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In much of the indeterminate music composed in the 1950s and 60s, the 

roles of the composer and performer are blurred, the performer having been 

given control over musical elements previously dictated solely by the composer.  

Often, decisions must be made by the performer that impact a work’s form and 

content, the composer’s quiet voice heard only in the directives influencing these 

decisions.  In many cases, these directives lack specificity, allowing for an infinite 

number of performance possibilities; in some cases, however, composer 

directives severely restrict that number, permitting it to be discretely counted. 

 To these latter cases we turn our attention, mathematically modeling the 

composer’s directives to enumerate all possible realizations of certain 

indeterminate scores.  Taking Morton Feldman’s Durations 2 and Karlheinz 

Stockhausen’s Klavierstück XI as primary examples, we calculate the total number 

of possible realizations, generalizing each case in order to enumerate the 

realizations of other works with similar characteristics.
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CHAPTER I 
 

INTRODUCTION
 

 
 In a lecture given at Darmstadt in 1958, the composer John Cage 

encapsulates the function of the performer of indeterminate music with the 

following metaphors:  “The function of the performer  

 
… is comparable to that of someone filling in color where outlines 
are given; 
 

… is that of giving form, providing, that is to say, the morphology 
of the continuity, the expressive content; 
 

… is that of a photographer who on obtaining a camera uses it to 
take a picture; 
 

… is comparable to that of a traveler who must constantly be 
catching trains the departures of which have not been announced 
but which are in the process of being announced.1 

 

Clearly, in Cage’s descriptions, the performer is given a level of responsibility 

heretofore unseen, assuming a decision-making role traditionally filled by the 

composer alone.2  This surrender of control to the performer was accomplished 

in many ways and to many degrees.  In some compositions, so much control is 

given the performer that the composer’s voice is difficult to hear, the shouts of 

                                                 
1 John Cage, Silence (Middletown: Wesleyan University Press, 1973).   
2 It should come as no surprise that the movement’s origins coincide with an era of total serialism, 
the former’s surrendering of control juxtaposing the latter’s exercise of it.   
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the performer guided by mere compositional whispers.  Cage’s Concert for Piano 

and Orchestra (1957), for example, leaves so many musical decisions to the hands 

of the performer that subsequent performances are often unrecognizable as the 

same work.  Pierre Boulez, on the other hand, was reluctant to so drastically 

soften his compositional voice; in the indeterminate middle movement of his 

Third Piano Sonata (Constellation-miroir), the performer is given control of only the 

path through the music—a path limited to but a handful of choices at each 

juncture. 3 

 Depending on the degree of control given to the performer, the number of 

realizations of an indeterminate score varies.  In Cage’s Concert, for instance, his 

intentional lack of specific direction and his employment of ambiguity provide 

the performer with a universe of possibilities, infinite in every aspect of 

performance.  The minimal freedoms in Boulez’s Third Piano Sonata, however, 

curb such far-reaching possibilities, limiting some aspects of its performance to a 

countable many. 

 This paper mathematically explores those indeterminate works whose 

compositional directives and high degree of compositional control render the 

number of possible realizations finite.  Taking Morton Feldman’s Durations 2 and 

Karlheinz Stockhausen’s Klavierstück XI as springboards, this paper will develop 

                                                 
3 For an interesting perspective on Boulez’s struggle with relinquishing compositional control to 
the performer (and to chance), see Jean-Jacques Nattiez, The Boulez-Cage Correspondences (New 
York: Cambridge University Press, 1993). 
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mathematical models of the composers’ directives to enumerate all possible 

realizations and subsequently generalize the models for similar compositional 

situations. 

 

Generalizations 

Naturally, the concept of enumerating performance realizations seems like 

a lost cause, since many attributes of sound (duration, frequency and volume, for 

instance) are non-discrete and therefore do not lend themselves to counting.  

Although we can measure these parameters as accurately as our present 

instruments allow, their continuous nature thwarts any attempt to fully 

enumerate the number of possible sounds.  Because of this infinitude, we must 

make some important generalizations. 

In this paper, the great variety of dynamics, attack, tempo, phrasing and 

timbre found in performances is not considered.  Here, only the order of notation 

is of interest, not the execution of that notation itself.  Let us consider Beethoven's 

Ninth Symphony as an example.  Though hundreds of unique recordings exist, 

the composer was quite strict as to the order of events.  Nowhere in the score did 

Beethoven give performers the option of leaving a page out, reversing the order 

of pages or beginning in the middle of a movement.  He left notation for one 

order of events alone, and thus for the present study, the number of realizations of 

Beethoven's masterpiece is one. 
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In some works of Stockhausen, Feldman, Cage and others, the order of the 

musical content is left up to the performer, allowing for multiple realizations of 

the same score.  Naturally, each realization—just like the Beethoven score—can 

be performed an infinite number of ways.  However, the exact number of 

realizations of an indeterminate score can often be determined, and it is to this 

end we now turn. 

 

Some Explanatory Examples 

 In order to develop the mathematical tools necessary for the enumeration 

of Durations 2 and Klavierstück XI, three manageable examples of increasing 

difficulty are now presented.  The first is from the realm of literature, a book by 

the French poet and mathematician Raymond Queneau (1903-1976).  Published 

in 1961, Cent Mille Milliards de Poèmes is a book of ten sonnets, each fourteen lines 

in length, whose pages are cut horizontally between lines.4  This permits the 

reader to freely mix and match lines from the ten poems so long as each line in a 

realization occupies the same position in its respective poem (in other words, the 

fourth line of a realization must come from a fourth line of one of the ten 

sonnets). 

                                                 
4 Raymond Queneau, Cent Mille Milliards de Poèmes (Paris: Kickshaws, 1983).   
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Enumerating all possible sonnet realizations found in Queneau’s 

collection is a relatively simple procedure.  There exist ten choices for line one 

(the first lines of the ten sonnets), ten choices for line two (the second lines of the 

ten sonnets), ten choices for line three, and so on, all the way to line fourteen. 

Because each choice is an independent event, we can simply multiply our choices 

together to enumerate all possible orderings: 

(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10) 

written concisely as  

1014 = 100,000,000,000,000 

possible realizations.  Thus, there are one hundred million million poems 

embedded in Queneau's book, just as the title proclaims. 

