
The Impact of Computer Augmented Online Learning and Assessment Tool

By: Misook Heo and Anthony Chow

Heo, M. & Chow, A. (2005). The Impact of Computer Augmented Online Learning and

 Assessment. Educational Technology & Society, 8(1), 113-125.

Made available courtesy of International Forum of Educational Technology & Society:

http://www.ifets.info/others/

***Note: Figures may be missing from this format of the document

Abstract:

The purpose of the study was to investigate the impact of an experimental online learning tool on

student performance. By applying cognitive load theory to online learning, the experimental tool

used was designed to minimize cognitive load during the instructional and learning process. This

tool enabled students to work with programming code that was supplemented with instructor

descriptions and feedback, embedded directly within the code while maintaining the original

integrity of the coding environment. A sample of 24 online graduate students at a southeastern

university were randomly assigned to four groups: Group 1 (Control group), Group 2

(Assessment group: the tool was used to provide feedback on student work), Group 3 (Lecture

group: the tool was used to describe examples of code provided in lectures), and Group 4 (Total

tool group: the tool was used to provide feedback on student work as well as describe examples

of code in lectures). Student learning was measured via analysis of six online quizzes. While

provision of tool-facilitated feedback alone did not appear to enhance student learning, the

results indicate that students performed best when they had the opportunity to view examples of

code facilitated by the tool during the learning process of new material. This implies a carefully

designed online learning environment, especially while controlling for and minimizing cognitive

load when presenting new information, can enhance that student learning.

Keywords: Online learning, Information technology education, Assessment, Personalized

learning, Cognitive load theory

Article:

Introduction

According to the human cognitive architecture, only the information that is attenuated to and

processed through adequate rehearsal in the working memory is transferred to the long-term

memory, becoming a part of a person’s permanent memory (Anderson, 2000). Long-term

memory can be used to store schemas of varying degrees of automaticity. The capacity of long-

term memory is virtually unlimited, but humans are not directly conscious of long-term memory.

Humans are conscious of only the contents of their working memory. Unfortunately, the capacity

of working memory is limited to about seven elements at a time (Miller, 1956).

Cognitive Load Theory suggests that instructional design will be improved if better consideration

is given to the role and limitations of the working memory (Cooper, 1990). According to

Sweller, one of the primary objectives of instruction is to reduce the mental workload of the

learner (cognitive load) in working memory. When information is properly processed in working

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149230551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://libres.uncg.edu/ir/uncg/clist.aspx?id=904
http://www.ifets.info/others/

memory, it is encoded into long-term memory. Knowledge is stored in the form of organized

schemata in the long-term memory; this process can free the working memory capacity, as these

schemas allow for meaningful encoding and efficient knowledge retrieval for learners allowing

processes to occur that otherwise would overburden working memory (Sweller, van

Merrienboer, & Paas, 1998). Cognitive load theory postulates that two types of cognitive load

affect learners simultaneously: intrinsic and extraneous cognitive load. Intrinsic cognitive load is

based on the level of difficulty the learner associates with the information that is presented, and

this load cannot be reduced externally through either the instructional design of the material or

the instructor. Extraneous cognitive load, on the other hand, is information that is not essential to

instruction, which serves to distract learners from the primary information to be learned. When

the intrinsic cognitive load is low, the working memory has enough space to handle a large

extraneous cognitive load. In this case, the instructional design does not have much of an impact

on student learning. When the intrinsic cognitive load is high, on the other hand, not much room

remains available in the working memory for extraneous cognitive load. As such, poorly

organized information will cause a substantial increase in extraneous cognitive load, using most,

if not all, available working memory. In this case, learning does not occur efficiently, if it occurs

at all. Extraneous cognitive load therefore is of primary concern for instructors and instructional

designers, with the goal being to minimize these distractions as much as possible.

Utilizing worked examples is a primary way to reduce extraneous cognitive load and facilitate

student learning, and this is referred to as the worked example effect. Worked examples let

learners attend to problem states and associated operators, enabling learners to induce

generalized solutions or schemas. In the absence of a schema with worked examples, means-ends

analysis is an efficient way of attaining a problem goal. When learners utilize the means-ends

analysis, they focus their search on actions that reduce the difference between the current state

and the state that is their goal. In this case, the learner attends to the information, negotiating the

differences between the current state and the desired state in their working memory until the goal

is reached. Learners’ extraneous cognitive loads, thus, become high. In contrast, when

appropriate worked examples are utilized, learners have nothing else to attend to and their

extraneous cognitive loads become low. There can be, however, no guarantee that all worked

examples reduce cognitive load in comparison to a means-ends search.

