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 Abstract: 

Chronic stress is closely linked to clinical depression, which could be assessed by a chronic 

unpredictable mild stress (CUMS) animal model. We present here a GC/MS-based metabolic 

profiling approach to investigate neurochemical changes in the cerebral cortex, hippocampus, 

thalamus, and remaining brain tissues. Multi-criteria assessment for multivariate statistics could 

identify differential metabolites between the CUMS-model rats versus the healthy controls. This 

study demonstrates that the significantly perturbed metabolites mainly involving amino acids 

play an indispensable role in regulating neural activity in the brain. Therefore, results obtained 

from such metabolic profiling strategy potentially provide a unique perspective on molecular 

mechanisms of chronic stress. 
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Article: 

1. Introduction 

Depression is a serious public mental but treatable problem, affecting about 12% of women and 

7% of men annually in USA [1]. It interferes often with normal feelings and behavior in people’s 

daily life, and causes severe psychological pain for the patients and their families. Current 

treatments for clinical depression commonly involve psychotherapy and antidepressant 

medications. The most popular types of these antidepressant drugs are selective serotonin 

reuptake inhibitors (SSRIs), e.g., fluoxetine, citalopram, sertraline and several others [2].  

 

Chronic unpredictable mild stress (CUMS), a well-validated animal model, has been used widely 

for studying clinical depression as well as evaluating antidepressant effects of diverse drugs [3] 

http://www.sciencedirect.com/science/journal/00145793
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and [4]. Much of the work has been done successfully in individual gene expression, protein 

structure and function, as well as biochemical studies on sympathetic nervous system (SNS), 

hypothalamic–pituitary–adrenocortical (HPA)-axis, noradrenergic and immunological systems, 

etc. [5], [6], [7], [8], [9] and [10]. Recently, the emerging metabonomics or metabolomics [11] 

and [12] has gradually studied the intricate relationship between acute and/or chronic stress and 

certain crucial endogenous metabolites [13], [14], [15], [16] and [17]. Such metabolic profiling 

technology has been increasingly used as a versatile tool for the discovery of molecular 

biomarkers in many areas such as monitoring the chemical-induced toxicity in organs, 

diagnosing or prognosing clinical diseases, exploring the potential mechanism of diverse 

diseases, and assessing therapeutic effects of drugs [18], [19], [20] and [21]. Relying on the 

global metabolite changes in a given biological species, metabol/nomics requires little or no prior 

knowledge on a certain disease. Thus, it potentially provides not only a means of verifying the 

fragmentary findings from a great deal of individual previous research, but also a promising 

opportunity to generate novel hypothesis for addressing the molecular mechanisms of diseases, 

ultimately towards a comprehensive understanding of physiopathological outcomes of an 

organism in response to xenobiotic stimuli and/ or genetic modification.  

 

Biofuilds such as urine and plasma have been heavily used in metabol/nomic studies because 

they are minimally invasive to the animals or human and primarily reveal an overall metabolic 

state of the given organism [22]. By comparison, the tissue samples can offer a unique 

perspective on localized metabolic information. As the brain is a highly complex system 

encompassing a broad array of mutually interacting metabolites with varied chemical properties 

and specific biological functions, metabolic profiling of brain tissue samples will yield beneficial 

knowledge most related to neural activity of central nervous systems (CNS) [23], [24] and [25]. 

Yet no such study has been fully initiated to monitor neurochemical changes in a CUMS model. 

 

Recent metabolic profiling technology has successfully applied high-throughput analytical tools 

(e.g., NMR, nuclear magnetic resonance; MS, mass spectrometry) to analyze various biological 

samples and utilized multivariate statistics (e.g., PCA, principal component analysis; PLS, partial 

least squares projection to latent structures) to extract meaningful biological information from 

the resultant complex and huge data sets [26 and [27]. Variable selection is an important step in 

multivariate analysis that can apparently enhance our understanding and interpretability of 

multivariate models and commonly referred to VIP statistics, loading weights, and correlation 

coefficients [28], [29] and [30]. However, the practical use of these methods relies mostly on the 

experimental designs and purposes (e.g., animal or human studies, biomarker identification or 

pathway analysis), the size of samples, and preference of researchers as well [31] and [32]. A 

strict approach for selecting significant and reliable variables should likely be a combination of 

multiple criteria. For instance, the newly proposed S-plot combines both covariance and 

correlation deriving from multivariate modeling [31]. But the exact criterion for each method in 

variable selection is hitherto not addressed thoroughly. 

 

The primary goal of this work is to characterize neurochemical abnormalities in four discrete 

brain regions including cerebral cortex, hippocampus, thalamus, and the remaining regions from 

a rat model of CUMS. We applied a gas chromatography/mass spectrometry (GC/MS) technique 

to profile the brain tissue samples, and multi-criteria assessment (MCA) for multivariate 

statistics to select reliable variables accountable for class discrimination of metabolic profiles. 



The differential metabolites were verified partially by qualitative and quantitative analyses 

simultaneously. This work will not only provide a constructive protocol in choosing the most 

reliable and significant metabolites associated with a certain pathophysiological state when using 

metabolic profiling technology, but also expand our understanding of molecular mechanisms for 

diverse diseases. 

 

2. Materials and methods 

The schematic flowchart of the metabolic profiling strategy used in this study is illustrated in the 

Fig. 1. 

 

 
 

Fig. 1. Schematic flowchart of the metabolic profiling strategy used in this study. The 

homogenized tissue samples were extracted using ultrapure water and derivatized with ethyl 

chloroformate (ECF) (Step 1). The resultant derivatives were subsequently analyzed by a 

hyphenated technique – gas chromatography/mass spectrometry (GC/MS) (Step 2). Multivariate 

statistics was applied to extract meaningful information in the complex GC/MS spectral data 

(Step 3). Compounds with significant contribution to the variation of metabolic profiles between 

the CUMS-induced rats and healthy controls were identified in discrete brain regions using 

GC/MS spectral libraries including Wiley, NIST, NBS, etc., and further verified by reference 

compounds available (Step 4). Quantitative analysis of these verified metabolites was finally 

conducted by means of conventional calibration curves in order to accurately determine the 

concentrations of these metabolites in each brain region (Step 5). 

 

2.1. Animal handling, sampling and sucrose preference test 

The study was approved by national legislations of China and local guidelines. A total of twelve 

eight-week-old male Sprague–Dawley (SD) rats (n = 6 per group) was employed in this study 

and the animal experiment is described in the Supporting Materials. 

 

2.2. Sample preparation, GC/MS assay, and data acquisition and pretreatment 



The section was conducted as our previously described procedures [33] and is provided in the 

Supporting Materials. 