Slightly more complicated is a piece by the experimental composer Earle 

Brown entitled 25 Pages for 1-25 Pianos (1953).5  Here, the composer presents the 

performer(s) with 25 pages of music played in any order and either rightside-up 

or upside-down.6  Enumerating all possible realizations is very similar to the 

Queneau book, but with one important exception:  once a choice has been made 

for a certain page, there is one less page from which to choose the next.  This 

situation is commonly modeled with a factorial (denoted by !) and will figure 

                                                 
5 Earle Brown, 25 Pages for 1-25 Pianos (Toronto: Universal Edition, 1975). 
6 Although the employment of multiple pianos makes possible the simultaneous performance of 
multiple pages, Brown does not specifically address this possibility.  It is thus assumed that the 
25 pages must be performed separately.  Therefore, the number of performers, per the original 
assumptions regarding performance elements, has no effect on the number of realizations. 
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prominently in the remaining explorations.  The number of choices made by the 

performer for the first few pages are as follows: 

page choices 

1 25 choices of pages; 2 choices for page direction 

2 24 choices of pages; 2 choices for page direction 

3 23 choices of pages; 2 choices for page direction 

 

Clearly, the number of choices for each subsequent page decreases by one until 

all 25 pages have been chosen.  In addition, each page has a second choice 

attached to it—whether the page is played rightside-up or upside-down. 

Multiplying all of the choices together yields: 

(25)(2)(24)(2)(23)(2)(22)(2)(21)(2)(20)(2)…(3)(2)(2)(2)(1)(2) = (25!)(225) =  

520 469842 636666 622693 081088 000000, 

an extremely large number, known as five hundred twenty nonillion, four 

hundred sixty nine octillion, eight hundred forty two septillion, six hundred 

thirty six sextillion, six hundred sixty six quintillion, six hundred twenty two 

quadrillion, six hundred ninety three trillion, eighty one billion, eighty eight 

million. 

The third example of increasing complexity is also a literary work, very 

similar in nature to Brown’s 25 Pages.  Stéphane Mallarmé (1842-1898), the highly 

influential French symbolist poet, never completed his envisioned project known 
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as Le Livre, a book encompassing all forms of his creative energy.7  He did, 

however, write about the form of the book:  he planned to leave the pages 

unbound, thereby allowing the reader to choose not only the order of pages but 

also the number of pages read.  (He specifically mentions adjusting the length of 

“performances” for the number of people in the audience, shortening or 

lengthening as necessary.)  This situation is a bit more complicated than 25 Pages 

and requires another important mathematical tool to enumerate. 

Before this enumeration can begin, one must know the number of 

unbound pages.  Since Mallarmé never completed the work, the number of pages 

can be generalized with the variable x.  Clearly, if only one page is read from Le 

Livre, we have exactly x possible readings.  If two pages are read, however, we 

have x choices for page one and )1( −x choices for page two, and therefore 

)1)(( −xx  possible readings.  When three pages are read, there are 

)2)(1)(( −− xxx  possibilities; when all x pages are read (as in the Brown work), 

we have x! possible readings. 

Now that the number of readings for each performance length is known, 

they can be summed to obtain the total number of possible realizations.  To do so, 

we employ a summation that ranges from the minimum length of realization (1) 

to the maximum length (x). 

                                                 
7 Sam Slote, “Imposture Book Through the Ages,” 
http://www.antwerpjamesjoycecenter.com/ibook.html. 
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∑
= −

=++−−+−+
x

n nx

x
xxxxxxx

1 )!(

!
!...)2)(1)(()1)((  

Had Mallarmé finished the book with a mere 50 unbound pages, the number of 

possible readings would be 

∑
=

=
−

50

1 )!50(

!50

n n
 

298500 300825 338756  486449302984 301773 581009 572496 277258 076879 82674 , 

a number nearly as large as the number of atoms in our galaxy. 

 

General Notation 

The preceding explanatory examples required the use of some important 

math symbols.  Because a complete understanding of these symbols is necessary 

to the following sections, a short summary of notation is given. 

Factorial (!):  The product of all positive integers up to a given number. 

� Example:  120)1)(2)(3)(4)(5(!5 ==  

Summation Notation (Σ ):  Concise notation for the sum of an indexed family of 

values.8 

                                                 
8 For the mathematically untrained, the summation and product notation employ an index 
variable n underneath their respective Greek symbols.  This indexing variable ranges from its 
starting value (n=1) to its ending value (5) in steps of 1.  For each step, the index value is 
“plugged in” to the equation, resulting in a numerical solution.  These solutions (there are 5 for 
the examples given, since the indexing variable ranges from 1 to 5) are then either summed (in 
the case of the summation) or multiplied (in the case of the product) to arrive at the final answer. 
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� Example:  ∑
=

=++++=
5

1

301086422
n

n  

To these we add two more important symbols. 

Product Notation (Π ):  Concise notation for the product of an indexed family of 

values. 

� Example:  ∏
=

==
5

1

3840)10)(8)(6)(4)(2(2
n

n  

Combination Notation 







y

x
:  Shorthand notation for 

)!(!

!

yxy

x

−
.  Used to count 

the number of unique groups of y objects chosen from a larger group x objects. 

� Example:  The number of unique 5-card poker hands in a deck of 52 cards 

is 960,598,2
)!47)(!5(

!52

5

52
==








.9 

Equipped with an understanding of the preceding mathematical notation, 

explorations into the enumeration of Morton Feldman’s Durations 2 and 

Karlheinz Stockhausen’s Klavierstück XI are now possible.  Chapter II enumerates 

the possible realizations of Durations 2 and generalizes the results to encompass 

the enumeration of other indeterminate works of similar forms.  These 

                                                 

9 For a complete understanding of the following explorations, the identity 







−

=







yx

x

y

x
 

should be mentioned.  In essence, this simply states that there is the same number of 47-card 
groups (the complement) as 5-card groups. 
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explorations are followed by the enumeration of Klavierstück XI realizations in 

Chapter III, followed by some brief concluding remarks in Chapter IV.   
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CHAPTER II 

MORTON FELDMAN’S DURATIONS 2 
 
 

Feldman's Durations 2 (1960) consists of 51 cello and 50 piano sonorities 

whose durations are chosen by the performers.  The first line of the score, in 

addition to the composer's instructions, is shown in Figure 1.  After a 

simultaneous entrance by both instruments, the performers are free to play their 

sonorities with any duration and thus have control over the order of attacks.  

These unique orders of cello and piano attacks are the realizations to be 

enumerated. 

 

Notation for Durations 2 Enumeration 

Two additional pieces of notation will facilitate the following explorations. 

(x,y):  The number of possible realizations of x cello attacks and y piano attacks. 

� Example:  As will be discovered, the number of realizations of 2 cello 

attacks and 3 piano attacks is 25)3,2( = . 

Cx and Px  | The xth sonority of the cello and piano, respectively. 

� Example: The 6th cello sonority can be referred to as 6C . 
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Enumerating Realizations of Durations 2 

In order to count the possible orderings of sounds between the cello and 

piano, we begin with the instruments' second sonorities (since the first sound 

must be performed simultaneously).  There are exactly three possible 

relationships between these sonorities: the cello can precede the piano, the piano 

can precede the cello, or the sounds can be performed together.  Thus, 3)1,1( = .  

