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In our everyday experiences, we have developed a concept of dimension,

neatly expressed as integers, i.e. a point, line, square and cube as 0-, 1-, 2-, and

3-dimensional, respectively. Less intuitive are dimensions of sets such as the Koch

Curve and Cantor Set. The formal definition of toplogical dimension in a metric

space conforms to our intuitive concept of dimension, but it is inadequate to de-

scribe the dimension of fractals. The purpose of this thesis is to develop notions

of fractal dimension and in particular, to explore Hausdorff dimension with regard

to self-similar tiles in detail. Methods of calculation of Hausdorff dimension will be

discussed.
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CHAPTER I

INTRODUCTION

The notion of dimension has been the subject of much study in recent history.

There have been many attempts to determine what it means, leading to multiple

definitions, including topological, fractal, and box-counting, to name only a few.

Additionally, there seems to be no consensus on the definition of “fractal dimension”.

This thesis will discuss three definitions of fractal dimension, explain methods for

their calculation with examples from current literature, and apply these methods

to other fractals. In order to understand dimension, it is necessary first to define

the structure of the sets we will be discussing.

Definition 1 A metric space (X,d) is a set X, together with a real-valued function,

d : X×X→ R, which measures the distance between pairs of points, x and y in X,

satisfying the following axioms:

1. d(x, x) = 0 for all x ∈ X;

2. d(x, y) = 0 iff x = y;

3. d(x, y) = d(y, x) for all x, y ∈ X;

4. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The familiar Euclidean metric on the space R2, for example, would be defined

by d(x, y) =
√

(x2 − x1)2 + (y2 − y1)2.

A fractal is generally thought of as “a rough or fragmented geometric shape

that can be subdivided into parts, each of which is (at least approximately) a
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reduced size copy of the whole” [10], the term itself having been coined by Man-

dlebrot. From a geometric perspective, a fractal exhibits several characteristics,

among them: its irregularity makes it difficult to describe in Euclidean terms; it

has a recursive definition; and it is often self-similar. A set A is self-similar if it is

the non-overlapping union (i.e. the interiors are disjoint) of arbitrarily small copies

of A. One method for fractal construction that we will be using extensively is the

iteration of a set of contraction mappings.

Definition 2 In a metric space X with metric d, if f maps X into X and if there

is a number c < 1 such that d(f(x), f(y)) ≤ c · d(x, y) for all x, y ∈ X, then f is

said to be a contraction mapping of X into X.

Definition 3 An iterated function system or IFS consists of a complete metric

space (X, d) together with a finite set of contraction mappings F : X → X, where

F = {f1, f2, . . . , fN} with respective contractivity factors cn, for n = 1, 2, ..., N .

A specific IFS can be defined by the notation, {X; fn, n = 1, 2, ..., N}. The

classical Cantor set, for example, is described as the attractor of the contractivity

mappings, {X; 1
3
x, 1

3
x + 2

3
}. For each IFS, there is an associated unique geometric

set called the attractor, which is the invariant set resulting from the recursive ap-

plication of its contraction mappings. We shall discuss contraction mappings and

attractors further in Chapter III.

The term “fractal” itself is difficult to define. In this thesis, we shall use

Mandelbrot’s concise definition, i.e. that a fractal is “a set for which the Hausdorff

dimension strictly exceeds the topological dimension. Every set with a noninteger

[dimension] is a fractal” [10]. Thus, we will begin with an overview of topological

dimension and then lead into a more detailed discussion of three versions of fractal

dimension. Since most definitions yield values between the Hausdorff and box-



3

counting dimensions, we will define these carefully and focus on these calculations

and the conditions that assure their equality. We will then return to the idea of self-

similarity and continue with fractal generation and the tilings of a plane. Finally, we

examine methods for the calculation of the Hausdorff dimension of the boundaries

of certain self-similar sets.
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CHAPTER II

DIMENSION

The formal definition of topological dimension in a metric space conforms to

our intuitive concept of dimension, but as will be shown, it is inadequate to describe

the dimension of fractals. All definitions of dimension, however, are dependent upon

the understanding of open covers and compactness.

Definition 4 By an open cover of a set K in a metric space X, we mean a collection

{Gi} of open subsets of X such that K ⊂
⋃
Gi.

We refer to the refinement of a cover C of K as a covering in which every

set B in the refinement C ′ is contained in some set A in C, the idea being that the

refinement is “smaller” and a more “precise” covering of K.

Definition 5 A subset K of a metric space X is said to be compact if every open

cover of K contains a finite subcover. That is, if {Gi} is an open cover of K then

there are finitely many indices i1, . . . , in such that K ⊂ Gi1 ∪ · · · ∪Gin.

Our discussion of fractals and dimension will be limited to compact subsets

of Rn, and we shall refer to this set of all non-empty, compact subsets as H(Rn).

Since we will be investigating their relationships with each other within the space,

we need to define what is meant by the distance between two sets of points.

Definition 6 Let (X, d) be a metric space, with A,B ∈ H(X). The distance from

the set A to the set B is defined to be

d(A,B) = max{d(x,B)|x ∈ A, where d(x,B) = min{d(x, y)|y ∈ B}}.



5

Definition 7 Let (X, d) be a metric space. Then the Hausdorff distance between

points A and B in H(X) is defined by h(A,B) = max{d(A,B), d(B,A)}.

Essentially, the Hausdorff distance is the maximum of the minimum dis-

tances between any two points in A and B. If ε is the greatest distance from any

point in B to the nearest point in A, then there is an ε-neighborhood, Aε sur-

rounding A that includes all points in B. Similarly, for the greatest distance, δ,

from any point in A to the nearest point in B, there is a δ-neighborhood around

B, Bδ, that includes all points in A. Then the Hausdorff distance is the larger

of the lengths, ε and δ. For example, the distance between a point, A, and the

unit segment, B, not on the segment, must be measured as the greatest distance

from B to any one point on A, as in the case illustrated below. On the other

hand, the distance between 2 parallel segments, C and D, one unit apart is the

length of the perpendicular segment between them, since this measures the mini-

mum distance from any point on one segment to the nearest point on the other.

In this way, the Hausdorff distance gives a sense of similarity between two sets.

Figure 1

C

DB

A

Definition 8 We say a compact metric space X has topological dimension m if

every covering G of X has a refinement G′ in which every point of X occurs in at

most m+ 1 sets in G′ and m is the smallest such integer.
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It is important to note that topological dimension is always given as an

integer. Thus, it is clear that the prior definition yields the expected dimensions

for a point, a line, a square, a cube, etc. By this definition, the classical Cantor set

has dimension 0.

