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ABSTRACT 

Highly preorganized ligands have shown greater stability constants as well as increased 

metal-ion selectivities over their straight-chain analogs.  These ligands show a promising future 

in the bioinorganic, nuclear and industrial fields as well as many others.  The preorganized 

ligand 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) was synthesized and subjected to purity 

verification for studies into its formation constants with various aqueous metal-ions as well as its 

metal-ligand complex crystal structure.  Formation constants were determined from UV/Vis 

spectrophotometry detection methods using the absorbance spectra as a function of pH.  

Formation constants for the metal ions Al(III), Fe(III), Th(IV), Lu(III) and UO2
2+ are reported 

amongst others and crystal structures for the metal-PDA complexes of Ba(II),Th(IV) and UO2
2+ 

are also reported. 
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INTRODUCTION 

 Inorganic chemistry and ligand design have shown a large number of uses in the 

biomedical and industrial fields.  For instance, ligands are used to remove harmful heavy metals 

such as Pb(II) and Hg(II) from the body,1 Pu(IV) as well as other heavy metals must be 

reclaimed from nuclear wastes and other contaminated water supplies2 and Gd(III)-ligand 

complexes are used almost exclusively as MRI contrasting agents.1  In the case of Pu(IV), a 

ligand that can be found which binds selectively to the metal ion in solution while also having a 

simple means of removing the ion from the ligand solution would be invaluable in the nuclear 

waster industry.2  Preorganised ligands such as PDA show a great degree of selectivity for 

particular metal ions making them ideal for use in certain circumstances such as possible heavy 

metal filters for contaminated water supplies.  The concept of preorganization was first proposed 

by Donald J. Cram, who found that ligands which were more constrained to be in the 

conformation necessary to complex metal ions showed an increase in stability over their straight-

chain analogs.3 

Macrocycles, such as crown ethers4,5 and cryptands6,7, form very stable complexes due to 

their preorganized confirmations.  This stability, termed the macrocyclic and cryptate effects, 

due to structural rigidity allows for the design of macrocycles that selectively complex particular 

metal ions over others. 

Metal ion selectivity can be further improved by designing ligands with denticities to 

match the coordination number of the target metal ion.  For example, Gd(III) is used medicinally 

as an MRI contrast agent.1  However, as Gd(III) is toxic it must be administered in a ligand 

which binds Gd(III) selectively enough so as not to displace it for metals readily found in the 

body such as Zn(II) and Fe(III).  Gd(III) has a coordination number of 9, which is why it forms a 
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complex of much greater stability with diethylenetetramine pentaacetic acid (DTPA) over 

ethylenediamine tetraacetic acid (EDTA) though the ligands exhibit the same types of donor 

atoms in a similar conformation.  The reason for this is that DTPA has a denticity of 8, meaning 

it has 8 donor atoms available for complexation whereas EDTA only has a denticity of 6.  

 

The term hemicyclic ligand, coined by the Hancock research group, exemplified by 1,10-

phenanthroline-2,9-dicarboxylate (PDA), refers to non-macrocyclic ligands that derive their high 

levels of preorganization from an extended aromatic backbone. Hemicycles have the benefit of 

structurally rigid backbones which allow a fixed conformation of donor atoms while at the same 

time containing terminal donor atoms which make them acyclic.   

 

The rigid cleft selects for metal ions with an ionic radius of about 1.0 Å.  However, this 

non-cyclic nature also allows for metal ions of with ionic radii greater than 1.0 Å to be 

complexed by being out of plane with the ligands itself.  The complexes of hemicycles exhibit 

increased thermodynamic stability similar to macrocyclic ligands while also typically displaying 
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increased kinetic rates that allow for rapid metallation and demetallation.  Hemicycles are also 

typically easier to synthesize and are less expensive than macrocycles. 

 

 

METHODS 

 All chemicals and reagents used were of analytical grade and purchased commercially.  

Aqueous metal-ligand solutions were made using deionized water (Milli-Q, Waters Corp.) of > 

18 MΩ.cm-1 resistivity. 

Characterization of PDA from organic synthesis was performed using 1H-NMR and FT-

IR analysis.  Organic synthesis products were prepared for 1HNMR analysis in DMSO-d6.  

1HNMR spectra were performed using a Bruker 400MHz NMR spectrometer.  Organic synthesis 

products were prepared for FT-IR analysis as KBr pellets and were taken using a Nicolet 6700 

FT-IR spectrometer with OMNIC32 Version 2.09 software. 

UV/Vis absorbance spectra were recorded for aqueous metal-ligand titration experiments 

using a double beam Cary 1E UV/Vis spectrophotometer (Varian, Inc.) and WinUV Version 

2.00(25) software and a double beam Cary 100sn UV/Vis spectrophotometer (Varian, Inc.) with 

WinUV Version 3.00(182) software.  A 1.0 cm quartz flow cell, fitted with a variable flow 

peristaltic pump, was used to circulate the metal-ligand aqueous solution after each titrant 

addition was made to the sample.  Figure 1 shows a diagram of the flow cell apparatus.  The 

titrant solution was allowed to equilibrate for 6 to 7 minutes between each titrant addition 

depending on the metal ion being studied.  Absorbance scan ranges were taken from 200 to 350 

nm at a rate of 600.00 nm/min.  Absorbance spectra were referenced using DI H2O and a 1.0 cm 

quartz cell filled with DI H2O was placed in the path of the reference beam.   
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All pH values for the titration experiments were recorded using a SympHony SR60IC pH 

meter (VWR Scientific, Inc.), which was either calibrated by titrating 0.010 M HClO4 in 0.090 

M NaClO4 with 0.010 M NaOH in 0.090 M NaClO4 and calculating E0 to determine correlation 

between mV readings and calculated pH or calibrated using pH 4.00, 7.00, and 10.00 buffer 

solutions prior to each titration.  Aqueous metal-ligand samples were of 0.10 M NaClO4 for ionic 

strength and maintained at a constant 25.0 ± 0.1 °C throughout the experiment.  
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Figure 1:  Diagram showing the flow cell apparatus used in the titration experiments.
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Synthesis of PDA 

 The synthesis of PDA was carried out as described in the literature8 with a few 

modifications.  Characterization of the products was performed using FT-IR analysis and melting 

point analysis.   

 A mixture of 4.1232 g of 2,9-dimethyl-1,10-phenanthroline hemihydrate (18.98 mmol, 

Alfa Aesar, 98+%) and 11.0027 g of selenium dioxide (99.16 mmol, Alfa Aesar, 99.4%) was 

placed in 200 mL of 4% DI H2O/p-dioxane (Alfa Aesar, 99+%) in a 500 mL round bottom flask.  

The mixture was stirred and allowed to reflux at 101 °C in a wax bath for 3 hours.  The hot 

solution was immediately filtered and a yellow-orange product precipitated from the cold filtrate.  

The synthesis yielded 2.8091 g of impure 1,10-phenanthroline-2,9-dicarboxaldehyde (11.89 

mmol, 62.60%), which was separated from the filtrate by vacuum filtration and allowed to dry.  

The dialdehyde product was not taken through further purification steps since the next step of the 

synthesis involved further oxidation. 

 A solution of 2.8091 g of non-purified 1,10-phenanthroline-2,9-dicarboxaldehyde (11.89 

mmol) and 80 mL of 4:1 HNO3 (15.8 N, Fisher Scientific)/H2O was placed in a 200 mL round 

bottom flask.  The mixture was stirred while refluxing at 122 °C for 10 hours.  The solution was 

cooled to room temperature and then further cooled in a refrigerator.  The precipitated 1,10-

phenanthroline-2,9-dicarboxylic acid was filtered out by vacuum filtration and allowed to dry.  

This extended reaction time for the second step of the reaction yielded 2.2357 g (7.87 mmol, 

66.19%) of crystalline 1,10-phenanthroline-2,9-dicarboxylic acid monohydrate. 
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Titrations Involving PDA 

UV/Vis spectrophotometry was used to monitor acid-base titrations of aqueous metal-

PDA solution.  In the event that hydroxide ion was unable to displace the metal from PDA at 

high pH, another titration experiment was conducted with a competing ligand, either EDTA or 

DTPA, or another metal ion with a higher formation constant for PDA, such as thorium(IV).  

Stock solutions of 1.00×10-3 M PDA (0.0286 g into 100 mL of 0.0100 M NaOH), 1.00×10-3 M 

Na2EDTA (0.0372 g in 100 mL H2O), 1.00×10-3 M DTPA (0.1965 g into 500 mL H2O), and 

1.00×10-3 M triethylenetetramine hexaacetic aid, TTHA,  (0.0494 g into 100 mL H2O) were used 

in the titration experiments.  A titrant solution of 1.00 M HClO4 (6.00 mL of 69-72% HClO4 in 

100 mL H2O, Fisher Scientific) was used to adjust the initial pH of the sample solutions used in 

the titrations to a value of approximately 2.00 and then titrant solutions of 0.0100 M NaOH ( 

1.00 mL of 10 N NaOH into 100 mL of H2O) and 1.00 M NaOH (10 mL of 10 N NaOH into 100 

mL of H2O) were used to titrate the metal-ligand solution to a pH of approximately 12.00.  The 

ionic strength of each sample solution was held constant with 0.100 M NaClO4 (1.2244 g into 

100 mL H2O, Aldrich, 99%)).  The only exception to this case was the titration in order to 

determine the protonation constants for PDA. 

 

Solution for titration of PDA 

 In order to determine the protonation constants for PDA, 100 mL of 2.00×10-5 M PDA 

(2.00 mL of 1.00×10-3 M) in 0.10 M NaClO4 was prepared.  A 50.00 ± 0.05 mL aliquot of this 

solution was placed in the flow cell setup described above and titrated with 0.100 HClO4 (600 

mL of 69-72% HClO4 in 100 mL H2O, Fisher Scientific) to a final pH of 2.08.  The initial pH 
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was 9.02.  Absorbance spectra and pH values were recorded for each titrant addition.  The pH 

meter was calibrated using a 4,7,10 buffer system. 

 

Solution for titration of PDA with Aluminum(III) 

 A stock solution of 1.00×10-3 M Al(NO3)3 (0.0220 g, Aldrich, 99%, in 100 mL of H2O) 

was prepared for use in the titration.  For the titration the concentrations for both the aluminum 

and PDA were 2.00×10-5 M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M Al(NO3)3  

and 2.00 mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of this solution was 

placed in the flow cell apparatus described above, acidified to pH 2.10 with 500 ± 0.05 μL of 

1.00 M HClO4 then titrated with NaOH.  The pH meter was calibrated using a 4,7,10 buffer 

system. 

 

Solution for titration of PDA with Bismuth(III) 

 Two separate titration experiments were performed.  A stock solution of 1.00×10-3 M 

Bi(NO3)3⋅5H2O (0.0485 g, Aldrich, 99%, in 100 mL of H2O) was prepared for use in each 

titration.  For the first titration the concentrations for both the bismuth and PDA were 2.00×10-5 

M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M Bi(NO3)3⋅5H2O and 2.00 mL of 

1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in the 

flow cell apparatus described above, acidified to pH 1.74 with 500 ± 0.05 μL of 1.00 M HClO4 

then titrated with NaOH.  The pH meter was calibrated using a 4,7,10 buffer system.  For the 

second titration the concentrations for both the bismuth and PDA were 2.00×10-6 M.  A 100 mL 

solution containing 200 μL of 1.00×10-3 M Bi(NO3)3⋅5H2O and 200 μL of 1.00×10-3 M PDA was 

prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in the flow cell apparatus 
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described above, acidified to pH 2.35 with 300 ± 0.05 μL of 1.00 M HClO4 then titrated with 

NaOH.  The pH meter was calibrated by using an acid-base titration. 