Expanding the possibilities to include two cello sonorities ( 1C and 2C ), we next 

consider (2,1).  Here, the piano sonority ( 1P ) can be performed in one of five 

places: before both cello sounds (option 1), together with 1C (option 2), in 

between 1C and 2C (option 3), together with 2C  (option 4), or after both 1C and 2C . 

(2,1)  1C   2C   

1 1P      

2  1P     

3   1P    

4    1P   

5     1P  

 

Naturally, this situation can be reversed without changing the number of 

possible outcomes, as shown in the following table. 
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(1,2)  1C   

1 1P  2P    

2 1P  2P   

3 1P   2P  

4  1P  2P  

5   1P  2P  

 

Thus, 5)2,1()1,2( == , and the reflexive property ),(),( xyyx =  holds for the 

notation. 

Proceeding to (3,1) and (4,1), a pattern soon emerges. 

(3,1)  1C   2C   3C   

1 1P        

2  1P       

3   1P      

4    1P     

5     1P    

6      1P   

7       1P  
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(4,1)  1C   2C   3C   4C   

1 1P          

2  1P         

3   1P        

4    1P       

5     1P      

6      1P     

7       1P    

8        1P   

9         1P  

 

Thus, 7)3,1()1,3( == and 9)4,1()1,4( == .  Having discovered a pattern for cases 

of the form )1,(x , we move on to cases of the form )2,(x . 

Remembering that 5)2,1()1,2( == , we can proceed to )2,2( . Taking the 

first two cello and piano sonorities as examples, the number of realizations are 

discovered by plotting all possibilities on the following table. 
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(2,2)  1C   2C   

1 1P  2P      

2 1P  2P     

3 1P   2P    

4 1P    2P   

5 1P     2P  

6  1P  2P    

7  1P   2P   

8  1P    2P  

9   1P  2P    

10   1P  2P   

11   1P   2P  

12    1P  2P  

13     1P  2P  

 

Thus, 13)2,2( = . A quick exploration a bit further demonstrates 

that 25)3,2()2,3( == , 41)4,2()2,4( == , 63)3,3( = , 129)4,3()3,4( ==  and 

321)4,4( = .  Clearly, all scenarios of the form 1)0,(),0( == xx , and so, we now 

plot all results (Table 1) as x and y range from 0 to 4 and look for patterns. 
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),( yx  0 1 2 3 4 

0 1 1 1 1 1 

1 1 3 5 7 9 

2 1 5 13 25 41 

3 1 7 25 63 129 

4 1 9 41 129 321 

 
Table 1.  Possible Realizations ),( yx  [ ]4,0 ≤≤ yx  

 

Due to the lack of an obvious pattern, one initial reaction is to model each row or 

column with a suitable equation.  This attempt seems manageable at first:  row 0 

can be modeled with the constant equation 10 =r  and row 1 with the linear 

equation 121 += xr .  Slightly more work uncovers the equations modeling rows 

2, 3 and 4. 

122 2
2 ++= xxr  

1
3

8
2

3

4 23
3 +++= xxxr  

1
3

8

3

10

3

4

3

2 234
4 ++++= xxxxr  

The fact that each row of our numbers requires a polynomial of different 

degree (each row n requiring a polynomial of degree n) is reminiscent of Pascal’s 

Triangle.  Shown in Figure 2, the triangle has applications from algebra to 

combinatorics and is derived using a relatively simple procedure:  each number 
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is the sum of the two numbers found diagonally above it.  For example, the 10s in 

the fifth row are the sums of the 4 and 6 diagonally above.   

 

     1      

    1  1     

   1  2  1    

  1  3  3  1   

 1  4  6  4  1  

1  5  10  10  5  1 

 
Figure 2.  Pascal’s Triangle 

 

The triangle shares an important property with the numbers of Durations 2 

realizations:  like each row of Table 1, each diagonal column can be described 

with a polynomial of degree n, where n is the column number (starting at 0).  For 

the numbers in Pascal’s Triangle, the first three of those polynomials are 10 =c , 

11 += xc  and 1
2

3

2

1 2
2 ++= xxc .  Using polynomials to describe individual 

columns is rather cumbersome, however, and so a separate formula is used.  

That formula, 

)!(!

!
),(

yxy

x
y

x
yxP

−
=








=  
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concisely describes all numbers in Pascal’s Triangle, where x is the row number 

and y is the diagonal column number.10  As stated in the previous section, this 

notation also describes the number of unique groups of y objects chosen from a 

larger group of x objects.  Taking row 4 ( 4=x ) as an example, there is 1 unique 

group of 0 objects [ 1
0

4
=








], 4 unique groups of 1 object [ 4

1

4
=








], 6 unique 

groups of 2 objects [ 6
2

4
=








], 4 unique groups of 3 objects [ 4

3

4
=








], and 1 unique 

group of 4 objects [ 1
4

4
=








]. 

 Only after discovering the second similarity to Durations 2 realizations, 

however, is this brief diversion into Pascal’s Triangle fully justified.  Shown as a 

triangle in Figure 3, the numbers of Table 1 not only require polynomials of 

increasing degree, they, too, can be derived using a simple procedure similar to 

that of Pascal’s Triangle:  each number is the sum of the two numbers found 

diagonally above it and the number directly above it.  Correspondingly, each cell 

in Table 1 is the sum of the cell to the left, above and above-left.  Only after 

observing the similarities of the polynomial descriptions of the numbers of Table 

1 and the numbers in Pascal’s Triangle does this elusive quality of the numbers 

become apparent. 

                                                 
10 Setting y equal to a constant in this equation will produce a polynomial for describing the 
numbers of the yth diagonal column. 
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     1      

    1  1     

   1  3  1    

  1  5  5  1   

 1  7  13  7  1  

1  9  25  25  9  1 

 
Figure 3.  Numbers of Table 1 in Triangle Form 

  

Due to the abundant study of such patterns in the field of mathematics, it 

is not surprising that the Table 1 numbers have been previously encountered.  

First discovered in 1889 by the French mathematician Henri Delannoy, they 

appeared in his explorations of lattice path enumeration.11  When counting the 

number of king’s paths from a corner square of a chessboard to any other square 

(x,y) (prohibiting the king from moving backwards), Delannoy preempted our 

musical situation of free duration:  whereas the king may move right, up, or 

diagonally up to the right from the bottom left-hand corner square, the cello may 

play before, after, or simultaneously with the piano.  Viewing the x axis as the 

piano and the y axis as the cello, the congruence of such paths and free duration 

becomes clear, as shown in Figure 4.  Here, a lattice path is employed to depict 

the following realizations of (4,4):  1C and 1P  simultaneously, then 2C , then 

3C and 2P  simultaneously, then 3P , then 4P , and finally 4C . 

