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ABSTRACT 
 

 
 The pharmaceutical industry has come to rely on isotherm data when working with 

preparative chromatography.  The data derived during isotherm measurement is used to optimize 

experimental conditions which will be used in the making of drugs.    

 For the R- and S- enantiomers of Fluoxetine, four different methods were used to 

determine the single component isotherms and this data was fitted to the Langmuir Isotherm 

Model.  Both enantiomers, when tested singly, fit the model using the Frontal Analysis Method 

and Retention Time Method, but did not fit the model when using the FACP and ECP methods. 

 The major objective of this research was to determine whether the single component 

isotherm measurement can be used to predict the multi-component isotherm in order to avoid the 

cumbersome, tedious and very time consuming procedures for measuring the multi-component 

isotherm.  Prediction of a multi-component isotherm using single component isotherms is in 

most cases impossible due to the competition between the two solutes and the difference in 

column saturation capacity of the two compounds.  The two components of a chiral compound 

have very similar physical properties and therefore they should have similar column saturation 

capacities.   The competitive binary isotherm was determined on the racemic mixture of 

Fluoxetine using the Frontal Analysis Method for Multi-Component Isotherms.  It was then 

compared to values predicted from the Single Component studies and it was determined that the 

Multi-Component isotherm could be predicted from data obtained from the isotherms of the 

single components.   
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INTRODUCTION 

 A large amount of research has been devoted to the study of thermodynamic function in 

the form of adsorption isotherms as they relate to chromatographic separation. The usefulness of 

the findings has become accepted in a variety of different areas, including preparative 

chromatography, production scale chromatography and chromatographic purification.  The 

practical importance of liquid chromatography deals almost exclusively with the separation of 

multi-component mixtures, especially with enantiomeric separation and also the separation of 

impurities from the active pharmaceutical ingredient (API) of a drug product.  Adsorption 

isotherms quantitatively describe the equilibrium distribution of a solute between the two phases 

involved in the chromatographic process (mobile and stationary) over a wide concentration 

range.  They give information about the solvent, solute, and adsorbent, and the interactions 

between these three.  Adsorption isotherms are becoming a major tool for the investigation of the 

processes involved in chromatographic retention. (Jacobson et all, 1987)  They also play a key 

role in the analysis of preparative and production scale chromatography.  Determination of the 

equilibrium isotherms can be the starting point for computerized optimization of the preparative 

chromatographic process (Mihlbachler et all, 2002).  An extensive examination of the isotherm 

will also provide the needed data for a chromatographic purification and/or separation process.  

Although this technique for optimization of chromatographic purification is useful and important 

in the pharmaceutical and biotechnology industries, it is not an easy task and as of yet has not 

become an efficient and routine part of the preparative or production process (Seidel-

Morgenstern, 2004).   

 Chiral compounds are difficult to separate.  The two components are mirror images of 

each other and therefore they have many of the same physical and chemical properties.  
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However, the need to have optically pure enantiomers for many modern pharmaceuticals is 

evident (Zhou et all, 2003).  Because of the differences in toxicity and effectiveness between the 

two enantiomers, separation on a large scale is very important for the pharmaceutical industry. 

Frequently, one enantiomer will be effective, while the other has little or no activity, and might 

even be toxic.  Therefore, it is necessary to obtain large amounts of the pure chiral isomer 

through preparative chromatographic separation.  Preparative chromatography makes use of 

either large volumes (column overloading) or high concentrations (concentration overloading) of 

the racemic mixture of the API being used.  The concentration overloading is more efficient and 

economical.  There are two types of preparative chromatography, large scale and semi-

preparative.  Isolating and using a large amount of the purified compound is performed during 

large scale preparative chromatography.  Large scale preparative chromatography is performed 

when purification and production of enantiomers, peptides and proteins are needed (Guiochon et 

all, 2006).  Semi-preparative scale chromatography is used when a small amount of pure minor 

compound is needed for characterization, structural identification toxicological or 

pharmacological data.   Because the preparation of the optically pure enantiomer is a difficult 

and expensive process, methods based on computer-assisted optimization are used to aid in the 

chiral separation for increased speed, productivity and reduced cost.  In order to optimize the 

separation using chromatographic modeling with the aid of a computer, the competitive 

equilibrium isotherms of the two enantiomers are needed.   

