
Heuristics for two-machine flowshop scheduling with setup times and
an availability constraint

Wei Cheng

A Thesis Submitted to the
University of North Carolina Wilmington in Partial Fulfillment

Of the Requirements for the Degree of
Master of Science

Department of Mathematics and Statistics

University of North Carolina Wilmington

2007

Approved by

Advisory Committee

Chair

Accepted by

Dean, Graduate School

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149230354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 NOTATION AND PRELIMINARIES . . . . . . . . . . . . . . . . . . 3

3 UNAVAILABLE INTERVAL ON M1 . . . . . . . . . . . . . . . . . . 4

3.1 YHA algorithm(π1) . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Decreasing ratio(π2) . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Largest job p, q on machine 2 (π3) . . . . . . . . . . . . . . . . 5

3.4 Random sequence p(π4, π5) . . . . . . . . . . . . . . . . . . . 6

3.5 Heuristic H1: . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 UNAVAILABLE INTERVAL ON M2 . . . . . . . . . . . . . . . . . . 16

4.1 YHA algorithm (π1) . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Decreasing ratio (π2) . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Largest job q on machine 1 (π3) . . . . . . . . . . . . . . . . . 17

4.4 Largest job p on machine 2 (π4) . . . . . . . . . . . . . . . . . 17

4.5 Heuristic H2: . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 COMPUTATIONAL RESULTS . . . . . . . . . . . . . . . . . . . . . 25

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



ABSTRACT

This paper studies the two-machine flowshop scheduling problem with anticipatory

setup times and an availability constraint imposed on only one of the machines where

interrupted jobs can resume their operations. We present a heuristic algorithm from

Wang and Cheng to minimize makespan and use simulation to determine the actual

error bound.
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1 INTRODUCTION

The subject of machine scheduling problems with availability constraints has at-

tracted much research attention over the years. The two-machine flowshop schedul-

ing problem with availability constraints was first studied by Lee [7]. Under the

resumable assumption, he proved that the problem is NP-hard when an availabil-

ity constraint is imposed on only one machine. He also developed two heuristics.

The first heuristic is for solving the problem where the availability constraint is im-

posed on machine 1, which has a worst-case error bound 1
2
. The second heuristic

is for solving the problem where the availability constraint is imposed on machine

2, which has a worst-case error bound 1
3
. Lee [8] further studied and developed a

pseudo-polynomial dynamic programming algorithm and heuristics. For the resum-

able case, Cheng and Wang [3] developed an improved heuristic when the availability

constraint is imposed on the first machine, and the heuristic has a worst-case error

bound 1
3
. Breit [2] presented an improved heuristic for the problem with an avail-

ability constraint only on the second machine and showed that the heuristic has

a worst-case error bound 1
4
. Cheng and Wang [4] considered a special case of the

problem where the availability constraint is imposed on each machine, and the two

availability constraints are consecutive. They developed a heuristic and showed that

it has a worst-case error bound 2
3
. In addition, the two-machine flowshop scheduling

problem with availability constraints has also been studied under the no-wait pro-

cessing environment by Cheng and Liu [5,6]. For the general flowshop scheduling

problem with availability constraints, Aggoune [1] proposed a heuristic based on a

genetic algorithm and a tabu search.

Definition 1 The objective is to minimize total completion time, called the makespan.

Definition 2 Error bound = (CHi − C⋆)/C⋆
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In all the above-mentioned flowshop scheduling models, setup times are not con-

sidered; in otherwords, setup times are assumed to be included in processing times.

However, in many industrial settings, it is necessary to treat setup times as separated

from processing times (for example [9,10]). The two-machine flowshop scheduling

problem with anticipatory setup times, where an availability constraint is imposed

on only one machine has been studied by Wang and Cheng [11]. They study the

cases where the availability constraint is imposed on machines 1 and 2 and present

two heuristics and show that their worst-case error bounds are no larger than 2
3
.

In this paper, we present the heuristic algorithm developed by Wang and Cheng

for the two-machine flowshop scheduling problem with setup times where an avail-

ability constraint is imposed on machines 1 and 2. In section 2, we introduce the

notation and present the parallel machine scheduling problem with the unavailable

time on machine 1. In section 3, we present a heuristic for minimizing the makespan

for the case where the availability constraint is imposed on machine 1. We first

introduce the Yoshida and Hitomi algorithm [12] for the classical two-machine per-

mutation flowshop scheduling problem with setup times and no unavailable time,

then present a lemma, the heuristic algorithm of Wang and Cheng, and show that

its worst-error bound is no larger than 2
3
. In section 4, we study the case where the

availability constraint is imposed on machine 2, present a lemma and algorithm we

also show that the worst-error bound is no larger than 2
3
. In section 5, we program

the heuristic in JAVA and estimate the actual error bound by simulation for both

cases.
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2 NOTATION AND PRELIMINARIES

For the problem under consideration, we introduce the following notation to be used

throughout this paper.

• S = J1, ..., Jn: a set of n jobs;.

• M1, M2 : machine 1 and machine 2;

• ∆l = tl - sl : the length of the unavailable interval on Ml , where Ml is

unavailable from time sl to tl, 0 ≤ sl ≤ tl , l = 1, 2;

• s1
i , s2

i : setup times of Ji on M1 and M2 , respectively, where s1
i > 0, s2

i > 0;

• ai, bi : processing times of Ji on M1 and M2 , respectively, where ai > 0, bi > 0;

• π: = [Jπ(1),...,Jπ(n)]:a permutation schedule, where Jπ(i) is the ith job in π ;

• π⋆: an optimal schedule;

• CHx
: the makespan yielded by heuristic Hx;

• C⋆: the optimal makespan.