For example, worked examples presented to the student in a non-integrated fashion scatters

student attention. This split attention can cause increased cognitive load, impairing the ability of

students to learn, such as using code to explain a concept but placing the description and

explanation of that code at the end of the sequence instead of in an integrated fashion directly

paralleling the code and the discussion of that code. This forces the learner to go back and forth

from explanation to original code, placing an extraneous demand on working memory (Cooper,

1990). Therefore, providing worked examples in an integrated format is critical in order to best

facilitate learning.

The use of worked examples is a critical component to the learning process in programming

courses, as these types of courses often are designed with tightly paired conceptual and

pragmatic knowledge. Students gain exposure to fundamental programming techniques and

underlying concepts through practice with code examples that they are able to later transform

into practical solutions through assignments and small projects (Clear, Haataja, Meyer, Suhonen,

& Varden, 2000; Emory & Tamassia, 2002; Malmi, Korhonen, & Saikkonen, 2002). Instructors,

thus, often utilize textbooks and lectures that provide ample code examples that are in the

performance context in an effort to facilitate student learning.

In this environment, students often play the role of a self-directed learner while instructors serve

as facilitators of personalized learning rather than as broadcasters of knowledge (Clear et al.,

2000; Malmi et al., 2002). To better support personalized learning, instructors are also asked to

provide personal attention to students and to provide an environment where students can learn in

ways that work most effectively for them (VanDeGrift & Anderson, 2002).

One of the primary means for achieving this goal is for instructors to provide accurate and

meaningful assessment (Preston & Shackelford, 1999). It is often reported, however, that the task

of grading student programs is a laborious process (Jackson & Usher, 1997). When direct contact

with students is limited, assessing student work becomes even more difficult (Gayo, Gil, &

Álvarez, 2003).

While educators agree that instructors in an online learning environment must spend more time

and effort reviewing student work than they would spend in a face-to-face classroom course

(Clear et al., 2000; O'Quinn & Corry, 2002; Preston & Shackelford, 1999), the instructor does

not always have the luxury of devoting this amount of time. In fact, many instructors contend

that the inability to complement their virtual classroom environment with traditional methods

dampens their sense of effectiveness (Gayo et al., 2003; O'Quinn & Corry, 2002).

For online learning environments, thus, lectures and code examples tend to be functionally and

visually static and remain organized around the delivery media rather than the knowledge

representation and learning tasks of the student (Altman, Chen, & Low, 2002; Reed & John,

2003; Zachary & Jensen, 2003). For example, a code example is often followed by additional

explanations and descriptions, causing split-attention effect for learners and creating a situation

where every student receives the same amount of description for a specific code. Likewise,

coding assignments are usually graded with limited feedback in problem solving and

programming techniques (Trivedi, Kar, & Patterson-McNeill, 2003). General interaction among

the instructor and students is often less frequent than it would be in a face-to-face classroom

environment, especially when the course is in programming where the primary mode of

communication is text-based (Malmi et al., 2002; Price & Petre, 1997).

The need to reduce cognitive load in online learning environments that are predominately static

and text-based represents a significant problem, especially in programming courses. A tool that

simultaneously reduces student split-attention but does not cost instructors any additional time

and effort in teaching online programming courses is needed. By addressing the problem of split-

attention, overall student extraneous cognitive load should be reduced, leading to more available

working memory for learning newly introduced information, and potentially increasing overall

learning effectiveness. In addition, such a tool could also potentially reduce the overall work load

of an online programming instructor through augmenting the process of providing meaningful

descriptions and personalized comments to code examples and student work.

Purpose of the Study

The research presented in this paper seeks to investigate the impact of an experimental online

learning tool on student performance. An experimental tool, the Online Learning and Assessment

Tool (OLAT), was implemented to apply the cognitive load theory to online learning, attempting

to minimize cognitive load during the instructional and learning process.

This study is intended to address the primary research question, ―Does the use of the OLAT

improve student learning?‖ We have developed three hypotheses addressing the research

question tested in this paper:

1. Students receiving tool-facilitated feedback on their work will gain enhanced

understanding from their mistakes, thus their test performance over time will improve

beyond that of control group students.