Adsorption Isotherms 

 An adsorption isotherm of a compound represents the adsorption equilibrium of that 

compound from a solution.  This adsorption equilibrium is what regulates the separation of two 

enantiomers in a chiral compound, especially at high concentration.  It is needed for the design 



 3

and optimization of preparative chromatography.  When the solution being considered has more 

than one sorbable component at high concentration, the components will compete with each 

other and influence each other’s adsorption.  Isotherms obtained under these conditions are 

called “competitive isotherms” (Jacobson, 1987).   While trying to separate multi-component 

mixtures, the isotherms of the individual components can not always be used, due to competition 

for the adsorption sites between the components.  In ideal cases the multi-component isotherms 

can be predicted from single component isotherms; however in a majority of cases this is not 

possible.  A multi-component isotherm must be measured in a way that describes the behavior of 

the individual solutes and the influence they have over one another.  There are many different 

methods for determining single component isotherms.  The most widely used chromatographic 

methods for determining single component isotherms are the following: Frontal Analysis (FA), 

Frontal Analysis by Characteristic Point (FACP), Elution by Characteristic Points (ECP) and the 

Retention Time Method (RTM) (Guiochon, 2006).  For multi-component isotherms, the 

determining method is Frontal Analysis for multi-component isotherms also called Competitive 

Frontal Analysis.  The FACP and ECP methods can not be extended to determine multi-

component isotherms.   

Adsorption Isotherm Measurement 

 Isotherms are measured so that the mechanisms of retention of a system can be 

understood and used in a practical way to achieve separation, and it is necessary to use it in 

preparative chromatographic modeling to optimize the separation and achieve maximum 

production with minimum cost.  Equilibrium in liquid-solid chromatography occurs between the 

solid stationary phase and the liquid mobile phase and their interactions between the components 

of the compound being studied.  The equilibrium isotherm is a plot of the concentration of the 



 4

component in the stationary phase versus the concentration of the component in the mobile 

phase.   

 The interface between a gas and a solid is much simpler than the liquid-solid interface; 

therefore more scientific literature can be found describing the gas-solid equilibria.  There are 

two theories for gas-solid equilibria that provide insight and give more understanding of liquid-

solid equilibria.  The first theory is the Gibbs equation.  It relates the amount of the component 

adsorbed at the interface to interface tensions or surface tension.  A theory put forth by Brunauer, 

Emmett, and Teller (BET) describes the phase equilibria of multilayer adsorption at the gas-solid 

interface (Gritti, 2003).  Due to competition by the mobile phase and sometimes other 

components of the system for binding sites on the solid phase, it is more difficult to determine 

the mechanism of component retention in liquid-solid chromatography. 

Langmuir Isotherm Model 

 The Langmuir isotherm model is the most common equlilbrium isotherm model 

(equation 1).   It was developed by Irving Langmuir in 1916 to describe the dependence of the 

surface coverage of an adsorbed gas on the pressure of the gas above the surface.  It has since 

been shown to be useful in modeling equilibrium isotherms (Nix, 2003). 

 

bC1
bC

Q
Q

s +
=  (1)

or 

bC1
aCQ
+

=  (2)

 
Q = adsorbed amount of solute in the stationary phase in equilibrium with the 

concentration of solute in the mobile phase.   
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b = an experimental constant related to the energy of adsorption 

C = concentration of solute 

Qs = column saturation capacity 

a = slope of isotherm at very low concentration 

This equation is derived with the assumptions that the solution is ideal, the solute gives 

monolayer coverage, there are no solute-solute interactions in the monolayer, there are no 

solvent-solute interactions, and the adsorbed layer is ideal. Even though most of these 

assumptions may not be completely valid for liquid-solid adsorptions, there is experimental data 

that shows that the Langmuir isotherm is an excellent approximation for single component 

adsorption equilibriums in liquid-solid chromatography.  Many examples can be found in 

scientific literature showing that the model is valid at low concentrations.  Originally used for 

single layer adsorption, the Langmuir adsorption isotherm gives a curve that depicts the fraction 

of adsorbent covered with the solute as a function of concentration.  The Langmuir isotherm is a 

curve which is sharper while the surface of the adsorbent is not yet covered with solute, and 

flattens out when that coverage is complete.  The Langmuir isotherm for double layer adsorption 

has also come into use and is similar to single layer adsorption with the initial portion of the 

curve being sharper.  