Consider the set known as the Koch Curve. Its construction can be achieved

by beginning with the middle third of the unit segment, then rotating this segment

twice - clockwise and counterclockwise, respectively - by π
3
, to form two sides of an

equilateral triangle. This process is repeated on each subsequently created segment

(Figure 2). The topological dimension is clearly 1, and this seems consistent with

our intuitive sense as it is topologically equivalent to the unit segment.

Another example, Sierpinski’s Triangle, however, poses a difficulty. This

set is most easily seen as an equilateral triangle reduced in size by one-half, leav-

ing a copy in the lower left vertex of the original, then translating a copy of that

one to the lower right and upper vertices of the triangle. We can conclude that

its topological dimension is also 1, but we sense that this is inadequate in de-

scribing how it occupies space, especially when compared with the Koch curve.

Figure 2. Approximations to Koch Curve and Sierpinski Triangle
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A more refined definition for dimension is needed in order to get a sense

of a fractal’s size and how it compares to other fractals. As noted earlier, there

are several types of “fractal dimension”, but here we develop the following for the

general definition from Barnsley [3], which is referred to by Peitgen as “self-similarity

dimension” [11]. Let (X, d) be a metric space and A ∈ H(X) a non-empty subset

of X. Then for ε > 0, define Nε(A) to be the least number of closed balls of radius

ε needed to cover A. Intuitively, we say that A has dimension, D if

Nε(A) ≈ Cε−D

for some constant C > 0. Solving for D, we see that

D ≈ lnNε(A)− lnC

ln(1/ε)
.

Since as ε→ 0, lnC
ln(1/ε)

approaches 0, and we therefore arrive at the following defini-

tion.

Definition 9 Let A ∈ H(X) where (X, d) is a metric space. For each ε > 0 let

Nε(A) denote the smallest number of closed balls of radius ε > 0 needed to cover A.

If

D = lim
ε→ 0

lnNε(A)

ln(1/ε)

exists, then D is called the fractal dimension of A.

By this definition then, the unit line segment retains its dimensional value

of 1, so while it is a self-similar set, it is not a fractal. By contrast, for the classical

Cantor set, C, the minimum number of ε-balls with ε = (1/3)n is approximately

Nε(C) = 2n. Then ln(ε) = ln(1/3n) = −n ln(3) and lnNε(C) = n ln(2). The ratio
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of these two is then independent of ε: − lnN (ε)
ln(ε)

= ln(2)
ln(3)
≈ 0.63. The classical Cantor

set is therefore a fractal.

Applying this formula to the Koch Curve, with 4n ε-balls needed when

ε = (1/3)n, we see that it has dimension, D = ln(4)
ln(3)
≈ 1.26. The Sierpinski Tri-

angle then has dimension, D = ln(3)
ln(2)
≈ 1.58, which satisfies our intuition that it is

somehow “larger” in dimension than the former.

The above definition and subsequent examples rely upon visual inspection

of the fractal to determine the number and size of the balls for the resulting ratio.

This definition of fractal dimension is therefore useful and appropriate for comparing

the “density” of self-similar sets, but for sets that are not strictly self-similar, we

need a modified approach. If we begin by covering a set A ⊂ Rm with a grid, and

increasingly refine the mesh of box side length ε and note which “boxes” contain

members of the set, we can plot a log-log diagram of this data and calculate the slope,

which yields the box-counting dimension (sometimes referred to as the Minkowski

dimension) of the set.

Definition 10 . Define Nε(A) to be the number of boxes in the mesh covering A

with side length ε. Beginning with a grid of four boxes, and then refining these with

each iteration to be of side length (1/ε)n, we say that if

D = lim
n→∞

lnNε(A)

− ln(εn)

exists, then A has box-counting dimension D.

Since the number of boxes that intersect A indicate how irregular the set is at

each value of ε, the dimension of the set is an indicator of how rapidly the irregulari-

ties increase as ε→ 0. For sets that are strictly self-similar, this dimension generally
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equals the self-similarity dimension, as in the case of the Sierpinski Triangle. It is

easily seen that the number of boxes, beginning with N1 = 3, N2 = 9, N3 = 27...,

results in Nn = 3n for n=1, 2, 3... so that the dimension given by the above limit

is once again D = ln(3n)
ln(2n)

≈ 1.58.

The advantage of the box-counting dimension is its relative ease of use for

experimental data. One notable example is in the recent work of Dr. Richard

Taylor, who has applied this technique to analyze the drip paintings of Jackson

Pollock [14]. Using high-resolution photographic prints of seventeen paintings, Dr.

Taylor, et al., have demonstrated the fractal nature of Pollock’s work of this style,

and having compared their results to others from art known not be Pollock’s, they

have hypothesized that his paintings alone exhibit fractal characteristics. Their

method is being used as one tool in the authentication process of recently discovered

pieces.

The box-counting dimension is then useful in practical applications when

we wish to calculate the fractal dimensions of physically measurable sets. A more

complex version of this definition is the Hausdorff dimension, which we can use to

compare the “sizes” of sets with identical fractal dimension.

We begin with the diameter of a set, which is the maximum distance between

any two points in the set:

Definition 11 diam(A) = sup{d(x, y)|x, y ∈ A}

Next we sum the diameters raised to the power p for a p-dimensional set.

Then we define the measure µ ≥ 0 of a set as the maximum of the minima of all

the diameters in A, which is to optimize the cover of A with sets of diameter less

than ε.

Definition 12 Let 0 < ε < ∞ and 0 ≤ p < ∞. Let U be a sequence of subsets
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Ai ⊂ A such that A =
⋃∞
i=1Ai. Define

µ(A, p, ε) = inf

{
∞∑
i=1

diam(Ai)
p|{Ai} ∈ U, and diam(Ai) ≤ ε for i=1,2,3,...

}
.

Then the Hausdorff p-dimensional measure of A is given by

µ(A, p) = sup{µ(A, p, ε)|ε ≥ 0, for all p ∈ [0,∞), µ(A, p, ε) ∈ [0,∞)}.

This number takes on one of three values for any given set: zero, a positive

real number, or infinity. For m ∈ R, the Hausdorff Dimension, DH ∈ [0,m],

represents the unique, finite real number below which the p-dimensional measure is

zero and above which it is infinity.

Taking d to be the diameter of the Sierpinski Triangle, for example, the set

can be covered with 3n triangles of diameter d · 1
2n

.

