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Abstract 
Background: There has been considerable research on rodent ultrasound in the laboratory and 

these sounds have been well quantified and characterized. Despite the value of research on  

ultrasound produced by mice in the lab, it is unclear if, and when, these sounds are produced in the 

wild, and how they function in natural habitats. 

Results: We have made the first recordings of ultrasonic vocalizations produced by two free-living 

species of mice in the genus Peromyscus (P. californicus and P. boylii) on long term study grids in 

California. Over 6 nights, we recorded 65 unique ultrasonic vocalization phrases from Peromyscus. 

The ultrasonic vocalizations we recorded represent 7 different motifs. Within each motif, there 

was considerable variation in the acoustic characteristics suggesting individual and contextual 

variation in the production of ultrasound by these species. 

Conclusion: The discovery of the production of ultrasonic vocalizations by Peromyscus in the wild 

highlights an underappreciated component in the behavior of these model organisms. The ability to 

examine the production of ultrasonic vocalizations in the wild offers excellent opportunities to test 

hypotheses regarding the function of ultrasound produced by rodents in a natural context. 

Background 

Ultrasound is commonly used for orientation and prey 

localization by diverse taxa, including bats, odontocete  

whales, insectivores, and rodents. Ultrasonic signals in  

these groups range from simple broadband clicks pro-

duced by whales, insectivores, and some megachiropteran  

bats, to highly modified, tonal signals that show struc-

tured change over time as in microchiropteran bats [1].  

However, in addition to their function in orientation,  

these signals may also have social functions, including  

communication of individual identity or group member-

ship, kin recognition, alarm communication, information  

transfer, infant-mother communication, mate attraction,  

and territorial defence [2-5]. 

In contrast to our wealth of knowledge on the use of ultra-

sound by microchiropteran bats and odontocete whales,  

we know comparatively little about the use of ultrasound  

by rodents in the wild [but see [5]]. However, there has  

been extensive research on rodent ultrasound in the labo-

ratory, where ultrasonic vocalizations (henceforth USVs)  

have been documented for a number of rodent species,  

particularly within the superfamily Muroidea [6,7]. A  

major impetus for this large body of research is that the  
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two major mammalian non-human models are muroids:
the lab mouse (Mus musculus) and lab rat (Rattus norvegi-
cus). Mice and rats have historically been used for classical
human biomedical research and, more recently with the
sequencing of both genomes [8,9], have become the main
models for the basis of human and mammalian develop-
ment and behavior [10,11]. Because both rat and mouse
infants predictably produce USVs in the laboratory, their
USVs are regularly used as phenotypic markers in neu-
robehavioral development [12]. The study of USV produc-
tion by rats and mice in the laboratory has become so
prevalent that a recent effort was made to standardize
methods in the study of laboratory rodent USVs [13]. In
addition, a detailed study of USVs within individual male
mice revealed variation in syllable usage and timing, indi-
cating that laboratory mice are capable of producing song
[14].

Although the majority of research on USVs has occurred
in only two model muroid rodent species, the Muroidea
is the largest and most diverse superfamily of mammals
with over 1300 species in 5 families [15,16]. Based on lab-
oratory research, it appears that USV production may be
common within the Muroidea. Within the muroids, USVs
have been documented in 18 genera (B. H. Blake, unpub-
lished data) in the subfamilies Arvicolinae, Cricetinae,
Gerbillinae, Murinae, and in the Neotominae-Sigmodon-
tinae [17-22]. Muroids examined in the lab have been
shown to produce USVs as juveniles, adults or both, but
the context of USV production varies [6,23]. Neonates and
juveniles produce USVs in response to isolation from par-
ents, cool temperatures, handling, anticipation of play, or
painful stimuli [6,17,24-34]. Adult males and/or females
produce USVs during agonistic (mostly intrasexual) inter-
actions [35,36] and during courtship and mating
[6,37,38]. Adult males additionally produce ultrasonic
songs when stimulated by conspecific urine [14], and
adult females also produce ultrasound when their pups
are removed from their nest [6].