Methods for Determination of Single Component Isotherms 

 Frontal Analysis (FA) was first used to determine adsorption isotherms in the 1950’s.  

Frontal Analysis can be defined as the relationship of the solute concentration in the liquid phase 

to the concentration at the surface of the solid phase over a concentration range.  It is performed 

by making abrupt step changes of increasing concentration at the column inlet and determining 

the breakthrough curves (Guiochon et all, 2006).  The retention time of the breakthrough curve is 
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used to calculate the amount of the compound adsorbed (Q) at concentration (C) using equation 

3. 
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 tr = retention time of the breakthrough curve (corrected for system delay time) 

 t0 = void time of the column 

 F = phase ratio of the chromatographic system.  

 Vo=column void volume 

 Va=volume of adsorbent in the column 

The phase ratio is defined by equation 4. 

 

 (4)

 

 ε = porosity of the column. 

  More than one experiment must be performed in order to determine the single component 

isotherm using the FA method.  Each experiment gives one point on the isotherm.   This method 

is more accurate than the others because the inflection point of the breakthrough curve is 

independent of kinetics, it depends only on the thermodynamic properties of the system; however 

the preparation of the series of solutions at known concentrations can be time consuming and 

require a large amount of the pure compound (Guiochon et all, 2006).  Using a liquid 

chromatograph with a gradient delivery system that can accurately deliver precise concentrations 

of the solute in a stepwise fashion can reduce the experimental error and make the experimental 
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design simpler; however it will not eliminate the need for a large amount of material.  FA works 

best with narrow bore columns, which help to decrease the amount of chemicals and solvents 

needed to perform the testing.   Frontal Analysis is the most accurate chromatographic method 

for the determination of adsorption isotherms. 

 Another procedure for determining a single component isotherm is Frontal Analysis by 

Characteristic Point (FACP).  The rear boundary of the elution profile is used to determine Q and 

C.  This method can use the rear boundary recorded during FA analysis or by making a negative 

step change from a certain concentration back to pure mobile phase.  A large concentration step 

is pumped onto the column and allowed to plateau.  Then the solution is replaced with pure 

mobile phase.  The isotherm is derived from the profile that is recorded during this wash.  

Another way to measure the isotherm using FACP is by using a wide rectangular injection.  Only 

one experiment is needed to obtain the entire isotherm measurement, because the concentration 

is changed only once. The main disadvantage of FACP comes from the fact that the calculation 

ignores the kinetic effect and assumes the elution profile is dependant only on thermodynamics 

(Guiochon et all, 2006).  This is not a correct assumption because the elution profile depends on 

both thermodynamics and kinetics.  This will allow for error at especially low concentrations 

where the kinetic effect is more significant.  The problem can be alleviated (error can be 

reduced) if a column with high theoretical plates is used because it has less kinetic effect.    The 

adsorption isotherm is calculated from the points on the rear profile of the curve using equation 

5.  This equation is derived assuming that there is no kinetic effect, that the number of theoretical 

plates of a column is infinite. 
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 Va = volume of adsorbent in the column 

 V0 = void volume of the column 

 F = phase ratio (F = Va/V0) 

 V = retention volume of the diffuse boundary at concentration C 

 t0=column void time 

 tr=retention time of diffuse boundary at concentration C (corrected for system           

delay time) 

Since the integration is calculated from zero concentration of solute, data points at low 

concentrations cannot be disregarded and thus error is inherent in the isotherm. 

 Elution by Characteristic Point (ECP) is yet another method for determining a single 

point isotherm.  ECP is similar to FACP however it only requires that a limited amount of solute 

be injected on the system to give an elution peak. This method is based on the idea that velocity 

can be associated with concentration and it, in fact, depends on the concentration.  In this 

method, the isotherm is derived from the back portion of an overloaded elution profile.  This 

profile is obtained by injecting a large sample.   Just as with the FACP method, the biggest 

disadvantage of the ECP method is the assumption that the elution profile is dependant only on 

thermodynamics.  It is based on the assumption that the column is infinitely efficient, which is 

not the case in laboratory situations.  Another disadvantage of both the FACP and ECP methods 

is the need for concentration of the rear boundary.  Unfortunately, the detector response is not 

linear at the higher concentrations needed for isotherm measurement.  A separate experiment is 

needed to determine the UV responses of a series of steps of known concentration. Next, the 

concentration versus absorption is fit to a polynomial equation to derive another equation.  This 

final equation is used to calculate the concentration from the UV response measurement of the 
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rear boundaries.   Equation 4 is also used to calculate the isotherm using data from the ECP 

method with one exception.  Since the sample is directly injected on the column tr is not 

corrected for system delay time. 