 

Solution for titration of PDA with Cerium(IV) 

 A stock solution of 1.00×10-3 M (NH4)2Ce(NO3)6 (0.0548 g, Fischer Scientific, 99%, in 

100 mL of H2O) was prepared for use in the titration.  For the titration the concentrations for 

both the cerium and PDA were 2.00×10-5 M.  A 100 mL solution containing 2.00 mL of 1.00×10-

3 M (NH4)2Ce(NO3)6 and 2.00 mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL 

portion of this solution was placed in the flow cell apparatus described above, acidified to pH 

2.11 with 250 ± 0.05 μL of 1.00 M HClO4 then titrated with NaOH.  The pH meter was 

calibrated using a 4,7,10 buffer system. 

 

Solution for titration of PDA with Gallium(III) 

 A stock solution of 1.00×10-3 M Ga(NO3)3⋅5H2O (0.0346 g, Aldrich, 99%, in 100 mL of 

H2O) was prepared for use in the titration.  For the titration the concentrations for both the 

gallium and PDA were 2.00×10-5 M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M 

Ga(NO3)3⋅5H2O and 2.00 mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of 

this solution was placed in the flow cell apparatus described above, acidified to pH 1.95 with 500 

± 0.05 μL of 1.00 M HClO4 then titrated with NaOH.  The pH meter was calibrated using a 

4,7,10 buffer system. 
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Solution for titration of PDA with Indium(III) 

 A stock solution of 1.00×10-3 M In(ClO4)3⋅8H2O (0.0413 g, Aldrich, 99%, in 100 mL of 

H2O) was prepared for use in the titration.  For the titration the concentrations for both the 

indium and PDA were 2.00×10-5 M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M 

In(ClO4)3⋅8H2O and 2.00 mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of 

this solution was placed in the flow cell apparatus described above, acidified to pH 1.74 with 300 

± 0.05 μL of 1.00 M HClO4 then titrated with NaOH.  The pH meter was calibrated using a 

4,7,10 buffer system. 

 

Solutions for titrations of PDA with Iron(III) 

 Three separate titration experiments were performed.  A stock solution of 1.00×10-3 M 

Fe(ClO4)3⋅H2O (0.0354 g, Aldrich, 99%, in 100 mL of H2O) was prepared for use in each 

titration.  For the titration of iron(III) and PDA the concentrations for both the cerium and PDA 

were 2.00×10-5 M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M Fe(ClO4)3⋅H2O and 

2.00 mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of this solution was 

placed in the flow cell apparatus described above, acidified to pH 2.28 with 500 ± 0.05 μL of 

1.00 M HClO4 then titrated with NaOH.  For the titration of iron(III), PDA and EDTA at 1:1:1 

the concentrations for all components were 2.00×10-5 M.  A 100 mL solution containing 2.00 mL 

of 1.00×10-3 M Fe(ClO4)3⋅H2O, 2.00 mL of 1.00×10-3 M Na2EDTA and 2.00 mL of 1.00×10-3 M 

PDA was prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in the flow cell 

apparatus described above, acidified to pH 2.28 with 500 ± 0.05 μL of 1.00 M HClO4 then 

titrated with NaOH.  For the titration of iron(III), PDA and EDTA at 1:1:10 the concentrations 

for both iron and PDA were 2.00×10-5 M and the concentration of EDTA was 2.00×10-4 M.  A 
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100 mL solution containing 2.00 mL of 1.00×10-3 M Fe(ClO4)3⋅H2O, 20.0 mL of 1.00×10-3 M 

Na2EDTA and 2.00 mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of this 

solution was placed in the flow cell apparatus described above, acidified to pH 2.32 with 500 ± 

0.05 μL of 1.00 M HClO4 then titrated with NaOH.  For all of the titrations, the pH meter was 

calibrated using a 4,7,10 buffer system. 

 

Solution for titration of PDA with Lutetium(III) 

 A stock solution of 1.00×10-3 M Lu(ClO4)3⋅6H2O (0.1162 g of 50% w/w aqueous 

solution, Alfa Aesar, 99%, in 100 mL of H2O) was prepared for use in the titration.  For the 

titration the concentrations for lutetium and PDA were 2.00×10-5 M.  A 100 mL solution 

containing 2.00 mL of 1.00×10-3 M Lu(ClO4)3⋅6H2O and 2.00 mL of 1.00×10-3 M PDA was 

prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in the flow cell apparatus 

described above, acidified to pH 1.34 with 1.00 ± 0.05 mL of 1.00 M HClO4 then titrated with 

NaOH.  The pH meter was calibrated using a 4,7,10 buffer system. 

 

Solution for titration of PDA with Manganese(II) 

 A stock solution of 1.00×10-3 M Mn(ClO4)2⋅6H2O (0.0362 g, Aldrich, 99%, in 100 mL of 

H2O) was prepared for use in the titration.  For the titration the concentrations for both the 

manganese and PDA were 2.00×10-5 M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M 

Mn(ClO4)2⋅6H2O and 2.00 mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of 

this solution was placed in the flow cell apparatus described above, acidified to pH 2.01 with 500 

± 0.05 μL of 1.00 M HClO4 then titrated with NaOH.  The pH meter was calibrated using a 

4,7,10 buffer system. 
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Solutions for titrations of PDA with Thorium(IV) 

 Numerous titrations were performed with PDA and thorium in an attempt to fully 

comprehend the nature of the metal-ligand aqueous complex.  A stock solution of 1.00×10-3 M 

Th(NO3)4⋅4H2O (0.0552 g, Aldrich, 99%, in 100 mL of H2O) was prepared for use in the 

titration.  For the first titration of 1:1 PDA with thorium the concentrations for both the thorium 

and PDA were 2.00×10-5 M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M 

Th(NO3)4⋅4H2O and 2.00 mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of 

this solution was placed in the flow cell apparatus described above, acidified to pH 2.14 with 500 

± 0.05 μL of 1.00 M HClO4 then titrated with NaOH.  The pH meter was calibrated using a 

4,7,10 buffer system.  For the second titration of 1:1 PDA with thorium the concentrations for 

both the thorium and PDA were 4.00×10-6 M.  A 100 mL solution containing 0.40 mL of 

1.00×10-3 M Th(NO3)4⋅4H2O and 0.40 mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 

mL portion of this solution was placed in the flow cell apparatus described above, acidified to 

pH 2.14 with 500 ± 0.05 μL of 1.00 M HClO4 then titrated with NaOH.  The pH meter was 

calibrated using an acid-base titration.  For the titration of 2:1 PDA with thorium the 

concentration for the PDA was 4.00×10-5 M and the concentration for thorium was 2.00×10-5 M.  

A 100 mL solution containing 2.00 mL of 1.00×10-3 M Th(NO3)4⋅4H2O and 4.00 mL of 1.00×10-

3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in the flow cell 

apparatus described above, acidified to pH 2.11 with 500 ± 0.05 μL of 1.00 M HClO4 then 

titrated with NaOH.  The pH meter was calibrated using a 4,7,10 buffer system.  For the titration 

of 1:1:1 PDA, thorium and DTPA the concentration all components was 2.00×10-5 M.  A 100 mL 

solution containing 2.00 mL of 1.00×10-3 M Th(NO3)4⋅4H2O, 2.00 mL of 1.00×10-3 M PDA and 

2.00 mL of 1.00×10-3 M DTPA was prepared.  A 50.00 ± 0.05 mL portion of this solution was 
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placed in the flow cell apparatus described above, acidified to pH 2.25 with 420 ± 0.05 μL of 

1.00 M HClO4 then titrated with NaOH.  The pH meter was calibrated using a 4,7,10 buffer 

system.  For the titration of 1:1:10 PDA, thorium and DTPA the concentrations of PDA and 

thorium were 2.00×10-5 M and the concentration of DTPA was 2.00×10-4 M.  A 100 mL solution 

containing 2.00 mL of 1.00×10-3 M Th(NO3)4⋅4H2O, 2.00 mL of 1.00×10-3 M PDA and 20.00 mL 

of 1.00×10-3 M DTPA was prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in 

the flow cell apparatus described above, acidified to pH 2.28 with 500 ± 0.05 μL of 1.00 M 

HClO4 then titrated with NaOH.  The pH meter was calibrated using a 4,7,10 buffer system.  For 

the titration of 1:1:100 PDA, thorium and DTPA the concentrations of PDA and thorium were 

2.00×10-5 M and the concentration of DTPA was 2.00×10-3 M.  A 100 mL solution containing 

2.00 mL of 1.00×10-3 M Th(NO3)4⋅4H2O, 2.00 mL of 1.00×10-3 M PDA and 200.0 mL of 

1.00×10-3 M DTPA was prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in the 

flow cell apparatus described above, acidified to pH 2.10 with 420 ± 0.05 μL of 1.00 M HClO4 

then titrated with NaOH.  The pH meter was calibrated using a 4,7,10 buffer system.  For the 

titration of 1:1:1 PDA, thorium and TTHA the concentrations of all components were 2.00×10-5 

M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M Th(NO3)4⋅4H2O, 2.00 mL of 1.00×10-

3 M PDA and 2.00 mL of 1.00×10-3 M TTHA was prepared.  A 50.00 ± 0.05 mL portion of this 

solution was placed in the flow cell apparatus described above, acidified to pH 1.79 with 500 ± 

0.05 μL of 1.00 M HClO4 then titrated with NaOH.  The pH meter was calibrated using a 4,7,10 

buffer system.  For the titration of 1:1:10 PDA, thorium and TTHA the concentrations of PDA 

and thorium were 2.00×10-5 M and the concentration of TTHA was 2.00×10-4 M.  A 100 mL 

solution containing 2.00 mL of 1.00×10-3 M Th(NO3)4⋅4H2O, 2.00 mL of 1.00×10-3 M PDA and 

20.00 mL of 1.00×10-3 M TTHA was prepared.  A 50.00 ± 0.05 mL portion of this solution was 
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placed in the flow cell apparatus described above, acidified to pH 1.88 with 1.50 ± 0.01 mL of 

1.00 M HClO4 then titrated with NaOH.  The pH meter was calibrated using a 4,7,10 buffer 

system.  For the titration of thorium and DTPA the concentrations of thorium and DTPA were 

2.00×10-5 M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M Th(NO3)4⋅4H2O, 2.00 mL 

of 1.00×10-3 M DTPA was prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in 

the flow cell apparatus described above, acidified to pH 2.00 with 0.500 ± 0.01 mL of 1.00 M 

HClO4 then titrated with NaOH.  The pH meter was calibrated using a 4,7,10 buffer system.   

 

Solutions for titrations of PDA with Uranyl(VI) 

 Two titration experiments were performed.  A stock solution of 1.00×10-3 M 

UO2(NO3)2⋅6H2O (0.0502 g, Fischer Scientific, 99%, in 100 mL of H2O) was prepared for use in 

the titration.  For the first titration the concentrations for both the uranyl ion and PDA were 

2.00×10-5 M.  A 100 mL solution containing 2.00 mL of 1.00×10-3 M UO2(NO3)2⋅6H2O and 2.00 

mL of 1.00×10-3 M PDA was prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in 

the flow cell apparatus described above, acidified to pH 2.41 with 275 ± 0.05 μL of 1.00 M 

HClO4 then titrated with NaOH.  The pH meter was calibrated using a 4,7,10 buffer system.  For 

the second titration the concentrations for both the uranyl ion and PDA were 2.00×10-6 M.  A 100 

mL solution containing 0.20 mL of 1.00×10-3 M UO2(NO3)2⋅6H2O and 0.20 mL of 1.00×10-3 M 

PDA was prepared.  A 50.00 ± 0.05 mL portion of this solution was placed in the flow cell 

apparatus described above, acidified to pH 2.32 with 500 ± 0.05 μL of 1.00 M HClO4 then 

titrated with NaOH.  The pH meter was calibrated using an acid-base titration. 
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Synthesis and crystal preparation of the complex [Ba(PDAH)(H2O)2(NO3)]. 