As n→∞ for p = 1, d · 3n

2np →∞, so that µ(A, 1) =∞.

For p = 2, d · 3n

2np = d · 3n
4n
→ 0, so that µ(A, 2) = 0.

The p-dimensional measure of A will therefore be finite and non-zero when 3n = 2np,

or when p = ln 3
ln 2
≈ 1.58. Thus, the Hausdorff Dimension in this case agrees with

the similarity and box-counting dimensions. In fact, for most sets, this will be the

case.

Consider, however, the set A = {0, 1, 1
2
, 1
3
, 1
4
...}. Because the set A consists of

discrete values, the box-counting method is not ideal for calculating its dimension.

Let ε > 0. Since the distance from a point in the set, 1/n, to its nearest neighbor is

1
n
− 1

n+1
= 1

n(n+1)
, we choose ε so that 1

n(n−1) > ε ≥ 1
n(n+1)

. Then there are at least

n “boxes”, or in this case, segments, of length ε required to cover A, and thus

lnNε(A)

− ln ε
≥ lnn

lnn(n− 1)
.
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Letting ε→ 0, we get dimB(A) ≥ 1/2.

From the other direction, if we choose n so that 1
n(n−1) > ε ≥ 1

n(n+1)
, then we

can cover [0, 1
n
] with n+ 1 segments of length ε, and the remaining n− 1 points of

A with n− 1 segments. Thus, Nε(A) = 2n, and

lnNε(A)

− ln ε
≤ ln 2n

lnn(n− 1)
,

giving dimB(A) ≤ 1/2.

Thus, the box-counting dimension is 1/2, whereas the Hausdorff Dimension is

0, indicating that a non-integer box-counting dimension does not always guarantee

fractal properties of a set.

As noted earlier, the box-counting dimension is more feasible for use with

experimental data. But even though the Hausdorff dimension may be more difficult

to calculate, it better lends itself for use in theoretical situations where we wish to

compare the “sizes” of two sets with the same fractional dimension. It is important

to understand, however, that the two calculations are related in the following way.

If we cover a set A with Nd(A) sets of diameter d, then by Definition 12,

µ(A, p, ε) ≤ Np(A) · dp. If µ(A, p, ε) > 1, then for d arbitrarily small,

ln(Np(A)) + p · ln(d) > 0.

Therefore,

p ≤ lim
d→0

ln(Nd(A))

− ln(d)

so that DH(A) ≤ DB(A). Note that

Np(A) · dp = inf

{
∞∑
i=1

dp|{Ai} is a p-cover ofA

}
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and

DH(A) = inf

{
∞∑
i=1

diam(Ai)
p|{Ai} is a p-cover of A

}
.

In the latter, the diam(Ai)
p are different weights assigned to the Ai set covers. In the

former, the mesh diameters, dp, are of the same weight for each set cover, making

the calculation of the box-counting dimension a simpler process in general [7].

To summarize, we state the following theorem.

Theorem 1 Let m be a positive integer and let A be a subset of the metric space

(Rm, Euclidean). Let DB(A) denote the box-counting dimension of A and let DH(A)

denote the Hausdorff dimension of A. Then 0 ≤ DH(A) ≤ DB(A) ≤ m.

See [7] for a formal proof of this theorem. Because the Hausdorff dimension is

somewhat non-intuitive in nature and is difficult to apply, we shall use this theorem

and others to be discussed that facilitate the calculation of this number.

We now further explore self-similarity and how fractals can be generated.
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CHAPTER III

CONTRACTION MAPPINGS AND SELF-SIMILARITY

At the heart of fractal behavior is the contraction mapping, as defined in the

Introduction. Recall from our discussion of dimension that if X is a complete metric

space, with the Hausdorff metric, denoted h, we refer to the set of all non-empty

compact subsets of (X, h) as H(X). Now let f1, . . . , fN be N contractions on H(X)

and A ⊂ H(X). Then

F (A) = f1(A) ∪ · · · ∪ fN(A) is a contraction mapping on A. [9]

We illustrate the basic idea of Hutchinson’s proof with the example of two

mappings. Begin with two contraction mappings, f1 and f2, and their respective

contractivity factors, c1, c2 < 1. We need to show that for any two compact sets,

A and B, the Hausdorff distance between F (A) = f1(A) ∪ f2(A) and F (B) =

f1(B) ∪ f2(B), denoted h(F (A), F (B)) is less than h(A,B) reduced by the greater

of the two contractivity factors.

If d = h(A,B), then any point in B is in the d-neighborhood of A, Ad, and

any point in A is in the d-neighborhood of B, Bd. Thus B ⊂ Ad and A ⊂ Bd. Let

c = max{c1, c2}. Because f1 and f2 are contraction mappings,

f1(B) ⊂ f1(Ad) ⊂ (c · d)-neighborhood of f1(A), and

f2(B) ⊂ f2(Ad) ⊂ (c · d)-neighborhood of f2(A).

Then f1(B), f2(B) ⊂ (c · d)-neighborhood of f1(A) ∪ f2(A).

Similarly, f1(A), f2(A) ⊂ (c · d)-neighborhood of f1(B) ∪ f2(B).
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Therefore, h(F (A), F (B)) < c · h(A,B).

So for a subset A of H(X), the attractor, K, is the unique fixed point of such

contraction mappings, F , given by

K = lim
n→∞

F n(A).

Note that we often use the term “point” to refer to this set of points, which we call

the attractor of the IFS. We also refer to the set, K, as invariant; i.e. F (K) = K.

As the Banach Contraction Mapping Principle states:

Theorem 2 If X is a complete metric space, and if F is a contraction of X into

X, then there exists one and only one x ∈ X such that F (x) = x. Moreover, x is

given by x = lim
n→∞

F n(y) for any point y ∈ X.

In addition to proving the existence and uniqueness of the attractor, an

important result of this principle is that it reveals the rate of convergence toward

the invariant set. Because we know the distance from the initial set, A0, to A1, we

can estimate the distance from An to A∞. Let f be a contraction mapping with

contractivity factor, c, and a0, a1, . . . be a sequence in a complete metric space, X,

such that an+1 = f(an). Then,

d(f(a0), a∞) = d(f(a0), f(a∞)) ≤ c · d(a0, a∞)

By the triangle inequality,

d(a0, a∞) ≤ d(a0, f(a0)) + d(f(a0), a∞) ≤ d(a0, f(a0)) + c · d(a0, a∞)

Then,

d(a0, a∞) ≤ d(a0, f(a0))

1− c
and d(an, a∞) ≤ d(an−1, an+1)

1− c
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for all n = 1, 2, . . . Also,

d(an, an+1) ≤ c · d(an−1, an) ≤ c2 · d(an−2, an−1) ≤ · · · ≤ cn · d(a0, a1)

Thus,

d(an, a∞) ≤ cn · d(a0, a1)/(1− c). [11]

Many self-similar fractals share yet another property that allow the calcula-

tion of their dimensions.