 

2.3. Multivariate and univariate statistics 

Multivariate statistics, including unsupervised PCA and supervised orthogonal partial least 

squares project to latent structures-discriminant analysis (OPLS-DA), was performed by 

SIMCA-P 11.0 software (Umetrics, Umeå, Sweden) [34] and [35]. The data set was mean-

centered and pareto-scaled in a columnwise manner for all the multivariate modeling [36]. Mean 

centering calculates the average spectrum of the data set and subtracts that average from each 

spectrum, aiming to focus on the fluctuating part of data instead of the original value. Pareto 

scaling weighs each variable by the square root of its standard deviation, which amplifies the 

contribution of lower concentration metabolites but not to such an extent where noise produces a 

large contribution. PCA technique was initially used to reduce the high dimensional data sets 

into a two- or three-dimensional scores map without losing profound information. The resulting 

PCA scores map was used for investigating natural interrelation including possible groupings, 

clustering, and outliers among observations. 

 

Furthermore, a more sophisticated OPLS-DA model was achieved through removing the 

variation in X matrix unrelated to Y matrix so that the specific discriminant information between 

classes can be interpreted using one predictive component alone [34] and [37]. Great efforts have 

been made to test the reliability of multivariate models [38] and [39], hence the 6-round cross-

validation in SMICA-P software was herein applied to validate the OPLS-DA model against 

over-fitting by precluding 1/6th of all the samples in each round. The cross-validated OPLS-DA 

scores map depicts the between-class separation (tp) and predictive ability (Q
2
Y) simultaneously 

[32]. Each individual in this map is represented by two spatial dots: one for model score value 

(tp) and the other for cross-validated score value (tcv). A smaller difference between the two score 

values suggests a better predictive accuracy (Q
2
Y). 

 

Additionally, unpaired student’s t-test implemented in Microsoft Office Excel 2007 (Microsoft 

(China) Co., Ltd. Beijing, China) was used to determine if the discriminant score values or the 

concentrations of the differential metabolites obtained from OPLS-DA modeling are statistically 

significant between classes at a univariate analysis level. The threshold of P value was set at 0.05 

throughout the study. 

 

2.4. Variable selection in OPLS-DA model 

The main purpose and procedure of variable selection is illustrated in the Fig. 2. Variable 

importance in the projection (VIP) ranks the overall contribution of each variable to the OPLS-

DA model, and those variables with VIP > 1.0 are considered statistically significant in this 

model. Herein, VIP statistics was initially applied to obtain the significant variables that could be 

used for metabolic pathway analysis [30]. Furthermore, MCA was used for choosing the most 

significant and reliable variables using a combination of VIP statistics, S-plot, and jack-knifed 

based confidence interval. S-plot combines the contribution/covariance (Cov(t,X)) and 

reliability/correlation (Corr(t,X)) from OPLS-DA model and helps to identify differential 

metabolites between classes [32]. Both of these two parameters have a theoretical minimum of 

−1 and maximum of 1. With a significance level of 0.05, a correlation coefficient (Corr(t,X)) of 

±0.58 was adopted as a cutoff value to select the variables that are most correlated with the 



OPLS-DA discriminant scores (predictive component). The correlation coefficients were 

calculated using Pearson linear correlation coefficients incorporated in MATLAB R2007a (The 

MathWorks, Inc., Natick, MA, USA. Details are available in the Supplementary Materials). The 

loading plot with CIJFjk displayed the uncertainty of each variable and the smaller span of 

confidence interval renders more creditability on the selected variable. In this study, those 

variables with CIJFjk across zero were excluded. Therefore, we merely chose those variables 

meeting the threefold criteria (i.e., VIP > 1, |Corr(t,X)| > 0.58, and the span of CIJFjk excluding 

zero) as the most significant and reliable variables, which could serve as candidate biomarkers 

for CUMS. 

 

 
Fig. 2. General purpose and procedure of variable selection. VIP statistics (VIP > 1.0) was 

initially opted to select the significant variables for biological pathway analysis while multi-

criteria assessment (MCA) was used for choosing the most significant and reliable variables 

(candidate biomarkers) by using a combination of VIP statistics, S-plot, and jack-knifed based 

confidence interval. 

 

2.5. Qualitative and quantitative analyses [40] 

Compound identification was processed by comparison of the ion fragments with those present 

directly in the GC/MS spectral databases including NIST, Wiley, and NBS, ultimately verified 

by reference compounds available. Additionally, the concentration of each verified metabolite 

was quantified via the corresponding calibration curve and was expressed as the relative 

percentage change. More details are provided in the Supporting Materials. 

 

3. Results 

3.1. Sucrose preference test and body weight gain 

The CUMS-treated rats consumed significantly less sucrose solution as compared to the healthy 

controls (66 ± 8% versus 96 ± 4%, P < 0.01, unpaired t-test), indicating depressive-like 

behavioral state (e.g., impairment of hedonic reactivity) in the stressed rats. Meanwhile, the 

CUMS-treated rats suffered significantly slower body weight gain than the healthy ones 

(45.8 ± 8.7 g versus 78.2 ± 4.0 g, P < 0.05). Details are available in the Supplementary Materials. 

All these findings confirmed the stress-related effects on the rat. 

 

3.2. GC/MS spectra of brain tissue samples 
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Typical GC/MS total ion current (TIC) chromatograms of each part of brain tissue samples from 

the CUMS-treated rats (Supporting Fig. 1a–d) and the healthy rats (Supporting Fig. 1e–h) are 

illustrated. Visual inspection of these spectra revealed obvious difference either among discrete 

brain regions or between the CUMS-treated group versus the healthy control for each brain 

region, but the complexity of GC/MS spectra hampered further comparison between classes. 

Thus, we used our custom GC/MS analytical protocol in conjunction with peak deconvolution 

procedure [29], and obtained a three-dimensional matrix consisting of 48 samples, 161 peak 

indices (RT-M/Z pairs) presumably representing individual metabolites throughout all the tissue 

samples, and 161 peak intensity. The resulting data set was subsequently analyzed to extract 

useful information by multivariate statistics including PCA and OPLS-DA. 

 

3.3. Multivariate statistics 

A five-component PCA model was initially obtained from the GC/MS data set deriving from all 

the tissue samples (Table 1, Supporting Fig. 2a and b). The inherent metabolic difference among 

brain regions and in relation to stress factors can be reflected by a 2D-PCA scores plot (PC1 

versus PC3, Fig. 3). In this map, metabolic profiles of cerebral cortex and thalamus can be 

clearly separated from those of hippocampus and the remaining brain regions by the PC1 either 

in the CUMS-treated rats or in the healthy controls, while the stress-related metabolic variation 

was also readily noticed in the PC3. These findings mostly suggested that metabolic variations 

depicted by the PCA scores map were correlated with brain tissue regions and stress state as 

well. To gain more insights into stress-related metabolic variations in each brain compartment, 

the initial data set was divided into four subsets according to topographical region. The model 

quality was summarized in the Table 1. 

 

Table 1.  