A solution of 1.00×10-3 M Ba(ClO4)2 (0.0336 g, Aldrich, 97%, in 100 mL of H2O) and a 

solution of  1.00×10-3 M PDA (0.0286 g into 100 mL of n-butanol) was prepared.  A 15mL 

aliquot of the aqueous barium solution was placed in the bottom of a 1×12” test tube.  A layer of 

approximately 60 mL of n-butanol was placed atop the aqueous layer and a 15 mL aliquot of the 

PDA in n-butanol solution was placed atop the pure n-butanol layer with care taken to not disturb 

the n-butanol layer.  A piece of Parafilm was placed atop the test tube and the tube was allowed 

to sit undisturbed for 5 months until crystals formed at the interface between the n-butanol and 

aqueous layers.  The crystals were gathered through vacuum filtration and were sent off to 

Clemson University, SC for analysis by Dr. Donald VanDerVeer. These crystals have yet to have 

an elemental analysis performed on them.   

 

 

 

Synthesis and crystal growth of the complex [Th(PDA)2(H2O)2].H2O. 

The solution of 1.00×10-3 M Th(NO3)4⋅4H2O used in the titration experiment and the 

solution of  1.00×10-3 M PDA in n-butanol used in the barium crystal growing experiment were 

used to attempt a similar crystal growing procedure as the barium crystal experiment.  A 15mL 

aliquot of the aqueous thorium solution was placed in the bottom of a 1×12” test tube.  A layer of 

approximately 60 mL of n-butanol was placed atop the aqueous layer and a 15 mL aliquot of the 

PDA in n-butanol solution was placed atop the pure n-butanol layer with care taken to not disturb 

the n-butanol layer.  A piece of Parafilm was placed atop the test tube and the tube was allowed 

to sit undisturbed for 5 months.  Crystals never formed, and instead an insoluble powder formed 
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at the interface. Instead of a conventional approach to growing crystals of the Th(IV)/PDA 

complex, crystals of [Th(PDA)2(H2O)2].H2O were obtained for us by Drs. C. Cahill and M. 

Frisch (George Washington University) from a hydrothermal reaction mixture that contained 81 

mg (0.167 mmol) Th(NO3)4.4H2O, 44 mg (0.167 mmol) PDA and 1.69 g deionized H2O (93.6 

mmol).  These reagents were combined in a 23 mL Teflon-lined stainless steel reaction vessel 

(initial pH = 1.23) and heated to 180 ºC for 1 day.  The reaction mixture was then allowed to 

cool to room temperature.  The clear colorless mother liquor (final pH = 0.95) was extracted and 

the remaining clear colorless crystals were subsequently washed with both distilled water and 

ethanol and allowed to air dry at room temperature. An elemental analysis calculation for 

C28H18N4O11Th: C, 41.08, H, 2.20, N, 6.85 %, found: C, 40.46; H, 2.08; N, 6.81 %. 

 

 

Synthesis and crystal preparation of the complex [UO2(PDA)]. 

The solution of 1.00×10-3 M UO2(NO3)2⋅6H2O  and the solution of  1.00×10-3 M PDA in 

n-butanol were used to attempt a similar crystal growing procedure as the barium crystal 

experiment.  A 15mL aliquot of the aqueous uranyl solution was placed in the bottom of a 1×12” 

test tube.  A layer of approximately 60 mL of n-butanol was placed atop the aqueous layer and a 

15 mL aliquot of the PDA in n-butanol solution was placed atop the pure n-butanol layer with 

care taken to not disturb the n-butanol layer.  A piece of Parafilm was placed atop the test tube 

and the tube was allowed to sit undisturbed for 7 months.  Crystals never formed, and instead an 

insoluble powder formed at the interface. Crystals of [(UO2)(PDA)] were obtained for us by Drs. 

C. Cahill and M. Frisch (George Washington University) from a hydrothermal reaction mixture 

that contained 84 mg (0.167 mmol) UO2(NO3)2.6H2O, 53 mg (0.198 mmol) PDA and 1.67 g 
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deionized H2O (92.5 mmol).  These reagents were combined in a 23 mL Teflon-lined stainless 

steel reaction vessel (initial pH = 1.36) and heated to 180 ºC for 1 day.  The reaction mixture was 

then allowed to cool to room temperature.  The yellow mother liquor (final pH = 1.03) was 

extracted and the remaining yellow crystals were subsequently washed with both distilled water 

and ethanol then allowed to air dry at room temperature. An elemental analysis calculation for 

C14H6N2O6U: C, 31.34, H, 1.12, N, 5.22 %, found: C, 31.76; H, 1.06; N, 5.35 %. 

 

X-ray structure determination. 

The crystal structures of (UO2)(C14H6N2O4) (1) and Th(C14H6N2O4)2(H2O)2 · H2O (2) and 

[Ba(PDAH)(H2O)2(NO3)] were determined via single crystal X-ray diffraction.  A representative 

crystal of each compound was mounted on a glass fiber using epoxy gel.  Intensity data were 

collected on a Bruker SMART diffractometer equipped with an APEX II CCD detector.  Data 

processing was performed using SAINT9.  The structures were solved using direct methods while 

the refinement was carried out using SHELXL-9710 within the WINGX software suite11.  Powder 

X-ray diffraction data were collected on a Rigaku MiniFlex II Desktop X-ray Diffractometer 

(Cu-Kα, 3-60˚, 0.05˚ step, 1.0 s step-1) and manipulated utilizing the JADE12 software package. 

The observed and calculated powder diffraction patterns for both 1 and 2 were in excellent 

agreement. The structures of 1 and 2 are shown in Figs. 4 and 5. Details of the structure 

determinations are given in Table 1, and coordinates for 1 and 2 have been deposited with the 

Cambridge Structural Database (CSD)13. A selection of bond lengths and angles for 1 and 2 are 

given in Tables 2 and 3. 
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RESULTS AND DISCUSSION 

Synthesis of PDA 

 The synthesis of 1,10-phenanthroline-2,9-dicarboxaldehyde (PDALD) resulted in an 

impure mixture.  The synthesis yielded 2.8091 g of PDALD for a percent yield of 62.60%.  The 

product was obtained as a purple-tinted powder with some small crystals also present.  The IR 

spectrum in Figure 2 shows a major product of PDALD with a peak at 1726cm-1 for the C=O 

stretch.  The aldehyde also contained evidence of a C-OH stretch at 3012cm-1, which is 

indicative that much of the aldehyde had been at least partially oxidized into PDA.  This is not a 

concern since the aldehyde product is further oxidized into PDA during step two of the synthesis.  

Further purification of PDALD was not performed as another oxidation step was needed to 

produce the desired final product. 
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Figure 2.  IR spectrum of 1,10-phenanthroline-2,9-dicarboxaldehyde (PDALD) product as a KBr 

pellet. 
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The PDALD product was used to synthesize 1,10-phenanthroline-2,9-dicarboxylic acid 

(PDA).  The PDA product was not taken through further purification techniques due to the very 

pure nature of the crystalline product as a result of the increased reaction time.  The reaction 

yielded 2.2357 g of PDA for a percent yield of 66.19% and an overall synthesis yield of 62.03%.  

The melting point for the crystalline product was 229-232°C was measured which compares very 

favorably with the literature value11 of 231-232°C.  An IR analysis was also conducted and the 

spectrum is shown in Figure 3.  The spectrum shows a clean carboxylic acid with a peak at 

1724cm-1 for the C=O stretch and a peak at 3012cm-1 for the C-OH stretch.  The spectrum also 

revealed a peak at 3551cm-1 resulting from a water molecule in the crystal lattice.  The melting 

point analysis and IR spectrum showed a clean product of PDA from the synthesis using 

PDALD.  Further evidence of the purity of our product was later obtained through 

crystallographic study of PDA with various metal ions.  All solutions used in the titration 

experiments and all crystallographic studies were made up or conducted using these crystals. 
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Figure 3.  IR spectrum of 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) product as a KBr 

pellet. 
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Titrations Involving PDA 

 
The titration experiments were performed utilizing UV/Vis spectroscopy as an analytical 

tool to detect metal complex formation involving PDA.  Absorbance scans were performed from 

200 to 350 nm for each titrant addition of NaOH.  Absorbance data were taken at selected 

wavelengths of approximately 236, 248, 262, 282, and 294 nm.  Absorbance maxima were 

shown at approximately 236 and 283 nm for the free PDA. Upon complexation of PDA with a 

metal ion, a new peak at approximately 248 nm was observed, as well as a peak shift from 280 to 

294 nm. The presence of the 248 nm peak came to be regarded as diagnostic of the metal-ligand 

complex formation. 

In order to determine the protonation constants for the ligand, PDA, a titration 

experiment was performed at 25.0 ± 0.1 °C in 0.10 M NaClO4 for ionic strength.  Figure 4 shows 

absorbance versus wavelength (nm) for the titration of PDA.  Absorbance data for various 

wavelengths were used to generate the plot of absorbance versus pH.  This plot is shown in 

Figure 5. The points drawn in are experimental values and the solid lines are theoretical curves 

of absorbance versus pH calculated for the constants corresponding to the observed protonation 

equilibria.  The theoretical curves of absorbance versus pH in Figure 5 were fitted to the 

experimental points using the SOLVER module of the program EXCEL14. The standard 

deviations of these protonation constants were calculated using the SOLVSTAT macro provided 

with reference 14.  The set of data obtained at 246 nm for the absorbance spectra was the best 

indication of complex formation.  The protonation constants for PDA were calculated using the 

absorbance data and pH values from this plot.  The corrected protonation constants of pK1 and 

pK2 for PDA were 4.71 and 2.53, respectively.  An illustration of the protonation equilibria for 

PDA is shown in Figure 6.
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Figure 4.  UV-Vis absorbance spectrum of the titration of PDA at 2.00×10-5 M. 
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Figure 5.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation constants of PDA at 2.00×10-5 M. 
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Figure 6.  Protonation equilibria for 1,10-phenanthroline-2,9-dicarboxylic acid (PDA). 

 



 26

Titrations Involving Metal Ion Complexation with PDA 

 As PDA has low protonation constants, it would be difficult to displace the metal ion 

from the ligand by titrating with HClO4.  Instead solutions were acidified to an approximate pH 

of 2, then NaOH was titrated into the solution.  This was found to be an acceptable method of 

removing the metals from PDA as the free-ligand absorbance spectrum began to be generated 

around pH of 7 to 12, depending upon the metal ion being studied, and the metals were fully 

removed from PDA by pH 12 in most cases.  The equilibrium being studied is shown in Equation 

(1). 