• F2/setup, r − a(Mi)/Cmax: the makespan minimization problem in a two-

machine flowshop with setup times and a resumable availability constraint on

Mi.

Fig. 1 A schedule π for the example.

As an example, consider a problem instance of F2/setup, r − a(M1)/Cmax with

n = 3. Let s1
1 =3, a1 = 4,s1

2=5, a2 = 4,s1
3=4,a3 = 5, s2

1=2, b1 = 6, s2
2=4, b2 = 8,

s2
3=2, b3 = 3, s1 = 10, and t1 = 15. A schedule π= [J1, J2, J3] for the instance is

shown in Fig. 1.

3



M1

M2

Machine

Time

J1

J1

J2J1 J2 J2 J3 J3

J1 J2 J2 J3 J3

3         7        10          15   17      21        25            30

5   7                13          17     21                     29  31    34

Figure 1: Example of F2/setup, r− a(M1)/Cmax, where the 10-15 area on M1 is the
unavailable time

3 UNAVAILABLE INTERVAL ON M1

In this section we present a heuristic for the problem F2/setup, r − a(M1)/Cmax

and evaluate its worst-case error bound by Wang and Cheng [11]. The basic ideas

of this heuristic are to combine a few simple heuristic rules and then improve the

schedules by re-arranging the order of some special jobs with large setup times or

large processing times on M2 in different situations. They developed the schedules

π1, π2, π3, π4, π5 and then choose the one with the shortest makespan.

3.1 YHA algorithm(π1)

The Yoshida and Hitomi algorithm (YHA) works in the following manner:

Divide S into two disjoint subsets A and B, where A = {JiŠs
1
i +ai − s2

i ≤ bi}

and B = {JiŠs
1
i +ai − s2

i > bi}. Sequence the jobs in A in nondecreasing order of s1
i

+ai − s2
1 and the jobs in B in nonincreasing order of bi. Arrange the ordered subset

A first, followed by the ordered subset B.

Let s1
1 =9, a1 = 3, s1

2=2, a2 = 4, s1
2=3,a3 = 2, s2

1=7, b1 = 4, s2
2=1, b2 = 7, s2

3=2,

b3 = 3, s1 = 20, and t1 = 25.

Then, J2, J3 ∈A, and J1 ∈B. Because s1
2 +a2 −s2

2 > s1
3 +a3−s2

3,then the order in

set A will be {J3, J2} (nondecreasing order). The final order will be π1 {J3, J2, J1}.

See Figure 2(a).
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Job number Set A Set B
1 None s1

1 + a1 − s2
1=9+3-7=5>4

2 s2
1 + a2 − s2

2=2+4-1=5<=7 None
3 s1

3 + a3 − s2
3=3+2-2=3<=3 None

Table 1: Values considered in π1

3.2 Decreasing ratio(π2)

Next we sequence the jobs in nonincreasing order of (s2
i + bi)/(s2

i + ai).

Job number (s2
i + bi)/(s1

i + ai)
1 (s2

1 + b1)/(s1
1 + a1) = 11/12

2 (s2
2 + b2)/(s2

2 + a2) = 8/6
3 (s2

3 + b3)/(s1
3 + a3) = 5/5

Table 2: Values considered in π2

Then we get (s2
2 + b2)/(s2

2 + a2) > (s2
3 + b3)/(s1

3 + a3) > (s2
1 + b1)/(s1

1 + a1). So

the order will be π2 {J2, J3, J1}. See Figure 2(b).

3.3 Largest job p, q on machine 2 (π3)

Next we need find jobs Jp and Jq such that

s2
p +bp ≥ s2

q +bq ≥ max{s2
i +biŠJi ∈ S \ {Jp, Jq}}.

Job number s2
i + bi

1 s2
1 + b2=7+4=11

2 s2
2 + b2=1+7=8

3 s2
3 + b3=2+3=5

Table 3: Values considered in π3

Let p = 1 and q = 2, For π3 put job Jp first and keep other n − 1 jobs in the

same order as π2. Then the order will be π3 {J1, J2, J3}. See Figure 2(c).
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3.4 Random sequence p(π4, π5)

Test if (s1
p + ap) + (s1

q + aq) ≤ s1 if not then no π4, π5, otherwise make two sequences

π4: Place Jp and Jq as the first two jobs. the remaining n− 2 jobs are sequenced

randomly. π4 {J1, J2, J3}. See Figure 2(c).

π5: Place Jq and Jp as the first two jobs. the remaining n− 2 jobs are sequenced

randomly. π5 {J2, J1, J3}. See Figure 2(d).

M1

M2

Machine

Time

M1

M2 Time

J3

J3

J2J3 J2 J1 J1

J3 J2 J2 J1 J1

M1

M2 Time

J1

J1

J3 J3

J1 J2 J2 J3 J3

2          6       9  11                          20           25     28

5  6                  13  15    18       21                  28        32

J2

J2

J3

J3

J1

J1

J2

J2

J3

J3

J1

J1

3   5    7          11                        20           25     28

3   5      8  10  11                18       21                 28        32

J1 J2J2 J3

9       12   14      18   20          25 26  28

5                  12          17 18                25 26 28     31

(a)

(b)

(c)

(d)

M1

M2 TimeJ1

J3

J1J2 J2 J3 J3

J1J2J2 J3J1 J3

J1

2         6                         15     18  20          25 26  28

5 6                  13                  20        24   26 28     31

Figure 2: (a)Solution of order π1; (b)Solution of order π2; (c)Solution of order π3

and π4; (d)Solution of order π5

3.5 Heuristic H1:

(1) Find jobs Jp and Jq such that
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s2
p +bp ≥ s2

q +bq ≥ max{s2
i +biŠJi ∈ S \ {Jp, Jq}}.