                                                 
11 For an overview of Henri Delannoy’s mathematical pursuits, see Banderier et al., “Why 
Delannoy Numbers?” Journal of Statistical Planning and Inference 135 (2004): 40-54.  
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Figure 4.  One of 321 Possible Realizations of (4,4) 
 

Since their discovery, these numbers, called the Delannoy numbers, have been 

shown to have applications outside the realm of lattice path enumeration in 

fields as disparate as construction (counting floor tiles) to molecular biology 

(counting alignments between DNA sequences).  To their many known 

applications, the enumeration of free duration between two instruments can now 

be added. 

 Of the multiple equations used to succinctly describe all Delannoy 

numbers, ∑
=


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
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


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n

y

n

x
yxD

0

2),( will be utilized due to its similarity to the 

equation that describes the numbers of Pascal’s Triangle.  Because the index of 

the summation notation ranges from 0 to x, the stipulation yx ≤  must be made 

to ensure the bottom number of each combination notation is less than or equal 

to the top number.  This requirement is of no burden, however, due to our 
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notation’s reflexive property.  Therefore, Feldman’s Durations 2, consisting of 51 

cello attacks and 50 piano attacks, is modeled by (50,49) (one less for each 

instrument because of their simultaneous first attack), which, without loss of 

generality, can be reversed to (49,50), giving us the grand total of 

∑
=

=















=

49

0

224645 307448349527   427820505422 328374 62
5049

)50,49(
n

n

nn
D  

realizations.  This number is deceptively large:  were every person living on 

earth today capable of performing two billion realizations a second with another 

person, it would take twice as long as the universe is old to perform them all. 

 

Similar Works and Possible Extensions 

 Durations 2 is hardly the only work employing free duration whose 

realizations can be similarly enumerated.  In the final movement of Feldman’s 

Last Pieces (1959)12, for example, the directions “durations are free for each hand” 

give sole control of the realization process to the single pianist.  In Durations 3 

(1961)13, a trio for violin, tuba and piano, Feldman introduces a third voice and 

therefore a third dimension to the lattice path analogy.  Viewing the violin, tuba 

and piano as the x, y and z dimensions of a cube, the number of realizations of 

the 28 violin attacks, 40 tuba attacks and 42 piano attacks can be modeled by the 

                                                 
12 Morton Feldman, Solo Piano Works 1950-64 (New York: C. F. Peters, 1998).   
13 Morton Feldman, Durations 3 (New York: C. F. Peters, 1961).   
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number of lattice paths from )0,0,0(  to )42,40,28(  in which seven “moves” are 

allowed: 

)0,0,1(  the violin attacks 

)0,1,0(  the tuba attacks 

)1,0,0(  the piano attacks 

)0,1,1(  the violin and tuba attack simultaneously 

)1,0,1(  the violin and piano attack simultaneously 

)1,1,0(  the tuba and piano attack simultaneously 

)1,1,1(  the violin, tuba and piano attack simultaneously 

 

As an example of just how many realizations this third dimension adds, consider 

a smaller work of twenty attacks for each of the three instruments.  Modeled by 

the formula enumerating 3-dimensional Delannoy lattice paths, we have 
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or 1785 928841 771860 542254 045576 118961 realizations.  Compared to the 

number of realizations of twenty attacks for only two instruments (like the 

original problem), 
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one notices that the addition of an instrument (dimension) more than squares the 

number of realizations.  Taking this one step further, Feldman’s Piece for Four 

Pianos (1957)14 is a score of 74 attacks given to four pianists who perform the 

identical score with personally chosen durations.  Although an explicit formula 

modeling 4-dimensional Delannoy lattice paths is not available, a recursive 

algorithm can be employed to enumerate these multi-dimensional situations.  A 

super-computer at Indiana University was required to calculate the number of 

realizations of Piece for Four Pianos (the algorithm can be found in Appendix A): 

2813 984819  
522048 638528 753141 769695 784932 097032 987905 749502 728120 279768 877480 
339807 616963 263084 366030 231317 492576 803137 210956 605599 129442 997810 
332485 506721 469756 898072 827415 581434 905013 243568 406405 506904 151051 

 

The name of this 208-digit number, the largest by far found in this paper, begins 

two octosexagintillion, eight hundred thirteen septensexagintillion… 

  Morton Feldman is by no means the only composer employing free 

duration.  Late in his compositional life, John Cage began writing free-durational 

works referred to by Pritchett as the “number pieces.”15  The titles of the pieces 

simply refer to the number of performers:  One (1987)16 is for a single pianist; Five 

(1988)17 is for a string quintet.  With few exceptions, these works employ “time 

                                                 
14 Morton Feldman, Piece for Four Pianos (New York: C. F. Peters, 1961). 
15 James Pritchett, The Music of John Cage (New York: Cambridge University Press, 1996).   
16 John Cage, One (New York: C. F. Peters, 1988). 
17 John Cage, Five (New York: C. F. Peters, 1988). 
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brackets” at the beginning and end of each staff, denoting the timespans during 

which the performer must actualize the sonorities.  For example, the first staff of 

Two for flute and piano includes the time bracket ]"45'0"00'0[ −  at the beginning of 

the staff and ]"15'1"30'0[ −  at the end, requiring the performer to begin playing 

the sonorities within the first 45-second span and finish playing them sometime 

within the second 45-second span.  When the ending time bracket on one staff 

does not overlap the beginning time bracket on the subsequent staff, the situation 

can be modeled with n-dimensional Delannoy lattice paths, n referring to the 

number of separate voices (this is the case for Two2 for two pianos).  However, 

more often than not Cage allows for a blending of staves by setting one staff’s 

ending time later than the following staff’s beginning time.  This greatly 

complicates any enumeration of possible realizations and is fertile grounds for 

further study. 
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CHAPTER III 

KARLHEINZ STOCKHAUSEN’S KLAVIERSTÜCK XI 
 
 

 Karlheinz Stockhausen’s Klavierstück XI consists of 19 musical fragments 

spread around a poster-sized page.  The performance directions, found on the 

reverse side of the score, can be paraphrased as follows: 

� Randomly glance at any musical fragment and play it, choosing the 

tempo, dynamic and attack at will. 

� At the end of the fragment are three symbols providing the tempo, 

dynamic and attack of the next fragment.  Choose the next fragment at 

random and perform it according to these indications. 

� Continue this process until a fragment is reached for the third time, at 

which moment one realization has ended. 

These rules permit many possible realizations employing each of the 19 

fragments once, twice or not at all. 