 The last commonly used method for single component analysis that will be discussed 

here is the Retention Time Method (RTM) (Golshan-Shirazi, 1987).  The RTM will only work if 

an isotherm follows the Langmuir model.  If the isotherm to be determined by the RT method is 

Langmuirian, using a very small and a very large size sample injection can determine the 

isotherm parameters.  The retention time of the small injection under linear conditions can be 

used to determine the capacity factor (K’0) and the retention time of the front of the large 

injection can be used to determine the column saturation capacity. Adsorption isotherms that are 

Langmuirian are linear at low concentrations. When a small amount is injected, the retention 

time of the peak is obtained under linear conditions. This retention time is proportional to the 

initial slope of the isotherm.  This method will fail if the isotherm does not follow the Langmuir 

model.  It is the easiest and quickest way to determine a single component isotherm and does not 

need a large amount of sample.  However, it cannot be applied to the determination of any other 

type of isotherm. 

 There are many isotherm models available if it is found that the Langmuir model is not 

appropriate.  The data from any of these methods, except the Retention Time Method, can be 

fitted to the appropriate isotherm models and then the resulting isotherm model can be used in 

order to study a wide rage of factors influencing the separation of enantiomers of chiral 

compounds or any other preparative separation. 

Methods for Determination of Multi-Component Isotherms 
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 Frontal Analysis for Multi-Component (Competitive Frontal Analysis) is performed by 

preparing a solution containing a constant relative composition of the two components that are 

being studied.  The solutions are pumped through the HPLC column starting with the low 

concentration and moving up step by step to the high concentration, using several steps.  Then 

the curves are recorded.  The breakthrough curves are complex and the isotherm is related to the 

breakthrough retention times as well as the concentration of each of the solutes in the plateaus; 

therefore it is necessary to obtain the concentrations at each of the intermediate plateaus.  This 

can be done by collecting the fraction at each intermediate plateau and injecting in a second 

chromatograph with a short high-efficiency column to determine the concentration of each solute 

at each intermediate plateau (Ci,m) using an external standard method.   From the breakthrough 

times and the plateau concentrations, the competitive isotherm can be determined by writing a 

mass balance equation for each solute around the breakthrough curve therefore this method is 

called the Method of Mass Balance (MMB) (Jacobson 1987).  The isotherms of the two 

components can be determined by writing the mass balance equation of each component around 

each breakthrough curve using Equation 6 or 7. 
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 V0 = column dead volume 

 V1 = elution volume of the first breakthrough front 

 V2 = elution volume of the second breakthrough front 
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 Vads = the volume of adsorbent in the column 

 Ci,a = the concentration of component i in the mobile phase in the column ahead of the 

first front 

 Ci,b = the concentration of component i in the mobile phase in the column behind the 

second front 

 Ci,m = the concentration of component i in the mobile phase in the intermediate plateau 

 F =  phase ratio = 
ε
ε−

=
1

V
Va

o
 

tR1 = the retention time of the intermediate breakthrough curve (corrected for system 

delay time)=tRm1-τ 

tR2 = the retention time of the final breakthrough curve (corrected for system delay 

time)=tRm2-τ 

t0 = void time of the column 

 Qi = concentration of component i in the stationary phase 

            Competitive frontal analysis is the only method available for determination of 

competitive multi-component isotherms.  Method of Mass Balance (MMB) is the only general 

procedure which can be used for calculation of competitive isotherms from the resulting 

breakthrough curves.  When the isotherm of the two solutes is constructed they can be fitted to a 

variety of available isotherm models.  The measured isotherm is for a certain constant relative 

concentration.  If the isotherm is needed for another composition ratio of two solutes, the study 

must be repeated entirely and it is very burdensome and time consuming. 

  There are several other procedures which can be used for calculation of competitive 

isotherm of multi-component from the resulting breakthrough curves of competitive frontal 
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analysis if the multi-component isotherm is assumed to follow the competitive Langmuir 

isotherm model.  