(2) Sequence the jobs by YHA. Let the corresponding schedule be π1 and the cor-

responding makespan be Cmax(π1).

(3) Sequence the jobs in nonincreasing order of (s2
i + bi)/(s2

i + ai). Let the corre-

sponding schedule be π2 and the corresponding makespan be Cmax(π2).

(4) Place job Jp in the first position and keep the other n − 1 jobs in the same

positions as those in Step (3). Let the corresponding schedule be π3 and the

corresponding makespan be Cmax(π3).

(5) If (s1
p + ap)+ (s1

q + aq) ≤ s1, then sequence jobs Jp, Jq as the first two jobs. The

remaining n− 2 jobs are sequenced randomly. Let the corresponding schedule

be π4 and the corresponding makespan be Cmax(π4).

(6) If (s1
p + ap)+ (s1

q + aq) ≤ s1, then sequence jobs Jq, Jp as the first two jobs. The

remaining n− 2 jobs are sequenced randomly. Let the corresponding schedule

be π5 and the corresponding makespan be Cmax(π5).

(7) Select the schedule with the minimum makespan from the above five schedules.

Let CH1 = min{Cmax(π1), Cmax(π2), Cmax(π3), Cmax(π4), Cmax(π5)}.

In the following, we analyze the performance bound of heuristic H1.

Definition 3 Let π be a schedule for the problem F2/setup, r − a(M1)/Cmax . We

define the critical job Jπ(k) as the last job such that its starting time on M2 is equal

to its finishing time on M1.

Lemma 1 For schedule π2 defined in Step (3) of heuristic H1, we assume that the

completion time of the critical job Jπ2(k) on M1 is t, and let Jπ(v) be the last job that

finishes no later than time t on M1 in a schedule π. The following inequality holds:

7



Cmax(π2) ≤ Cmax(π) + bπ2(k) + s2
π(v+1).

Proof. For schedule π2, its makespan is

Cmax(π2) = t + bπ2(k) +
n∑

j=k+1

(s2
π2(j)

+ bπ2(j)). (1)

Since on machine 2 there will be no idle time after Jk , because of the definition

of the critical job.

M1

M2

Machine

Time

<              t                >

Jk ...........

...........

Figure 3: Illustrations of (1),Jk = bπ2(k)

Under the assumption of lemma 1, Jπ(v) is the last job that finishes no later than

time t on M1 in a schedule π. We have

v∑

j=1

(s1
π(j) + aπ(j)) ≤

k∑

j=1

(s1
π2(j)

+ aπ2(j)),

and because
∑n

j=1(s
1
π(j) + aπ(j)) =

∑n

j=1(s
1
π2(j)

+ aπ2(j)), obviously

n∑

j=v+1

(s1
π(j) + aπ(j)) ≥

n∑

j=k+1

(s1
π2(j)

+ aπ2(j)). (2)

Since all the jobs are sequenced in nonincreasing order of (s2
π2(j)

+ bπ2(j))/(s1
π2(j)

+

bπ2(j)) in π2, and because after critical job k on M1, there is no idle time, we have

n∑

j=k+1

(s2
π2(j)

+ bπ2(j)) >
n∑

j=k+1

(s1
π2(j)

+ aπ2(j)). (3)

8



M1

M2

Machine

TimeJk ...........

...........

M1

M2 Time...........

...........

t

t

Jk

Jv

Jv

(a)

(b)

< 1                  k>.........

< 1              v>.......

Figure 4: Illustrations of (2), (a)Order π2; (b)Order π;

From (2) and (3)

n∑

j=v+1

(s2
π(j) + bπ(j)) ≥

n∑

j=k+1

(s2
π2(j)

+ bπ2(j)). (4)

For schedule π, we have

Cmax(π) ≥ t +
n∑

j=v+1

(s2
π2(j)

+ bπ2(j)) − s2
π(v+1). (5)

Therefore, from (1), (4) and (5), we have

Cmax(π2) = t + bπ2(k) +
n∑

j=k+1

(s2
π2(j)

+ bπ2(j))

≤ t + bπ2(k) +
n∑

j=v+1

(s1
π(j)

+ aπ(j))

≤ Cmax(π) + bπ2(k) + s2
π(v+1).

Theorem 1 For the problem F2/setup, r − a(Ml)/Cmax, (CH1 − C⋆)/C⋆ ≤ 2/3.

Proof. If
∑n

i=1(s
1
i + ai) ≤ s1, it is obvious that Cmax(π1) = C⋆ from Yoshida and

Hitomi algorithm(YHA)[11]. So we assume
∑n

i=1(s
1
i + ai) > s1.

9



Notice that since all the jobs are resumable for the problem F2/setup, r −

a(M1)/Cmax, then π1 is the best schedule without an unavailable time then we have

Cmax(π1) ≤ C⋆ + ∆1. See figure 5.

M1

M2

Machine

Time

M2 Time

(a)

(b)

s1         t1

s1         t1

J 1 J 2 J 3

Figure 5: a is for π⋆ which is no idle time at all, b is for π1, ∆1 = t1 − s1.

If ∆1 ≤ 2C⋆/3, then we are done. So, in the following, we focus on the situation

where ∆1 > 2C⋆/3.