Definition 13 If there exists an open set V ⊂ Rn such that

m⋃
i=1

fi(V ) ⊆ V and fi(V ) ∩ fj(V ) = ∅ for i 6= j,

then the fi are said to satisfy the open set condition (OSC).

In [2], Bandt, et al., explain the OSC analytically. They define a “potential

neighbor set,” h(A), to be the mapping, f−1i fj(A), which transforms the small sets,

fi(A) and fj(A), into A and h(A). Formally,

Definition 14 Let S∗ =
⋃
n≥1 S

n. Define neighbor maps in A as

N = {h(A) = f−1i fj|i, j ∈ S∗, i1 6= j1}.

Rewriting the second condition of the OSC gives V ∩ f−1i fj(V ) = ∅. The

existence of such an open set V dictates that h(A) cannot be near the identity map,

i(A).

Letting the norm for a mapping f on Rn be the usual ||f || = sup|x|≤1|f(x)|,

they give the algebraic formulation for the OSC as follows: There is a constant

κ > 0 such that ||h− i(A)|| > κ for all neighbor maps h.

Thus, the open set condition ensures minimal overlap of the sets Ai. Addi-

tionally, it implies that there exists a positive integer n such that at most n pieces
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Aj of size ≥ ε can intersect the ε-neighborhood of a piece Ai of diameter ε [2].

From a geometric perspective, the condition holds that the sets Ai and Aj cannot

be arbitrarily close to each other relative to their size. Or, in the terminology of

Barnsley, a fractal that satisfies the open set condition is “just-touching”, rather

than overlapping. The OSC is a precondition for theorems that will allow us to find

the dimension of certain self-similar sets.

As discussed previously, we can construct fractals using iterated function

systems, which consist of contraction mappings that generate self-similar sets. An

IFS, therefore, is comprised of a scaling factor plus linear transformations which

may include translations, reflections and/or rotations. A mapping of this type is

called a similitude. Using Barnsley’s notation, we can express the contractions with

rotations or reflections in a matrix and any linear translations in a column vector.

Thus, an affine similitude in the Euclidean plane can be written as

f(x) = f

(
x1
x2

)
=

(
a b
c d

)(
x1
x2

)
+

(
e
f

)

Combining multiple mappings defined in this way, we can create many famil-

iar fractals. The IFS for the Sierpinski Triangle, for example, is given by {f1, f2, f3}

where

f1 =

(
1
2

0
0 1

2

)(
x1
x2

)
+

(
0
0

)

f2 =

(
1
2

0
0 1

2

)(
x1
x2

)
+

(
1
0

)

f3 =

(
1
2

0
0 1

2

)(
x1
x2

)
+

(
1
2

1

)

This has the effect of contracting a triangle by one-half, leaving a reduced
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copy in the lower left vertex of the original, then translating a copy of that one to

the lower right and upper vertices of the triangle.

Theorem 2 also provides us with a way to derive experimentally an IFS

from the image of its attractor. By determining the number of copies in the initial

iteration and measuring their distances and directions from a point in the original

image, we can deduce a set of mappings that describes this attractor. By inspecting

the image of the Koch Curve, for example, it can be deduced that the center one-

third of a segment is replaced by two sides of an equilateral triangle, which is created

by rotating each side clockwise and counterclockise, respectively, by π
3
. This process

is repeated on each subsequently created segment, which can be described by the

following IFS:

f1 =

(
1
3

0
0 1

3

)(
x1
x2

)
+

(
0
0

)

f2 =

(
1
3

cos π
3
−1

3
sin π

3
1
3

sin π
3

1
3

cos π
3

)(
x1
x2

)
+

(
1
3

0

)

f3 =

(
1
3

cos π
3

1
3

sin π
3

−1
3

sin π
3

1
3

cos π
3

)(
x1
x2

)
+

(
1
2

1
3

cos π
3

)

f4 =

(
1
3

0
0 1

3

)(
x1
x2

)
+

(
2
3

0

)

We now quote the following theorem of Hutchinson that allows the calcula-

tion of the fractal dimension of a non-overlapping fractal using its IFS of similitudes.

Theorem 3 Let A be the attractor for a non-overlapping IFS of similitudes given by

f1, f2, · · · , fN where cn is the contractivity factor for each fn. Then A has dimension

D(A) given by the unique solution of
N∑
n=1

|cn|D(A) = 1.
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Barnsley’s outline of a proof covers the case of the totally disconnected IFS

[3]. The proof of the general theorem can be found in [9].

Outline of Proof. Let ci be the non-zero scaling factor for each similitude

fi 6= 0, i ∈ 1, 2, ..., N , and let ε > 0. We note that each similitude maps closed balls

onto closed balls, i.e.

fi(B(x, ε)) = B(fi(x), |ci|ε).

Since ci 6= 0, fi is invertible,

f−1i (B(x, ε)) = B(f−1i (x), |ci|−1ε).

Thus,

N (A, ε) = N (fi(A), |ci|ε). (1)

Note also that the attractor of the IFS is the disjoint union of the sets

obtained by applying the similitudes, i.e. A = f1(A) ∪ f2(A) ∪ · · · ∪ fN(A). Then

for ε arbitrarily small, some point x ∈ X, and some i ∈ 1, 2, ..., N , we have

B(x, ε) ∩ fi(A) 6= ∅ and B(x, ε) ∩ fj(A) = ∅ for all j ∈ 1, 2, ..., N, j 6= i. Therefore,

N (A, ε) = N (f1(A), ε) +N (f2(A), ε) + · · ·+N (fN(A, ε)).

Substituting (1) into this last equation, we see that

N (A, ε) = N (A, |c1|−1ε) +N (A, |c2|−1ε) + · · ·+N (A, |cN |−1ε). (2)

Substituting the earlier definition of N (A, ε) ≈ Cε−D into (2),

Cε−D ≈ C|c1|Dε−D + C|c2|Dε−D + · · ·+ C|cN |Dε−D.