Despite the valuable and extensive research on USVs in
rodents in the lab, it is unclear if and when, these USVs are
produced in the wild, and how they function in natural
habitats. The exception to this is the recent discovery of
the use of USVs by the Richardson's ground squirrel (Sper-
mophilus richardsonii) to warn conspecifics of imminent
danger [5]. To our knowledge, this is the only test of the
functional significance of USV production by rodents in
the wild. Without understanding the context of USV pro-
duction in the wild, it is difficult to understand the selec-
tive pressures leading to their evolution and maintenance.
Furthermore, although it may be possible to attribute a
function to the USVs produced in the lab, it is critical to
understand their adaptive significance in a natural con-
text. Understanding the context and function of USV pro-

duction by wild muroid rodents is especially relevant
given the prevalence of behavioral research related to USV
production by lab rats and mice. It has been suggested
recently that inbreeding of laboratory mice may have
acted to reduce the variation in the USVs produced by lab-
oratory mice, and that wild mice might exhibit higher
diversity and complexity of USVs and ought to be used for
comparisons of song production with other animals [14].

The purpose of our study was to passively record and char-
acterize USVs given by free-living muroid rodents in the
wild. Here we document and characterize, for the first
time, USVs given by wild Peromyscus mice in the wild. We
examined USV production in two syntopic species of Per-
omyscus (P. californicus and P. boylii) on long term study
grids at the Hastings Natural History Reserve (HNHR),
Monterey Co., California. Mice in the genus Peromyscus
are models in both field and laboratory research relating
to questions of mammalian evolution [39-41], ecology
[42-44], and behavior [45-47]. We chose these two partic-
ular species of Peromyscus because long term studies of
wild populations afforded us detailed knowledge of their
ecology and behavior. In addition, time spent in the field
has provided us with anecdotal observations of vocaliza-
tions being produced by these species.

Results
Our recordings were made during the breeding season for
both P. boylii and P. californicus. For both species, females
were lactating and males had descended testes. Juveniles
of both species were captured at adjacent trap stations
indicating the emergence of litters. Many individuals that
we captured were residents that had been ear-tagged in the
previous breeding season.

On 6 nights of recording, we recorded a total of 65 USV
phrases corresponding to 7 different motifs (Figure 1;
Table 1). The 65 USV phrases were not evenly distributed
among the 6 nights (mean ± 1SE = 10.8 ± 3.8, range = 2–
29; χ2 = 40.2, df = 5, p < 0.0001). We never recorded a sin-
gle syllable; there were always at least two syllables
recorded. Individuals never produced consecutive
phrases; in a recording from a given individual there was
always only one phrase (see Figure 1). However in two
instances, we recorded consecutive phrases from different
animals (based on clear intensity differences between the
phrases) in the same recording. No motifs were only
recorded at a single recording station (Table 1). Some
motifs were recorded on both focal areas (Upper and Mid-
dle; see Methods and Table 1). Only one identical phrase
was recorded simultaneously at more than one station,
suggesting that the majority of USVs were not detectable
greater than 5 meters away using our recording system.
Page 2 of 12
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Description of recorded ultrasonic vocalizations
The seven motifs were all easily distinguished from one
another (Figure 1). Acoustic parameters of the seven
motifs upon which the following details are based can be
found in additional file 10. Because all phrases clearly fall
into one of the following 7 motifs, and because our sam-
ple size within motifs is small, we do not describe syllable
types in detail here but rather concentrate on overall motif
characteristics. The "two part whistle motif" (henceforth
2PW) consisted of two ultrasonic long (each >100 ms) syl-
lables (mean F max of each ~25 kHz) separated by an
interval between syllables of approximately 90 ms (Figure
1; listen to additional file 1). The "three part whistle"
motif (henceforth 3PW) consisted of three ultrasonic long
(each >100 ms) syllables (mean F max ~21, ~24, ~26 kHz,
respectively) separated by intervals between syllables of

approximately 125 ms (Figure 1; listen to additional file
2). The "four part whistle" motif (henceforth 4PW) con-
sisted of four ultrasonic long (ranging from 65–180 ms)
syllables (mean F max ~20, ~25, ~25, ~27 kHz, respec-
tively) separated by intervals between syllables of approx-
imately 125–150 ms (Figure 1; listen to additional file 3).
The 2PW, 3PW, and 4PW motifs all consisted of phrases
with different syllable types (Figure 1). The 2PW, 3PW,
and 4PW motifs were not simply variations of the same
phrase with a varying number of syllables (i.e., the 2PW is
not a 3PW or a 4PW cut off prematurely in recording). To
demonstrate this, we analyzed all syllables within each
motif (see data in additional file 10) and compared the
first syllables among the 2PW, 3PW, and 4PW motifs. We
found a significant difference among the motifs with
respect to duration (ANOVA: F2,36 = 32.39, P < 0.0001)