Because ∆1 > 2C⋆/3 and
∑n

i=1(s
1
i + ai) + ∆1 < C⋆, we have

∑n

i=1(s
1
i + ai) <

C⋆/3. Let S ′ = {JiŠs
2
i + bi > C⋆/3, i = 1, 2, ..., n}. It is obvious | S ′ |≤ 2.

Case 1:| S ′ |= 0

For an optimal schedule π⋆, according to lemma 1,we have Cmax(π2) ≤ C⋆ +

bπ2(k) + s2
π⋆(v+1) < 5C⋆/3.

Case 2:| S ′ |= 1

In this case, S ′ = {Jp}. If s2
p ≤ C⋆/3 and bp ≤ C⋆/3,then bπ2(k) ≤ bp ≤ C⋆/3

and s2
π⋆(v+1) ≤ s2

p ≤ C⋆/3, then from lemma 1 Cmax(π2) ≤ C⋆ + C⋆/3 + C⋆/3 ≤

5C⋆/3, we are done. Otherwise at least one of s2
p ≥ C⋆/3 or bp ≥ C⋆/3 will be

exist, then we consider schedule π3 of Heuristic H1.

For subcase s1
p + ap ≤ s1, suppose that the critical job does not exist in π3, then

there is no idle time on machine 2 that implies Cmax(π3) =
∑n

i=1(s
2
π3(i)

+bπ3(i)) = C⋆.

Otherwise, we denote the critical job as Jπ3(u). If
∑u

i=1(s
1
π3(i)

+ aπ3(i)) ≤ s1, see

figure 6. then

10



M1

M2

Machine

TimeJu ...........

........... Ju

< 1                  u>.........

< u+1                  n>.........

Figure 6: Illustrations of equation [6] of π3; Ju on M2 equal to bπ3(u) .

Cmax(π3) =
u∑

i=1

(s1
π3(i)

+ aπ3(i)) +
n∑

i=u+1

(s2
π3(i)

+ bπ3(i)) + bπ3(u)

≤ C⋆/3 + C⋆ = 4C⋆/3 (6)

Otherwise, let
∑u

i=1(s
1
π3(i)

+ aπ3(i)) > s1, Jp is the first job in π3 and s1
p + ap ≤ s1,

then u > 1. see figure 7. Thus,we have

M1

M2

Machine

TimeJu ...........

........... Ju

< 1                                                u>.........

< u+1                  n>.........

Figure 7: Illustrations of equation [7] of π3; Ju on M2 equal to bπ3(u) .

Cmax(π3) =
u∑

i=1

(s1
π3(i)

+ aπ3(i)) + ∆1 +
n∑

i=u+1

(s2
π3(i)

+ bπ3(i)) + bπ3(u)

≤ C⋆ + 2C⋆/3 = 5C⋆/3 (7)

For subcase s1
p + ap > s1, we have s1

p + ap + ∆1 + bp ≤ C⋆. If the critical job

does not exist or job Jp is the critical job, see figure 8. then we have

11



M1

M2

Machine

TimeJP ...........

JP

<                   p                  >

< (1                  n)\p >.........

......... .........
JP

M1

M2 TimeJP ...........

JP

<                   p                  >

< (1               n)\p >.......

......... .........
JP

(a)

(b)

Figure 8: Illustrations of equation [8] of π3; compare max{s1
p + ap + ∆1, s

2
p}. s1

p +
ap + ∆1 in (a), s2

p in (b).

Cmax(π3) = max{s1
p + ap + ∆1, s

2
p} + bp +

∑

Ji∈S\Jp

(s2
π3(i)

+ bπ3(i))

≤ C⋆ + 2C⋆/3 = 5C⋆/3 (8)

Otherwise, for the critical job Jπ3(u), u > 1, see figure 9, we have

M1

M2

Machine

TimeJu ...........

Ju

<   1                                u  >

< 1+u                 n >.......

.........
Ju

Figure 9: Illustrations of equation [9] of π3; Ju on machine 2 equal to bπ3(u).

Cmax(π3) = (

u∑

i=1

(s1
π3(i)

+ aπ3(i)) + ∆1) + bπ3(u) +

n∑

i=u+1

(s2
π3(i)

+ bπ3(i))

≤ C⋆ + 2C⋆/3 = 5C⋆/3 (9)
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Case 3:| S ′ |= 2

Similar to case 2 to check that schedule π2 or π3 may yield a solution with an

error bound of no more than 2C⋆/3. In the following, we further prove that the

error bound of schedule π4 obtained in Step (5) is no more than C⋆/3 for this case.

For schedule π4, if no critical job exists, see figure 9, then this is obviously

M1

M2

Machine

TimeJu ...........

Ju

<   1                                u  >

< 1+u                 n >.......

.........
Ju......... .........

.........

Figure 10: Illustrations of equation [10] of π4; this means no idle time on M2.

Cmax(π4) =

n∑

i=1

(s2
π4(i) + bπ4(i))

= C⋆. (10)

Otherwise, for the critical job Jπ4(u) , if u > 2, See figure 11, we have from figure 10,

M1

M2

Machine

TimeJu .......

Ju

<  p                                         u  >

< 1+u              n >.......
Ju

Jp Jp

Jp .........

Ju.....
.................

Figure 11: Illustrations of equation [11] of π4.

because | S ′ |= 2 and u > 2 which means
∑u

i=1(s
1
π4(i)

+ aπ4(i)) + ∆1 < C⋆.