 

The Stockhausen Problem 

 Naturally, one might wonder how many possible realizations of this 

indeterminate work exist.  Were each fragment permitted only one occurrence, 
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we’d have a congruent situation with Mallarmé’s Le Livre, the performer 

permitted to play any number of the 19 fragments in any order, giving us  

∑
=

=
−

19

1 )!19(

!19

n n
330665 665962 403999 

possible realizations.  Clearly, permitting a second occurrence of the musical 

fragments will dramatically increase this number.  As per one of the initial 

premises, the three designations following each fragment (tempo, dynamic and 

attack) can be ignored, since they inform aspects of performance unrelated to the 

ordering of the musical fragments. 

 There are multiple facets to enumerating the possible realizations of 

Klavierstück XI that must be addressed before proceeding with any exploration.  

First, one must decide the vantage point from which the problem is approached.  

Since the last fragment is not played, the listener of a performance of the work 

will not be aware of that fragment’s identity; the performer, however, will know, 

since he/she chooses it.  In the following explorations, the vantage point of the 

listener is assumed unless otherwise stated.  Second, there is a small amount of 

ambiguity in the directives given by Stockhausen which leads to two possible 

interpretations: 

� Interpretation one—When Stockhausen writes “pick another fragment,” 
he is prohibiting the performer from immediately choosing the preceding 
fragment again. 
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� Interpretation two—“Another fragment” means any fragment, including 
the one just performed. 

 

Naturally, interpretation one seems more likely.  When asked to pick a number 

one through ten, then to pick another number one through ten, most people 

choose two distinct numbers.  However, that the choices of fragments are to be 

random lends credence to the second interpretation, since a truly random choice 

would equalize the probabilities of all fragments, including the one just 

performed. 

 The number of realizations of Klavierstück XI under the first interpretation 

of Stockhausen’s directives is a difficult combinatorics problem and was solved 

by Lily Yen18 and later generalized by Yen and Ronald Read.19  Their solution 

provides a total of 

1024 937361 666644 598071 114328 769317 982974 

possible realizations assuming that fragments cannot be immediately repeated.  

Clearly, allowing fragments to be immediately repeated under interpretation two 

relaxes the situation, leading to a larger number of expected realizations. 

                                                 
18 Lily Yen, “A Combinatorial Proof for Stockhausen's Problem,” SIAM Journal on Discrete 
Mathematics 10, no. 3 (1997). 
19 Ronald Read and Lily Yen, “A Note on the Stockhausen Problem,” Journal of Combinatorial 
Theory 76, no. 1 (1996): 1-10.   
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Notation for Klavierstück XI Enumeration 

 The following notation will be employed during the explorations of 

Klavierstück XI. 

A, B, C, etc.:  Uppercase letters denote repeated fragments in the underlying 

structure of a realization.  In order to prevent double-counting, the first instance 

of A must precede the first instance of B, and so on. 

� Example:  A realization involving three repeated fragments can be notated 

ABACCB, but not BCBAAC.  Although these two examples are apparently 

distinct, they reflect the same underlying structure and therefore only the 

first is used. 

x:  Lowercase xs denotes unrepeated fragments in the underlying structure of a 

realization. 

� Example:  A realization involving three repeated fragments and two 

unrepeated fragments can be notated xABACxCB. 

Together, the uppercase letters and the lowercase xs denote the configuration of a 

realization.  Configurations consisting solely of uppercase letters are called base 

configurations; these configurations contain only repeated fragments.  The 

configurations themselves do not denote the fragments chosen for a specific 

realization, but rather show the overall shape or form of a realization.  The specific 

fragments filling in the letters of the configuration is a separate matter. 
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Enumerating Realizations with Immediate Repetitions Permissible 

 In order to enumerate all possible realizations under the second 

interpretation of Stockhausen’s directions (allowing for such realizations as 

xxAAxxx and AABBCCDD, uncounted in Yen and Read’s enumeration), the 

realizations are broken up into 19 cases: 

� Case 1.  This case includes all realizations in which exactly one (1) 

fragment is repeated.  In order for a performance to be complete, one 

fragment must be chosen for the third time, requiring at least one 

fragment to be repeated in each realization.  Case 1 counts those 

realizations that meet this requirement at its very minimum.  Realizations 

from Case 1 will range in length from 2 fragments (AA—the shortest 

overall form of realization) to 20 fragments (the realizations which include 

a single instance of each of the other 18 fragments 

[xxxxxAxxxxxxxxxxAxxx, for example]).  Other examples of Case 1 

realizations are xxAAx, AxxxxxxxxxxxxAx and xAxxxxxA. 

� Case 2.  This case includes all realizations in which exactly two (2) 

fragments are repeated.  Such realizations can range from 4 in length 

(ABBA, for example) to 21 (in which the other 17 fragments are all present 

[xxxxAxxxBBxxxxxxAxxx, for example]).  Other examples of Case 2 

realizations are xxABxxxBxxA, AAxxxBxxBx and ABABxxxxx. 
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� Case 3.  This case includes all realizations in which exactly three (3) 

fragments are repeated.  These realizations range from 6 in length 

(ABACCB, for example) to 22 in length (xxxAxxBxACBxxxxxCxxxxx, for 

example). 

Cases 4-18 continue in the pattern, including those realizations in which exactly 

four, five, six, … , eighteen fragments are repeated, bringing us to Case 19. 

� Case 19.  This case includes all realizations in which each of the nineteen 

(19) fragments is repeated.  Every realization in Case 19 will be of length 

38, since each fragment will appear exactly twice.  Once each fragment has 

made its second appearance, any choice for the next fragment would 

affect its third instance and thus result in the end of the performance. 

By design, Cases 1-19 are mutually exclusive:  all possible realizations fit nicely 

into exactly one of them.  Therefore, by counting all possible realizations in each 

case and adding them all together, we are assured that 1) no realization will be 

double-counted, and 2) all possible realizations are accounted for.  To begin, let 

us consider Case 1. 

The shortest of all Case 1 realizations is 2 fragments in length, having the 

configuration AA.  Here, any of the fragments is chosen, immediately repeated, 

and chosen again for the third time, thereby terminating the performance.  A 

Case 1 realization of length 3 takes one of the three following configurations:  

AAx, AxA or xAA.  A Case 1 realization of length 4 takes any one of six 
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configurations:  AAxx, AxAx, AxxA, xAAx, xAxA or xxAA.  Such calculation 

quickly becomes cumbersome, since Case 1 realizations range to 20 in length. 