Summary of the parameters for assessing modeling quality 

 

PCA model  

 

OPLS-DA model  

 

 
No

c
 R

2
Xcum

a
 No

c
 R

2
Xcum

a
 R

2
Ycum

a
 Q

2
Ycum

a
 

Cerebral cortex 3 0.65 1P + 1O
b
 0.40 0.96 0.71 

Hippocampus 3 0.76 1P + 1O 0.64 0.97 0.85 

Thalamus 3 0.75 1P + 1O 0.45 0.98 0.78 

Remaining regions 3 0.64 1P + 1O 0.45 0.91 0.60 

All tissue samples 5 0.67 
    

a
 R

2
Xcum and R

2
Ycum are the cumulative modeled variation in X and Y matrix, respectively, and 

Q
2
Ycum is the cumulative predicted variation in Y matrix. The values of these parameters close to 

1.0 indicate a robust mathematical model with a reliable predictive accuracy. 
b
 1P + 1O, one predictive component and one orthogonal Component for establishing the OPLS-

DA model. 
c
 No, the number of components.  

 



 
Fig. 3. (a) PCA scores map of GC/MS data derived from brain tissue samples in the CUMS-

treated group and the healthy control. C, cerebral cortex; H, hippocampus; T, thalamus; R, the 

remaining brain regions; N, the healthy control group; and M, the CUMS-treated group. Each dot 

denotes an individual rat. (b) Typical GC/MS total ion current (TIC) chromatogram of cerebral 

cortex from a healthy rat. The keys are provided in the Table 2. 

 

3.4. Cerebral cortex 

A 3D-PCA scores map showed that obvious separation of metabolic profiles between the 

CUMS-treated group and the healthy control occurred in the PC1 (Fig. 4a). The inter-class 
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variation as indicated by the PCA map was also verified by the complete and significant 

separation (P < 0.01) in a cross-validated OPLS-DA score map (Fig. 4b). Additionally, the 

higher overlap between cross-validated scores (t[1]cv, i; i = 1–6) and the model scores (t[1]p) for 

most of cerebral cortex samples suggested the stability and reliability of the OPLS-DA model. 

 

 
Fig. 4. (a) 3D-PCA scores map and (b) 1D cross-validated OPLS-DA score map of GC/MS data 

deriving from cerebral cortex samples obtained from the CUMS-treated group versus the healthy 

control group (n = 6 per group). The modeled score value (t[1]p), the 6th round cross-validated 

score value (t[1]cv,6), and orthogonal score value (t[2]o) for each individual are illustrated for 

each observation. 

 

To identify which variables are accountable for such significant separation, VIP statistics was 

firstly used to pre-select variables (Fig. 5a). According to the criterion for VIP statistics 

(VIP > 1), a total of 28 variables were obtained for their most contribution in discriminating 
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metabolic profiles between the two classes. Subsequently, relying on the MCA strategy including 

VIP > 1, |Corr(t,X)| > 0.58, and the span of CIJFjk excluding zero, 17 variables presumably 

representing individual metabolites could be considered as candidate biomarkers (Fig. 5a–c, 

Table 2). For example, N-acetyl aspartate (NAA) was labeled with a red arrow in the VIP plot, S-

plot, and loading plot with CIJFjk. NAA has the top VIP value of 5.4, which means that NAA 

contributed most for class discrimination. In the S-plot, NAA displayed the highest positive 

correlation coefficient (Corr(t,X) = 0.77) and was therefore reliable for class separation. Similar 

information was shown by CIJFjk plot where NAA had a smaller span of confidence interval. 

Thus, NAA was surely selected for further investigation of biological significance. 
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Fig. 5. VIP plot (a), S-plot (b), and loading plot with CIJFjk (c) from OPLS-DA modeling of 

GC/MS spectral data deriving from all the cerebral cortex samples. 

 

Table 2.  

A list of significant compounds accountable for class discrimination 

Key Compound C H T R Metabolic function 

1 Lactate ↓
*

 – ↓
*

 – Glucose metabolism 

2 Imidazole-4-acetate ↑
*

 ↓ – ↓ Histamine metabolism 

3 Methylimidazole acetate ↑
*

 ↑ – ↓
*
 Histamine metabolism 

4 Alanine
a
 ↓

*
 ↑

*
 ↓

*
 ↑ Aspartate metabolism 

5 Glycine
a
 ↑ ↑

*
 ↑

*
 ↑  Inhibitory neurotransmitter 

6 Valine
a
 – ↑

*
 ↑

*
 ↑

*
 Glutamate synthesis 

7 Serine ↓ ↓  ↑
*

 ↑ Glycine metabolism 

8 Leucine
a
 – ↑

*
 ↑ ↑

*
 Glutamate synthesis 

9 Iso-leucine
a
 – – – ↑ Glutamate synthesis 

10 Threonine
a
 ↑ – ↑

*
 ↑ Glycine metabolism 

11 Proline
a
 – ↑

*
 – ↑

*
 Proline metabolism 

12 Asparagine
a
 ↓

*
 – – – Aspartate metabolism 

13 N-Acetyl aspartate ↑
*

 ↑
*

 ↓
*

 ↓
*

 Aspartate metabolism 

14 3-Indolepropionate – ↓
*

 – – Amino acid metabolism 

15 Aspartate
a
 ↓ ↑ ↓ – Excitatory neurotransmitter 

16 Methionine
a
 – – – ↑

*
 Cysteine metabolism 

17 Glutamate
a
 – ↑

*
 ↓ ↓

*
 Excitatory neurotransmitter 

18 Glutamine ↓
*

 ↓  – – Glutamate metabolism 

19 Phenylalanine
a
 ↑

*
 ↑

*
 ↑

*
 ↑

*
 Tyrosine metabolism 

20 Cysteine ↑
*

 – – ↓ Cysteine metabolism 

21 Hexadecanoic acid – – ↑ ↓  Fatty acid biosynthesis 

22 Lysine
a
 – ↓

*
 ↑  ↑ Amino acid metabolism 



Key Compound C H T R Metabolic function 

23 Arachidonic acid – – ↑
*

 – Lipid metabolism 

24 Tryptophan
a
 ↑

*
 – ↑

*
 – Serotonin metabolism 

The star (*) represents the |Corr(t,X)| > 0.58 and the triangle ( ) means the span of CIJFjk 

excluding zero. The short dash line (–) indicates no significant variation. The raw data are 

provided in the Supplementary Materials. Abbreviations: C, cerebral cortex; H, hippocampus; T, 

thalamus; and R, the remaining brain regions. 

 
a
 These metabolites are verified by reference compounds available. The arrow denotes the VIP 

value greater than 1.0 and the up- (or down-) regulation of the arrow represents the relative 

increased (or decreased) concentration in the CUMS-treated group as compared to the healthy 

control.  

 

3.5. Hippocampus, thalamus, and the remaining brain tissues 

GC/MS spectral datasets deriving from other three discrete brain regions were processed in a 

similar manner. Each 3D-PCA scores map  

 

GC/MS spectral datasets deriving from other three discrete brain regions were processed in a 

similar manner. Each 3D-PCA scores map showed clear separation tendency of metabolic 

profiles between the CUMS-treated group and the healthy control (Supporting Fig. 3a–c). Three 

additional OPLS-DA models confirmed the class separation for each brain region according to 

the pathophysiological status and the cross-validated OPLS-DA scores map indicated the 

stability and reliability of each OPLS-DA model (Supporting Fig. 3d–f). 