                                 Mn+(PDA)2- + 4 OH-  Mn+(OH)4
- + PDA2- (1) 

As the pH of the solution was increased this equilibrium moves from left to right forcing the 

metal out of PDA into a hydroxide complex.  From a knowledge of the log Kn(OH-)15 values for 

various metals it is possible16 to calculate log K1(PDA) for the metal ions.  Absorbance values 

were modeled as a function of pH for each titration experiment.  Using Equation (2), absorbance 

values were corrected for dilution. 

        
initial

total

V
V · Absorbance

  Absorbance Corrected =  (2) 

Values of corrected absorbance versus pH were plotted using EXCEL.  The points drawn in are 

experimental values of absorbance.  From this plot a series of isosbestic or inflection points are 

seen over a range of pH values.  The points represent specific protonation equilibria which are 

used to plot theoretical curves of absorbance versus pH, which incorporate the fitted extinction 

coefficients of the L, ML, and ML(OH)n species present in solution. The theoretical curves of 

absorbance versus pH were fitted to the experimental points using the SOLVER module of the 

program EXCEL. The standard deviations of these protonation constants were calculated using 

the SOLVSTAT macro.  Using the experimentally determined protonation equilibria values and 
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the ionization constant of water15 log Kw = 13.78 along with the log of the concentration of free 

ligand, a log K1 value for PDA can be calculated. 

 As ethylenediamine dicarboxylic acid (EDDA) is a less preorganized analog of PDA, log 

K1 values for metals with PDA are reported with log K1 values for the metal with EDDA17 along 

with Δ log K1 values between PDA and EDDA.  However, EDDA is not an ideal analog for PDA 

since EDDA has sp3 hybridized N-donors where those on PDA are sp2 hybridized, but this fact 

should favor EDDA, since sp3 hybridized N-donors (e.g. ammonia) are15 generally much 

stronger bases in aqueous solution than sp2 hybridized N-donor bases such as pyridine. Thus, if 

anything, the effect of the high levels of preorganization of PDA on its log K1 values should be 

understated by using EDDA complexes for comparison with PDA. 

 

Aluminum(III)-PDA results 

 Aluminum(III) has an ionic radius of 0.54 Å which is much smaller than the ideal 1.0 Å 

favored by PDA.  The UV absorbance spectrum for aluminum(III) and PDA is shown in Figure 

7.  A plot of the corrected absorbance values versus pH is shown in Figure 8 and a plot of the 

theoretical absorbance values calculated to determine the protonation constants of the complex is 

shown alongside the experimental data in Figure 9(a).  From the selected wavelengths of 208, 

233, 249, 260 and 283 nm, 4 successive pH-dependent equilibria were observed.  The equilibria 

are described below at the pH at which they occurred. 

Al(PDA) +   H+     Al(PDA)H+                    (pH = 2.83)  

Al(PDA) + OH-    Al(PDA)OH                    (pH = 4.07)  

Al(PDA)(OH) + OH-    Al(PDA)(OH)2                      (pH = 5.92)  

Al(PDA)(OH)2 + 2 OH-    Al(OH)4
-  + PDA2-                         (pH = 8.41) 
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Figure 9(b) shows a species distribution diagram for these protonation equilibria.  Using log Kw 

= 13.7815, the equilibria for the Al-PDA complex with hydroxide can be described as follows. 

Al(PDA) + OH-    Al(PDA)OH-          (log K1 [OH-]= 9.73)  

Al(PDA)(OH) + OH-    Al(PDA)(OH)2         (log K1 [OH-]= 7.88)  

Al(PDA)(OH)2 + 2 OH-    Al(OH)4
- + PDA2-     (log K3K4 [OH-]= 10.78) 

The log β4 [OH-] for aluminum is 31.5 and from this value15 log K1 for PDA with aluminum of 

8.11 was calculated as follows,  

log K1 = 31.5–(10.78)+7.88+9.73)+5.0                                (3) 

where the 5.0 takes into account the amount of free ligand at the midpoint of the equilibrium 

where Al(III) is displaced from PDA.  This midpoint is called the isosbestic point.  There was no 

reported15 formation constant for EDDA with aluminum(III). However, the affinity of the very 

small Al(III) ion for PDA is remarkably low when compared to other trivalent metal ions, which 

would be expected from the preference of PDA for larger metal ions. 
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Figure 7.  UV-Vis absorbance spectrum of the titration of aluminum(III) and PDA both at 

2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Absorbance of Aluminum(III) and PDA at 2.00×10-5 M 
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Figure 8.  Plot of absorbance values corrected for dilution of the titration of aluminum(III) and 

PDA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Aluminum(III) and PDA at 2.00×10-5 M
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Figure 9(a).  Experimental absorbance data (Exp.) fitted with calculated values (The.) to 

determine the protonation equilibria of the titration of aluminum(III) and PDA at 2.00×10-5 M, in 

0.10 M NaClO4 at 25.0 ºC.  
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Figure 9(b). Species distribution diagram for the Al(III)/PDA system at 2.00×10-5 M calculated 

using log K values determined here for Al(III) and PDA. Diagram calculated using EXCEL. 

Abbreviation: L = PDA. Charges on species omitted for simplicity. 
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Bismuth(III)-PDA results 

 Bismuth(III) has an ionic radius of 1.03 Å which is very close to the ideal 1.0 Å favored 

by PDA.  The UV absorbance spectrum for bismuth(III) and PDA at 2.00×10-5 M is shown in 

Figure 10.  A plot of the corrected absorbance values versus pH is shown in Figure 11 and a plot 

of the theoretical absorbance values calculated to determine the protonation constants of the 

complex is shown alongside the experimental data in Figure 12(a).  From the selected 

wavelengths of 233, 250, 263, 280 and 294 nm, 5 successive  

pH-dependent equilibria were observed.  The equilibria are described below at the pH at which 

they occurred. 

Bi(PDA) +   H+     Bi(PDA)H                 (pH = 1.85)  

Bi(PDA) + OH-    Bi(PDA)OH                 (pH = 6.26)  

Bi(PDA)(OH) + OH-    Bi(PDA)(OH)2                (pH = 9.67)  

Bi(PDA)(OH)2 + 2 OH-    [Bi(OH)4]-
 + PDA                        (pH = 11.07) 

Figure 12(b) shows a species distribution diagram for these protonation equilibria.  Using log Kw 

= 13.78, the log K1 [OH-] of the Bi-PDA complex can be described as follows. 

Bi(PDA) + OH-    Bi(PDA)OH           (log K1 [OH-] = 7.52)  

Bi(PDA)(OH) + OH-    Bi(PDA)(OH)2          (log K2 [OH-] = 4.11)  

Bi(PDA)(OH)2 + 2 OH-    [Bi(OH)4]-
 + PDA      (log K3K4 [OH-] = 2.71) 

The log β4 [OH-] for bismuth is 33.6 and from this value15 a log K1 for PDA with bismuth of 21.6 

was calculated using Equation (4),  

log K1 = 33.6–(2×(2.71)+4.11+7.52)+5.0                            (4) 

where the 5.0 takes into account the amount of free ligand at the isosbestic point.  The UV 

absorbance spectrum for bismuth(III) and PDA at 2.00×10-6 M is shown in Figure 13.  A plot of 
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the correlation between E (mV) and the calculated pH, which was used to calculate E0, is shown 

in Figure 14.  A plot of the corrected absorbance values versus calculated pH is shown in Figure 

15 and a plot of the theoretical absorbance values calculated to determine the protonation 

constants of the complex is shown alongside the experimental data in Figure 16.  This scan was 

conducted to show that at a dilution of 10, there was no significant change on the observed 

values for the protonation equilibria which reveals that the bismuth-PDA complex does not form 

any dimers.  There was no reported15 formation constant for EDDA with bismuth(III). 
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Figure 10.  UV-Vis absorbance spectrum of the titration of bismuth(III) and PDA at 2.00×10-5 M, 

in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 11.  Plot of absorbance values corrected for dilution of the titration of bismuth(III) and 

PDA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 

 

 



 37

Fitted Absorbance of Bismuth(III) and PDA at 2.00×10-5 M
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Figure 12(a).  Experimental absorbance data (Exp.) fitted with calculated values (The.) to 

determine the protonation equilibria of the titration of bismuth(III) and PDA at 2.00×10-5 M, in 

0.10 M NaClO4 at 25.0 ºC. 
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Figure 12(b). Species distribution diagram for the Bi(III)/PDA system at 2.00×10-5 M calculated 

using log K values determined here for Bi(III) and PDA. Diagram calculated using EXCEL. 

Abbreviation: L = PDA. Charges on species omitted for simplicity. 
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Figure 13.  UV-Vis absorbance spectrum of the titration of bismuth(III) and PDA at 2.00×10-6 M, 

in 0.10 M NaClO4 at 25.0 ºC. 
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E0 Determination for Bismuth(III) and PDA at at 2.00×10-6 M 
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Figure 14.  Plot of the correlation between E (mV) and the calculated pH used to calculate E0 for 

the titration of bismuth(III) and PDA at 2.00×10-6 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Absorbance of Bismuth(III) and PDA at 2.00×10-6 M 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14
pH (determined from E (mV))

C
or

re
ct

ed
 A

bs
or

ba
nc

e

236nm
249nm
262nm
283nm
294nm

 

Figure 15.  Plot of absorbance values corrected for dilution of the titration of bismuth(III) and 

PDA at 2.00×10-6 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Bismuth(III) and PDA at 2.00×10-6 M 
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Figure 16.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of bismuth(III) and PDA at 2.00×10-6 M, in 0.10 M 

NaClO4 at 25.0 ºC. 
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Cerium(IV)-PDA results 

 Cerium(IV) has an ionic radius of 0.87 Å which is somewhat less than the ideal value of 

1.0 Å favored by PDA.  The UV absorbance spectrum for cerium(IV) and PDA at 2.00×10-5 M is 

shown in Figure 17.  A plot of the corrected absorbance values versus pH is shown in Figure 18 

and a plot of the theoretical absorbance values calculated to determine the protonation constants 

of the complex is shown alongside the experimental data in Figure 19.  From the selected 

wavelengths of 236, 251, 262, 283 and 294 nm, 5 successive pH-dependent equilibria were 

observed.  The equilibria are described below at the pH at which they occurred. 

 

Ce(PDA) +   H+     Ce(PDA)H                  (pH = 2.30)  

Ce(PDA) + OH-    Ce(PDA)OH                  (pH = 3.95)  

Ce(PDA)(OH) + OH-    Ce(PDA)(OH)2                 (pH = 6.43)  

Ce(PDA)(OH)2 + OH-    Ce(PDA)(OH)3                               (pH = 8.48) 

Ce(PDA)(OH)3 + OH-    Ce(OH)4  + PDA2-                          (pH = 11.47) 

Using log Kw = 13.78, the log K1 [OH-] of the Ce-PDA complex can be described as follows. 

Ce(PDA) + OH-    Ce(PDA)OH    (log K1 [OH-] = 9.83)  

Ce(PDA)(OH) + OH-    Ce(PDA)(OH)2   (log K2 [OH-] = 7.35)  

Ce(PDA)(OH)2 + OH-    Ce(PDA)(OH)3                 (log K3 [OH-] = 5.30) 

Ce(PDA)(OH)3 + OH-    Ce(OH)4  + PDA2-            (log K4 [OH-] = 2.31) 

However, there has been no log β4 [OH-] for cerium(IV) reported15 so another titration 

experiment was performed. The UV absorbance spectrum for cerium(IV) and PDA at 2.00×10-5 

M, at initial pH 1.25, titrated with 0.01 M Th(IV), acidified to pH 1.29, is shown in Figure 20.  A 

plot of the corrected absorbance values versus [Th(IV)] is shown in Figure 21.  The selected 
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wavelengths of 283, 293, 303, 313 and 323 nm were plotted in an attempt to calculate a log K1 

value.  The higher wavelengths used were selected for analysis because Th(IV) absorbs UV light 

between 200 and 250 nm.  However, an overall increase in absorbance is still seen for most 

wavelengths as the [Th(IV)] increases.  The wavelengths at 283 nm is especially useful in this 

case because it still exhibits characteristic decrease in absorbance indicating displacement of 

Ce(IV) from PDA by Th(IV).  This absorbance spectrum is shown in Figure 22. 
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Figure 17.  UV-Vis absorbance spectrum of the titration of cerium(IV) and PDA at 2.00×10-5 M, 

in 0.10 M NaClO4 at 25.0 ºC. 