Cmax(π4) =

u∑

i=1

(s1
π4(i) + aπ4(i)) + ∆1 +

n∑

i=u+1

(s2
π4(i) + bπ4(i)) + bπ4(u)

≤ C⋆ + C⋆/3 = 4C⋆/3 (11)
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If u = 2, then we obtain a contradiction.
∑n

i=1(s
1
i + ai) < C⋆ − ∆1 < C⋆ − 2C⋆/3 = C⋆/3

C⋆/3 >
∑n

i=1(s
1
i + ai) > (s1

p + ap) + (s1
q + aq) ≥ min{s2

p + bp, s
2
q + bq} > C⋆/3.

So obviously u must be equal to 1. Thus, see figure 12, we have

M1

M2

Machine

TimeJp .......

Jp

<  p  >

< 1+p                  n >.......

Jp Jp

Jp

Figure 12: Illustrations of equation of π4 [12] and π5 [13].

Cmax(π4) = (s1
p + ap) + bπ4(p) +

n∑

i=2

(s2
π4(i)

+ bπ4(i))

≤ C⋆/3 + C⋆ = 4C⋆/3 (12)

Similarly for π5, see figure 11, we need to change p to q.

Cmax(π5) = (s1
q + aq) + bπ5(1) +

n∑

i=2

(s2
π5(i)

+ bπ5(i))

≤ C⋆/3 + C⋆ = 4C⋆/3 (13)

From the proof of theorem 1, we see that Steps (1). . . (5) of Heuristic H1 can

produce a solution with an error bound of no more than 2C⋆/3, and schedule π4 in

step (5), π5 in step (6) can produce a solution with an error bound of no more than

C⋆/3 in some special situations.

Although we do not know whether the bound is tight or not, the following in-

stance shows that the worst-case error bound of H1 is no less than 1/2 . Consider

an instance with s1
1 = h, a1 = h, s2

1 = 3h, b1 = 7, s1
2 = 3, a2 = 4, s2

2 = 6, b2 = 3h,

s1
3 = m, a3 = m, s2

3 = 1, b3 = 1, s1 = 8, and t1 = 4h + 8, where h ≫ 1 and

14



0 < m < 7/(3h + 6). Applying heuristic H1, we obtain π1 = π3 = [J1, J3, J2]

with Cmax(π1) = Cmax(π3) = 9h + 15 (see figure 13(a)), and π2 = [J3, J2, J1] with

Cmax(π2) = 10h+2m+14 (see figure 13(b)). Since (s1
p+ap)+(s1

q +aq) = 2h+7 > s1,

we need not consider Step (5) of H1. Thus, CH1 = 9h + 15. It is easy to check

that π⋆ = [J2, J1, J3] with C⋆ = 6h + 16 (see figure 13(c)). Hence, we see that

(CH1 − C⋆)/C⋆ approaches 1/2 as h approaches infinity.

Machine

M1

M2 Time

7               4h+7         5h       5h+2m       6h+7+2m

(a)

J1 J1 J1 J3J3 J2 J2

J1 J1 J3J3 J2 J2

3h                6h       6h+7   6h+9                  9h+15

M1

M2 Time

7               4h+7         4h+2m+7           6h+7+2m

(b)

J1J3J2

J1 J1J3 J2 J2

2                   4h+1+2m                           7h+7+2m                 10h+14+2m

J2 J1

M1

M2 Time

7              4h+7           5h+7             6h+7+2m

(c)

J2 J1 J1 J3J3

J1 J1 J3J3J2

7                3h+7                          6h+7              6h+16

Figure 13: (a)Solution of order π1, π3; (b)Solution of order π2; (c)Solution of order
π⋆.
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4 UNAVAILABLE INTERVAL ON M2

In this section we present a heuristic for the problem F2/setup, r−a(M2)/Cmax and

evaluate its worst-case error bound by Wang and Cheng [12].

4.1 YHA algorithm (π1)

Equvalent to heuristic H1’s π1. For example let s1
1 =2, a1 = 3, s1

2=4, a2 = 2,

s1
3=8,a3 = 3, s2

1=4, b1 = 2, s2
2=3, b2 = 5, s2

3=6, b3 = 4, s2 = 15, and t2 = 20.

Job number Set A Set B
1 s1

1 + a1 − s2
1=2+3-4=1<2 None

2 s2
1 + a2 − s2

2=4+2-3=3<5 None
3 None s3

1 + a3 − s3
2=8+3-6=5>4

Table 4: Values considerer in π1

Then, J1, J2 ∈A, and J3 ∈B, because s2
1 + a2 − s2

2 > s1
1 + a1 − s1

2, then the order

in set A will be {J1, J2} (nondecreasing order) followed by the job in set B. Finally

the order will be {J1, J2, J3}, this is π1. See Figure 14(a).

4.2 Decreasing ratio (π2)

Similar to heuristic H1’s π2. Sequence the jobs in nonincreasing order of (s2
i +

bi)/(s1
i + ai).

Job number (s2
i + bi)/(s1

i + ai)
1 (s2

1 + b1)/(s1
1 + a1) = 6/5

2 (s2
2 + b2)/(s2

2 + a2) = 8/6
3 (s2

3 + b3)/(s1
3 + a3) = 10/11

Table 5: Values considerer in π2

Then we get (s2
2 + b2)/(s2

1 +a2) > (s2
1 + b1)/(s1

1 +a1) > (s2
3 + b3)/(s1

3 +a3).Finally

the order will be {J2, J1, J3}, this is π2. See Figure 14(b).
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4.3 Largest job q on machine 1 (π3)

Next we need find Find job Jq such that

s1
q + aq ≥ max{s1

i +aiŠJi ∈ S \ {Jq}.