 

3.6. Summary of significant metabolites from four discrete brain tissues 

Based on MCA for OPLS-DA of four discrete brain regions, a total of 43 significant variables 

were finally obtained. Among those significant variables, 24 metabolites were readily identified 

by comparing the ion fragments with those from our GC/MS spectral databases (Table 2), and 14 

amino acids were verified using reference compounds available. Furthermore, in order to verify 

the CUMS-related metabolic variation in discrete brain regions, quantitative analysis was carried 

out on these 14 amino acids. The accurate percentage of these metabolites was calculated (Table 

3). 

 

Table 3.  

Relative percentage of variation for 14 amino acids using quantitative analysis 

Key Compound C H T R 

4 Alanine ↓23%  ↓18%
a
 – – 

5 Glycine – – ↑13% ↑24% 

6 Valine – – ↑18% ↑70%  

8 Leucine ↓18% ↑13%  ↑13% ↑57%  
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Key Compound C H T R 

9 Iso-leucine – – ↑29%  ↑67%  

10 Threonine ↓14%
a
 – ↑38% ↑22%  

11 Proline ↓13% – – ↑19% 

12 Asaparagine ↓44%  – – ↑34% 

15 Aspartate ↓13%  – – – 

16 Methionine – ↑18% – ↑23% 

17 Glutamate – – – ↑16%
a
 

19 Phenylalanine – – ↑20% ↑37%  

22 Lysine ↓22% ↓24% ↑23% ↑37% 

24 Tyrptophan – ↓15% ↑33%  – 

a
 Inconsistency with multivariate statistics. 

 Statistical significance (P < 0.05, unpaired student’s t-test).  

 

4. Discussion 

With the aim of monitoring the local metabolic changes in complex neural disorder–chronic 

unpredictable mild stress, we used a GC/MS technique to profile the metabolites present in four 

discrete brain regions, including cerebral cortex, hippocampus, thalamus, and the remaining 

regions in the rats exposed repeatedly to nine different stressors for four weeks in a random 

order. Cerebral cortex is the largest part of the brain related with sophisticated brain functions 

such as thought and action; thalamus and hippocampus are important parts in the limbic system, 

which is associated with emotional reactions and has been an interest in clinical depression 

research. Thus, we focused on those four distinct brain regions for their specific biological 

functions. To our great interest, not all the metabolic variations occur consistently in the four 

brain regions in this study. For instance, lactate, as one major end product of both aerobic and 

anaerobic glycolysis [41], was found significantly decreased only in cerebral cortex and 

thalamus with sensory and motor functions. Such abnormal alteration might indicate that energy 

metabolism in cortex and thalamus was an outcome of long-time fatigue of CUMS-treated rats in 

our study. In terms of biological functions in other brain regions, a more systematic study 

involving molecular biology is needed to investigate the biochemical variations of each brain 

region in the future work. 

 

4.1. Identification of significant metabolites 

Relying on the four subsets of significant metabolites, many metabolites significantly altered 

between the CUMS-treated group and the healthy control in a certain brain region but did not 

feature across all the brain regions whereas some differential metabolites did not display 

consistent changing trend across different brain regions. Despite of such inconsistence, the 
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disturbed metabolic pathways, particularly disorder of amino acid metabolism, could be 

prominently reflected in the brain [42] (Fig. 6). 

 

 
Fig. 6. The perturbed metabolic pathways especially amino acid metabolism in the stress-rats. 

Compound detected in this study was shown in bond italic font. 

 

4.2. Quantitative analysis 

According to the MCA measure, a number of 14 amino acids was identified and quantified, 

which is considered as the most significant and reliable metabolites closely associated with 

CUMS. Quantitative analysis not only provides accurately subtle metabolic variation in the brain 

tissues but also can assess the findings from multivariate statistics. Taking into consideration that 

various factors, e.g., systemic errors in weighing, extraction, and derivatization of tissue samples 

possibly interfered with the stress-related metabolic variation, we set a minimum percentage 

(13%) with statistical significance (P < 0.05) as a critical threshold (Table 3). It is reasonable that 

the concentration changes for the majority of these amino acids are fairly consistent with the 

results from multivariate statistics, except for inconsistent alteration of three compounds 

(threonine in cerebral cortex; alanine in hippocampus; glutamate in the remaining regions). Such 

inconsistency is partially due to the fact that signals of impurities and confounding noise might 

distort the data set during normalization and scaling procedures necessary for multivariate 

statistics [43] and [44]. Therefore, the present work suggested that: (1) MCA for multivariate 

statistics could be an efficient and robust approach for the selection of candidate biomarker 

metabolites; (2) quantitative analysis of significant metabolites should be accompanied to verify 

the accuracy of multivariate statistics. 
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4.3. Amino acid metabolism 

The most significant alterations attributed to the disorder of amino acid metabolism. These 

differential amino acids can be categorized into two classes: excitatory/inhibitory 

neurotransmitters and branched-chain amino acids (BCAAs). While the intensity of glycine was 

significantly increased across the four brain regions, the variation of aspartate in each brain 

region appeared to be inconsistent towards the stressors. Interestingly, the ratio of glycine to 

aspartate (an important inhibitory/excitatory pair) was increased across all the brain regions 

especially, significantly in cortex, thalamus and the remaining brain regions (P < 0.05), which 

may suggest the importance of the intricate balance between inhibitory and excitatory amino 

acids to maintain normal brain function [24] and [45]. In addition, serving as an important 

excitatory neurotransmitter in the mammalian CNS, glutamate was decreased in thalamus and 

the remaining brain regions but increased in hippocampus. This finding suggested that glutamate 

could participate actively in the synthesis of glucose and ketone bodies for the brain in response 

to xenobiotic stimuli while the excessive release of glutamate could be associated with the brain 

impairment [46]. In parallel, the significant reduction of glutamine that can release amine and 

produce glutamate to maintain nitrogen balance was observed in cerebral cortex and 

hippocampus. Taken together, these results may be indicative of stress-induced deficiency in 

glutamate–glutamine neurotransmitter cycling. 

 

In this study, BCAAs including leucine, isoleucine, and valine, were increased in each brain 

region of the CUMS-induced rats as compared to that of the healthy controls. These BCAAs can 

transport quickly across the blood-brain barrier as major amino group donors for the synthesis of 

brain glutamate. Recent studies have demonstrated that BCAAs, especially leucine, contribute 

most to the derivation in astrocytes of glutamate and glutamine so as to maintain the homeostasis 

of brain nitrogen [47]. Additionally, the increased concentration of tryptophan was observed in 

cerebral cortex and thalamus from the stressed rat brain. The neurotransmitter 5-hydroxy-

tryptamine (5-HT) is sensitive to the fraction of tryptophan available in plasma for transport into 

the brain, as well as the concentration of BCAAs that are transported via the same carrier system. 