 

 



 46
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Figure 18.  Plot of absorbance values corrected for dilution of the titration of cerium(IV) and 

PDA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Cerium(IV) and PDA at 2.00×10-5 M
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Figure 19.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of cerium(IV) and PDA at 2.00×10-5 M, in 0.10 M 

NaClO4 at 25.0 ºC. 
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Figure 20.  UV-Vis absorbance spectrum of the titration of cerium(IV) and PDA at 2.00×10-5 M, 

initial pH 1.25, titrated with 0.01 M Th(IV), acidified to pH 1.29. 
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Figure 21.  Plot of absorbance values corrected for dilution of the titration of cerium(IV) and 

PDA at 2.00×10-5 M, initial pH 1.25, titrated with 0.01 M Th(IV), acidified to pH 1.29. 
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Figure 22.  Plot of absorbance values corrected for dilution at 283 nm of the titration of 

cerium(IV) and PDA at 2.00×10-5 M, initial pH 1.25, titrated with 0.01 M Th(IV), acidified to pH 

1.29. 
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Gallium(III)-PDA results 

 Gallium(III) has an ionic radius of 0.62 Å which is much smaller than the ideal 1.0 Å 

favored by PDA.  The UV absorbance spectrum for the gallium(III) and PDA complex at 

2.00×10-5 M is shown in Figure 23.  A plot of the corrected absorbance values versus pH is 

shown in Figure 24 and a plot of the theoretical absorbance values calculated to determine the 

protonation constants of the complex is shown alongside the experimental data in Figure 25.  

From the selected wavelengths of 208, 236, 249, 263 and 286 nm, 4 successive pH-dependent 

equilibria were observed.  The equilibria are described below at the pH at which they occurred. 

 

Ga(PDA) +   H+     Ga(PDA)H+                  (pH = 1.57)  

Ga(PDA) + OH-    Ga(PDA)OH-                  (pH = 4.34)  

Ga(PDA)(OH) + OH-    Ga(PDA)(OH)2
                      (pH = 9.58)  

Ga(PDA)(OH)2 + 2 OH-    [Ga(OH)4]-  + PDA2-                  (pH = 12.37) 

Using log Kw = 13.78, the log K1 [OH-] of the Ga-PDA complex can be described as follows. 

Ga(PDA) + OH-    Ga(PDA)OH-            (log K1 [OH-]= 9.44)  

Ga(PDA)(OH) + OH-    Ga(PDA)(OH)2
               (log K2 [OH-]= 4.20)  

Ga(PDA)(OH)2 + 2 OH-    [Ga(OH)4]-  + PDA2-  (log K3K4 [OH-]= 1.41) 

The log β4 [OH-] for gallium(III) is 37.6 and from this value15 a log K1 for PDA with gallium(III) 

of 22.3 was calculated using Equation (5),  

 log K1 = 37.6–(2×(1.41)+4.20+9.44)+5.0                           (5) 

where the 5.0 takes into account the amount of free ligand at the isosbestic point. The reported 

formation constant for EDDA with gallium(III)15 was 19.12, which was weaker when compared 

to the log K1 for that of PDA with gallium(III).  A Δ log K1 of 3.18 between the log K1 values of 
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PDA and EDDA with gallium(III) was calculated and showed a slight increase in stability of the 

PDA complex of gallium(III) relative to the EDDA complex of gallium(III). 
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Figure 23.  UV-Vis absorbance spectrum of the titration of gallium(III) and PDA at 2.00×10-5 M, 

in 0.10 M NaClO4 at 25.0 ºC. 

 

 

 



 54

Absorbance of Gallium(III) and PDA at 2.00×10-5 M

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14
pH

C
or

re
ct

ed
 A

bs
or

ba
nc

e

208nm
236nm
249nm
263nm
286nm

 

Figure 24.  Plot of absorbance values corrected for dilution of the titration of gallium(III) and 

PDA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Gallium(III) and PDA at 2.00×10-5 M
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Figure 25.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of gallium(III) and PDA at  

2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Indium(III)-PDA results 

 Indium(III) has an ionic radius of 0.80 Å which is slightly smaller than the ideal 1.0 Å 

favored by PDA.  The UV absorbance spectrum for indium(III) and PDA complex at 2.00×10-5 

M is shown in Figure 26.  A plot of the corrected absorbance values versus pH is shown in 

Figure 27 and a plot of the theoretical absorbance values calculated to determine the protonation 

constants of the complex is shown alongside the experimental data in Figure 28.  From the 

selected wavelengths of 236, 248, 259, 283 and 290 nm, 4 successive pH-dependent equilibria 

were observed.  The equilibria are described below at the pH at which they occurred. 

 

In(PDA) +   H+     In(PDA)H                  (pH = 2.61)  

In(PDA) + OH-    In(PDA)OH                  (pH = 5.78)  

In(PDA)(OH) + OH-    In(PDA)(OH)2                 (pH = 8.43)  

In(PDA)(OH)2 + 2 OH-    [In(OH)4]- + PDA2-                      (pH = 10.85) 

Using log Kw = 13.78, the log K1 [OH-] of the In-PDA complex can be described as follows. 

In(PDA) + OH-    In(PDA)OH             (log K1 [OH-]= 8.00)  

In(PDA)(OH) + OH-    In(PDA)(OH)2            (log K2 [OH-]= 5.35)  

In(PDA)(OH)2 + 2 OH-    [In(OH)4]- + PDA2-      (log K3K4 [OH-]= 2.93) 

The log β4 [OH-] for indium(III) is 33.9 and from this value15 a log K1 for PDA with indium(III) 

of 19.7 was calculated using Equation (6),  

log K1 = 33.9–(2×(2.93)+5.35+8.00)+5.0                 (6) 

where the 5.0 takes into account the amount of free ligand at the isosbestic point. There was no 

reported15 formation constant for EDDA with indium(III). 
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Figure 26.  UV-Vis absorbance spectrum of the titration of indium(III) and PDA at 2.00×10-5 M, 

in 0.10 M NaClO4 at 25.0 ºC. 
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Absorbance of Indium(III) and PDA at 2.00×10-5 M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14

pH

C
or

re
ct

ed
 A

bs
or

ba
nc

e

236nm
248nm
259nm
283nm
290nm

 

Figure 27.  Plot of absorbance values corrected for dilution of the titration of indium(III) and 

PDA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Indium(III) and PDA at 2.00×10-5 M
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Figure 28.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of indium(III) and PDA at 2.00×10-5 M, in 0.10 M 

NaClO4 at 25.0 ºC. 
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Iron(III)-PDA results 

 Iron(III) has an ionic radius of 0.55 Å which is much smaller than the ideal 1.0 Å favored 

by PDA.  Many titration experiments were performed with iron and PDA.  The UV absorbance 

spectrum for iron(III) and PDA complex at 2.00×10-5 M is shown in Figure 29.  A plot of the 

corrected absorbance values versus pH is shown in Figure 30 and a plot of the theoretical 

absorbance values calculated to determine the protonation constants of the complex is shown 

alongside the experimental data in Figure 31.  From the selected wavelengths of 236, 249, 260, 

270and 283 nm, 4 successive pH-dependent equilibria were observed.  The equilibria are 

described below at the pH they occured. 

 

Fe(PDA) +   H+     Fe(PDA)H                  (pH = 2.51)  

Fe(PDA) + OH-    Fe(PDA)OH                  (pH = 6.37)  

Fe(PDA)(OH) + OH-    Fe(PDA)(OH)2                 (pH = 8.24)  

Fe(PDA)(OH)2 + 2 OH-    [Fe(OH)4]- + PDA2-                     (pH = 10.48) 

Using log Kw = 13.78, the log K1 [OH-] of the Fe-PDA complex can be described as follows. 

Fe(PDA) + OH-    Fe(PDA)OH            (log K1 [OH-]= 7.41)  

Fe(PDA)(OH) + OH-    Fe(PDA)(OH)2           (log K2 [OH-]= 5.54)  

Fe(PDA)(OH)2 + 2 OH-    [Fe(OH)4]- + PDA2-    (log K3K4 [OH-]= 3.30) 

The log β4 [OH-] for iron(III) is 34.4 and from this value15 a log K1 for PDA with iron(III) of 

19.85 was calculated using Equation (7),  

log K1 = 34.4–(2×(3.30)+5.54+7.41)+5.0                           (7) 

where the 5.0 takes into account the amount of free ligand at the isosbestic point.  To further test 

the validity of this result other titrations were conducted with the competing ligand EDTA.  The 
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UV absorbance spectrum for 1:1:1 iron(III), PDA and EDTA at 2.00×10-5 M is shown in Figure 

32.  A plot of the corrected absorbance values versus pH is shown in Figure 33 and a plot of the 

theoretical absorbance values calculated to determine the protonation constants of the complex is 

shown alongside the experimental data in Figure 34.  The UV absorbance spectrum for 1:1:10 

with iron(III) and  PDA at 2.00×10-5 M and EDTA at 2.00×10-4 M is shown in Figure 35.  A plot 

of the corrected absorbance values versus pH is shown in Figure 36 and a plot of the theoretical 

absorbance values calculated to determine the protonation constants of the complex is shown 

alongside the experimental data in Figure 37.  The EDTA was unable to remove the iron from 

the PDA even at low pH and 10 fold excess.  The free-ligand spectrum was only observed once 

the pH had risen to 9.5 in each scan showing that hydroxide was still the competing ligand 

responsible for the removal of the iron.  There was no reported15 formation constant for EDDA 

with iron(III). 
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Figure 29.  UV-Vis absorbance spectrum of the titration of iron(III) and PDA at  

2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 30.  Plot of absorbance values corrected for dilution of the titration of iron(III) and PDA 

at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Iron(III) and PDA at 2.00×10-5 M 
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Figure 31.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of iron(III) and PDA at 2.00×10-5 M, in 0.10 M NaClO4 

at 25.0 ºC. 
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Figure 32.  UV-Vis absorbance spectrum of the titration of 1:1:1 iron(III), PDA and EDTA  at 

2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 33.  Plot of absorbance values corrected for dilution of the titration of 1:1:1 iron(III), PDA 

and EDTA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of 1:1:1 Iron(III), PDA and EDTA at 
2.00×10-5 M
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Figure 34.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of 1:1:1 iron(III), PDA and EDTA at 2.00×10-5 M, in 

0.10 M NaClO4 at 25.0 ºC. 
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Figure 35.  UV-Vis absorbance spectrum of the titration of 1:1:10 iron(III), PDA and EDTA  

with iron(III) and PDA at 2.00×10-5 M and EDTA at 2.00×10-4 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Absorbance of 1:1:10 Iron(III) PDA and EDTA at 2.00×10-5 M 
and 2.00×10-4 M , Respectively
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Figure 36.  Plot of absorbance values corrected for dilution of the titration of 1:1:10 iron(III), 

PDA and EDTA with iron(III) and PDA at 2.00×10-5 M and EDTA at 2.00×10-4 M, in 0.10 M 

NaClO4 at 25.0 ºC. 
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Fitted Absorbance of 1:1:10 Iron(III) PDA and EDTA at 
2.00×10-5 M  and 2.00×10-4 M , Respectively

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

pH

C
or

re
ct

ed
 A

bs
or

ba
nc

e

236nm Exp.
236nm The.
249nm Exp.
249nm The.
260nm Exp.
260nm The.
270nm Exp.
270nm The.
283nm Exp.
283nm The.