Therefore, 1 = |c1|D + |c2|D + · · ·+ |cN |D =
N∑
n=1

|cn|D(A).2

A set of mappings that fulfills the open set condition is enough to guarantee

that the dimension of the set will be positive and is given by this formula. Moreover,
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self-similar sets have equal Hausdorff and box-counting dimensions, though this

dimension may be less than D if the OSC does not hold.[7]

As an example, we refer to the IFS for the classical Cantor set given earlier as

{X; 1
3
x, 1

3
x+ 2

3
}, yielding (1/3)D + (1/3)D = 1. Then D =

ln 2

ln 3
≈ 0.63, which agrees

with our earlier result. From the IFS for the Koch Curve above, we see that there

are four contractions of 1/3 each, giving 4(1/3)D = 1, and thus, D =
ln 4

ln 3
≈ 1.26.

Additionally, the Sierpinski Triangle is described by three contractions of 1/2 each,

so that 3(1/2)D = 1, and its dimension is easily given by D =
ln 3

ln 2
≈ 1.58. Because

all these sets fulfill the OSC, the calculations reflect both the box-counting and

Hausdorff dimensions.

On the other hand, this theorem may also be used to compute the upper limit

of an overlapping IFS such as Barnsley’s Wreath [3], which is constructed from six

functions with two different contraction factors and on which the OSC is not fulfilled.

Its upper dimension is then calculated from the equation, 3(1/2)D + 3(1/4)D ≤ 1,

the result of which is, therefore, D ≤ ln(3 +
√

21)

ln(2)
− 1 ≈ 1.92. This higher dimension

satisfies our sense that an overlapping set is somewhat “denser” than those that are

“just-touching”.

In [8], Falconer also studied subsets of the union of self-similar-sets and called

them sub-self-similar; i.e. the closed set E is sub-self-similar under contracting

similitudes F = {f1, f2, . . . , fn} if E ⊂
n⋃
i=1

fi(E). Our interest in sub-self-similar

sets is in the example of the boundary of a self-similar set, notated by ∂E, by

which we mean that any open set containing points in ∂E also necessarily contains

points in E and the complement of E. Falconer shows that ∂E is sub-self-similar

by noting that if x ∈ ∂E, then x ∈ E, and therefore, x ∈ fi(E), for some i. Since



20

x ∈ ∂E, every neighborhood of x contains points in the complement of fi(E), and

thus x ∈ ∂F (E) = fi(∂E). In other words, ∂E is sub-self-similar since int(E) is

mapped into itself by the open mappings, F . We shall use this principle in the

remaining chapters for our investigations into the boundary dimensions of some

specific fractals.
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CHAPTER IV

THE BOUNDARY OF A SELF-SIMILAR TILE

By our earlier definition, we can think of a self-similar set as being some-

what “self-contained” in that the similarity is repeated at increasingly smaller scales

within the set. By translating copies of these sets in a particular way, we can cover

the Euclidean plane without overlaps in a tiling.

Definition 15 A tiling is a collection, τ , of non-empty compact subsets, called tiles,

of R2 such that:

1. each tile is the closure of its interior;

2. the union of the tiles in τ is R2;

3. distinct tiles are non-overlapping.

Well-known examples of tilings can be seen in Islamic architecture and in

the work of M. C. Escher. For our purposes, we define a subclass of tiles called self-

affine tiles. Let T be the attractor of the contraction mapping, F = {f1, . . . , fN}

on H(X). For the following definition, we use the language and notation of Vince

[15].

Definition 16 A tile, T , is self-affine if there is an expansive matrix A and a

collection of vectors D, called the digit set, such that

A(T ) = T +D =
⋃
d∈D

(T + d).
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From this, we can see that the tile, T , is a self-affine set given by T =
⋃

(A−1T +

A−1d).

For purposes of clarification, we emphasize here that an IFS is self-similar

if it consists entirely of contractive similitudes of the same magnitude and self-

affine if it is composed of affine functions. Affine transformations may contain

different contraction factors and varying directions. If the matrix A, representing

the functions f1, ..., fN , for a self-affine tile is a similitude, then T is a self-similar

tile, which is characterized by the following:

1. each fi is a similitude with the same contraction factor 1/c, c > 1;

2. T is the closure of its interior;

3. int(fi(T0)) ∩ int(fj(T0)) = ∅ for any i 6= j.

Also note that an expansive matrix is one for which the moduli of its eigen-

values are all greater than one, i.e. |λi| > 1. With a further restriction that the digit

set be composed of lattice points, i.e. those with integral coordinates, the trans-

lates become a lattice tiling, and D is a set of coset representatives of Zd/A(Zd) with

0 ∈ D. In this case, the determinant of the matrix A, m = | det(A)|, determines the

number of elements in the digit set that constitutes the tile. This can be verified

by observing that in the above definition, the expression
⋃
d∈D(T + d) enlarges the

area of T by a factor of the number of digit sets, and A(T ) increases it by a factor

of | det(A)|.

A straight-forward example is the unit square, where A =

(
2 0
0 2

)
, trans-

lated to the set of points,

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)}
, will produce a checker-

board pattern that can tile the plane. This tile is an example of a digit set with
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integral entries. The digit set is then a complete set of coset representatives for the

quotient group Z2/AZ2.

In general, our matrix A =

(
a b
c d

)
is an expansive mapping, so that

A−1 is a contraction mapping, and the functions F =
⋃
fi approximate the at-

tractor regardless of the intial value of x0. Note that for A as described above,

| det(A)| = |ab− cd| = m gives the area of the parallelogram, P , spanned by the

vectors v1 =

(
a
c

)
and v2 =

(
b
d

)
. The digit set is formed by those vectors

with integer coordinates having a vertex at the origin, and the lattice L is gener-

ated by application of the mapping, g. Bandt refers to these vectors as a complete

residue system for A, because if g is an expansive mapping, the lattice, L, given by

L =
⋃
{yi + g(L)|i = 1, ...,m, where yi 6= 0}, forms a subgroup g(L). [1]

All linear combinations of the column vectors of A comprise the vertices of

P and a subset of L, forming a grid of parallelograms congruent to P and all with n

points of L. Each point yi ∈ L lies within a copy of P and is an element of a coset of

L/g(L). Thus, the yi’s form a complete residue system for A, and each vector in the

system determines the location of each tile. Different bases can generate the same

lattice, but | det(A)| is uniquely determined. The following definition and theorem

of Bandt summarize.

Definition 17 A closed set, A1 ∈ Rn with a non-empty interior is called an m-rep

tile if there are sets A2, . . . , Am congruent to A1, such that int(Ai)∩ int(Aj) = ∅ for

i 6= j and A1 ∪ · · · ∪ Am = g(A1), where g is a similitude.