Thus, the increased concentration of both tryptophan and BCAAs could indicate the disturbed 

release of brain 5-HT that is highly related with the central fatigue [48]. Hence, the increased 

BCAAs and tryptophan may suggest the impaired glutamate homeostasis in the brain as well as 

reflect central fatigue in response to the chronic stress. 

 

4.4. NAA metabolism 

The significant perturbation of NAA was also responsible for discriminating metabolic profiles 

between the CUMS-treated rats and the healthy controls, showing an increase in cerebral cortex 

and hippocampus while a decrease in thalamus and the remaining brain regions. NAA is 

synthesized in the mitochondria and considered as a marker for neuronal density [24] and [49]. 

Generally, decrease in the concentration of NAA occurs in conditions of neuronal damage or 

loss, such as chronic psychosocial stress and perinatal stress [50] and [51]. Meanwhile, the 

increase of NAA in two brain regions may reflect the stress-induced complementary increase of 

amino acids for its metabolic function of transferring amino nitrogen from the mitochondrion to 

the cytoplasm [52]. It is clear that each subtle yet significant variation of metabolites has its own 

biochemical function in response to or resulting in chronic mild stress (Table 3). 

 



In summary, the combined use of GC/MS analytical technique and multivariate statistics 

facilitate the discrimination of metabolic profiles in different brain tissues including cortex, 

hippocampus, thalamus, and the remaining brain regions between the CUMS-treated rats and the 

healthy controls. The disorder of amino acid metabolism is significant across all the brain tissues, 

partially suggesting the impairment of neural activity of CNS. In addition, the utility of MCA in 

variable selection greatly improves reliability of the differential metabolites. Using this tissue-

targeted metabolic profiling strategy, we are able to recognize an integrated, perturbed biological 

pathway-disorders of amino acid metabolism associated closely with the stress-related 

pathological variation in the brain. 

 

Acknowledgements 

We are grateful to Mingmei Zhou (Shanghai University of Traditional Chinese Medicine), and 

Houkai Li (Shanghai Jiao Tong University) for the dissection of discrete brain regions in animal 

experiment. This work is finically supported by the National Basic Research Program, Grant 

Nos. 2007CB914700 and 2007CB511900. 

 

References 

[1] Narrow, W.E. (1998) One-year prevalence of mental disorders, excluding substance use 

disorders, in the US: NIMH ECA prospective data. One-year Prevalence of Depressive Disorders 

Among Adults 18 and Over in the US: NIMH ECA Prospective Data. Population Estimates 

Based on US Census Estimated Residential Population Age 18 and Over on July 1, 1998. 

[2] http://www.nimh.nih.gov/health/publications/depression/complete-publication.shtml. 

[3] M. Papp, P. Willner and R. Muscat, An animal model of anhedonia: attenuation of sucrose 

consumption and place preference conditioning by chronic unpredictable mild stress, 

Psychopharmacology 104 (1991), pp. 255–259.  

[4] P. Willner, A. Towell, D. Sampson, S. Sophokleous and R. Muscat, Reduction of sucrose 

preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant, 

Psychopharmacology 93 (1987), pp. 358–364.  

[5] S. Bhatnagar, C. Vining, V. Iyer and V. Kinni, Changes in hypothalamic-pituitary-adrenal 

function, body temperature, body weight and food intake with repeated social stress exposure in 

rats, J. Neuroendocrinol. 18 (2006), pp. 13–24.  

[6] A.J. Grippo, J.A. Moffitt and A.K. Johnson, Cardiovascular alterations and autonomic 

imbalance in an experimental model of depression, Am. J. Physiol. Regul. Integr. Comp. Physiol. 

282 (2002), pp. R1333–R1341.  

[7] L.R. Lucas, Z. Celen, K.L. Tamashiro, R.J. Blanchard, D.C. Blanchard, C. Markham, R.R. 

Sakai and B.S. McEwen, Repeated exposure to social stress has long-term effects on indirect 

markers of dopaminergic activity in brain regions associated with motivated behavior, 

Neuroscience 124 (2004), pp. 449–457.  

[8] M. Martinez, P.J. Phillips and J. Herbert, Adaptation in patterns of c-fos expression in the 

brain associated with exposure to either single or repeated social stress in male rats, Eur. J. 

Neurosci. 10 (1998), pp. 20–33.  

[9] V. Sergeyev et al., Neuropeptide expression in rats exposed to chronic mild stresses, 

Psychopharmacology 178 (2005), pp. 115–124.  

[10] P. Willner, Validity, reliability and utility of the chronic mild stress model of depression: a 

10-year review and evaluation, Psychopharmacology 134 (1997), pp. 319–329.  

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=4938&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.nimh.nih.gov%252Fhealth%252Fpublications%252Fdepression%252Fcomplete-publication.shtml


[11] J.K. Nicholson, J.C. Lindon and E. Holmes, ‘Metabonomics’: understanding the metabolic 

responses of living systems to pathophysiological stimuli via multivariate statistical analysis of 

biological NMR spectroscopic data, Xenobiotica 29 (1999), pp. 1181–1189.  

[12] O. Fiehn, Metabolomics – the link between genotypes and phenotypes, Plant Mol. Biol. 48 

(2002), pp. 155–171.  

[13] A. Malmendal, J. Overgaard, J.G. Bundy, J.G. Sorensen, N.C. Nielsen, V. Loeschcke and 

M. Holmstrup, Metabolomic profiling of heat stress: hardening and recovery of homeostasis in 

Drosophila, Am. J. Physiol. Regul. Integr. Comp. Physiol. 291 (2006), pp. R205–R212.  

[14] J. Overgaard, A. Malmendal, J.G. Sorensen, J.G. Bundy, V. Loeschcke, N.C. Nielsen and 

M. Holmstrup, Metabolomic profiling of rapid cold hardening and cold shock in Drosophila 

melanogaster, J. Insect Physiol. 53 (2007), pp. 1218–1232.  

[15] C.R. Teague et al., Metabonomic studies on the physiological effects of acute and chronic 

psychological stress in Sprague-Dawley rats, J. Proteome Res. 6 (2007), pp. 2080–2093.  

[16] X. Wang et al., Metabolic regulatory network alterations in response to acute cold stress and 

ginsenoside intervention, J. Proteome Res. 6 (2007), pp. 3449–3455.  

[17] Y. Wang et al., Experimental metabonomic model of dietary variation and stress 

interactions, J. Proteome Res. 5 (2006), pp. 1535–1542.  

[18] J.T. Brindle et al., Rapid and noninvasive diagnosis of the presence and severity of coronary 

heart disease using 1H-NMR-based metabonomics, Nat. Med. 8 (2002), pp. 1439–1444.  

[19] D.B. Kell, Systems biology, metabolic modelling and metabolomics in drug discovery and 

development, Drug Discov. Today 11 (2006), pp. 1085–1092.  

[20] J.C. Lindon, E. Holmes and J.K. Nicholson, Metabonomics in pharmaceutical R&D, FEBS 

J. 274 (2007), pp. 1140–1151.  

[21] J.K. Nicholson, J. Connelly, J.C. Lindon and E. Holmes, Metabonomics: a platform for 

studying drug toxicity and gene function, Nat. Rev. Drug Discov. 1 (2002), pp. 153–161.  