 

Figure 37.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of 1:1:10 iron(III), PDA and EDTA with iron(III) and 

PDA at 2.00×10-5 M and EDTA at 2.00×10-4 M, in 0.10 M NaClO4 at  

25.0 ºC. 
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Lutetium(III)-PDA results 

 Lutetium(III) has an ionic radius of 0.86 Å which is slightly smaller than the ideal 1.0 Å 

favored by PDA.  The UV absorbance spectrum for lutetium(III) and PDA at 2.00×10-5 M is 

shown in Figure 38.  A plot of the corrected absorbance values versus pH is shown in Figure 39 

and a plot of the theoretical absorbance values calculated to determine the protonation constants 

of the complex is shown alongside the experimental data in Figure 40.  From the selected 

wavelengths of 233, 250, 263, 280 and 294 nm, 3 successive pH-dependent equilibria were 

observed.  The equilibria are described below at the pH at which they occurred.  

Lu(PDA) + OH-    Lu(PDA)OH                  (pH = 6.26)  

Lu(PDA)(OH) + OH-    Lu(PDA)(OH)2                 (pH = 9.67)  

Lu(PDA)(OH)2 + 2 OH-    [Lu(OH)4]-
 + PDA                       (pH = 11.07) 

Figure 12(b) shows a species distribution diagram for these protonation equilibria.  Using log Kw 

= 13.78, the log K1 [OH-] of the Lu-PDA complex can be described as follows. 

Lu(PDA) + OH-    Lu(PDA)OH           (log K1 [OH-] = 7.52)  

Lu(PDA)(OH) + OH-    Lu(PDA)(OH)2          (log K2 [OH-] = 4.11)  

Lu(PDA)(OH)2 + 2 OH-    [Lu(OH)4]-
 + PDA     (log K3K4 [OH-] = 2.71) 

The log β4 [OH-] for indium(III) is 31.65 and from this value15 a log K1 for PDA with 

lutetium(III) of 19.6 was calculated using Equation (8),  

log K1 = 31.65–(2×(2.71)+4.11+7.52)+5.0                 (8) 

where the 5.0 takes into account the amount of free ligand at the isosbestic point. The reported15 

formation constant for EDDA with lutetium(III) was 9.09, which was weaker when compared to 

the log K1 for that of PDA with lutetium(III).  A Δ log K1 of 10.3 between the log K1 values of 
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PDA and EDDA with lutetium(III) was calculated and showed a large increase in stability of the 

PDA complex of lutetium(III) relative to the EDDA complex of lutetium(III). 
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Figure 38.  UV-Vis absorbance spectrum of the titration of lutetium(III) and PDA at 2.00×10-5 

M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 39.  Plot of absorbance values corrected for dilution of the titration of lutetium(III) and 

PDA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Lutetium(III) and PDA at 2.00×10-5 M
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Figure 40.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of lutetium(III) and PDA at  

2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Manganese(II)-PDA results 

 Manganese(II) has an ionic radius of 0.74 Å which is smaller than the ideal 1.0 Å favored 

by PDA.  The UV absorbance spectrum for manganese(II) and PDA at 2.00×10-5 M is shown in 

Figure 41.  A plot of the corrected absorbance values versus pH is shown in Figure 42 and a plot 

of the theoretical absorbance values calculated to determine the protonation constants of the 

complex is shown alongside the experimental data in Figure 43.  This data does not appear as 

expected for such a small metal ion of low charge.  It is hypothesized that the negative oxygen 

donors on the carboxylate groups of PDA had oxidized the manganese(II) metal ion into 

manganese(III), which prevents analysis of the manganese data attained.  Additional titrations 

and crystallography would have to be done to determine whether this hypothesis is correct.  
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Figure 41.  UV-Vis absorbance spectrum of the titration of manganese(II) and PDA at 2.00×10-5 

M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 42.  Plot of absorbance values corrected for dilution of the titration of manganese(II) and 

PDA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC.. 
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Fitted Absorbance of Manganese(II) and PDA at 2.00×10-5 M
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Figure 43.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of manganese(II) and PDA at  

2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Thorium(IV)-PDA results 

 Thorium(IV) has an ionic radius of 0.94 Å which is very similar to the ideal 1.0 Å 

favored by PDA.  Many titration experiments were performed with thorium and PDA.  The UV 

absorbance spectrum for thorium(IV) and PDA complex at 2.00×10-5 M is shown in Figure 44.  

A plot of the corrected absorbance values versus pH is shown in Figure 45 and a plot of the 

theoretical absorbance values calculated to determine the protonation constants of the complex is 

shown alongside the experimental data in Figure 46.  From the selected wavelengths of 236, 249, 

260, 270and 283 nm, 5 successive pH-dependent equilibria were observed.  The equilibria are 

described below at the pH they occured. 

 

Th(PDA) +   H+     Th(PDA)H                 (pH = 2.12)  

Th(PDA) + OH-    Th(PDA)OH                 (pH = 4.52)  

Th (PDA)(OH) + OH-    Th (PDA)(OH)2                (pH = 8.39)  

Th (PDA)(OH)2 + OH-    Th (PDA)(OH)3                            (pH = 10.35) 

Th (PDA)(OH)3 + OH-    Th (OH)4  + PDA2-                       (pH = 12.60) 

Using log Kw = 13.78, the log K1 [OH-] of the Th-PDA complex can be described as follows. 

Th (PDA) + OH-    Th (PDA)OH    (log K1 [OH-] = 9.26)  

Th (PDA)(OH) + OH-    Th (PDA)(OH)2   (log K2 [OH-] = 5.39)  

Th (PDA)(OH)2 + OH-    Th (PDA)(OH)3               (log K3 [OH-] = 3.43) 

Th (PDA)(OH)3 + OH-    Th (OH)4  + PDA2-          (log K4 [OH-] = 1.18) 

The log β4 [OH-] for thorium(IV) is 40.2 and from this value15 a log K1 for PDA with 

thorium(IV) of 25.9 was calculated using Equation (9),  

log K1 = 40.2–(1.18+3.43+5.39+9.26)+5.0              (9) 
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where the 5.0 takes into account the amount of free ligand at the isosbestic point.  To further test 

the validity of this result, additional titration experiments were performed.  The UV absorbance 

spectrum for thorium(IV) and PDA complex at 4.00×10-6 M is shown in Figure 47.  A plot of the 

correlation between E (mV) and the calculated pH, which was used to calculate E0, is shown in 

Figure 48.  A plot of the corrected absorbance values versus pH is shown in Figure 49 and a plot 

of the theoretical absorbance values calculated to determine the protonation equilibriam of the 

complex is shown alongside the experimental data in Figure 50.  This titration was done in order 

to prove that a 10 fold dilution would not effect the isosbestic points of the thorium(IV)-PDA 

complex significantly proving that the complex did not form any dimers.  The UV absorbance 

spectrum for 2:1 PDA and thorium(IV) with PDA at 4.00×10-5 M and thorium(IV) at 2.00×10-5 M 

is shown in Figure 51.  A plot of the corrected absorbance values versus pH is shown in Figure 

52 and a plot of the theoretical absorbance values calculated to determine the protonation 

equilibria of the complex is shown alongside the experimental data in Figure 53.  This titration 

was done because there was crystallographic evidence that thorium(IV) would coordinate to 2 

PDA molecules.  This scan showed that should this be the case, the isosbestic points did not 

change significantly.  The UV absorbance spectrum for 1:1:1 thorium(IV), PDA and DTPA at 

2.00×10-5 M is shown in Figure 54.  A plot of the corrected absorbance values versus pH is 

shown in Figure 55 and a plot of the theoretical absorbance values calculated to determine the 

protonation equilibria of the complex is shown alongside the experimental data in Figure 56.  

The UV absorbance spectrum for 1:1:10 with thorium(IV) and  PDA at 2.00×10-5 M and DTPA 

at 2.00×10-4 M is shown in Figure 57.  A plot of the corrected absorbance values versus pH is 

shown in Figure 58 and a plot of the theoretical absorbance values calculated to determine the 

protonation equilibria of the complex is shown alongside the experimental data in Figure 59.  
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The UV absorbance spectrum for 1:1:100 with thorium(IV) and  PDA at 2.00×10-5 M and DTPA 

at 2.00×10-3 M is shown in Figure 60.  A plot of the corrected absorbance values versus pH is 

shown in Figure 61 and a plot of the theoretical absorbance values calculated to determine the 

protonation equilibria of the complex is shown alongside the experimental data in Figure 62.  

These scans were done in an attempt to find a competing ligand to remove the thorium(IV) from 

PDA at low pH.  The DTPA was unable to remove the thorium from the PDA even at 100 fold 

excess.  The free-ligand spectrum was only generated once the pH had risen to 8.5 in each scan 

showing that hydroxide was still the competing ligand responsible for the removal of the 

thorium.  The UV absorbance spectrum for 1:1:10 thorium(IV), PDA and TTHA with 

thorium(IV) and  PDA at 2.00×10-5 M and TTHA at 2.00×10-4 M is shown in Figure 63.  A plot 

of the corrected absorbance values versus pH is shown in Figure 64 and a plot of the theoretical 

absorbance values calculated to determine the protonation equilibria of the complex is shown 

alongside the experimental data in Figure 65.  The TTHA was also unable to remove the thorium 

from the PDA even at low pH and 100 fold excess.  The free-ligand spectrum was only observed 

once the pH had risen to 9.5 showing that hydroxide was still the competing ligand responsible 

for the removal of the thorium.  As a large metal ion absorbance band is seen between 200 and 

250 nm in all of the titration involving thorium, a titration was done of thorium(IV) and DTPA at 

2.00×10-5 M to show the absorbance of the metal ion without PDA.  This plot is shown in Figure 

66.  The reported formation constant for EDDA with thorium(IV) was 13.9, estimated from log 

K  =  6.5417 for Th4+ + LH-  ThLH3+ (L = EDDA) by combining with a typical value15 of log K 

= 2.2 for ML + H+  MLH+ for aminocarboxylate ligands.  This value was drastically weaker 

when compared to the log K1 for that of PDA with thorium(IV).  A Δ log K1 of 12.04 between 

the log K1 values of PDA and EDDA with thorium(IV) was calculated and showed a drastic 
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increase in stability of the PDA complex of thorium(IV) relative to the EDDA complex of 

thorium(IV). 



 84

 

Figure 44.  UV-Vis absorbance spectrum of the titration of thorium(IV) and PDA at 2.00×10-5 M, 

in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 45.  Plot of absorbance values corrected for dilution of the titration of thorium(IV) and 

PDA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Thorium(IV) and PDA at 2.00×10-5 M
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Figure 46(a).  Experimental absorbance data (Exp.) fitted with calculated values (The.) to 

determine the protonation equilibria of the titration of thorium(IV) and PDA at 2.00×10-5 M, in 

0.10 M NaClO4 at 25.0 ºC. 
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Figure 46(b). Species distribution diagram for the Th(IV)/PDA system at 2.00×10-5 M calculated 

using log K values determined here for Th(IV) and PDA. Diagram calculated using EXCEL. 