∑+
=

ii

ii

Cb1
CaQ  

 
(8) 

These procedures are the Method of Composition Velocity (MCV), the Method of Mezzanine 

Concentration (MMC) and the Hybrid Method of Mass Balance (HMMB) (Jacobson, 1990).  

The experimental procedure is the same for all of these methods by performing frontal analysis 

of a mixture of solutes at constant relative composition.   

 The Method of Composition Velocity (MCV) is a procedure used to determine the best 

coefficients of a competitive Langmuir isotherm using a set of data obtained through competitive 

frontal analysis.  The competitive velocity of the breakthrough fronts (shock waves) will be 

measured therefore the method is called The Measurement of Composition Velocity (MCV) 

(Jacobson 1987).  These velocities are related to the competitive Langmuir isotherm parameters 

(ai and bi).  Therefore by assuming Langmuir isotherms ai and bi will be determined from the 

velocity of each shock wave.  The advantage of this procedure is that there is no need to collect 

and measure an intermediate plateau, but it is only valid if the isotherm follows the competitive 

Langmuir isotherm model.   

 The Method of Mezzanine Concentration (MMC) takes a non-liner regression of the 

intermediate plateau concentrations (mezzanines) obtained during the frontal analysis 

experiment.  This regression is fitted to the intermediate plateau equation and the concentration 

is derived assuming a Langmuir isotherm.  This regression gives estimates of the isotherm, 

assuming it is Langmuirian.  Like MMB, the intermediate plateau concentration is needed to 

determine the isotherm.  MMC is only valid for Langmiurian isotherm models.  There is no point 
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in using the MMC procedure over MMB, since in both procedures the concentration of solutes 

must be measured on an intermediate plateau.  After these measurements, it is much easier to use 

Equation 7 (MMB method) which is independent of the isotherm method rather than using MMC 

which is only valid for Langmuir isotherms. 

 The Hybrid Method of Mass Balance (HMMB) uses equation 7 which is also used for the 

Method of Mass Balance (MMB), however instead of collecting fractions and determining Ci,m 

in each intermediate plateaus, these concentrations will be estimated from the equations derived 

assuming it is a Langmuir isotherm.  This method is much simpler than MMB because there is 

no need to collect and measure the concentrations of solute in the intermediate plateaus.  The 

isotherm can be determined from the retention times of the breakthrough fronts, but it is only 

valid if the isotherm follows the Langmuir isotherm model. 

Purpose 

 In this research, the following methods were examined in more detail: Frontal Analysis, 

Frontal Analysis by Characteristic Point, Elution by Characteristic Point, Retention Time 

Method for single component isotherms, Frontal Analysis Method for Multi-Component 

Isotherms, implementing the Method of Mass Balance (MMB).  Data was tested to determine if 

it fit the Langmuir Isotherm Model.  

  In preparative chromatography, determining the absorption isotherm is very important.  

If the material being used has more than one component, the isotherm will be a competitive 

binary isotherm.  Determination of the competitive binary isotherm is very cumbersome and time 

consuming.  By determining the single and multi-component isotherms of a chiral compound, 

this research attempted to show that the multi-component isotherm of a chiral compound could 

be predicted from the single component isotherms of the individual enantiomers.   
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Figure 1: Chemical structure of Fluoxetine 
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The single component isotherms were determined on the R- and S- enantiomers of Fluoxetine, 

and the muti-component isotherm was determined using the racemic mixture.   

 Fluoxetine is a selective serotonin-reuptake inhibitor.  It is used for the treatment of 

obsessive-compulsive disorders and depression.  The most common form of fluoxetine used is 

the racemate form; however the individual isomers do not have the same activity.   The racemic 

drug has established safety and clinical data, therefore measures need to be taken to ensure that 

each batch of Active Pharmaceutical Ingredient (API) is racemic and does not have an excess of 

either enantiomer. 

EXPERIMENTAL 

Equipment 

 The High-Performance Liquid Chromatography (HPLC) equipment used for this research 

was a Hewlett-Packard 1100 equipped with a gradient pump, temperature controlled column 

compartment, temperature controlled autosampler, and ultraviolet (UV) variable wavelength 

detector.   

 The column used for chiral separation was a Chiralcel OD-R (Cellulose tris(3,5 –

dimethylphenyl carbamate) on a 10 µm silica-gel substrate) , 250 x 4.6 mm, 10 µm particle size 

column supplied by Daicel (Chiral Technologies, Inc.).  This column was chosen because of its 

availability and versatility for chiral separation.     