[22] O. Beckonert, H.C. Keun, T.M. Ebbels, J. Bundy, E. Holmes, J.C. Lindon and J.K. 

Nicholson, Metabolic profiling, metabolomic and metabonomic procedures for NMR 

spectroscopy of urine, plasma, serum and tissue extracts, Nat. Protoc. 2 (2007), pp. 2692–2703.  

[23] C.Y. Lin, H. Wu, R.S. Tjeerdema and M.R. Viant, Evaluation of metabolite extraction 

strategies from tissue samples using NMR metabolomics, Metabolomics 3 (2007), pp. 55–67.  

[24] M.R. Pears, J.D. Cooper, H.M. Mitchison, R.J. Mortishire-Smith, D.A. Pearce and J.L. 

Griffin, High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling 

deficit in cerebral tissue from a mouse model of Batten disease, J. Biol. Chem. 280 (2005), pp. 

42508–42514.  

[25] H. Wu, A.D. Southam, A. Hines and M.R. Viant, High-throughput tissue extraction protocol 

for NMR- and MS-based metabolomics, Anal. Biochem. 372 (2008), pp. 204–212.  

[26] J. Trygg, E. Holmes and T. Lundstedt, Chemometrics in metabonomics, J. Proteome Res. 6 

(2007), pp. 469–479.  

[27] E.M. Lenz and I.D. Wilson, Analytical strategies in metabonomics, J. Proteome Res. 6 

(2007), pp. 443–458. [28] N. Kettaneh, A. Berglund and S. Wold, PCA and PLS with very large 

data sets, Comput. Stat. Data Anal. 48 (2005), pp. 69–85.  

[29] Y. Ni, M. Su, Y. Qiu, M. Chen, Y. Liu, A. Zhao and W. Jia, Metabolic profiling using 

combined GC–MS and LC–MS provides a systems understanding of aristolochic acid-induced 

nephrotoxicity in rat, FEBS Lett. 581 (2007), pp. 707–711.  

[30] S. Wold, M. Sjostrom and L. Eriksson, PLS-regression: a basic tool of chemometrics, 

Chemom. Intell. Lab. Syst. 58 (2001), pp. 109–130.  



[31] M. Hedenstrom, S. Wiklund, B. Sundberg and U. Edlund, Visualization and interpretation 

of OPLS models based on 2D NMR data, Chemom. Intell. Lab. Syst. 92 (2008), pp. 110–117.  

[32] S. Wiklund et al., Visualization of GC/TOF-MS-based metabolomics data for identification 

of biochemically interesting compounds using OPLS class models, Anal. Chem. 80 (2008), pp. 

115–122.  

[33] Y. Qiu, M. Su, Y. Liu, M. Chen, J. Gu, J. Zhang and W. Jia, Application of ethyl 

chloroformate derivatization for gas chromatography–mass spectrometry based metabonomic 

profiling, Anal. Chim. Acta 583 (2007), pp. 277–283.  

[34] M. Bylesjo, M. Rantalainen, O. Cloarec, J.K. Nicholson, E. Holmes and J. Trygg, OPLS 

discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, J. 

Chemom. 20 (2006), pp. 341–351. [35] S. Wold, K. Esbensen and P. Geladi, Principal 

component analysis, Chemom. Intell. Lab. Syst. 2 (1987), pp. 37–52.  

[36] R.A. van den Berg, H.C. Hoefsloot, J.A. Westerhuis, A.K. Smilde and M.J. van der Werf, 

Centering, scaling, and transformations: improving the biological information content of 

metabolomics data, BMC Genomics 7 (2006), p. 142.  

[37] J. Trygg and S. Wold, Orthogonal projections to latent structures (O-PLS), J. Chemom. 16 

(2002), pp. 119–128.  

[38] J.A. Westerhuis, H.C.J. Hoefsloot, S. Smit, D.J. Vis, A.K. Smilde, E.J.J. van Velzen, J.P.M. 

van Duijnhoven and F.A. van Dorsten, Assessment of PLSDA cross validation, Metabolomics 4 

(2008), pp. 81–89. [39] J.C. Lindon et al., Summary recommendations for standardization and 

reporting of metabolic analyses, Nat. Biotechnol. 23 (2005), pp. 833–838.  

[40] Lin, J.C. et al. (in press). Multiparametric analysis of amino acids and organic acids in rat 

brain tissues using GC/MS. J. Sep. Sci. 

[41] A. Schurr, Lactate: the ultimate cerebral oxidative energy substrate?, J. Cereb. Blood Flow 

Metab. 26 (2006), pp. 142–152.  

[42] http://www.genome.jp/kegg/. 

[43] R. Goodacre et al., Proposed minimum reporting standards for data analysis in 

metabolomics, Metabolomics 3 (2007), pp. 231–241.  

[44] D.I. Broadhurst and D.B. Kell, Statistical strategies for avoiding false discoveries in 

metabolomics and related experiments, Metabolomics 2 (2006), pp. 171–196.  

[45] H.S. Sharma, Interaction between amino acid neurotransmitters and opioid receptors in 

hyperthermia-induced brain pathology, Prog. Brain Res. (2007), pp. 295–317.  

[46] M.W. Warenycia, S.B. Kombian and R.J. Reiffenstein, Stress-induced increases in 

brainstem amino acid levels are prevented by chronic sodium hydrosulfide treatment, 

Neurotoxicology 11 (1990), pp. 93–97. 

[47] Y. Shimomura and R.A. Harris, Metabolism and physiological function of branched-chain 

amino acids: discussion of session 1, J. Nutr. 136 (2006), pp. 232S–233S. 

[48] E. Blomstrand, A role for branched-chain amino acids in reducing central fatigue, J. Nutr. 

136 (2006), pp. 544S–547S. 

[49] K.K. Bhakoo, T. Craig and D. Pearce, N-acetyl aspartate metabolism in neural cells, Adv. 

Exp. Med. Biol. 576 (2006), pp. 27–47.  

[50] R.E. Poland, C. Cloak, P.J. Lutchmansingh, J.T. McCracken, L. Chang and T. Ernst, Brain 

N-acetyl aspartate concentrations measured by H MRS are reduced in adult male rats subjected 

to perinatal stress: preliminary observations and hypothetical implications for 

neurodevelopmental disorders, J. Psychiatr. Res. 33 (1999), pp. 41–51.  

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=4938&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.genome.jp%252Fkegg%252F


[51] B. Czeh, T. Michaelis, T. Watanabe, J. Frahm, G. de Biurrun, M. van Kampen, A. 

Bartolomucci and E. Fuchs, Stress-induced changes in cerebral metabolites, hippocampal 

volume, and cell proliferation are prevented by antidepressant treatment with tianeptine, Proc. 

Natl. Acad. Sci. USA 98 (2001), pp. 12796–12801.  

[52] S.L. Miller, Y. Daikhin and M. Yudkoff, Metabolism of N-acetyl-l-aspartate in rat brain, 

Neurochem. Res. 21 (1996), pp. 615–618. 