2. Students receiving tool-facilitated descriptions in code examples will develop a better

understanding of the examples, thus their test performance over time will improve

beyond that of control group students.

3. Students receiving both tool-facilitated descriptions and feedback will show the greatest

improvement in performance over time.

The OLAT allows the student to view instructor-provided descriptions and/or feedback needed to

increase knowledge about a particular section of code or about mistakes that have been made.

It is expected that exposure to the tool-facilitated descriptions will improve student learning by

reducing extraneous cognitive loads for students when they are first exposed to new materials.

While it is expected that exposure to the tool-facilitated feedback alone will not improve student

learning much since students’ intrinsic cognitive loads will not be high when dealing with

already learned material, it is anticipated that students exposed to both the tool-facilitated

descriptions and feedback will achieve the greatest improvement in performance over time.

Methodology

Participants

Each of the 24 graduate students participating in the six-week study attended a southeastern

university; a possible selection bias is present in the study as each of the participants was self-

registered to the online session of the Advanced Web Applications course. Participants were not

monetarily awarded but were rewarded with academic credit for participation in this

experimental study. Each participant’s age, gender, and academic program were recorded, but

kept confidential in accordance with the Institutional Review Board (IRB) guidelines.

Instruments and Materials

Experimental Intervention: The Online Learning And Assessment Tool (OLAT) – as Learning

Tool

The OLAT serves as a learning aid by allowing the instructor to tailor descriptions to a specific

portion of the code example. The process occurs easily, utilizing simple ―point and describe‖

actions. The instructor simply loads the saved code example to a web browser and clicks on the

line requiring detailed description. This mouse click action can be likened to the process of a

face-to-face classroom instructor pointing to a portion of code to provide an explanation. A

description-ready window appears in which the instructor is able to compose the desired

description. Figure 1 provides a screenshot of this stage. The instructor’s code description is now

ready to be viewed by students.

The process of reducing cognitive load for the instructor by providing such an efficient means

for adding description to meaningful worked examples can be referred to as augmentation, which

reduces the load of working memory by removing trivial human tasks, thereby freeing the

working memory and enhancing the available capacity to be used for instructional purposes as

efficiently as possible.

Once an instructor description has been embedded, students are free to review the code example

with or without the embedded descriptions. Students may choose to review the embedded code

descriptions by moving the mouse over the color-coded lines (e.g. red-colored lines implicitly

indicate that there are embedded descriptions). This process can be likened to the student raising

a hand in the face-to-face classroom for further explanation of a specific section of code. Figure

2 provides a screenshot of this stage.

Theoretically, by providing instructor descriptions embedded directly within the worked

examples, the OLAT can help protect against the split-attention effect that causes extraneous

cognitive load in working memory, and thus support efficient student learning. Further, the

OLAT’s ability to view code descriptions on demand cultivates a positive environment of self-

directed, personalized learning among a diverse student population (Brusilovsky, 2001).

Providing mouse-over activated descriptions within text to preserve the original integrity of the

performance environment is not completely new technology. Popular applications such as MS

Word provide easy access to such functionality. One of the primary benefits of Web-based

education, however, is classroom and platform independence (Atolagbe, Hlupic, & Taylor, 2001;

Brusilovsky, 1998). With the advent of platform-independent applications, there are far greater

possibilities for creating more useful educational tools (Bridgeman, Goodrich, Kobourov, &

Tamassia, 2000). Eliminating the need to rely on students owning specific proprietary software

can be seen as taking full advantage of the benefits offered through online learning.

Color-coding for the code lines with embedded description and feedback utilizes the inherent

advantages of pre- attentiveness theory. This theory holds that processing occurs automatically

for people as they pay visual attention to and process graphical features such as color and size in

a pre-attentive fashion. In other words, people see and process size and color differences prior to

cognitive processing. Pre-attentive information representation is mentally economical, since the

information is rapidly and efficiently processed by the preattentive visual system rather than

through cognitive effort (Bartram, 1997).

Experimental Intervention: The Online Learning And Assessment Tool (OLAT) – as Assessment

Tool

In face-to-face classroom courses, students may submit their assignment printouts to the

instructor. The instructor is then able to read through the submitted code, marking errors or

inserting corrections, comments, or advice in the appropriate portion of the code. Often, the

instructor will choose to emphasize feedback with colored ink (Herrmann et al., 2003). Upon

receiving the graded assignment, the student is able to directly view the location where feedback

is written; it would not be necessary to count line numbers or read the code line by line to

interpret the instructor’s feedback.