Table 1: Type and number of motifs recorded on Upper and Middle sections of LRC grid.

Upper LRC Grid
v w u s p o r t q Total

2 part whistle (2PW) 1 1 1 3

3 part whistle (3PW) 3 1 1 1 10 16

4 part whistle (4PW) 1 10 11

Frequency Modulated Short 20 (FMS20) 1 1 2 1 5

Short 20 (S20) 2 1 2 1 2 8

Long 20 (L20) 1 1

BARK 3 3

Total 3 2 1 3 6 3 1 2 26 47
Middle LRC Grid

b d e g h i j l m

2 part whistle (2PW) 1 1 1 1 1 5

3 part whistle (3PW) 2 2

4 part whistle (4PW) 1 1 2

Frequency Modulated Short 20 (FMS20)

Short 20 (S20)

Long 20 (L20) 5 3 8

BARK 1 1

Total 1 1 2 7 3 1 1 1 1 18

Column headings refer to recording stations. Refer to text and Figure 4 for microphone locations. Row headings refer to motif. Totals are at the 
end of each row and column. Grand total is 65.
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and ending F (ANOVA: F2,36 = 3.46, P < 0.05) of the first
syllable. The first syllable of the 4PW motif was shorter in
duration than the first syllable in both the 2PW or 3PW
motifs (Tukey's post hoc p < 0.001) and the first syllable of
the 4PW motif ended at a lower F than that of the 2PW

motif (Tukey's post hoc p < 0.05; Figure 1; additional file
10).

The "short 20" (henceforth S20) and "frequency modu-
lated short 20" (henceforth FMS20) motifs were similar to

Spectrograms of the seven Peromyscus motifsFigure 1
Spectrograms of the seven Peromyscus motifs. Characteristic spectrograms [frequency (kHz) vs. time (ms) graphs] of the 
7 motifs. Amplitude levels are denoted by color with the highest being red and the lowest being blue. All panels reflect whole 
phrases recorded; a) two part whistle (2PW), b) three part whistle (3PW), c) four part whistle (4PW), d) frequency modulated 
short 20 (FMS20), e) short 20 (S20), f) long 20 (L20), g) BARK. The insets on the frequency modulated short 20 and the bark 
motifs are single syllables from the spectrogram, expanded on the x-axis, to show defining detail. For quantitative details of syl-
lables, see text and descriptive statistics in additional file 10. For this figure, background noise has been removed from spectro-
grams to enhance the clarity of the syllables. To hear original recordings of each panel, listen to additional files 1 through 7.
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one another and consisted of short duration (<50 ms) syl-
lables at 20–24 kHz separated by relatively long intervals
between syllables (>300 ms; Figure 1). Unlike the 2PW,
3PW, and 4PW motifs, the syllable types within these
motifs were the same. The main difference between the
FMS20 and S20 motifs was that the syllables within the
FMS20 (listen to additional file 4) phrases all began with
a steep frequency modulated component to the syllable
that resulted in a significantly higher starting F (ANOVA:
F1,11 = 5.18, P < 0.05), larger band width (ANOVA:F1,11
= 5.01, P < 0.05), and larger slope (ANOVA:F1,11 = 5.95,
P < 0.05) relative to the syllables of the S20 motif (listen
to additional file 5).