Abbreviation: L = PDA. Charges on species omitted for simplicity. 
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Figure 47.  UV-Vis absorbance spectrum of the titration of thorium(IV) and PDA at 4.00×10-6 M, 

in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 48.  Plot of the correlation between E (mV) and the calculated pH used to calculate E0 for 

the titration of thorium(IV) and PDA at 4.00×10-6 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 49.  Plot of absorbance values corrected for dilution of the titration of thorium(IV) and 

PDA at 4.00×10-6 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 50.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of thorium(IV) and PDA at 4.00×10-6 M, in 0.10 M 

NaClO4 at 25.0 ºC. 
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Figure 51.  UV-Vis absorbance spectrum of the titration of 2:1 PDA and thorium(IV) with PDA 

at 4.00×10-5 M and thorium(IV) at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 52.  Plot of absorbance values corrected for dilution of the titration of 2:1 PDA and 

thorium(IV) with PDA at 4.00×10-5 M and thorium(IV) at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 

ºC. 
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Figure 53.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of 2:1 PDA and thorium(IV) with PDA at 4.00×10-5 M 

and thorium(IV) at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 54.  UV-Vis absorbance spectrum of the titration of 1:1:1 thorium(IV), PDA and DTPA at 

2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 

 

 



 96

Absorbance of 1:1:1 Thorium(IV), PDA and DTPA at 
2.00×10-5 M
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Figure 55.  Plot of absorbance values corrected for dilution of the titration of 1:1:1 thorium(IV), 

PDA and DTPA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of 1:1:1 Thorium(IV), PDA and DTPA 
at 2.00×10-5 M
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Figure 56.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of 1:1:1 thorium(IV), PDA and DTPA at 2.00×10-5 M, 

in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 57.  UV-Vis absorbance spectrum of the titration of 1:1:10 thorium(IV), PDA and DTPA 

with thorium(IV) and PDA at 2.00×10-5 M and DTPA at 2.00×10-4 M, in 0.10 M NaClO4 at 25.0 

ºC. 
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Absorbance of 1:1:10 Thorium(IV), PDA and DTPA at 
2.00×10-5 M  and 2.00×10-4 M , Respectively
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Figure 58.  Plot of absorbance values corrected for dilution of the titration of 1:1:10 thorium(IV), 

PDA and DTPA with thorium(IV) and PDA at 2.00×10-5 M and DTPA at 2.00×10-4 M, in 0.10 M 

NaClO4 at 25.0 ºC. 
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Fitted Absorbance of 1:1:10 Thorium(IV), PDA and DTPA at 
2.00×10-5 M  and 2.00×10-4 M , Respectively

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12

pH

C
or

re
ct

ed
 A

bs
or

ba
nc

e

236nm Exp.
236nm The.
250nm Exp.
250nm The.
263nm Exp.
263nm The.
283nm Exp.
283nm The.
292nm Exp.
292nm The.

 

Figure 59.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of 1:1:10 thorium(IV), PDA and DTPA with 

thorium(IV) and PDA at 2.00×10-5 M and DTPA at 2.00×10-4 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 60.  UV-Vis absorbance spectrum of the titration of 1:1:100 thorium(IV), PDA and DTPA 

with thorium(IV) and PDA at 2.00×10-5 M and DTPA at 2.00×10-3 M, in 0.10 M NaClO4 at 25.0 

ºC. 
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Absorbance of 1:1:100 Thorium(IV), PDA and DTPA at 
2.00×10-5 M  and 2.00×10-3 M , Respectively
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Figure 61.  Plot of absorbance values corrected for dilution of the titration of 1:1:100 

thorium(IV), PDA and DTPA with thorium(IV) and PDA at 2.00×10-5 M and DTPA at 2.00×10-3 

M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of 1:1:100 Thorium(IV), PDA and DTPA at 
2.00×10-5 M  and 2.00×10-3 M , Respectively
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Figure 62.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of 1:1:100 thorium(IV), PDA and DTPA with 

thorium(IV) and PDA at 2.00×10-5 M and DTPA at 2.00×10-3 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 63.  UV-Vis absorbance spectrum of the titration of 1:1:10 thorium(IV), PDA and TTHA 

with thorium(IV) and PDA at 2.00×10-5 M and TTHA at 2.00×10-4 M, in 0.10 M NaClO4 at 25.0 

ºC. 
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Absorbance of 1:1:10 Thorium(IV), PDA and TTHA at 
2.00×10-5 M  and 2.00×10-4 M , Respectively
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Figure 64.  Plot of absorbance values corrected for dilution of the titration of 1:1:10 thorium(IV), 

PDA and TTHA with thorium(IV) and PDA at 2.00×10-5 M and TTHA at 2.00×10-4 M, in 0.10 M 

NaClO4 at 25.0 ºC. 
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Fitted Absorbance of 1:1:10 Thorium(IV), PDA and TTHA at 
2.00×10-5 M  and 2.00×10-4 M , Respectively
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Figure 65.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of 1:1:10 thorium(IV), PDA and TTHA with 

thorium(IV) and PDA at 2.00×10-5 M and TTHA at 2.00×10-4 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Figure 66.  UV-Vis absorbance spectrum of the titration of thorium(IV) and DTPA at 2.00×10-5 

M, in 0.10 M NaClO4 at 25.0 ºC. 
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Uranyl(VI)-PDA results 

 Uranyl(VI) has an ionic radius of 0.86 Å which is slightly smaller than the ideal 1.0 Å 

favored by PDA.  Two titration experiments were performed with uranyl and PDA.  The UV 

absorbance spectrum for uranyl(VI) and PDA complex at 2.00×10-5 M is shown in Figure 67.  A 

plot of the corrected absorbance values versus pH is shown in Figure 68 and a plot of the 

theoretical absorbance values calculated to determine the protonation constants of the complex is 

shown alongside the experimental data in Figure 69.  From the selected wavelengths of 236, 249, 

263, 283 and 293 nm, 4 successive pH-dependent equilibria were observed.  The equilibria are 

described below at the pH they occured. 

UO2(PDA) +   H+     UO2 (PDA)H                 (pH = 1.50)  

UO2 (PDA) + OH-    UO2 (PDA)OH     (pH = 7.06)  

UO2 (PDA)(OH) + OH-    UO2 (PDA)(OH)2               (pH = 9.53)  

UO2 (PDA)(OH)2 + 2 OH-    UO2(OH)4  + PDA2-                (pH = 11.90) 

Using log Kw = 13.78, the log K1 [OH-] of the UO2-PDA complex can be described as follows. 

UO2 (PDA) + OH-    UO2 (PDA)OH            (log K1 [OH-]= 6.72)  

UO2 (PDA)(OH) + OH-    UO2 (PDA)(OH)2         (log K2 [OH-]= 4.25)  

UO2 (PDA)(OH)2 + 2 OH-  UO2(OH)4  + PDA2-  (log K3K4 [OH-]= 1.88) 

The log β4 [OH-] for uranyl(VI) is 23.43 and from this value15 a log K1 for PDA with uranyl(VI) 

of 13.7 was calculated using Equation (9),  

log K1 = 23.43–(2×(1.88)+4.25+6.72)+5.0              (9) 

where the 5.0 takes into account the amount of free ligand at the isosbestic point.  The UV 

absorbance spectrum for uranyl(VI) and PDA complex at 2.00×10-6 M is shown in Figure 70.  A 

plot of the correlation between E (mV) and the calculated pH, which was used to calculate E0, is 
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shown in Figure 71.  A plot of the corrected absorbance values versus pH is shown in Figure 72 

and a plot of the theoretical absorbance values calculated to determine the protonation constants 

of the complex is shown alongside the experimental data in Figure 73.  This scan was conducted 

to show that a 10-fold dilution did not affect the isosbestic points of the uranyl(VI)-PDA 

complex significantly proving that the complex does not form any dimers.  The reported 

formation constant for EDDA with uranyl(VI)15 was 11.41, which was weaker when compared 

to the log K1 for that of PDA with uranyl(VI).  A Δ log K1 of 2.29 between the log K1 values of 

PDA and EDDA with uranyl(VI) was calculated and showed a slight increase in stability of the 

PDA complex of uranyl(VI) relative to the EDDA complex of uranyl(VI). 
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Figure 67.  UV-Vis absorbance spectrum of the titration of uranyl(VI) and PDA at 2.00×10-5 M, 

in 0.10 M NaClO4 at 25.0 ºC. 
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Absorbance of Uranyl(VI) and PDA at 2.00×10-5 M
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Figure 68.  Plot of absorbance values corrected for dilution of the titration of uranyl(VI) and 

PDA at 2.00×10-5 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Uranyl(VI) and PDA at 2.00×10-5 M
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Figure 69.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of uranyl(VI) and PDA at 2.00×10-5 M, in 0.10 M 

NaClO4 at 25.0 ºC. 

 

 

 



 113

 

Figure 70.  UV-Vis absorbance spectrum of the titration of uranyl(VI) and PDA at 2.00×10-6 M, 

in 0.10 M NaClO4 at 25.0 ºC. 
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E0 Determination for Uranyl(VI) and PDA at at 2.00×10-6 M 
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Figure 71.  Plot of the correlation between E (mV) and the calculated pH used to calculate E0 for 

the titration of uranyl(VI) and PDA at 2.00×10-6 M, in 0.10 M NaClO4 at 25.0 ºC.. 
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Absorbance of Uranyl(VI) and PDA at 2.00×10-6 M
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Figure 72.  Plot of absorbance values corrected for dilution of the titration of uranyl(VI) and 

PDA at 2.00×10-6 M, in 0.10 M NaClO4 at 25.0 ºC. 
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Fitted Absorbance of Uranyl(VI) and PDA at 2.00×10-6 M
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Figure 73.  Experimental absorbance data (Exp.) fitted with calculated values (The.) to determine 

the protonation equilibria of the titration of uranyl(VI) and PDA at 2.00×10-6 M, in 0.10 M 

NaClO4 at 25.0 ºC. 
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X-Ray Crystallography Results 

 X-Ray Crystallography was done on metal-PDA complexes of barium(II), thorium(IV) 

and uranyl(VI).  The crystal structures of (UO2)(PDA) and Th(PDA)2(H2O)2⋅H2O were 

determined via single crystal X-ray diffraction.  A representative crystal from both compounds 

was mounted on a glass fiber using epoxy gel.  Intensity data were collected on a Bruker 

SMART diffractometer equipped with an APEX II CCD detector.  Data processing was 

performed using SAINT9.  The structures were solved using direct methods while the refinement 

was carried out using SHELXL-9710 within the WINGX software suite11.  Powder X-ray 

diffraction data were collected on a Rigaku MiniFlex II Desktop X-ray Diffractometer (Cu-Kα, 

3-60˚, 0.05˚ step, 1.0 s step-1) and manipulated utilizing the JADE12 software package.  

Crystallographic data for both thorium(IV) and uranyl(VI) metal ions is given in Table 2.   

 

Barium(II)-PDA Results 

 The crystal structure of [Ba2(PDA)2(NO2)2]⋅2H2O is shown in Figure 74.  At this time no 

further refinement of the crystal structure has been completed in order to receive reliable data.  

The structure consists of a 2 barium-PDA complexes bridged by a nitrate group coordinated to 

the barium atoms.  Both PDA molecules remain planar and two water molecules are also 

coordinated to each barium atom.  This crystal also has a very unique barium coordination 

number of 9 for one of the barium atoms and a coordination number of 8 for the other. 
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Figure 74.  ORTEP18 drawing of the complex [Ba2(PDA)2(NO2)2]⋅2H2O with thermal ellipsoids 

shown at the 50% probability level.
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Table 1. Crystallographic data for [UO2(PDA)] (1) and [Th(PDA)2(H2O)2].H2O (2). 