Therefore, we mathematically describe the number of configurations for each 

length n of Case 1 realizations ( 202 ≤≤ n ) using a combination, since the 

repeated fragment A must hold 2 positions in any realization of length n. 

length n 
sample  

configuration  
number of 

configurations 

2 AA 1 

3 AAx 3 

4 xAxA 6 

5 xAAxx 10 

202 ≤≤ n   







2

n
 

 

Having mathematically modeled the number of configurations for realizations of 

Case 1, the choices for specific fragments are considered.  There are 19 possible 

performances of length 2, since there are 19 fragments and only 1 configuration 

(AA) from which to choose.  For length 3 realizations, there are 19 choices for the 

repeated fragment, 18 choices for the unrepeated fragment, and 3 choices for the 

configuration (AAx, AxA or xAA), giving us a total of 1026)3)(18)(19( =  

realizations of length 3.  Length 4 realizations follow in this vein, with 19 choices 

for the repeated fragment, 18 and 17 choices for the two unrepeated fragments, 

and 6 choices for the configuration, providing a total of 34884)6)(17)(18)(19( =  
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realizations of length 4.  As can be seen in Table 2, the number of realizations at 

each length can be found by multiplying the number of fragment choices by the 

number of configurations. 

 

length n 
sample 

configuration 
fragment 
choices 

number of 
configurations 

number of 
realizations 

2 AA 19 1 (19)(1) 

3 AAx (19)(18) 3 (19)(18)(3) 

4 xAxA (19)(18)(17) 6 (19)(18)(17)(6) 

5 xAAxx (19)(18)(17)(16) 10 (19)(18)(17)(16)(10) 

202 ≤≤ n   
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
2
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Table 2.  Summary of Case 1 Realizations 

 

Having derived a general equation that counts all possible Case 1 realizations of 

length n ( 202 ≤≤ n ), summation notation is now employed, providing the total 

number of Case 1 realizations. 

=



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=
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2 2)!20(

!19

n
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56 709161 712552 286009 

Let us now consider Case 2 realizations, where exactly 2 fragments are 

repeated.  As stated before, the lengths of Case 2 realizations range from 4 to 21; 

however, the number of configurations is less straightforward than in Case 1.  

Starting with the shortest length realization ( 4=n ), there are three base 

configurations:  AABB, ABAB or ABBA.  A Case 2 realization of length 5 includes 
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one unrepeated musical fragment and can take any one of the five positions in 

any of the three aforementioned base configurations, granting a total of 15 

possibilities. 

AABBx ABABx ABBAx 

AABxB ABAxB ABBxA 

AAxBB ABxAB ABxBA 

AxABB AxBAB AxBBA 

xAABB xABAB xABBA 

 

For realizations of length 6, the two unrepeated fragments can occur in 15 

different positions in each of the three base configurations, increasing the 

possible configurations to 45)15)(3( = . 
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AABBxx ABABxx ABBAxx 

AABxBx ABAxBx ABBxAx 

AAxBBx ABxABx ABxBAx 

AxABBx AxBABx AxBBAx 

xAABBx xABABx xABBAx 

AABxxB ABAxxB ABBxxA 

AAxBxB ABxAxB ABxBxA 

AxABxB AxBAxB AxBBxA 

xAABxB xABAxB xABBxA 

AAxxBB ABxxAB ABxxBA 

AxAxBB AxBxAB AxBxBA 

xAAxBB xABxAB xABxBA 

AxxABB AxxBAB AxxBBA 

xAxABB xAxBAB xAxBBA 

xxAABB xxABAB xxABBA 

 

To mathematically describe the configurations for Case 2, we notice that the two 

repeated fragments occupy four places in a string of length n ( 214 ≤≤ n ) and can 

occur in one of three orders (the base configurations AABB, ABAB and ABBA).  

Therefore, a combination can be similarly employed to describe the number of 

possible configurations for each length of Case 2 realizations. 
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length n 
sample 

configuration 
number of 

configurations 

4 AABB 3 

5 ABxAB (3)(5) 

6 xABBxA (3)(15) 

214 ≤≤ n   







4

)3(
n

 

 

Just as in Case 1, we now multiply the number of fragment choices by the 

possible configurations at each length, as shown in Table 3.  

 

length n 
sample 

configuration 
fragment 
choices 

number of 
configurations 

number of 
realizations 

4 AABB (19)(18) 3 (19)(18)(3) 

5 ABxAB (19)(18)(17) (3)(5) (19)(18)(17)(3)(5) 

6 xABBxA (19)(18)(17)(16) (3)(15) (19)(18)(17)(16)(3)(15) 

214 ≤≤ n   
)!21(
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Table 3.  Summary of Case 2 Realizations 

 

To arrive at the total number of Case 2 realizations, summation notation is again 

employed to add the number of realizations of each length n ( 214 ≤≤ n ). 

∑
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n
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n
4888 106540 297482 431276 

Exploring Case 3 realizations will elucidate the emerging patterns, 

allowing us to predict the behaviors of Cases 4-19.  Since Case 3 realizations 



 37 

require three repeated fragments, the shortest realizations will be of length 6.  

The base configurations for Case 3 can be found by placing a new fragment at the 

beginning of the base configurations for Case 2 and placing its repetition in each 

of the 5 remaining positions.  Using each of the three base configurations from 

Case 2 (relabeled as BBCC, BCBC and BCCB below), we arrive at 15 base 

configurations for Case 3. 

AABBCC AABCBC AABCCB 

ABABCC ABACBC ABACCB 

ABBACC ABCABC ABCACB 

ABBCAC ABCBAC ABCCAB 

ABBCCA ABCBCA ABCCBA 

 

Now that the base configurations for Case 3 have been determined, the 

configurations can be lengthened with unrepeated fragments.  An unrepeated 

fragment in a realization of length 7 can be placed in any one of seven positions 

of the 15 base configurations (using the base form AABBCC as an example: 

AABBCCx, AABBCxC, AABBxCC, AABxBCC, AAxBBCC, AxABBCC and 

xAABBCC), giving us a total of 105)7)(15( =  different configurations of length 7.  

Case 3 realizations of length 8 require two unrepeated fragments; for each of the 

15 base configurations, these fragments can appear in 28 arrangements (choosing 

2 positions from a string of 8), thereby providing a total of 420)28)(15( =  
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different configurations of length 8.  Table 4 can now be constructed to help 

attain a generalized equation for enumerating Case 3 realizations.  

length n 
sample 

configuration 
fragment choices 

number of 
configurations 

number of 
realizations 

6 ABACCB (19)(18)(17) 15 (19)(18)(17)(!5) 

7 ABACxCB (19)(18)(17)(16) (15)(7) (19)(18)(17)(16)(15)(7) 

8 AxBACxCB (19)(18)(17)(16)(15) (15)(28) (19)(18)(17)(16)(15)(15)(28) 

226 ≤≤ n   
)!22(

!19

n−
 








6

)15(
n

 








− 6)!22(

!19
)15(

n

n
 

 
Table 4.  Summary of Case 3 Realizations 

 

Just as in the previous Cases 1 and 2, all Case 3 realizations of length n 

( 226 ≤≤ n ) can be enumerated using summation notation. 