Job number s1
i + ai

1 s1
1 + a1=2+3=5

2 s1
2 + a2=4+2=6

3 s1
3 + a3=8+3=11

Table 6: Values considerer in π3

Then we find q = 3, and we know the order of π1, we just need to move job Jp

in the last position and keep the other n − 1 jobs in the same positions as those in

π1,then the order will be {J3, J1, J2}, this is π3. See Figure 14(c).

4.4 Largest job p on machine 2 (π4)

Next we need find Find job Jp such that

s2
P +bp ≥ max{s2

i +biŠJi ∈ S \ {Jp}.

Job number s2
i + bi

1 s2
1 + b1=4+2=6

2 s2
2 + b2=3+5=8

3 s2
3 + b3=6+4=10

Table 7: Values considerer in π4

Then we find p = 3, and we know the order of π2, just need to move job Jp in

the first position and keep the other n − 1 jobs in the same positions as those in

π2,then the order will be {J3, J2, J1}, this is π4. See Figure 14(d).
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Machine

M1

M2 TimeJ3

J2J1 J1

(a)

J1 J1

J2

J2 J2

J3

J3J2

J3

 2       5          9   11                     19     22

1          5    7  8     11          15        20 21              27        31

M1

M2 TimeJ3

J2 J1 J1

(b)

J1 J1

J2

J2

J3

J3J2

J3

 4    6     8      11                     19     22

3      6              11        15          20   22              28       32

M1

M2 TimeJ3

J2J1 J1

(c)

J1 J1

J2

J2

J3

J3 J2

J3

   8       11   13    16        20  22

  5               11        15           20       24   26     29         34

M1

M2 TimeJ3

J2 J1 J1

(d)

J1 J1

J2

J2

J3

J3 J2

J3

   8       11        15  17  19     22

  5               11        15          20     23           28         32  34

Figure 14: (a)Solution of order π1; (b)Solution of order π2; (c)Solution of order π3;
(d)Solution of order π4

4.5 Heuristic H2:

(1) Find jobs Jp and Jq such that

s2
P + bp ≥ max{s2

i + biŠJi ∈ S\{Jp}

and

s1
q + aq ≥ max{s1

i + aiŠJi ∈ S\{Jq}.

(2) Sequence the jobs by YHA. Let the corresponding schedule be π1 and the cor-

responding makespan be Cmax(π1).
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(3) Sequence the jobs in nonincreasing order of (s2
i + bi)/(s2

i + ai). Let the corre-

sponding schedule be π2 and the corresponding makespan be Cmax(π2).

(4) Sequence job Jq in the last position and sequence the remaining n − 1 jobs by

YHA, Let the corresponding schedule be π3 and the corresponding makespan

be Cmax(π3).

(5) Sequence job JP in the first position and sequence the remaining n − 1 jobs in

the same positions as those in Step (3), Let the corresponding schedule be π4

and the corresponding makespan be Cmax(π4).

(6) Select the schedule with the minimum makespan from the above four schedules.

Let CH2 = min{Cmax(π1), Cmax(π2), Cmax(π3), Cmax(π4)}.

For the problem F2/setup, r − a(M2)/Cmax, since an unavailable period exists

on M2, we assume that all the jobs must be processed on M1 and M2 as early as

possible, and, for a given π, define again the critical job Jπ(k) as the last job in π

such that its starting time on M2 is equal to its finishing time on M1 or the job in

π before which the last idle time on M2 occurs.

Lemma 2 For schedule π2 defined in Step (3) of Heuristic H2, we assume that the

completion time of the critical job Jπ2(k) on M1 is t, and let πbe a given scedule.

(i) If t ≤ s2 or t > t2,let Jπ(v) be the last job that finishes no later than time t on

M1 in π, then Cmax(π2) ≤ Cmax(π) + bπ2(k) + s2
π(v+1).

(ii) If s2 < t ≤ t2, let Jπ2(h) be the job that finishes just before time s2 on M1 in

π2, and Jπ(u) the last job that finishes no later than Jπ2(h) on M1 in π, then

Cmax(π2) ≤ Cmax(π) + (s1
π2(h+1) + aπ2(h+1)) + (s1

π(u+1) + aπ(u+1))

Proof. (i) Similar to the proof of Lemma 1.
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(ii) Let Iπ2 be the total idle time on M2 in π2. Under the assumption that Jπ2(k)

finishes just before time s2 on M1 in π2, we have Iπ2 ≤ s2 −
∑h

j=1(s
2
π2(j)

+ bπ2(j)). See

figure 15.

M1

M2

Machine

Time

Jp

< s2           t2 >

.......

JkJh

M1

M2 Time

< s2           t2 >

JkJh

Jh

Jh

Jh Jh

Jh

< 1                              h >

< 1                              h >

....... ....

....