Similar to the S20 motif, the "long 20" motif (henceforth
L20) had repeats of the same syllable type and the sylla-
ble's fundamental frequency was at approximately 20
kHz, but the syllables were longer (~150 ms; ANOVA:
F1,15 = 39.19, P < 0.0001; Figure 1; listen to additional file
6). The "bark" motif (henceforth BARK) consisted of very
short (~20 ms) syllables that began and ended in the audi-
ble frequency range (12 kHz) but peaked at approxi-
mately 20 kHz with the interval between syllables being
approximately 150 ms (Figure 1; listen to additional file
7). Syllables within all motifs had clear harmonic fre-
quency components (Figure 1). There was considerable
variation in the acoustic characteristics of 2PW, 3PW,
4PW, and BARK motifs (see descriptive statistics in addi-
tional file 10).

Who is producing these ultrasonic vocalizations?
With the exception of a single pocket mouse (Chaetodipus
californicus; captured on Middle), the only nocturnal
rodent species resident on Upper and Middle during our
recordings were P. boylii and P. californicus. There was a
single woodrat (Neotoma macrotis) resident 10 m away
from the NW edge of Upper, however we intensively
recorded around the woodrat nest for 3 nights with 3
recording units and did not record any USVs. Other
potential animals present that could produce ultrasound
that our microphones would have recorded are insects,
insectivores, and bats. These recordings are not insects
because of the distinct lack of stridulation. We captured a
single shrew (Sorex trowbridgei), the only insectivore
present, in a Fitch trap along the bank of Upper, where we
had recorded shrew echolocation (listen to additional file
8). We also recorded bat echolocation (listen to addi-
tional file 9) on both Upper and Middle. Both shrew
[48,49] and bat [1] echolocation calls are markedly char-
acteristic and different from the syllables and resultant
motifs we present herein. Thus, the only nocturnal species
that 1) were present on Upper and Middle, and 2) capable
of producing these distinct ultrasound motifs were P.
boylii and P. californicus.

Our home range analyses indicated that both P. boylii and
P. californicus were likely to have produced USVs (Figure
2). Based on home range data from Middle, there was one
recording station (b) that recorded USVs (4PW motif) that
had both Peromyscus species present. The recording sta-
tions that had only P. boylii present (d, e, m) recorded
2PW, 3PW, and BARK motifs. The recording stations that
had only P. californicus present (g, h) recorded 2PW,
4PW, and L20 motifs (Figure 2; Table 1). On Upper, the
majority of recording stations that recorded USVs (s, p, o,
r, t, q) had both Peromyscus species present, and we
recorded all seven motifs at these stations. We recorded
S20 and FMS20 motifs at the only station (w) on Upper
where only a single species (P. californicus) was present
(Figure 2; Table 1). Based on these results both species
produced USVs: at a minimum P. boylii produced 2PW,

Home ranges of individual Peromyscus in relation to micro-phonesFigure 2
Home ranges of individual Peromyscus in relation to 
microphones. Kernel home range estimates (50%) for mice 
captured during study on a) Middle and b) Upper sections of 
the Lower Robertson Creek (LRC) Grid at HNHR. Creek 
denoted by dashed line. Microphones and the direction they 
were facing are indicated by directional microphone symbols. 
Only microphone stations that recorded USVs are labelled 
with letters (see Table 1). P. boylii ranges are green. P. califor-
nicus ranges are yellow. Horizontal line is 10 meters.
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3PW, and BARK motifs and P. californicus produced 2PW,
4PW, S20, FMS20, and L20 motifs.

Discussion
For the first time, we have recorded ultrasonic vocaliza-
tions produced by two species of nocturnal Peromyscus in
the wild. Our detailed knowledge of the habitat, commu-
nity structure, and behaviors of these two species afforded
us the opportunity to place a dense array of ultrasonic
microphones in areas where only these species were
present, and where these species exhibited exclusive home
ranges. Our results, based on the location of recorded
USVs and the home ranges of locally resident individuals,
show that Peromyscus produce ultrasound in the wild. Fur-
thermore, based on the exclusive (no overlap between
species) home ranges of each species on Upper and Mid-
dle, we found that at the very least, P. boylii produces 2PW,
3PW, and BARK motifs and P. californicus produces 2PW,
4PW, L20, S20 and FMS20 motifs. It is probable that both
species are capable of producing all motifs but this
remains to be investigated.

