorganism concept), which show an almost ubiquitous pattern of alternative modes of 

dependent (asexual) and independent reproduction (e.g., Harvell, 1994). The longevity and 

“somatic productivity” of ant colonies renders philopatry and social parasitism a rewarding, 

although certainly frequency-dependent alternative in reproduction. Queens on the other hand, 

are highly specialized dispersing units which are probably comparable to dispersal stages in 

complex life cycles (Wilbur, 1980). Compared to females of solitary animal species, the 

selection pressure on an ant queen‟s performance in everyday maintenance is relatively weak 

because these tasks are largely provided by workers. Thus, selection is less conservative and 

evolutionary response to a varying environment may be faster and more flexible (compare to 

Gadagkar, 1997). 

 



The reproductive specialization “liberated” in turn the workers from the necessity to disperse and 

consequently they could adapt efficiently to an edaphic life style (loss of bulky thorax, wings and 

large optic apparatus). This morphological differentiation based on phenotypic plasticity 

constitutes a pre-adaptation to the evolution of ergatoid queens as the genetic programs 

necessary for this developmental pathway are already existing in the genome. The fact that the 

subsequent modifications of queen phenotype by recombining parameters of the worker and 

queen developmental program are cheap in an evolutionary sense is reflected by the occurrence 

of accidental intercastes in most ant species (Peeters, 1991b; Heinze, 1998). 

 

Even without bimodality the considerable variability of queen size in some species (e.g., Liebig, 

1995), needs to be studied in more depth since it presumably is of general biological relevance. 

While enforcement of dichotomies upon more or less continuous variation has to be avoided 

(Caro and Bateson, 1986), a continuous morphological variation may well translate into discrete 

behavioral tactics. This variation is found across taxa and although ants might provide partic-

ularly promising case studies for the reasons above, the general relevance of female body size 

apart from pure fertility effects needs to be elucidated. 
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