(a)

(b)

Figure 15: (a)Jh finished after s2 on M2; (a)Jh finished before s2 on M2;

Let Iπ be the total idle time on M2 in π. So clearly,

Iπ ≥ s2 −
u∑

j=1

(s2
π(j) + bπ(j))

≥ s2 −

u∑

j=1

(s2
π(j) + bπ(j)) − (s1

π2(h+1) + aπ2(h+1)) − (s1
π(u+1) + aπ(u+1))

Notice that since
∑u

j=1(s
1
π(j) + aπ(j)) ≤

∑h

j=1(s
1
π2(j)

+ aπ2(j)) and all the jobs are

sequenced in nonincreasing order of (s2
i + bi)/(s2

i + ai) in π2, it is not difficult to

prove that
∑n

j=h+1(s
2
π2(j)

+ bπ2(j)) ≤
∑n

j=u+1(s
2
π(j) + bπ(j)). We know that Cmax(π2) =

∑n

j=1(s
2
π2(j)

+ bπ2(j)) + ∆2 + Iπ2 and Cmax(π) =
∑n

j=1(s
2
π(j) + bπ(j)) + ∆2 + Iπ. Hence,

20



Cmax(π2) ≤

n∑

j=h+1

(s2
π2(j)

+ bπ2(j)) + ∆2

≤

n∑

j=u+1

(s2
π2(j) + bπ2(j)) + ∆2

= Cmax(π) + (s2 −
u∑

j=1

(s2
π(j) + bπ(j)) − Iπ)

≤ Cmax(π) + (s1
π2(h+1) + aπ2(h+1)) + (s1

π(u+1) + aπ(u+1))

This completes the proof. �

The following theorem establishes the worst-case error bound of Heuristic H2 for

the resumable case.

Theorem 2 For the problem F2/setup, r − a(M2)/Cmax, (CH2 − C⋆)/C⋆ ≤ 2/3.

Proof. We know that YHA can produce an optimal solution for F2/permu,

setup/Cmax. Since when t2 = 0, F2/setup, r−a(M2)/Cmax is equivalent to F2/permu,

setup/Cmax, it is obvious that Cmax(π1)−C⋆ ≤ t2. If t2 ≤ 2C⋆/3, then we are done.

So, in the following, we focus on the case where t2 > 2C⋆/3.

Let S ′ = {JiŠs
1
i + ai > C⋆/3, i = 1, 2, ..., n} and S ′′ = {JiŠs

2
i + bi > C⋆/3, i =

1, 2, ..., n}. We can easily show that | S ′ |≤ 2 and | S ′′ |≤ 2 from the lower bound

max {
∑n

i=1(s
1
i + ai) +

∑n

i=1(s
2
i + bi)} ≤ C⋆. When | S ′ |= 0 and | S ′′ |= 0, from (i)

and (ii) of Lemma 2, we have Cmax(π2) ≤ 5C⋆/3. Hence, in the remainder of proof,

we only need to consider the following two situations.

Case 1: | S ′′ |= 0 and | S ′ |> 0

In this case, we consider schedule π3. If no critical job exists in π3, this means no

idle time on M2, then Cmax(π3) =
∑n

i=1(s
2
π3(i)

+ bπ3(i)) + ∆2 = C⋆. Next, we assume

that there exists a critical job in π3. Let Jq be the critical job, see figure 16. then

Cmax(π3) ≤ max{
∑n

i=1(s
1
π3(i)

+ aπ3(i)), t2} + bq ≤ C⋆ + C⋆/3 = 4C⋆/3.
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M1

M2

Machine

Time

Jp

< s2           t2 >

...................

Jq

M1

M2 Time

< s2           t2 >

Jq

Jq

< 1                                        q>

< 1                                                        q >

.......

....

....

(a)

(b)

Jq

Figure 16: (a)Jq finished brfore t2 on M1; (a)Jq finished after t2 on M1;

Otherwise, let Jπ3(k) (k < n) is the critical job, see figure 17. then we have

M1

M2

Machine

Time

< s2        t2 >

Jk

< 1                   k>.......

....
Jk

< k+1        n >....
Jk+1

Figure 17: ∆2 = t2 − s2

Cmax(π3) ≤
k∑

i=1

(s1
π3(i)

+ aπ3(j)) + (∆2 + bπ3(k) +
n∑

i=k+1

(s2
π3(i)

+ bπ3(i)))

≤ C⋆ + 2C⋆/3 = 5C⋆/3.

Case 2: | S ′′ |≥ 1

We check schedule π4 obtained in Step (5) of Heuristic H2. If no critical job

exists in π4, then Cmax(π4) =
∑n

i=1(s
2
π4(i)

+ bπ4(i)) + ∆2 = C⋆. In the following,

we assume that there exists a critical job in π4. Since | S ′′ |≥ 1, we assume that

s2
p + bp > C⋆/3 for Jp, see figure 18. If

∑n

i=1(s
1
i + ai) ≥ max{max{s1

p + ap, s
2
p} − max{s1

p + ap − s2, 0}, s
2
P} + bp + α∆2,
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where α = 1 if s2 < max{s1
p +ap, s

2
p}+ bp; otherwise, α = 0. See figure 18. Then,

we have

Machine

M1

M2 Time

J1

(a)

J1

J1

<s2               t2>

M2(b) J1

<s2               t2>

M2(c) J1

<s2               t2>

M2(d)
J1 J1

<s2               t2>

Figure 18: Here has four conditions a,b,c,d.

Condition max{max{s1
p + ap, s

2
p} − max{s1

p + ap − s2, 0}, s
2
P} + bp + α∆2

a max{s1
p + ap − 0, s2

P} + bp + α∆2 = s1
p + ap + bp + α∆2

b max{s2
P − 0, s2

P} + bp + α∆2 = s2
P + bp + α∆2

c max{s1
p + ap − (s1

p + ap − s2), s
2
P} + bp + α∆2 = s2 + bp + α∆2

d s2
P + bp + α∆2

Cmax(π4) ≤
n∑

i=n

(s1
i + ai) + (1 − α)∆2 +

∑

Ji∈S\{Jp}

(s1
i + ai)

≤ C⋆ + 2C⋆/3 = 5C⋆/3.