Currently, in most online education environments, student assignments are uploaded to the

course server or delivered to the instructor by email. The instructor then reviews the submitted

assignment and adds feedback at the end of the assignment file or in a separate email message,

which is returned to the student. This practice creates added difficulty since, in addition to

evaluating and providing feedback on the code, the instructor must now consider the line number

and location of the applicable comment, or must use proprietary software to insert comments

within the document itself. This process also presents added difficulty for students, as they must

orient themselves to the specific location of comment by counting line numbers and apply

consolidated feedback to appropriate sections of the code, or they must possess the necessary

proprietary software.

The assessment portion of the OLAT facilitates the process of providing feedback on student

code by allowing the instructor to tailor comments to individual student code. The instructor

simply accesses the submitted assignment code through a web browser and clicks on the lines

that require feedback. This mouse click action can be likened to providing feedback at a specific

location within a printed version of the code. On this click action, a comment-ready window

appears and the instructor simply types in the appropriate feedback. The process for making and

retrieving comments are the same as for providing and retrieving instructor descriptions to

worked examples as part of a lecture depicted earlier in Figures 1 and 2. Although the OLAT’s

learning and assessment tool features serve different purposes, they function in the same manner.

The OLAT, as a platform independent online application for providing instructor feedback,

facilitates the assessment process and also relieves the instructor and/or students from the burden

of needing to have proprietary software—inserted descriptions occur and are saved directly to

the server (the application is Perl/CGI/JavaScript based) through any browser they may use. This

augments the process by allowing instructors to skip the time intensive process of downloading a

student document, making comments and saving that document to their local desktop, and then

having to upload it back to the server and/or emailing it back to the student. The entire

transaction occurs online.

The OLAT was embedded into the existing online course infrastructure. Since the tool produces

pages with embedded description and feedback that are visible in any Web browser, neither the

instructor nor students were asked to install any special software to make use of the tool.

Course Management System

An in-house course management system was used to conduct the study. This system has similar

functionality to commercial products such as BlackBoard or WebCT possessing 1) asynchronous

components such as posted lectures, threaded-discussion boards, email, announcements,

assignment/drop box, and other course materials (syllabus, course calendar, etc.), and 2)

synchronous components that consist of text-based chat interactions.

Assessment Measures

There were two types of assessment measures used in the study: quizzes and coding assignments.

Quizzes

Six in-class quizzes were conducted. Quizzes consisted of online multiple-choice and short

answer questions intended to address the two main categories of assessment, objective questions

and performance based questions (McCracken et al., 2001). Students were asked to respond to

quiz questions on a weekly basis after reviewing code examples and instructor feedback. Quizzes

were based on relevant course material and were offered not only to evaluate the impact of tool-

facilitated material, but also to reinforce student learning and application of course content.

Six questions were asked in each quiz. On each quiz, three questions addressed the previous

week’s assignment and three questions addressed the current week’s examples of code. For each

quiz, the majority of questions were standard close-ended multiple choice (objective based

questions); each quiz, however, also included a few open-ended, short answer questions

(performance based questions). The quizzes were standard HTML, form- based, and conducted

online using the course management system’s assessment features. Figure 3 shows an example of

the quiz questions.

Assignments

Each week after learning new syntax and being exposed to worked examples, students were asked

to complete a coding assignment. Student code was submitted through the course Website by

uploading a zipped ASCII text file.

Questionnaires

Two questionnaires were administered during the study. The pre-test was a 15-item

questionnaire, which collected participant demographic data including age and gender, and

previous experience with computers, the Web, programming languages, and online learning.

Example pretest questions include: ―How many computer language courses did you take so far?‖

and ―How many courses per semester (on average) do you take Web- based distance courses?‖

The post-test questionnaire was also a 15-item instrument and collected participants’

perspectives on their experience with tool-facilitated descriptions and feedback. The questions

were a combination of ordinal scale and seven-point Likert scale. Examples of post-test items

include: ―Indicate the amount of time you spent studying the lecture slide/audio per week‖ and

―How helpful the descriptions in the code examples for your understanding of concepts of each

week's learning material? Choose one between 1 (Not at all) and 7 (Very much).‖

Procedure

In order to test our hypotheses, a six-week experimental study was conducted in a Web

programming course taught online during a summer session. The study involved 24 graduate

students from a southeastern university, all of whom were enrolled in the online course

―Advanced Web Applications.‖ Participants were randomly assigned to four experimental

groups. Students in each group reviewed lecture material and completed a series of quizzes and

programming assignments. The experiment ran from May 2003 through June 2003.