∑
=

=








−

22

6 6)!22(

!19
)15(

n

n

n
280394 075656 508817 201930 

Having created a generalized formula for counting the realizations of 

Cases 1, 2 and 3, patterns are now observed in order to generalize all Cases 1 

through 19.  Viewing the generalized formulas for Cases 1-3 together, their 

common attributes become apparent. 
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case c generalized equation 
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Subsequently, we can write an equation for a generalized Case c. 
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In our generalized equation, there are three variables: minimum length, 

maximum length and number of base configurations.  Before the equation can be 

of use, each variable must be related to a common variable—the case number c.  

Relating two of these variables to c is relatively simple:  the minimum length is 

twice the number of repeated fragments (2c) and the maximum length is 19+c .  

Relating the number of base configurations to c, however, is not quite as 

straightforward.  In finding the number of base configurations for Case 3 

realizations, we noticed that the new repeated fragment could occupy five 

positions in each of the three base configurations from Case 2, resulting in a total 

of 15)5)(3( =  base configurations for Case 3.  The base configurations for Case 4 

can be attained similarly, since the new repeated fragment could hold seven 
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positions in each of the 15 base configurations for Case 3.  This pattern can be 

generalized with an equation employing product notation. 

 

case c 
sample 

base configuration  
number of 

base configurations 

1 AA 1 

2 ABBA (1)(3) 

3 ABCBAC (1)(3)(5) 

4 ABACDDBC (1)(3)(5)(7) 

191 ≤≤ c   ( )∏
=

−
c

y

y
1

12  

 

Having related the three variables to the common variable c, a generalized 

equation for any Case c ( 191 ≤≤ c ) is now constructed 
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and summation notation is again employed, enumerating all realizations of 

Cases 1-19 by setting c to range from 1 to 19. 
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Evaluating this expression gives all possible realizations when immediate 

repetitions of a musical fragment are permissible, the second interpretation of 

Stockhausen’s directives.  The total, 
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2748 629142 904964 305737 593042 179938 584355, 

is about 2.5 times larger than when immediate repetitions are prohibited 

(interpretation one).  Its size is quite difficult to grasp; if we possessed that many 

cups of water, we could fill up the oceans roughly as many times as there are 

cups of water in the oceans. 

 Viewing the problem from a performer's point of view, the number of 

realizations will naturally increase, since the performer has multiple choices as to 

which fragment he/she returns to for the third time, thereby ending the 

performance.  Because the performer has exactly c choices for this culminating 

fragment, the generalized equation is multiplied by c and Cases 1-19 are summed. 
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This yields a number nearly 18 times as large as the number of realizations from 

a listener’s perspective. 

 

Varying the Number of Starting Fragments 

In order to fully generalize our equation, a different number of starting 

fragments and required repetitions must be allowed, permitting a composer 

wishing to begin with 10 fragments or requiring 6 repetitions to calculate the 

total number of possible realizations.  To begin, varying the number of starting 

fragments f is considered.  The variable f will be the new upper bound to the 
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outermost summation, since the equation sums case by case until the final case 

(the number of starting fragments) is reached; therefore, ∑
=

19

1c

is replaced with 

∑
=

f

c 1

. The inside summation, ∑
+

=

19

2

c

cn

, sums all lengths for each case, starting from 

the minimum length (2c) to the maximum length ( 19+c ). As was discovered 

before, the maximum length for each case is simply the case plus the number of 

fragments, so substituting fc +  for 19+c  completes this generalization. 

∑ ∑ ∏
=

+

= = 































−+









−

f

c

fc

cn

c

y c

n

nfc

f
y

1 2 1 2)!(

!
)12(  

Clearly, letting 19=f  models the original problem. Letting 10=f  models a 

piece with ten original starting fragments, only allowing for 

6630 796791 915670 

realizations, a number dwarfed by the outcomes when 19=f . 

 

Varying the Number of Required Repetitions 

Enumerating the possible realizations of similar works with a different 

number of required repetitions is undoubtedly the most difficult task yet 

encountered.  Although the approach taken in the original explorations is 

manageable and clear, a similar approach to the situation of four required 

repetitions, for example, quickly becomes burdensome.  Not only does the 
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equation for base configurations need rethinking, the entire case system on 

which the solution to the original problem rests requires heavy modification.  

The previous case system separating realizations by their number of repeated 

fragments is no longer enough:  because realizations will now have at least one 

fragment repeated three times, subcases are necessary to further separate these 

realizations by their number of twice-repeated fragments.  For example, Case 3 

realizations—those with three fragments repeated three times—require separate 

subsets:  Case 3.1 includes those realizations with one fragment repeated twice, 

Case 3.2 includes those realizations with two fragments repeated twice, and so on. 

Although cumbersome, this method does indeed work.  Once the 

equation for base configurations is modified to ∏
=








 −c

y

y

1 2

13
 (a derivation left to 

the reader), one can enumerate the realizations of Case 1.0 (one thrice-repeated 

fragment, no other repeated fragment), Case 1.1 (one thrice-repeated fragment, 

one twice-repeated fragment), Case 1.2 (one thrice-repeated fragment, two twice 

repeated fragments), all the way to Case 1.18 (one thrice-repeated fragment, 

eighteen twice-repeated fragments), then sum them all.  Cases 2 through 19 can 

be similarly enumerated, each subsequent case requiring one less subcase. 

Such bottom-up explorations (those employing equations that recursively 

build on other equations) do not rival the power and elegance of a top-down 

approach—one in which every possible number of required repetitions is 
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considered at once.  This elegance, though, does have a drawback:  grasping such 

an approach requires mathematics training far beyond that of the vast majority 

of musicians.  The approach taken in this paper, specifically designed for an 

audience of musicians, has served its purpose for Klavierstück XI; we leave the 

generalized equations for all possible numbers of required repetitions to higher-

level combinatorics.  (The referenced generalized equation can be found in 

Appendix B.) 
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CHAPTER IV 

CONCLUDING REMARKS 
  
 

After much effort deriving equations that mathematically model the 

number of possible realizations of an indeterminate score, it is fair to question 

the overall purpose of such a study.  Most musicians would agree that a 

performance of a work is more than the specific pitches played or the specific 

bowings and fingerings employed.  Although a substantial amount of a 

musician’s training is spent mastering the execution of these skills, these efforts 

are augmented by studies in historical contexts, notational procedures and 

theoretical grammars—in short, the elements that inform an interpretation, 

thereby separating the performances of robots from those of sentient human 

musicians.  It seems obvious that a poet, having written a poem for recitation 

before an audience, would desire his/her performer to be able to not only speak 

the individual words of the poem, but also to have reached some understanding 

of their meaning.  Likewise, musical performances tend to fall flat when notes are 

simply played, the performer giving the audience no sense of personal voice, 

direction, context or signification.   