Otherwise, Jp is the critical job. From s2
p+bp > C⋆/3 and max{s1

p+ap, s
2
p}+bp <

C⋆, we obtain that max{s1
p + ap − s2

p, 0} < 2C⋆/3; so

Cmax(π4) ≤ max{s1
p + ap − s2

p, 0}+ ∆2 +
∑n

i=n(s2
i + bi) < C⋆ + 2C⋆/3 = 5C⋆/3.

The proof is complete. �
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Although we do not know whether the bound is tight or not, the following in-

stance shows that the worst-case error bound of H2 is no less than 1/3 . Consider

an instance with s1
1 = h, a1 = 2, s2

1 = 2, b1 = 5, s1
2 = 1 + h/2, a2 = 1 + h/2, s2

2 = 1,

b2 = h + 2, s1
3 = h − 3, a3 = 2, s2

3 = h − 2, b3 = 2, s1 = h, and t1 = 2, where

h ≫ 1. Applying heuristic H2, we obtain π1 = [J2, J1, J3] with Cmax(π1) = 4h + 9

(see figure 19(a)), and π2 = π4 = [J2, J3, J1] with Cmax(π2) = Cmax(π4) = 4h+9 (see

figure 19(b)), and π3 = [J1, J3, J2] with Cmax(π3) = 4h + 8 (see figure 19(c)). Thus

CH2 = 4h + 8. It is easy to check that π⋆ = [J3, J2, J1] with C⋆ = 3h + 11 (see

figure 19(d)). Hence, we see that (CH2 − C⋆)/C⋆ approaches 1/3 as h approaches

infinity.

Machine

M1

M2 Time

(a)

J2 J2

J2 J2

J3 J3

J3 J3

J1 J1

J1J1

h+2           2h+4        3h+3

h            2h             3h+2         3h+9        4h+9

M1

M2 Time

(b)

J2 J2

J2 J2

J3 J3

J3 J3

J1 J1

J1J1

h+2          2h+1        3h+3

h            2h             3h+2         4h+2        4h+9

M1

M2 Time

(c)

J2 J2

J1 J1

J3 J3

J2 J2

J1 J1

J3J3

h           2h+1           3h+3

h            2h                 3h+5              4h+8

M1

M2 Time

(d)

J2 J2

J3 J3

J3 J3

J2 J2

J1 J1

J3

h-1              2h+1        3h+3

1            h           2h               2h+4        3h+11

J1 J1

Figure 19: (a)Solution of order π1; (b)Solution of order π2, π4; (c)Solution of order
π3; (d)Solution of order π⋆.
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5 COMPUTATIONAL RESULTS

The heuristic was implemented in Java, on a Pentium-4 PC clocked at 2.7 GHz

under the operating system Windows XP. We ran randomly generated job numbers

with n=6, 7, 8, 9, 10, 11, 12. For each job set we ran 2 different unavailable times on

the two machines.

The following table is based on machine 1. The first column is number of jobs,

the second column is the number of simulations, Column 3 is the percentage of the

simulations that the heuristic yields the optional solution, column 4 is the average

error bound and column 5 is the largest error bound.

Based on this program, all jobs’ setup times and processing times are taken

to be random integer numbers between 1 and 10. The unavailable time is done

by choosing a random number, l1 between the values 0.1 and 0.15, and another

random number k1 between the values 0.2 and 0.25. Then s1 = ⌊l1 ·
∑n

i=n(s
1
i + ai)⌋;

t1 = ⌊k1 ·
∑n

i=n(s1
i + ai)⌋.
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Job numbers Numbers of Optimal solution Average Error Largest Error
size n simulation percentage bound bound

6 100 77% 0.02512 0.04521

7 100 88% 0.01231 0.05376

8 100 85% 0.02891 0.05427

9 100 84% 0.01929 0.04381

10 100 78% 0.03119 0.04841

11 100 84% 0.02867 0.04639

12 100 75% 0.03243 0.05082

Table 8: Computational results for heuristic 1

The following table is based on machine 2. The first column is number of jobs,

the second column is the number of simulations, Column 3 is the percentage of the

simulations that the heuristic yields the optional solution, column 4 is the average

error bound and column 5 is the largest error bound.

Based on this program, all jobs’ setup times and processing times are taken

to be random integer numbers between 1 and 10. The unavailable time is done

by choosing a random number l2 between the values 0.1 and 0.15, and another

random number, k2 between the values 0.2 and 0.25. Then s2 = ⌊l2 ·
∑n

i=n(s2
i + bi)⌋;

t2 = ⌊k2 ·
∑n

i=n(s2
i + bi)⌋.
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Job numbers Numbers of Optimal solution Average Error Largest Error
size n simulation percentage bound bound

6 100 77% 0.03066 0.04189

7 100 88% 0.03482 0.04641

8 100 85% 0.04482 0.07901

9 100 84% 0.05517 0.06562

10 100 78% 0.02629 0.04671

11 100 84% 0.04227 0.08943

12 100 75% 0.05012 0.07514

Table 9: Computational results for heuristic 2

6 CONCLUSIONS

In this paper we studied the two-machine flowshop scheduling problem with anticipa-

tory setup times and a resumable availability constraint imposed on only one of the

machines. Since the problem is NP-hard, we presented two polynomial-time heuris-

tics developed by Wang and Cheng and analyzed their error bounds by simulation.

From the computational results, we can see that heuristic 1 is more accurate.
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