Theorem 4 Let g be a linear expansive map on Rn with integer matrix and

{y1, . . . , ym} a residue system of g. Then there is a unique m-rep tile Ai such that

g(Ai) = A1 ∪ · · · ∪ Am with Ai = yi + A1. [1]
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Recall the prior example of the square that is a digit tile. Note that in

this case, lim
n→∞

∂Tn = T and that this limit is space filling. Here, we are concerned

primarily with those sets for which lim
n→∞

∂Tn = ∂T . This calculation is dependent

upon the expansion matrix, A, and the digit set, D.

As an example, let A =

(
1 −1
1 1

)
, so that m = | det(A)| = 2, and D =

{(0, 0), (1, 0)}. A lattice point y is determined by the unique solution (x, d) of the

equation Ax+d = y, where x ∈ Zd and d ∈ D. The lattice is completed by repeated

application of the algorithm,

L← L ∪ {x ∈ Zd|Ax+ d = y, for some d ∈ D and y ∈ D + L},

until the sets are equal. For example,

(
1 −1
1 1

)(
x1
x2

)
+

(
1
0

)
=

(
−1
0

)

yields the solution (−1, 1). Continuing in this manner, we find that

L = {(0, 0), (0, 1), (1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1)},

resulting in an approximation of the Twin Dragon [5]. This process can be shown to

produce finite points based on the fact that a lattice point generated by any iteration

of the mapping must be an integer that is bounded by a maximum distance from

the origin that is dependent upon the contraction factor of the system.
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Figure 3.  Lattice Translates of the Twin Dragon

Theorem 5 Let T be a self-similar digit tile constructed from matrix A, with ex-

pansion factor c, and digit set D, and let T0 be the unit square with vertices at

(0, 0), (1, 0), (0, 1) and (1, 1). If Tn = F n(T0) are approximating tiles, then:

1. lim
n→∞

∂Tn = ∂T ;

2. lim
n→∞

∂Tn is not space-filling;

3. m(T ) = 1;

4. {T + x|x ∈ Zd} is a tiling of Rd.

Moreover, these conditions are equivalent, and if satisfied, then there is a

constant a such that

h(∂T, ∂Tn) < a/cn,

where h denotes the Hausdorff metric.

It is this last assertion that leads to the main result of [5], so its proof is

included here.

Proof. If Tn = F n(T0), then h(T, Tn) ≤ a/cn for some constant, a, by the

Contraction Mapping Principle. We need to show that any x ∈ ∂Tn is within the

distance a/cn of a point in ∂T . Then x must satisfy one of three cases:
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1. If x ∈ ∂T , then clearly, the inequality holds;

2. If x /∈ T , there exists y ∈ T such that h(x, y) ≤ a/cn, as shown above. Then

there is a point z on the segment xy that is also on ∂T , so that h(x, z) ≤

h(x, y) ≤ a/cn;

3. If x ∈ int(T ), consider the possible tilings of Rn:

Tn = {p+ Tn|p ∈ Zd}

T = {p+ T |p ∈ Zd}.

D is a set of coset representatives of Zd/A(Zd), so it follows that Tn is a tiling of

Rd. Since x ∈ ∂Tn, then there is a copy y + Tn in Tn such that x ∈ ∂(y + Tn), but

x /∈ y + T . There is a point z ∈ y + T such that h(x, z) ≤ a/cn, and thus a point

w ∈ ∂T on the segment zx such that w ∈ ∂(y + T ) and h(w, x) ≤ h(z, x) ≤ a/cn.

Similarly, h(∂T, ∂Tn) ≤ a/cn.2[5]

In order to compute the dimension of the boundary of a tiling, information

about the behavior of the boundary must be derived from a matrix constructed

from the digit set and lattice. The entries of this contact matrix are determined by

the number of occurrences of an element in the digit set from which a point in the

lattice is generated. In other words, an element of the contact matrix is found by

counting the d’s of the digit set that produce each y of the lattice; i.e.,

Cxy = |{d ∈ D|xd = y}|, for x, y ∈ L\{0}.

In the Twindragon example, the contact matrix is, therefore,

C =


1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 1 1 0
0 0 0 0 0 1
2 0 0 0 0 0

 ,
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from which the characteristic polynomial is then determined to be

det(C − λI) = λ4(1− λ)2 − 4 = (λ+ 1)(λ2 − 2λ+ 2)(λ3 − λ2 − 2).

The modulus of the largest eigenvalue of this matrix is then used in the calculation

of the Hausdorff dimension of the boundary of this set, as will be shown below.

Theorem 6 Let T = T (A,D) be a self-similar digit tile where A has expansion

factor c and the contact matrix C has largest eigenvalue λ. Under any of the well-

behaved boundary conditions of the previous theorem,

dimH(∂T ) =
lnλ

ln c
.

Proof. Let T0 be the unit cube centered at (0,0) with edges parallel to the

axes and let Tn = F n(T0) be the nth approximation to the self-similar digit tile T .

As above, the IFS, as given in Definition 18, is then

Tn =
⋃
{T0 + d0 + Ad1 + Ad2 + · · ·+ An−1dn−1|di ∈ D},

and T = lim
n→∞

Tn. Thus Tn is the non-overlapping union of copies of A−n(T0), each

copy being a cube of edge length 1/cn. Under the mapping, An, there is a bijection

between this set of cubes of Tn and the set of lattice points Dn. For the given pair,

(A,D), let L′ = L(A,D)\{0}. For any matrix M , let |M | denote the sum of the

entries of M . Then |Cn| denotes the number of triples (x, y, d) that are solutions

to the equation, d + x ∈ Any + Dn where x, y ∈ L′ and d ∈ D. Let Bn denote the

set of d ∈ Dn such that d+ x ∈ Any +Dn for some x, y ∈ L′, and let βn denote the

cardinality of Bn. Thus

βn ≤ |Cn| ≤ (k − 1)2βn,

where k is the cardinality of L. Under the bijection described above, Bn also

corresponds to a certain set of cubes in Tn. For simplification, we refer to this set of
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cubes as Bn. By Lemma 1 in [5] and straightforward induction, D+L ⊂ AnL+Dn,

for n = 1, 2, . . ., and {±e1, . . . ,±ed} ∈ L. Let b = b(A,D) denote the greatest

Euclidean distance from the origin to any point in the neighborhood L(A,D). The

center of each cube in Bn has distance at most (a + b)/cn from a center of such a

cube. Consider the following tiling of Rd by cubes of edge length 1/cn:

{x+ A−n(T0)|x ∈ A−n(Zd)}.