The experimental study consisted of four groups: 1) Control group: the OLAT tool was not used

and participants viewed line-number based descriptions and feedback in the traditional manner,

as shown in Figure 4; 2) Assessment group: the OLAT tool was only used to provide feedback

on student work; 3) Lecture group: the OLAT tool was only used to provide descriptions of

examples of code in lectures; and 4) Total tool group: the OLAT tool was used to provide

feedback on student work as well as descriptions of examples of code in lectures. Each

participant was assigned randomly to one of the four groups.

An initial online pre-test questionnaire was administered to participants to collect demographic

and experience data as described above. Each week of the study period, lectures were offered

and coding assignments were presented. Each lecture provided one or more examples of code

and the instructor reviewed each student assignment within 12 hours of the assignment deadline.

Student learning was also supported by various online education methods, including weekly

audio lectures with slides, weekly synchronous chat sessions, an asynchronous faculty office

discussion forum, and an asynchronous student discussion forum.

During each week of the study participants took an online quiz during the regularly scheduled

class time (two hours each week), which included questions from the current week’s examples of

code as well as the previous week’s assignment. No time limit was enforced for any of the

quizzes but participants were advised to finish the quiz in 15 minutes. User logs such as access

time to the quiz page, IP address, and student ID, were reviewed for student identification. After

concluding the pre-test and all six quizzes, participants were asked to provide their perspectives

on the examples of code and feedback on their work in a post-test questionnaire. Immediate

access to quiz performance was not available due to the fact that there were a few open-ended,

short answer questions, which needed to be graded by the instructor. Multiple-choice questions

had one correct answer per question. The short answer questions were performance based

requiring participants to identify problems and/or provide necessary solutions to coding

examples.

Measures

Dependent variables

The number of correct answers and the amount of time taken to complete weekly quizzes served

as the study’s dependent variables of performance; if tool-facilitated descriptions and/or

feedback aided student learning, student performance on quizzes would improve over time. Time

taken to complete quizzes was analyzed to measure the possible trade-off between the number of

correct answers and time on task. Follow-up perceptive evaluation results were also collected

and analyzed to enrich the data.

Analysis

Analysis of Variance (ANOVA) one-way factorial design was used to measure the participants’

performance progress, and the main effects of the OLAT on student learning were analyzed.

When the resulting F values were significant, a post-hoc analysis was conducted to investigate

the differences among the groups. As a post-hoc test, Tukey’s Honestly Significantly Different

test was used. Pearson Product Moment Correlation Coefficient was used to analyze linear

relationships between the number of correct answers and the time taken to complete quizzes.

ANOVA one-way factorial design was also used to analyze the results of the perceptive

evaluation questionnaire.

Results

Homogeneity Among Groups

Since no screening process was used to recruit participants, variance among the four

experimental groups was analyzed using the Kruskal and Wallis Test to test for potential

differences in homogeneity. No significant difference in the amount of experience among the

groups on computers, the Web, programming languages, and online learning was found (all

asymptotic significance values were greater than the significant level of 0.05).

Analysis of student performance on quizzes completed during the first three-weeks also showed

inter-group homogeneity. Student performance on these quizzes could reflect pre-existing

knowledge of course subjects, since participants were newly introduced to the course and had not

yet become accustomed to the way to view tool-facilitated descriptions and feedback.

Main Test Results

The progress in performance (the change in the number of correct answers from the first three

weeks to the last three weeks) for each of the four experimental groups is shown in Table 1. A

one-way ANOVA indicated that student performance in the tool-facilitated lecture group

significantly increased across questions asking about lecture material (F(3, 20) = 4.34, p = .016).

Analysis also showed that this group had a corresponding positive trend on student learning in

overall quiz questions (F(3, 20) = 2.77, p = .069). The total group also showed an increase in

student performance across overall quiz questions.

To determine where the difference occurred, a Tukey post-hoc test was conducted. According to

the test, the significant difference in increased performance occurred between the lecture group

and the assessment group (p = .014). Each group spent about the same amount of time

completing quizzes (F(3, 20) = 1.65, n.s.), however the lecture group showed more progress than

the participants in other groups. Pearson’s correlation showed no significant trade-off between

the number of correct answers and time taken to complete quizzes.