 

 

 

 



1 

 

SUPPLEMENTARY MATERIALS 1 

 2 
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S1. SUPPORTING METHODS AND RESULTS 12 

This section involves animal handling and sampling , sucrose preference test, 13 

open-filed test, sample preparation, GC/MS assay, data acquisition and pretreatment, and 14 

quantitative analysis.  15 

S1-1 Animal handling and sampling 16 

  The study was approved by national legislations of China and local guidelines. A total 17 

of twelve eight-week-old male Sprague-Dawley (S.D.) rats (weighing 200 ± 20 g) was 18 
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commercially obtained from Shanghai Laboratory Animal Co. Ltd. (SLAC, Shanghai, 1 

China), and kept at a barrier system with regulated environment (24 ± 1 °C, 45 ± 15 % 2 

relative humidity, and 12h/12h light/dark cycle). The rats were fed with a certified 3 

standard rat chow and tap water ad libitum. After two-week acclimation, all of the rats 4 

were randomly divided into two groups (n = 6 per group): the healthy control group 5 

versus the CUMS-treated group in which the rats were repeatedly exposed to a set of 6 

chronic unpredictable mild stressors. The CUMS procedures includes nine different kinds 7 

of stressors as follows: 5 min of forced swimming in 15 °C water; exposure to an 8 

experimental room at 40 °C and -10 °C for 5 min, respectively; 24 hour of food 9 

deprivation and 24 hour of water deprivation, respectively; 6 unpredictable shocks: 15 V, 10 

20 sec duration, one shock/10 sec; tail clamp for 1 min; inversion of light/dark cycle; 2 11 

hour of restricted movement (confinement in a mouse cage). One stressor was applied per 12 

day and the whole stress procedure lasted for four weeks with a completely random order. 13 

The healthy control rats were housed undisturbed in another experiment room under the 14 

same condition. They had free access to tap water and food except for the period of water 15 

and food deprivation prior to the sucrose preference test. At the 4
th

 week of the entire 16 

experiment, all of the rats were sacrificed with sodium pentobarbital anesthesia (40 17 

mg/100 g body weight, i.p.). Brain tissues including cerebral cortex, hippocampus, 18 

thalamus, and remaining brain regions were obtained from each rat carefully and 19 

instantly stored at -80 °C before assay.  20 

S1-2 Sucrose preference test 21 

  The depressive-like behavioral state was assessed by a sucrose preference test as 22 

described. After a 20-hour period of water and food deprivation, each rat was subjected to 23 
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an individual metabolic cage in which two bottles containing water and 1% sucrose 1 

solution were placed. The ratio of the amount of sucrose solution to that of total solution 2 

ingested within one hour represented the parameter of hedonic behavior. Sucrose 3 

preference test was trained for three times before the commencement of the stress 4 

procedure. 5 

S1-3 Open-field test 6 

 Open-field test was conducted in a quiet room between 13:00 and 15:00 p.m. at a 7 

rectangular arena 80×80 cm with 40-cm-high side walls, the floor marked with a grid 8 

dividing it into 25 equal-size squares. Each animal was placed in the central square at 9 

first and observed for 5 min. Scores were calculated by the amount of time that rats spent 10 

grooming and rearing (defined as standing upright on its hind legs, one score for once) 11 

and by the number of grid lines rats can cross using at least three paws (every grid 12 

crossed counts one score). In this study, reduced activity and curiosity of CUMS-induced 13 

rats was indicated by low horizontal and vertical scores (40±13 for CUMS-treated rats 14 

versus 72±24 for the healthy controls, p <0.05), the depressive state was in accordance 15 

with the clinical psychomotor hysteresis symptoms of depression very well. 16 

S1-4 Sample preparation 17 

  The extraction and two-step derivatization procedures were conducted as our 18 

previously described with minor modification. In brief, each 80-mg aliquot of brain tissue 19 

samples was homogenized (T10 basic ULTRA-TURRAX homogenizer, IKA® Group, 20 

Staufen, Germany) with 400 µL of ultrapure water (Milli-Q system, Millipore, USA) for 21 

1 min in an ice bath, with the pH of the system being adjusted to 10.0 using about 10~20 22 

µL of 7 mol/L NaOH. The resultant mixtures were centrifuged at 8, 000 g for 10 min at 23 
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4 °C to remove precipitates and debris. After a 400-μL aliquot of the supernatant was 1 

transferred to a screw-top glass tube, additional 200 μL of water, 400 μL of anhydrous 2 

ethanol, 100 µL of L-2-chlorophenylalanine (internal standard, Shanghai Intechem Tech. 3 

Co. Ltd., China), 100 µL of pyridine, and 50 µL of ethyl chloroformate (ECF, China 4 

National Pharmaceutical Group Corporation, Shanghai, China) were supplied for 5 

derivatization. The resultant ECF-derivatives was isolated and dried with anhydrous 6 

sodium sulfate for following GC/MS analysis. 7 

  Note: The purpose of the selected following paragraph from our accepted paper is to 8 

explain why we used a GC/MS method with ECF derivatization for studying 9 

neurochemical changes in the stress-related rat brain. (With the permission of all the 10 

coauthors in that paper) 11 

  The brain is a highly complex system embracing a vast array of mutually interacting 12 

endogenous, small-molecule metabolites with varied chemical properties and specific 13 

biological significance. These metabolites in brain tissue, typically, amino acids and fatty 14 

acids are intermediates in cellular metabolism and play an indispensable role in 15 

regulating neural activity of central nervous system. The variation of them are of high 16 

significance for understanding the underlying mechanisms of various neurological 17 

diseases. Therefore, great effort has been made to qualify and quantify these crucial 18 

compounds in the brain tissues. 19 

  GC-MS technique serves as a versatile analytical tool and allows simultaneous 20 

detection of different classes of metabolites in a single analysis. Such a technique exhibits 21 

satisfactory sensitivity and selectivity than conventional NMR approach, and a good 22 

reliability in structure identification of candidate biomarkers than LC-MS. Moreover, 23 
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ethyl chloroformate (ECF) derivatization, as a simple and robust procedure, has proven 1 

preferable in the determination of amino acids. This derivatization has been of 2 

considerable interest, as ECF is an inexpensive agent and the reaction can be performed 3 

directly in aqueous medium without requirement for sample heating, which greatly 4 

facilitates batch preparation and improves reproducibility in quantifying amino acids. 5 

S1-5 GC/MS spectral acquisition 6 

  Each 1-µL of the analyte was injected into a HP-5ms capillary column (30 m × 250 µm 7 

i.d., 0.25-µm film thickness; 5%-phenyl-methylpolysiloxane bonded and crosslinked; 8 

Agilent J&W Scientific, Folsom, CA, USA) and analyzed by a hyphenated analytical 9 

technique, an Agilent 6890N gas chromatography coupled with an Agilent 5975B inert 10 