In addition to demonstrating the production of USVs by
Peromyscus in the wild, our results show that USV produc-
tion is a common feature of the behavior of these noctur-
nal rodents and that there is variation in the types of USVs
produced. On only six nights of recording, we recorded 65
individual high quality phrases and seven unique motifs.
Furthermore, we found considerable variation in the
acoustic characteristics of the syllables and phrases for all
motifs, especially the 2PW, 3PW, 4PW, and BARK motifs,
suggesting individual or contextual variation in the pro-
duction of ultrasound.

The seven motifs superficially resemble laboratory record-
ings of rodent USVs [reviewed by [6,23]], but differ in fre-
quency, duration, and harmonic content, which may or
may not reflect differences in context and/or function. For
example, the shape of the BARK syllables resemble fre-
quency modulated syllables during mating behavior in
Apodemus [23]; however the frequency of the BARK sylla-
ble is much lower (Peromyscus peak of syllable at approxi-
mately 23 kHz vs 90 kHz for Apodemus). Likewise, the L20
syllable has a frequency that is similar to adult male rat
submissive syllables (approximately 21 kHz vs. 25
kHz;[23]). The S20 syllable superficially resembles aggres-
sive syllables produced by male rats in shape and dura-
tion, but is much lower in frequency (approximately 20
kHz vs. 50 kHz). We are unaware of any USVs recorded in
the lab that resemble the first syllable of the FMS20 motif.
The step-like frequency change within 2PW, 3PW, and
4PW motifs is reminiscent of the pattern seen in phrases
emitted by infant Microtus [23]. These superficial similari-
ties may reflect shared context and/or functions between
behaviors of laboratory and wild mice. However further

study is necessary, in part, because it is possible that simi-
larities and/or differences may reflect the use of inbred
laboratory strains in past studies. The temporal (seasonal)
and demographic context as well as the function of the
various (at least seven) motifs we have reported from the
wild, remains to be determined.

Based on existing literature regarding USV production by
muroid rodents in the laboratory and the functions of
USVs and sonic vocalizations in other mammals and
birds, USVs may function in a diversity of non-mutually
exclusive contexts, including echolocation, offspring-par-
ent communication, pair-bond maintenance, territorial
defence, and mate attraction [1,6,23,28,30]. An alarm
calling function [as in [5]] seems unlikely as alarm calling
in rodents is associated with diurnality and sociality [50],
neither of which are characteristic of the Peromyscus at
HNHR.

In a recent study, Holy and Guo [14] argued that ultra-
sonic vocalizations produced by male laboratory mice in
response to conspecific urine should be classified as
songs. They based this classification on the following two
characteristics of USV production by their mice. First, the
USVs contained multiple syllable types, and second, the
syllables are repeated in a regular manner over time. The
2PW, 3PW, and 4PW motifs we recorded clearly consist of
multiple syllable types. However, we do not know if, or
how often, 2PW, 3PW, and 4PW phrases are repeated by
the same individuals. Characterizing 2PW, 3PW, and 4PW
motifs as songs will only be possible with real time, con-
tinuous recordings of USVs and determination of the con-
text and functions of these USVs.

Conclusion
We have described the first recordings of ultrasonic vocal-
izations produced by two free-living species of mice in the
genus Peromyscus (P. californicus and P. boylii) in Califor-
nia. The ultrasonic vocalizations we recorded are fre-
quently produced and represent 7 different motifs. Within
each motif, there was considerable variation in the acous-
tic characteristics suggesting individual and contextual
variation in the production of ultrasound by these species.
It remains to be seen if other species of wild Peromyscus or
muroid rodents produce USVs, but given the breadth of
documented production of USVs in the laboratory, it
seems likely. The production of ultrasonic vocalizations
by Peromyscus in the wild highlights an underappreciated
component in the behavior of these model organisms and
promises to be an exciting area of research in the fields of
animal behavior, behavioral ecology, and sensory biol-
ogy. Specifically, the variation in mating system between
syntopic P. californicus and P. boylii offers excellent oppor-
tunities to test hypotheses regarding the function of USVs
in Peromyscus, especially within the contexts of parental
Page 6 of 12
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care, mate choice, and territorial defence. In general, the
ability to examine the production of ultrasonic vocaliza-
tions in the wild offers excellent opportunities to test
hypotheses regarding the function of ultrasound pro-
duced by rodents in a natural context.