Role of Experience in Online Education

While programming knowledge in general and programming course experience in a face-to-face

classroom environment showed positive correlations toward student performance, .396 (n = 24, p

= .056) and .404 (n = 24, p = .051), previous online education experience showed a significant

negative correlation. For the question, ―How many courses per semester (on average) do you

take online?‖ there was a significant negative correlation of -.726 (n = 24, p = .000) with student

performance. In addition, for the question, ―How long have you been taking online courses?‖

there also was a significantly negative correlation of -.593 (n = 24, p = .002) with student

performance.

Perceptive Evaluations

In the last week of the study, participants were asked to rate their experience with the examples

of code and feedback on their work via a set of survey questions. This post-survey was used to

obtain participants’ perspectives on Web pages with embedded description and feedback

facilitated by the tool. The survey consisted of 15, seven-point Likert scale questions. A one-way

ANOVA indicated that participants in the total tool group spent significantly less preparation

time than the participants of the control group in studying examples of code (F(3, 20) = 6.305, p

= .003).

Discussion

The purpose of the study was to determine whether the OLAT intervention would improve

student learning in an online educational environment. Participants in this study were asked to

answer quiz questions after reviewing examples of code and feedback on their work provided

with or without the use of the Online Learning and Assessment Tool. Clear performance

differences emerged among the four groups. Analyses of experiment data show that descriptions

of code examples facilitated by the tool were the most helpful for participants’ learning. In

contrast, tool-facilitated feedback appeared to be the least helpful for participants’ learning.

We believe that these findings suggest that the OLAT intervention facilitated a decrease in the

overall extraneous cognitive load associated with students learning new material. When intrinsic

cognitive load is high, such as when faced with processing new material, the available working

memory is already severely limited, leaving little room for additional requirements made by

extraneous cognitive load (e.g. an online instructional and learning environment). In our study,

the intrinsic cognitive load for students was assumed to be relatively high as they were faced

with learning new material presented. Given this premise, additional extraneous cognitive load

associated with the instructional delivery and environment could potentially increase the overall

cognitive load leading to cognitive overload (intrinsic plus extrinsic cognitive load exceeds

available working memory), thereby impeding student learning.

Based on the fact that the OLAT lecture group and the OLAT total group (OLAT was used in

both lecture and assessment) showed improved performance at higher levels than other groups,

we infer that the OLAT intervention led to increased student learning by reducing overall

extraneous cognitive load. For the OLAT assessment group, however, which performed

significantly lower than the OLAT lecture and total groups, we believe that although extraneous

cognitive load may have been reduced by using OLAT during the assessment process, the impact

on overall student learning was minimal due to the fact that the tool was not available during the

initial learning process.

In addition to the primary findings, we have also determined that while participants with

programming language experience showed improved performance on objective testing over time,

participants with online education experience showed an overall decrease in test performance

over time. While this trend was somewhat surprising, we surmise that students who have more

experience with online courses may have established expectations of minimal interaction and

personal engagement when reading lectures and assessing assignments. Experienced online

students are more likely to typically face a lack of personalized learning and assessment

feedback from the instructor. Such learning strategies are problematic in an online programming

course because of the iterative, trial-and-error nature of knowledge and skill acquisition involved

in becoming proficient in a programming language. Simply put, we believe that more

experienced online students, with already preconceived learning and feedback paradigms, took

advantage of the experimental tool less frequently and effectively than their less experienced

peers.

Based on the findings in our perceptive evaluation, the participants in the total tool group

devoted significantly less time on preparation than did the members of the control group in

studying examples of code. This difference suggests that participants could obtain the same

amount of knowledge, if not more, in less time when the tool- facilitated lectures were provided

in both lectures and in assignment feedback.

Implications

The findings of this study support cognitive load theory as applied to instructional design

(Sweller et al., 1998). If instruction is delivered in such a way as to effectively reduce extraneous

cognitive load, then the necessary working memory will be available for processing and retention

of new information. Students who were exposed to the OLAT during the initial presentation of

new information in the lecture significantly improved their learning performance over time.