The number of such tiles of edge length 1/cn within distance of (a + b)/cn of, say,

the origin, is bounded by a constant h that depends only on the dimension of d,

not on n. Let αn be the smallest number of tiles of edge length 1/cn whose union

covers ∂(T ). Thus βn ≤ hαn and αn ≤ hβn. Moreover, there are positive constants

α′ and β′ such that

α′|Cn| ≤ αn ≤ β′|Cn|.

By a standard result for non-negative matrices, we have lim
n→∞

(|Cn|)1/n = λ, which

implies that

lim
n→∞

ln |Cn| = lnλ.

As previously demonstrated, ∂T is a sub-self-similar set, and the Hausdorff dimen-

sion coincides with the box-counting dimension for ∂T . Then

dimH ∂T = dimB ∂T = lim
n→∞

lnαn
ln cn

.

Thus, this limit exists, and with the previous results,

dimH ∂T = lim
n→∞

lnαn
n ln c

= lim
n→∞

ln |Cn|
n ln c

=
lnλ

ln c
. 2[5]

Applying this theorem to the earlier example of the Twindragon, the Haus-

dorff dimension of its boundary is shown to be dimH(∂T ) ≈ ln 1.69962
ln
√
2

= 1.523627 . . .
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CHAPTER V

THE BOUNDARY OF THE LÉVY DRAGON

The Twin Dragon lends itself to the methods described because of the sim-

plicity of its IFS. Compare this with the IFS for a self-similar set first studied by

Lévy in 1938, now known as the Lévy Dragon. As with the Twin Dragon, we begin

with a triangle, T0, and contraction factor of root two. The first rotation remains

the same, while the and another is added with a translation to the other vertex of

the original triangle. Its IFS is then

f1(x, y) =
(
x−y
2
, x+y

2

)
f2(x, y) =

(
x+y+1

2
, −x+y+1

2

)
.

It is this second function adding a different rotation that complicates the

calculation of its boundary dimension. Since this dragon is not a self-similar digit

tile, its dimension cannot be computed using the methods previously described.

One approach [4] is to use Falconer’s results on sub-self-similar sets in the following

manner.

Recall that for the attractor, K, of a set of contracting similitudes, F =

{f1, f2, . . . , fN}, the boundary of K, ∂K, is a sub-self-similar set because int(K)

is mapped onto itself by the open mappings, F . Thus, F satisfies the open set

condition on int(K). In [8], Falconer went on to prove that this condition is sufficient

to show that the set has positive s-dimensional Hausdorff measure, given by the
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unique nonnegative s satisfying τ(s) = 1 where

τ(s) = lim
k→∞

(∑
i∈Ak

csi

)1/k

.

Duvall and Keesling [4], use this formula to derive an equivalent one that is

easier to use for computing dimH ∂K. In their notation, the infinite set of sequences

generating the not-covered triangles in the boundary of K, Ak = {I ∈ Ωk|fIk(K) ∩

∂K 6= ∅}, where Ωk denotes the set of sequences of length k and fIk denotes the

composition of mappings fi1 ◦ fi2 ◦ · · · ◦ fik . Note also that cIk is meant to be the

product of the ci’s. Then for convenience, they assume that all the ci’s have the

same value, c, so that the sum can be written as |Ak|cks, and thus

τ(s) = lim
k→∞

(∑
Ik∈Ak

csIk

)1/k

= lim
k→∞

(|Ak|cks)1/k = αcs.

The Hausdorff dimension of the boundary of the set K, dimH ∂K, is then the

solution to αcs = 1, or

dimH ∂K = − lnα

ln c
.

In the case of the Lévy Dragon, let T0 be the initial triangle in the dragon

and F = {f1, f2} be the contraction mappings. Then the attractor is defined to be

K = lim
k→∞

F k(T0). Since f1 and f2 are open mappings of int(K) → int(K), ∂K is a

sub-self-similar set. Thus, F satisfies the open set condition on int(K).

Part of the difficulty in computing the dimension of the boundary is in

determining a value for |Ak|. To address this issue, the authors instead define

Bk = {Ik ∈ Ωk|fik(T0) ∩ ∂F k(T0) 6= ∅}, the set of finite sequences, F k, of functions

on the initial set, T0. It is necessary to examine the dragon’s construction in order

to calculate its dimension using the sets, Bk.



31

Any triangle intersecting the boundary of the initial triangle, T0, is referred

to as a neighboring triangle, T ′, so that F 1(T0) has 14 neighbors, and subsequently,

each T ∈ Tk, the triangulation of Rn at the kth iteration, also has 14 neighbors.

Number the neighboring triangles 1-15, denoted N(T )[1]−N(T )[15], as follows: 1,

the initial triangle, T ; 2, the triangle that shares its hypotenuse with that of T ;

and 3-15 clockwise around T from there. For any T ∈ Tk, the neighborhood of T ,

N(T ) = {T ′ ∈ Tk|T ∩ T ′ 6= ∅}. Then let ρ(T ) = {ρ1, ρ2, . . . , ρ15} be defined as the

neighborhood type where

ρi =

{
1, if N(T )[i] ∈ F k(T0);
0, otherwise.

Figure 4.  T0 in N0 F4 T0 ( )  in N4

If the ρi’s are all ones, the triangle, T ∈ Tk, is said to be covered, meaning

that T ∈ Tk and all its 14 neighbors are contained in F k(T0). Not surprisingly, it

takes many iterations before covered triangles become apparent. Through computer

experimentation, the authors discovered the first occurrence at the 14th iteration,

and then only 8 of the 214 triangles were covered. It can be seen, however, that

in the subsequent iteration, any T that is covered yields 2 covered triangles, and

therefore, T ⊂ F k+m(T0) for all m > 0, so that T ⊂ int K. To summarize this,

along with other properties of the neighborhoods:

1. Let N0 = N(T0). Then F (N0) ⊂ N0, and thus, K ⊂ N0.

2. If T ∈ Tk and T ′ ∈ Tk+1, then N(T ′) ⊂ N(T ).
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3. If T ∈ Tk is covered and T ′ ⊂ T for some T ′ ∈ Tk+1, then T ′ is covered.

4. If T ∈ Tk is covered, then T ⊂ intK.

5. If v is a vertex of any triangle fIk(T0) ⊂ F k(T0), it is also a vertex of some

triangle fIk+1
(T0) ⊂ F k+1, and therefore, v ∈ K.