Methods
Study species
Both P. californicus and P. boylii are sexually monomor-
phic and have similar schedules of gestation and lacta-
tion, diet, nest habitat, foraging habitat, and nightly
activity schedules [51,52]. Based on data from the Hast-
ings Natural History Reservation (HNHR), P. californicus,
is exclusively monogamous [53] with a male/female pair
nesting together during breeding and non-breeding sea-
sons in an exclusive home range [54]. At HNHR, P. boylii
shows variation in breeding system from polygyny to pro-
miscuity. Males and females do not share nests, do not
maintain long-term pair-bonds, and some litters are sired
by more than one male [55]. At moderate (20 mice/ha)
and high population densities (40–60 mice/ha) neither
males nor females defend territories [55]. The home
ranges of P. californicus pairs are exclusive of one another,
while the home ranges of P. boylii have extensive intraspe-
cific overlap. Thus, P. californicus and P. boylii are related
species that live in the same habitat, have similar diets and
life histories with respect to litter size and schedules of
gestation and lactation, but differ with respect to mating
system and territoriality.

Study area and live trapping
The Hastings Natural History Reservation (HNHR) is
located in the foothills of the Santa Lucia mountains in
upper Carmel Valley, California (Monterey County: 22.5
km SE Carmel Valley, 36°22'N, 121°33'W). Mean annual
rainfall is 53 cm, occurring between November and April
which corresponds to the breeding season of local Peromy-
scus species [56]. The HNHR encompasses three narrow
valleys with habitat types including riparian, oak-bay
woodland, chaparral, and grassland [57]. At HNHR P. cal-
ifornicus and P. boylii are syntopic and they are distributed
in the dense understory of canyon bottoms of north-fac-
ing slopes [52,54]. In this habitat, there is a long-term
live-trapping grid with approximately 10 m spacing that
was established for the study of P. californicus and P. boylii
(Lower Robertson Creek-"LRC"; Figure 3). A creek runs
through the grid and both species prefer the live-oak
(Quercus agrifolia) woodland riparian habitat that flanks
the creek (approximately 20–30 m on each side). We have
a very clear understanding of the community structure of
small mammals on the LRC grid because it has been
actively live-trapped for at least part of the year for most
years from 1988–2005 and through the breeding season
for nine of these years. On the LRC grid P. californicus and
P. boylii live at moderate to high population densities

(during acorn mast years approximately 20 individuals/
ha and 20–60 individuals/ha, respectively). Other rodents
on this grid live at relatively low densities (Neotoma macr-
otis, 5–10 individuals/ha; Reithrodontomys megalotis, Chae-
todipus californicus, Microtus californicus, 1–2 individuals/
ha). The only regular insectivore present is Sorex trow-
bridgei (1–2 individuals/ha).

Determining home ranges of mice
By continuously live-trapping the long-term LRC grid, it
was possible to determine the phenology and residency of
individual mice. We trapped on both Upper LRC and Mid-
dle LRC (Figure 3; herein referred to as "Middle" and
"Upper") from 6 Dec 2004 to 7 Jan 2005 to establish
home ranges of individual residents. Minimally, one Sher-
man trap was used at each trap station. All traps were set
2–3 times weekly. Traps were baited with rolled oats, and
standard mark and recapture techniques were used to
determine sex, age, and reproductive condition of individ-
uals [see [52]].

Based on trapping data, Kernel home range estimates were
calculated using ArcView 3.2 and Animal Movement SA v.
2.04 using all individuals we captured over the course of
the study from both regular and intensive trap stations
(see USV recording details and Figure 4). Although using
data collected through trapping likely underestimates the