_______________________________________________________________________ 

     1    2 

Empirical formula:   C14H6N2O6U   C28H18N4O11Th 

M     536.24    812.46   

T/K     298(2)    298(2) 

Crystal system:   orthorhombic   triclinic 

Space group:    Pnma    Pī 
a/(Å)     11.1318(7)   7.6190(15)  

b/(Å)     6.6926(4)   10.423(2) 

c/(Å)     17.3114(12)    17.367(4) 

α/º     90    94.93(3)    

β/º     90    97.57(3)   

γ/º     90    109.26(3) 

V/Å3     1289.71(14)   1278.3(4)   

Z     4    2    

μ/mm-1     12.623    5.909 

reflections collected:   20119    9412 

Rint(Independent reflections):  0.0972 (1453)   0.1122 (4474)   

Final R indices [I≥2σ(I)]  0.0313    0.0654  

R indices (all data)   0.0654    0.0955 

________________________________________________________________________
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Thorium(IV)-PDA Results 

 The structure of Th(PDA)2(H2O)2⋅H2O is seen in Figure 75, and a selection of bond 

angles and lengths for Th(PDA)2(H2O)2⋅H2O are given in Table 3. The structure of 

Th(PDA)2(H2O)2⋅H2O consists of a central Th(IV) metal center coordinated to two distinct PDA 

anions, each bound in a tetradentate fashion.  Each PDA is bound to the Th(IV) through both 

nitrogen atoms along with two carboxylate oxygen atoms at an average distance of 2.694 and 

2.430 Å, respectively. Completing the 10-coordinate local geometry, two water molecules are 

additionally bound to the Th metal centers at distances of 2.473 and 2.532 Å to create the 

corresponding Ow(1)-Th(1)-Ow(2) angle of 147.6(3)˚.  Around each molecular unit, there is one 

unbound water molecule, Ow(3), located 2.751 Å away from Ow(2).  The PDA ligands are not 

planar, but are bowed, and the Th atom lies well out of the plane of the PDA ligands, as shown in 

Figure 76. It can be shown using MM (molecular mechanics)19 calculations that this distortion of 

the PDA ligands is brought about by steric crowding. If the two water molecules coordinated to 

the Th are removed, and MM calculations are used to generate a structure for [Th(PDA)2], 

completely planar PDA ligands result. If the water molecules are replaced on the Th to give 

[Th(PDA)2(H2O)2], the bowing of the PDA ligands is restored in the MM energy-minimized 

structure. Inspection of the structure shows that each coordinated water molecule presses on the 

center of the adjacent PDA ligand, causing it to bow. Work in progress on other ligands related 

to PDA has shown that bowing of the ligand is quite common, and does not seem to be 

accompanied by any major loss in complex stability. 
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Figure 75.  ORTEP18 drawing of the complex [Th(PDA)2(H2O)2].H2O with thermal ellipsoids 

shown at the 50% probability level. The structure shows how the Th atom lies out of the plane of 

the bowed PDA ligands. Ow1 and Ow2 are waters coordinated to the Th, and Ow3 is a lattice 

water H-bonded to Ow2. 
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Figure 76.  A view of [Th(PDA)2(H2O)2].H2O down the [010] direction. The polyhedra are the 

thorium metal centers whereas the black lines are the PDA ligands.  The spheres are the nitrogen 

atoms from the PDA.  The red spheres are the unbound water molecules.  Hydrogen atoms have 

been omitted for clarity. The diagram shows the π-stacking that typically is involved in the 

packing of complexes of this type in the unit cell. Some π–stacking is taking place between pairs 

of PDA ligands almost in the plane of the page, while the other π-stacking is at right angles to the 

plane of the page. 
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Table 2. A selection of bond lengths (Å) and angles (deg) in [Th(PDA)2(H2O)2].H2O. 

________________________________________________________________________ 

Th1-O5  2.399(10) Th1-O7  2.405(9) Th1-O3  2.443(9) 

Th1-Ow1  2.473(9) Th1-O1  2.474(8) Th1-Ow2  2.532(9) 

Th1-N4  2.652(11) Th1-N3  2.658(12) Th1-N1  2.718(11) 

Th1-N2  2.744(13) 

O5-Th1-O7  152.0(3) O5-Th1-O3    70.8(3) O7-Th1-O3      90.3(3) 

O5-Th1-Ow1    80.1(3) O7-Th1-Ow1   74.2(3) O3-Th1-Ow1      71.4(3) 

Ow1-Th1-O1 125.6(3) O5-Th1-Ow2    70.0(3) Ow1-Th1-Ow2 147.6(3) 

O7-Th1-N4    60.7(4) Ow1-Th1-N4    68.9(3) Ow2-Th1-N4    137.3(3) 

O5-Th1-N3    60.5(3) O1-Th1-N3    63.8(3) N4-Th1-N3      60.1(4) 

O1-Th1-N1    59.0(3) O7-Th1-N2    63.2(3) O3-Th1-N2      60.4(3) 

N3-Th1-N2  178.9(4) N1-Th1-N2    58.8(3)  

________________________________________________________________________ 
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Uranyl(VI)-PDA Results 

 The structure of (UO2)(PDA)  is seen in Figure77 and a selection of bond angles and 

lengths are given in Table 4. The structure of (UO2)(PDA)   consists of a central uranium (VI) 

metal center bound to two symmetry equivalent oxygen atoms, O1, at a distance of 1.767(4) Å 

resulting in an O1-U1-O1 angle of 176.4(3)˚ to form the familiar uranyl cation (UO2
2+).  One 

PDA anion is bound to the uranyl cation in a tetradentate fashion through both nitrogen atoms at 

an average distance of 2.558 Å and through two carboxylate oxygen atoms at an average distance 

of 2.351 Å.  Completing the pentagonal bipyramidal local geometry of the uranium metal 

centers, an additional carboxylate oxygen atom, O3’, from a second PDA anion is bound at a 

distance of 2.345(6) Å resulting in one-dimensional chains as can be viewed down [010] as 

shown in Figure 78. The question of interest here is the evidence that the structure provides on 

whether the PDA is coordinated to the uranyl group in a low-strain fashion, and what bearing 

this might have on the slightly lower than expected log K1(PDA) measured here for the UO2
2+ 

cation. The PDA ligand is almost exactly planar, with the U atom lying in the plane of the ligand, 

as was also found for the Ca(II)/PDA complex,20 which suggests that it is coordinated to the 

uranyl group in a fairly low-strain manner. Complexes of UO2
2+ with simple bidentate ligands 

such as 1,10-phen and picolinic acid (2-carboxypyridine) should have more nearly ideal 

geometry involving the donor atoms and the U atom than is true for the more sterically 

demanding tetradentate PDA ligand. A search of the CSD shows 5 structures of uranyl 1,10-phen 

complexes, and 13 structures of uranyl complexes with picolinate-type ligands. A comparison of 

bond angles and lengths involving the UO2 group and the N and O donors shows that the 

structural features are effectively identical to the corresponding structural features in the 1,10-

phen and picolinate complexes, and that the coordination of UO2
2+ in its PDA complex is 
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probably quite low-strain. This is summarized in Table 5, which shows that the structural 

features are very similar to the corresponding structural features in the UO2
2+ complexes of phen 

and picolinic acids, and that the more preorganized structure of the PDA ligand imposes no more 

steric penalties on its UO2
2+ complex than do the sterically much less demanding phen and 

picolinate ligands. 
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Figure 77.  ORTEP18 drawing of the complex [UO2(PDA)].  Ellipsoids are shown at the 50% 

level. Symmetry equivalents: (i) x, -y + ½, z; (ii) x + ½, -y + ½, -z + ½. The atom O(3)’ is a 

bridging carboxylate oxygen from a neighboring UO2/PDA individual. 
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Figure 78.  A view of [UO2(PDA)] down the [010] direction.  The polyhedra are the uranium 

pentagonal bipyramids whereas the black lines are the organic linkers.  The spheres are the 

nitrogen atoms from the PDA.  The hydrogen atoms have been omitted for clarity. This sheet of 

[UO2(PDA)] complexes π–stacks on similar sheets above and below it. 
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Table 3. A selection of bond lengths (Å) and angles (deg) in [UO2(PDA)].  

________________________________________________________________________ 

U1-O1  1.767(4) U1-O1’  1.767(4) U1-O4  2.279(6) 

U1-O3’  2.345(6) U1-O2  2.423(6) U1-N2  2.543(7) 

U1-N1  2.572(7)   

O1-U1-O1’  176.4(3) O1-U1-O4    91.80(14) O1-U1-O3  90.54(13) 

O4-U1-O3    79.7(2) O1-U1-O2    88.25(14) O4-U1-O2  171.6(2) 

O3-U1-O2    91.9(2) O1-U1-N2    90.60(13) O4-U1-N2  63.8(2) 

O3-U1-N2  143.49(19) O4-U1-N1  125.8(2) O3-U1-N1 154.5(2)  

O2-U1-N1  62.58(19) N2-U1-N1    62.0(2) 

________________________________________________________________________ 
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Table 4. Bond lengths and angles involving the coordination around U in [UO2(PDA)] compared 

with the corresponding structural features in the complexes of UO2
2+ with the much less 

sterically demanding phen and picolinate-type ligands found in the CSD19. 

________________________________________________________________________ 
 
     U-O(Å)  N-U-O(º)  U-O-C(º) U-N(Å)  N-U-N(º)  U-N-C(º) 
________________________________________________________________________     
 
Structural features of 1  
([UO2(PDA)]):     2.36       62.9          128.9           2.56        62.62   122.3 
Corresponding values in 
UO2/1,10-phen complexes:21                       2.60(3)   62.4(7) 120.4(9) 
Corresponding values in UO2/ 
picolinate type complexes:18     2.41(5)  62.2(1.7)   128.5(1.4)   2.58(5) 
 
________________________________________________________________________ 
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CONCLUSIONS 

Chemists have been using preorganization as a means of creating highly selective ligands 

for years.  The ability of a ligand to selectively bind a specific metal ion in solution is of great 

importance in many areas of chemistry including the bioinorganic, nuclear, and metallurgy 

fields. 1,10-phenanthroline-2,9-dicarboxylate (PDA) has been shown to be a highly preorganized 

ligand drawing in aspects of denticity, chelate ring size, donor atoms selection, and rigidity in 

order to design a ligand which will form complexes with metal ions of higher charge and larger 

ionic radius. 

PDA was synthesized according to the literature method with changes in overall reaction 

times and the product was characterized by IR and UV spectroscopy as well as X-Ray 

Crystallography.  UV/Vis absorption spectroscopy was also used to detect metallation and 

demetallation in solution as a function of pH and was concluded to be a very successful method. 

PDA was shown to exhibit higher formation constants, log K1, with metal ions of large 

size and higher charge and was also shown to have higher formation constants than its non-

preorganized precursor EDDA.  Further, PDA-metal complexes were shown to exhibit such 

thermodynamic stability, that a 10 to 100 fold excess of a competing ligand was unable to 

remove the metal-ion from PDA.  This remarkable ability for the tetra-dentate ligand is a result 

of the very rigid hemi-cyclic backbone of PDA which keeps the donor atoms locked in position 

necessary for metallation. 

It is also of importance to note the variability of the PDA-metal ion complex as a function 

of pH.  Since the complex has been shown to be very strong at low and even neutral pH ranges 

for most metal ions, yet subject to demetallation at higher pH ranges, 7.5-12 depending on the 

metal ion present, PDA has enormous potential as a filter material for expensive and dangerous 
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aqueous metal ions.  For example, a molecular sieve could be constructed with PDA as the active 

molecule and be used to filter acidified metal ion solutions.  The metal ions could then be 

removed from the filter as hydroxide salts by running a basic aqueous solution through. 
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