Our study also supports the idea that the worked-example effect is only beneficial if the example

actually decreases extraneous cognitive load (Cooper, 1990; Feinberg & Murphy, 2000). When

the split-attention effect occurs, the worked-example effect may actually increase cognitive load

and impede student learning. Using the OLAT’s embedded description/comments arguably helps

preserve the integrity of the instructional context—all the information being presented is in the

same location, thus protecting students from the split-attention effect. Overall, the findings of

this study indicate that student learning can be improved in an online programming environment

when unique challenges, such as non-linear characteristics of code paired with associated

comments, are carefully considered and mitigated.

Limitations

Although this study provides data supporting cognitive load theory, there are still a number of

limitations that should be considered. Although it was strongly recommended that students read

all lectures and instructor feedback on their work, it cannot be determined if all students actually

read the lectures and feedback comments. Also, we were unable to control for variance in the

breadth and time students devoted to this area.

Students were required to participate in a weekly synchronous text-based chat sessions that were

supplemented by voluntary asynchronous threaded discussion forums. We acknowledge that

discussion and interaction play an important role in online learning and may have a significant

impact on student learning; unfortunately, due to constraints of resources and time, we were

unable to control for this variable. One point of qualification, however, is that the asynchronous

threaded discussions were voluntary and ultimately not utilized to a great extent by students,

therefore most likely not accounting for much of the performance variance.

Our findings are only preliminary with a small sample size; extended study with additional

participants may need to be conducted to increase the overall strength of our findings. In

addition, as student performance was measured only through the use of quiz scores, other

measures may need to be used in future studies.

Lastly, the overall amount of time students spent completing quizzes and assignments was not

controlled. Students began the quizzes at the same time, although when they finished varied

across students. On average, each quiz took approximately 18 minutes to complete. One week

was given to complete each assignment.

Conclusion

Although the study described in this paper is still in its early stages of research and development,

the results are encouraging and suggest that the OLAT may be successful in reducing cognitive

load during the initial instruction and learning process. We remain optimistic that this tool, with

additional research, will prove to be beneficial for online programming instruction and student

learning.

Continued improvement of the current tool is planned and includes incorporation of a component

that allows descriptions or feedback to be provided across multiple lines of code (one comment

for multiple lines of code in different areas). In addition, providing the ability to run code

directly within the browser is also planned in order to substantially reduce time required by the

instructor to test student code and to reduce students’ time to test code examples.

Currently, teaching an online programming course can be a daunting task. The need for easing

the burden on behalf of instructors and students is essential to increase the overall effectiveness

and efficiency of instruction and learning in virtual space. The OLAT represents an initial

attempt to bring together contemporary learning theory and information technology to realize the

core vision for online learning—open access, platform independence, self-directed, personalized

learning among a diverse student population freed from the limitations of space and time

(Brusilovsky, 2001).

References

Altman, E., Chen, Y., & Low, W. C. (2002). Semantic exploration of lecture videos. Paper

presented at the International Multimedia Conference, December 1-6, 2002, Juan-les-Pins,

France.

Anderson, J. R. (2000). Cognitive Psychology and Its Implications (5
th

 ed.), New York: Worth

Publishers.

Atolagbe, T., Hlupic, V., & Taylor, S. J. E. (2001). Teaching tools and methods: GeNisa: a web-

based interactive learning environment for teaching simulation modeling. Paper presented at the

33
rd

 Conference on Winter Simulation, December 9-12, 2001, Arlington, VA, USA.

Bartram, L. (1997). Perceptual and interpretative properties of motion for information

visualization. Paper presented at the Workshop on New Paradigms in Information Visualization

and Manipulation, November 10-14, 1997, Las Vegas, USA.

Bridgeman, S., Goodrich, M. T., Kobourov, S. G., & Tamassia, R. (2000). PILOT: An

interactive tool for learning and grading. Paper presented at the 31
st
 SIGCSE Technical

Symposium on Computer Science Education, March 7-12, 2000, Austin, TX, USA.

Brusilovsky, P. (1998). Adaptive Educational Systems on the World-Wide-Web: A Review of

Available Technologies. Paper presented at the Workshop "WWW-Based Tutoring" at the 4th

International Conference on Intelligent Tutoring Systems, August 16-19, 1998, San Antonio, TX,

USA.

Brusilovsky, P. (2001). WebEx: Learning from examples in a programming course. Paper

presented at the WebNet'01 Conference, October 23-27, 2001, Orlando, FL, USA.

Clear, T., Haataja, A., Meyer, J., Suhonen, J., & Varden, S. A. (2000). Dimensions of Distance

Learning for Computer Education. Proceedings of the ITiCSE 2000 Working Group Reports,

New York: ACM Press, 101- 110.