As previously noted, finding a value for |Ak| is more difficult than computing

one for |Bk|. The authors show that Bk ⊂ Ak as follows, and they use this to prove

the theorem stating the formula needed to calculate the boundary dimension.

Since Bk is the set of sequences that generate non-covered triangles in the

kth iteration, there is a triangle T ′ in the neighborhood of some T = fIk(T0) that is

not in F k(T0). So this T ′ is in Fa
k(Ta) for some neighborhood in that iteration. For

a vertex, v, in both T and T ′, v is in the intersection of the two sets at that level

and is therefore in the boundary of K. Since v must also be the result of functions

applied to a vertex of T0, it is in the boundary of K, and therefore, Ik ∈ Ak. It

follows that Bk ⊂ Ak and |Bk| ≤ |Ak|.

The authors use this to establish inequality in the one direction, then find

the box-counting dimension and invoke Falconer’s theorem on the equality of the

box-counting and Hausdorff dimensions of self-similar sets for the other.

Recall that dimH ∂K = − lnα

ln c
where α = lim

k→∞
|Ak|1/k.

Theorem 7 Let β = lim
k→∞
|Bk|1/k.

dimH ∂K =
ln β

ln
√

2
.

Proof. Since β ≤ α, the earlier result gives

ln β

ln
√

2
≤ dimH ∂K.
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For any T in the kth triangulation, Tk, of N0, if its neighborhood type is the

zeros vector or the all one’s vector, then T is either not in K, or is in the interior

of K, respectively, and therefore, contains no points in ∂K. Thus, the boundary of

K is contained in the set of triangles whose neighborhood types are not constant.

Then ∂K ⊂
⋃
{N(T )|N(T ) contains some fIk(T0), Ik ∈ Bk}. For each k,

there is a maximum of 15|Bk| such N(T ), so ∂K is covered by a maximum of 15|Bk|

sets of diameter ≤ 3(
√

2)−k. Therefore,

lim
k→∞
− ln(15|Bk|)

ln(3(
√

2)−k
=

ln β

ln
√

2
.2[4]

Finding a value for β to use in the computation of the boundary dimension

involves more careful analysis of the neighborhood structures. Begin by indexing all

the 215 possible combinations of neighborhood types and then defining V (k), a vector

of that length with each element representing the count of each type of neighborhood

at the kth iteration; for example, V (1)1 contains the number of triangles in T1 of

the first neighborhood type in the index. Next, construct a matrix, M so that each

element counts the number of one particular neighborhood type that resulted from

iterating another; i.e. Mi,j is the number of j-neighborhood types created from the

iteration of an i-neighborhood type. Consequently, the nature of M is that it can

be constructed from the initial triangle and its iteration into N0 and thereafter has

the property that V (k + 1) = V (k) ·M . Define a column vector J , where Ji = 1

for i odd and less than 32767, and 0 otherwise. Then, the number of not-covered

triangles, |Bk| = V (0) ·Mk · J , can be calculated from the eigenvalues of M . The

largest of these will give us the fewest number of ε-balls whose union will cover ∂K.

Clearly, the number of combinations of neighborhoods and their descendants

creates a matrix that is too cumbersome to manage with the technology that was

available to the authors at the time. Fortunately, they are able to determine that
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there are actually far fewer neighborhood types that occur. Additionally, through

computational methods, they ascertain that for iterations beyond F 19(T0), there

are no new combinations. The neighborhoods are said to be stable after this, with

752 combinations. Thus, V (k) and M are redefined accordingly to represent only

these combinations and thus contain 752 and 752×752 elements, respectively. Then

|Bk| = V (k) ·M ·J , and so |B19+k| = V (19) ·Mk ·J . By identifying triangles that do

not add to the boundary, the authors reorganize the matrix based on information

about these neighborhood types. Thus, M can be rewritten in block form as

M =

 P Q R
0 C L
0 0 I

 ,

where P is a permutation matrix, I is the 2×2 identity matrix, and C is a 734×734

matrix. Sorting the elements of the vectors V and J similarly, we get

|B19+k| = V (k) ·
(
P Q
0 C

)k
· J.

C has an eigenvalue equal to its spectral radius, and lim
k→∞

1

λk
Ck = D, where

D is a positive matrix. Since, in this case, λ > 1, then

lim
k→∞

1

λk

(
P Q
0 C

)k
= lim

k→∞

(
1
λk
P k 1

λk
P k−1Q

0 1
λk
Ck

)
=

(
0 0
0 D

)
.

This gives

lim
k→∞

|Bk+19|
λk+19

=
1

λk+19
V (19) ·D · J = q > 0.

Therefore,

β = lim
m→∞

|Bk|1/m = lim
m→∞

λ · q1/m = λ, and

dimH ∂K =
lnλ

ln
√

2
, by Theorem 7. [4]
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The value of λ, which indicates the number of ε-balls of size 1/
√

2
k

needed

to cover the pieces of the boundary, is calculated to be λ ≈ 1.954776399, and conse-

quently, the boundary dimension of the Lévy Dragon is computed to be dimH ∂K ≈

1.934007183.

Figure 5.  Approximation to the Levy Dragon

In [13], a method for computing this dimension is developed without rely-

ing on satisfaction of the open set condition. Instead, the authors, Strichartz and

Wang, devise a method of constructing a contact matrix by using the translates to

investigate pieces of the boundary. By examining the intersections of the attractor

with its translates, as determined by the expansion matrix, A, they derive a con-

tact matrix in much the same manner as described in the previous chapter. The

computation of the boundary dimension is further simplified by elimination of the

matrix entries that result from reflections of coordinates in the lattice.

Because of the computer limitations at the time [4] was written, this tech-

nique provided a far more streamlined approach to finding the boundary dimension

of the Lévy Dragon. Strichartz and Wang’s result is an 11× 11 matrix with a 9th

degree characteristic polynomial that has been shown to be a factor of the one de-

rived by Duvall and Keesling, and thus, the spectral radius and resulting boundary

dimension values agree.
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It is interesting to note that, in this case, the development of sophisticated

mathematical software greatly reduces the need for the application of more complex

mathematical theory. Had Duvall and Keesling had access to current methods,

perhaps Strichartz and Wang would not have striven to develop their alternate

approach to the calculation of the Hausdorff dimension of the Lévy Dragon. Yet

it has historically been these types of endeavors that have led to more elegant

solutions to complex problems. On the other hand, considering the number of proofs

devised for centuries for a formula as well-established as the Pythagorean Theorem,

it seems likely that the quest for elegance will not be hampered by technological

developments.
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