Description of the LRC trapping gridFigure 3
Description of the LRC trapping grid. Lower Robertson 
Creek (LRC) Grid at HNHR. Long-term trap stations [Δ]. 
Creek denoted by dashed line. "Middle" and "Upper" sections 
shaded. Horizontal line is 10 meters.
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Setup of microphones on Upper and Middle section of LRC trapping gridFigure 4
Setup of microphones on Upper and Middle section of LRC trapping grid. Set up for recording USVs on a) Middle 
and b) Upper sections of the Lower Robertson Creek Grid at HNHR. Regular trap stations [Δ]. Intensive trap stations [+]. 
Microphones and the direction they were facing are indicated by directional microphone symbols. Creek denoted by dashed 
line. Horizontal line is 10 meters.
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size of home ranges of rodents [58], there is concordance
between size and shape of ranges [59] calculated through
trapping and radio-telemetry data. Kernel estimates were
based on 3–6 trapping events using a smoothing factor of
5 with 50 % core ranges presented. If there were less than
3 trapping events for an individual, the individual's pres-
ence was indicated with a circular area the average size of
the 50 % core range of conspecifics centred at the point of
capture.

Recording USVs
We conducted the recordings of USVs during the 2004/
2005 breeding season after the establishment of residency
for both species, from 12–18 Dec 2004. To record mouse
USVs we established a grid of microphones (bat detectors)
capable of recording broadband (10–120 kHz) ultra-
sound. We recorded with Pettersson D240x ultrasound
detectors (Pettersson Elektronik AB, Uppsala, Sweden).
These sampled at 307 kHz with 8 bit resolution. The bat
detector was set to continuously record a 1.7 s loop of
sound coming through the microphone. Upon detecting
any sound in the range of 10–120 kHz the playback
would be triggered and the previous 1.7 seconds of
recorded sound would be played back, with time
expanded by a factor of ten, into a voice activated tape
recorder (Panasonic Mini Cassette Recorder RQ-L31)
onto a low noise/high output audio cassette (Maxell P/I
Communicator Series™ C120). The audio cassette record-
ings were played back in real time to a computer and
saved as .wav files using SonoBat (DNDesign, Arcata, CA)
directly onto the onboard computer sound card (Sigma
Tel C-Major Audio) and resampled at 44.1 kHz with 16 bit
resolution to retain the full signal quality of the original
signal. We extracted time, amplitude, and frequency char-
acteristics from sonograms rendered by SonoBat which
used 1024 point fast Fourier transforms, 192 point win-
dows, and varied window overlap so as to always render
the sonogram with resolution greater than the screen pixel
resolution. Our recording system had a frequency
response up to the 12 kHz necessary to capture ultrasound
up to 120 kHz (with the time expansion factor of ten). The
maximum frequency resolution of the spectrographic
analysis was 154 kHz.

We recorded for 3 consecutive nights separately on both
Upper and Middle at 22 and 14 recording stations, respec-
tively (Figure 4). From 12–14 December on Upper, the
recording stations were placed approximately 5 m apart
(Figure 4). The 5 m spacing was chosen to maximize the
number of individual Peromyscus home ranges that we
would be covering while also maximizing the probability
of recording low intensity USVs. From 16–18 December
on Middle, the recording stations were placed approxi-
mately 5–20 m apart and the spacing was chosen prima-
rily based on suitable habitat availability (Figure 4).

At each recording station there were identical recording
systems that consisted of one bat detector (microphone),
acoustic cable, voice activated tape recorder and audio
cassette. To protect against humidity and rain, the record-
ing system was housed in two GladWare® containers; one
for the bat detector and one for the tape recorder. Two 15
mm holes were made in each container to accommodate
the acoustic cable and a second 10 mm hole was made in
the container with the bat detector to expose the micro-
phone. The recording system was further housed within
an open ended rectangular (38 cm width × 38 cm length
× 10 cm height) plywood box to protect against wind and
mechanical disturbance. The microphone on the detector
was set horizontally approximately 25 cm above the
ground facing out and flush with the opening of the box.
Microphone direction was toward the water for the sta-
tions on top of the creek bank and toward the bank for the
stations that were directly flanking the water (Figure 4), as
individuals of both species tend to have high levels of
activity near the bank edge [52].

Recording systems were set at sunset and retrieved the fol-
lowing morning. We did not live-trap while recording
USVs to avoid influencing the results of acoustic monitor-
ing. However, we saturated the area with additional Sher-
man traps (the intensive trap stations shown on Figure 4)
and trapped the 3 nights following the last night of
recording to confirm the presence and location of individ-
ual mice. In addition, we used 8 Fitch traps along the creek
bank, near recording units to determine the presence of
the local shrew species.