MSD mass spectrometry (Agilent Tech., CA, USA). 11 

S1-6 Data pretreatment 12 

  All of the raw GC/MS spectral data files were converted to NetCDF format via data 13 

analysis interface of the Agilent Instrument (Agilent Tech., CA, USA). Each data file was 14 

extracted using our custom scripts in the MATLAB R2007a (The MathWorks, Inc., 15 

Natick, MA, USA), where data pretreatment procedures such as baseline correction, peak 16 

deconvolution and alignment, exclusion of internal standard and solvent peaks, and 17 

normalization to the total chromatogram were constructed afterwards. The output data 18 

were organized in a three-dimensional matrix encompassing arbitrarily annotated peak 19 

indices (RT-M/Z pairs), sample names (observations), and all of the peak areas 20 

(variables). 21 

S1-7 Correlation coefficients 22 

  Correlation coefficients were calculated by using Pearson linear correlation 23 
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coefficients incorporated in MATLAB R2007a (The MathWorks, Inc., Natick, MA, USA). 1 

Firstly, all the GC/MS data were set as X matrix, and OPLS-DA discriminant scores in 2 

the first predictive component as Y matrix. Then, we repeatedly calculated the correlation 3 

coefficients of each variable and discriminant scores using Matlab function [R, 4 

p]=corrcoef (X, Y). [R,P]=corrcoef(...) also returns P, a matrix of p-values for testing the 5 

hypothesis of no correlation. Each p-value is the probability of getting a correlation as 6 

large as the observed value by random chance, when the true correlation is zero. If P(i,j) 7 

is small, say less than 0.05, then the correlation R(i,j) is significant.  8 

S1-8 Analytical assay and quantitative analysis 9 

  In this study, we firstly established a reliable and efficient method for global analysis 10 

of water extracts from brain tissue samples. This method has been detailedly described 11 

elsewhere (unpublished paper). Briefly, the protocol was extensively evaluated using 12 

brain tissue samples and a set of 23 reference standards encompassing amino acids, 13 

amines, and organic acids. Acceptable calibration curves were obtained over a wide 14 

concentration range, 0.2-35.0 μg/mL for standards and 0.067-0.417 mg/μL (w/v, 15 

tissue/water) for brain tissue samples.  The precision of the samples analyzed was 16 

mostly lower than 10% for both the mixed standard solution and the brain tissue samples.  17 

The brain tissue samples exhibited good stability within 48 hours with RSD generally 18 

less than 15%.   19 

Quantitative analysis of the 14 amino acids was herein carried out using the analytical 20 

curves that were constructed using solutions at a concentration of 0.2, 0.5, 1.0, 5.0, 10.0, 21 

15.0, 20.0, 25.0, or 35.0 μg/ml. The selected ion that exhibits the strongest response 22 

without disturbance was used to calculate the content for each amino acid in each brain 23 
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region. The expression can be described as  1 

X sample, i = X standard, i × (Y sample, i / Y standard, i – B adj, i) / K adj, i 2 

X sample, i : Concentration of the i
th

 amino acid in the test sample, μg/ml; 3 

X standard, i : Concentration of the i
th

 amino acid standard, μg/ml; 4 

Y sample, i : Area of the test sample (adjusted by the internal standard); 5 

Y standard, i : Area of the i
th

 amino acid (adjusted by the internal standard); 6 

B adj, i Interception of the established calibration curve using the i
th

 amine acid 7 

standard; 8 

K adj, i Slope of the established calibration curve using the i
th

 amine acid standard. 9 

 i, Alanine, Glycine, Valine, Leucine, Isoleucine, Threonine, Proline, Aspartic acid, 10 

Methionine, Glutamic acid, Phenylalanine, Tryptophan, Lysine, and Aspatagine 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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 1 

Linearity of  quantification of amino acid standards 

Compound Linear range (µg/ml)
  a

 n corr. coeffs.
b
 

Alanine 0.2-35.0 9 0.9992 

Glycine 0.2-35.0 9 0.9995 

Valine 0.2-35.0 9 0.9992 

Leucine 0.2-35.0 9 0.9996 

Isoleucine 0.2-35.0 9 0.9993 

Threonine 0.2-20.0 8 0.9983 

Proline 0.2-35.0 9 0.9985 

Aspartic acid 0.2-35.0 9 0.9908 

Methionine 0.5-25.0 7 0.9989 

Glutamic acid 0.2-25.0 7 0.9981 

Phenylalanine 0.5-25.0 7 0.9981 

Tryptophan 5.0-35.0 6 0.9907 

Lysine 5.0-35.0 6 0.9979 

Aspatagine 5.0-35.0 6 0.9990 

a
 Each standard stock solution of test compounds was freshly prepared in distilled water 

(0.8 mg/ml). The mixed standard solution was obtained by adding 100 µl of each stock 

solution described above. Different volumes of the mixed standard solution were diluted 

into 600 µl of water for linear range determination. 
 b

 Correlation coefficients were 

calculated for linearity ranging at the concentration listed here.  
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S2. SUPPORTING FIGURES 1 

SUPPORTING FIG. 1. Typical GC/MS total ion current (TIC) chromatograms of each region of brain tissue samples from the 2 

CUMS-treated rats ((a) cerebral cortex, (b) hippocampus, (c) thalamus, and (d) the remaining brain regions) and the healthy rats ((e) 3 

cerebral cortex, (f) hippocampus, (g) thalamus, and (h) the remaining brain regions). 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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b 

c 

d 
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SUPPORTING FIG. 2. 2D-PCA scores map (PC1 versus PC2) and 3D-PCA scores map (PC1 versus PC2 versus PC3) of GC/MS 1 

data deriving from the four discrete brain regions of the CUMS-treated group and the healthy control group (n = 6 per group).  2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

Note: In this study, a five-component PCA model with R2X of 67% was obtained. We only provided the 2D PCA scores plot 

(PC1 versus PC3) in the TEXT to indicate the inherent differences between brain regions and in relation to stress factors. 

From this map, we can notice the differences between cerebral cortex or thalamus versus hippocampus or the remaining 

regions occurred mainly in the PC1 while the consequences of stress are clearly shown in the PC3. The remaining principal 

components could represent other metabolic differences e.g., PC2 displayed the metabolic differences between thalamus or 

the remaining regions versus hippocampus (2b), inter-individual differences, and analytical variations etc., therefore, we 

provided the two additional figures for better understanding of our work. 

a 
b 
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SUPPORTING FIG. 3. 3D-PCA scores map of GC/MS data deriving from (a) 1 

hippocampus, (b) thalamus, and (c) the remaining brain regions obtained from the 2 

CUMS-treated group versus the healthy control group (n = 6 per group). 1D 3 

cross-validated OPLS-DA score map of GC/MS data deriving from (d) hippocampus, 4 

(e) thalamus, and (f) the remaining brain regions obtained from the CUMS-treated 5 

group versus the healthy control group (n = 6 per group). The modeled score value 6 

(t[1]p), the 6
th

 round cross-validated score value (t[1]cv,6), and orthogonal score value 7 

(t[2]o) for each individual are illustrated for each observation.  8 

 9 
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