Before performing any work (a Beethoven sonata, for example), the list of 

concepts with which a well-informed musician must first become acquainted is 
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staggering, including (at the minimum) form, harmony, tradition, mechanics of 

the instrument, purpose for writing and mental state of the composer.  Only with 

a suitable understanding of the preceding elements can a performer produce a 

well-informed performance, personally choosing which elements he/she wishes 

to highlight. 

The mathematical explorations in this paper provide an additional 

element by which a performer of indeterminate music can be informed.  Just as 

the performer of a Beethoven sonata chooses to highlight some elements and not 

others, the performer of indeterminate music chooses to realize the score in one 

way and not another.  Without an understanding of the indeterminate score’s 

possibilities, the performance is like that of a Beethoven sonata without an 

understanding of sonata form. 

Much musical instruction is devoted to the study of the musical universe 

in which a work resides, including its musical language and grammar.  For 

indeterminate music, that language and grammar is not found solely in the 

pitches but also in the performance directions given by the composer.  Its musical 

universe, in addition to the musical language found on the score, is created by 

these performance directions and thereby warrants the same treatment given to 

the musical universes of composers from the past. 
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APPENDIX A.  ALGORIGHTM FOR FOUR-DIMENSIONAL 
DELANNOY NUMBERS 

 
The following program, written by Bob Sulanke for the mathematics 

program Maple, provides a list of the first 75 central 4-dimensional Delannoy 

numbers.  Although designed to compute 4-dimensional Delannoy numbers, it 

can be used to compute the 2- and 3-dimensional numbers as well. 

 
dela := proc(x,y,z,w) 
local ret 
option remember 
 
if x < 0 or y < 0 or z < 0 or w < 0 then ret := 0 
else 
if x = 0 and y = 0 and z = 0 and w = 0 then ret := 1 
else 
ret := dela(x-1,y,z,w)+dela(x,y-1,z,w)+dela(x,y,z-1,w)+ 
dela(x,y,z,w-1)+dela(x-1,y-1,z,w)+dela(x-1,y,z-1,w)+ 
dela(x-1,y,z,w-1)+dela(x,y-1,z-1,w)+dela(x,y-1,z,w-1)+ 
dela(x,y,z-1,w-1)+dela(x,y-1,z-1,w-1)+dela(x-1,y,z-1,w-1)+ 
dela(x-1,y-1,z,w-1)+dela(x-1,y-1,z-1,w)+dela(x-1,y-1,z-1,w-1) 
end if 
end if; 
 
ret 
end proc; 
 
for i from 0 to 75 do print(dela(i,i,i,i)) end do; 

 
 
Everyday computers, however, cannot handle the amount of recursion required 

to calculate the 74th central 4-dimensional Delannoy number; therefore, a 

supercomputer was used.  The following program, written and run by Thom 

Sulanke at the University of Indiana, provided the 208-digit number of Piece for 

Four Pianos realizations. 
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main() 
{ 
 
//    n := 80 
 
//    OLD := array(1..n, 1..n,1..n); 
 mpz_t OLD[n][n][n]; 
//    NEW := array(1..n, 1..n,1..n); 
 mpz_t NEW[n][n][n]; 
 
 int i,j,k,L; 
 
//    for i from 1 to n do 
//    for j from 1 to n do 
//    for k from 1 to n do 
//    OLD[i,j,k] := 0;  NEW[i,j,k] := 0; 
//    end do end do end do; 
 
 for (i = 0; i < n; i++) 
   for (j = 0; j < n; j++) 
     for (k = 0; k < n; k++) 
       { 
         mpz_init(OLD[i][j][k]); 
         mpz_init(NEW[i][j][k]); 
       } 
 
//    OLD[1,1,1] := 1; 
 mpz_add_ui(OLD[0][0][0], OLD[0][0][0], 1); 
 
//    for L from 2 to n do 
//    for i from 2 to n do 
//    for j from 2 to n do 
//    for k from 2 to n do 
 
 for (L = 1; L < n; L++) { 
   for (i = 1; i < n; i++) 
     for (j = 1; j < n; j++) 
       for (k = 1; k < n; k++) { 
//    NEW[i,j,k] := 
NEW[i-1,j,k]+NEW[i,j-1,k]+NEW[i,j,k-1]+NEW[i-1,j-1,k]+NEW[i-
1,j,k-1]+ 
//              NEW[i,j-1,k-1]+NEW[i-1,j-1,k-1]+ 
//              OLD[i,j,k]+OLD[i-1,j,k]+OLD[i,j-1,k]+OLD[i,j,k-
1]+ 
//              OLD[i,j-1,k-1]+OLD[i-1,j,k-1]+OLD[i-1,j-1,k]+ 
                OLD[i-1,j-1,k-1] 
//    end do end do end do; 
         mpz_add(NEW[i][j][k],NEW[i-1][j][k],NEW[i][j-1][k]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],NEW[i][j][k-1]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],NEW[i-1][j-1][k]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],NEW[i-1][j][k-1]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],NEW[i][j-1][k-1]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],NEW[i-1][j-1][k-1]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],OLD[i][j][k]); 
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         mpz_add(NEW[i][j][k],NEW[i][j][k],OLD[i-1][j][k]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],OLD[i][j-1][k]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],OLD[i][j][k-1]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],OLD[i][j-1][k-1]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],OLD[i-1][j][k-1]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],OLD[i-1][j-1][k]); 
         mpz_add(NEW[i][j][k],NEW[i][j][k],OLD[i-1][j-1][k-1]); 
       } 
//    for i from 1 to n do 
//    for j from 1 to n do 
//    for k from 1 to n do 
//    OLD[i,j,k] := NEW[i,j,k] 
//    end do end do end do; 
   for (i = 0; i < n; i++) 
     for (j = 0; j < n; j++) 
       for (k = 0; k < n; k++) 
         mpz_set(OLD[i][j][k],NEW[i][j][k]); 
 
//    print(L-1,NEW[L,L,L]): 
   fprintf(stdout,"%d ", L); 
   mpz_out_str(stdout,10,NEW[L][L][L]); 
   fprintf(stdout,"\n"); 
//    end do; 
 } 
} 
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APPENDIX B.  GENERALIZED EQUATION FOR ANY NUMBER OF 
REQUIRED REPETITIONS 

 
The following formula was provided by Carlos Nicolas after proofreading an 

earlier version of the paper. 

Assuming that there are 19 fragments to choose from, the number of 
realizations with 2≥r  repetitions having ic  fragments repeated exactly i  

times )11( −≤≤ ri  is equal to 
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Therefore, the total number of realizations with 2≥r  repetitions is  
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where the sum ranges over all 11 ,..., −rcc  satisfying: 

(1) 19... 121 ≤+++ −rccc . 

(2) 0≥ic  for 11 −≤≤ ri . 

(3) 11 ≥−rc . 

 
Also provided by Dr. Nicolas was a derivation showing how to transform the 

above formula into the equation derived in this paper. 
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