Any detected signals were digitized and analyzed using the
sound analysis software program SonoBat the morning
following the recordings. We analyzed syllables (see
Vocalization Terminology below) using standard acoustic
parameters including duration, starting frequency (hence-
forth F), ending F, high F, low F, bandwidth, F at maxi-
mum amplitude, slope, and duration between syllables.

All of these methods were conducted under an approved
protocol of the University of North Carolina at Greens-
boro's Institutional Animal Care and Use Committee
(UNCG-IACUC#05–08) and a scientific collecting permit
from the California Department of Fish and Game
(SCP#802046-01).

Vocalization terminology
For clarity and comparison, we use the terminology of
Holy and Guo [14]. A "syllable" is defined as a single dis-
crete sound (separated by silence from other sounds). A
"phrase" is defined as a succession of syllables where the
time between syllables is less than 400 msec. A "syllable
type" is a unique syllable that is recognizable and repeated
either within or between phrases. Syllable types can differ
Page 9 of 12
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in any of the following parameters: duration, low fre-
quency (henceforth F), high F, starting F, ending F, F at
maximum amplitude (henceforth Fmax), slope, and
bandwidth. Each phrase is grouped according to syllable
types, the number of syllables in a phrase, and the dura-
tion of time between syllables within a phrase. A "motif"
is a sequence of syllables that were recorded repeatedly
over time and that were statistically predictable based on
characteristics of the syllables, the number of syllables in
a phrase, and the duration of time between syllables
within a phrase. All of our phrases fell into one of seven
motifs, therefore the term "phrase" and "motif" can be
used interchangeably. In general, we use "motif" when we
are referring to the entire group of phrases, and phrase
when we are referring to a particular sequence of syllables.
Our USVs consisted of fundamental and harmonic fre-
quencies. Throughout the paper, we characterize and dis-
cuss only the fundamental frequency of the syllable.

List of abbreviations
"USV" Ultrasonic vocalization; "HNHR" Hastings Natural
History Reserve; "LRC" Lower Robertson Creek; "F" fre-
quency; "Fmax" frequency at maximum amplitude;
"2PW" two part whistle; "3PW" three part whistle; "4PW"
four part whistle; "FMS20" frequency modulated short 20;
"S20" short 20; "L20" long 20
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Additional material

Additional File 1
Playback of the 2PW motif in Figure 1a with the time scale expanded by 
a factor of 10 to render the fundamental frequency audible to humans.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S1.wav]

Additional File 2
Playback of the 3PW motif in Figure 1b with the time scale expanded by 
a factor of 10 to render the fundamental frequency audible to humans.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S2.wav]

Additional File 3
Playback of the 4PW motif in Figure 1c with the time scale expanded by 
a factor of 10 to render the fundamental frequency audible to humans.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S3.wav]

Additional File 4
Playback of the FMS20 motif in Figure 1d with the time scale expanded 
by a factor of 10 to render the fundamental frequency audible to humans.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S4.wav]

Additional File 5
Playback of the S20 motif in Figure 1e with the time scale expanded by a 
factor of 10 to render the fundamental frequency audible to humans.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S5.wav]

Additional File 6
Playback of the L20 motif in Figure 1f with the time scale expanded by a 
factor of 10 to render the fundamental frequency audible to humans.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S6.wav]

Additional File 7
Playback of the BARK motif in Figure 1g with the time scale expanded by 
a factor of 10 to render the fundamental frequency audible to humans.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S7.wav]

Additional File 8
Playback of shrew (Sorex trowbridgei) echolocation recorded on Upper 
(spectrogram not shown) with time expanded by a factor of 10 to render 
the fundamental frequency audible to humans.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S8.wav]

Additional File 9
Playback of bat echolocation recorded on Upper (spectrogram not shown) 
with time expanded by a factor of 10 to render the fundamental frequency 
audible to humans. Note the "feeding buzz" as the bat approaches and 
captures insect prey.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S9.wav]

Additional File 10
Descriptive statistics for components of each of the 7 motifs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
9994-3-3-S10.pdf]
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