Cooper, G. (1990). Cognitive load theory as an aid for instructional design. Australian Journal of

Educational Technology, 6 (2), 108-113.

Emory, D., & Tamassia, R. (2002). Jerpa: A distance-learning environment for introductory Java

programming courses. Paper presented at the 33
rd

 SIGCSE Technical Symposium on Computer

Science Education, February 27-March 3, 2002, Covington, KY, USA.

Feinberg, S., & Murphy, M. (2000). Applying cognitive load theory to the design of Web-based

instruction. Paper presented at the IEEE Professional Communication Society International

Professional Communication Conference, September 24-27, 2000, Cambridge, MA, USA.

Gayo, J. E. L., Gil, J. M. M., & Álvarez, A. M. F. (2003). A generic e-learning multiparadigm

programming language system: IDEFIX project. Paper presented at the 34
th

 SIGCSE Technical

Symposium on Computer Science Education, February 19-23, 2003, Reno, NV, USA.

Herrmann, N., Popyack, J. L., Char, B., Zoski, P., Cera, C. D., Lass, R. L., & Nanjappa, A.

(2003). Redesigning introductory computer programming using multi-level online modules for a

mixed audience. Paper presented at the 34
th

 SIGCSE Technical Symposium on Computer

Science Education, February 19-23, 2003, Reno, NV, USA.

Jackson, D., & Usher, M. (1997). Grading student programs using ASSYST. Paper presented at

the 28
th

 SIGCSE Technical Symposium on Computer Science Education, February 27-March 1,

1997, San Jose, CA, USA.

Malmi, L., Korhonen, A., & Saikkonen, R. (2002). Experiences in automatic assessment on mass

courses and issues for designing virtual courses. Paper presented at the
7th

 annual conference on

Innovation and technology in computer science education, June 24-28, 2002, Aarhus, Denmark.

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.,

Laxer, C., Thomas, L., & Utting, I. (2001). A multi-national, multi-institutional study of

assessment of programming skills of first-year CS students. Working Group Reports from

ITiCSE on Innovation and Technology in Computer Science Education, New York: ACM Press,

125-180.

Miller, G. (1956). The magic number seven, plus or minus two: some limits of our capacity for

processing information. Psychological Review, 63, 81-97.

O'Quinn, L., & Corry, M. (2002). Factors that deter faculty from participating in distance

education. Online Journal of Distance Learning Administration, 5 (4), retrieved December 21,

2004 from http://www.westga.edu/~distance/ojdla/winter54/Quinn54.htm.

Preston, J. A., & Shackelford, R. (1999). Improving on-line assessment: An investigation of

existing marking methodologies. Paper presented at the
4th

 Annual SIGCSE/SIGCUE ITiCSE

Conference on Innovation and Technology in Computer Science Education, June 27-30, 1999,

Cracow, Poland.

Price, B., & Petre, M. (1997). Teaching programming through paperless assignments: An

empirical evaluation of instructor feedback. Paper presented at the
2nd

 Annual SIGCSE/SIGCUE

ITiCSE Conference on Innovation and Technology in Computer Science Education, June 1-5,

1997, Uppsala, Sweden.

Reed, D., & John, S. (2003). Web annotator. Paper presented at the 34
th

 SIGCSE Technical

Symposium on Computer Science Education, February 19-23, 2003, Reno, NV, USA.

Sweller, J., Van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and

instructional design. Educational Psychology Review, 10 (3), 251-296.

Trivedi, A., Kar, D. C., & Patterson-McNeill, H. (2003). Automatic assignment management and

peer evaluation. The Journal of Computing in Small Colleges, 18 (4), 30-37.

VanDeGrift, T., & Anderson, R. J. (2002). Learning to support the instructor: Classroom

assessment tools as discussion frameworks in CS 1. Paper presented at the
7th

 annual conference

on Innovation and technology in computer science education, June 24-28, 2002, Aarhus,

Denmark.

Zachary, J. L., & Jensen, P. A. (2003). Exploiting value-added content in an online course:

Introducing programming concepts via HTML and JavaScript. Paper presented at the 34
th

SIGCSE Technical Symposium on Computer Science Education, February 19-23, 2003, Reno,

NV, USA.

http://www.westga.edu/~distance/ojdla/winter54/Quinn54.htm.