 To determine if the materials tested had an acceptable UV absorbance, a 

Ultraviolet/Visible Spectrophotometer equipped with both Tungsten and Deuterium lamps was 

used. 

Chemical Information 
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 The following chemicals were purchased from Sigma-Aldrich and were used throughout 

this research: 

  Penicillamine 

  Naproxen Sodium 

  Cycloserine 

  R-Fluoxetine 

  S-Fluoxetine 

  Fluoxetine Hydrochloride 

Hexafluorophosphate buffer (Potassium Hexafluorophosphate) was used as the buffer portion of 

the mobile phase for the reverse phase HPLC. 

Organic phases used were 

 Acetonitrile (Mallinckrodt, HPLC grade) 

 Hexane (Fisher, ACS grade) 

 Isopropyl Alcohol (Fisher, HPLC grade) 

 Diethylamine (DEA) (Fisher, ACS grade) 

Computer Software 

 Chromatographic data was collected by Waters Millennium acquisition software, version 

4.0.  The software was used to measure retention times of the peaks, peak areas, and the retention 

times of the breakthrough curves.  Microsoft Excel 2003 was used to calculate Q using the 

experimental data.  It was used to determine the linear regression of the data using a Scatchard 

plot.  It was also used to plot Q (concentration of compound on adsorbed phase) vs. C 

(concentration in the mobile phase).   
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Column Void Time Determination 

 The column void time, t0, was required for measurements of the isotherm. The void time 

of the column is the length of time required for an inert component to pass through the void 

volume of the column and elute after it is injected onto the column. Column void time can be 

estimated from the solvent front peak of the chromatogram or it can be measured by injecting a 

non-retained material onto the column. Void time was measured by injecting a non-retained 

material, in this case sodium nitrate (1 mg/mL), on to the column.  A peak will appear in the 

chromatogram at the time that it takes the sodium nitrate to flow through all the lines of the 

system and freely through the column.  The retention time of the peak was equal to the void time 

of the column (t0).  See Figure 2 for an example chromatogram of the solution used to determine 

column void time. 

System Delay Time Determination 

 In order to accurately determine the retention time of the breakthrough curve during 

frontal analysis, the system delay time, τ, was needed. This time represented the amount of time 

required for the compound to travel from the solvent reservoir through the HPLC system to the 

beginning of the column. The system delay time was measured by replacing the column with a 

zero-volume union and determining the breakthrough  

time of acetone.  Pure methanol was pumped through the system. At the start time of the 

determination, the pump was switched to a mixture of acetone and methanol so that a 

breakthrough curve of acetone was produced (see Figure 3). The retention time of the 

breakthrough curve of acetone was used to determine the system delay time.  The measured 

retention time of the fronts in frontal analysis was then corrected by subtraction from the system 

delay time. 
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Porosity and Phase Ratio Determination 

 In order to calculate the amount of a compound absorbed by the stationary phase given 

the concentration in the mobile phase, the porosity and phase ratio of the column 

must be determined.  The porosity (ε) is defined as the ratio of the volume of the column not 

occupied by the stationary phase (Vo) to the total volume of the column (V column) 

 

Vcolumn
Vo

=ε  (9)

  Vo = column void volume 

The volume of the column not occupied by the stationary phase (column void volume) can be 

calculated using Equation 10. 

Vo = t0 x Fv (10)

  t0 = void time of column 

  Fv = mobile phase flow rate 

The total volume of the column can be calculated using the column dimensions. 

4
LDVcolumn

2 ××π
=  (11)

  D = column diameter 

  L = column length 

If the column dimension, flow rate and t0 are known, the column porosity (ε) can be calculated.  

Then, the phase ratio (F) is calculated using equation 4. 

Frontal Analysis Method for Single Component Isotherm 

 The FA method determines the isotherm through a series of stepwise increases in the 

concentration of Fluoxetine.  Using the HPLC system, one line was inserted into a 
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Figure 2: Example Chromatogram of Sodium Nitrate used to  

determine column void time 
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Figure 3: Example Chromatogram of breakthrough curve of acetone used to  

determine system delay time 
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reservoir of 100% Mobile Phase (line A), and the other was inserted into a reservoir containing a 

predetermined concentration of one or the other enantiomers of Fluoxetine in Mobile Phase (line 

B).  The amount pumped through the system from line B was increased step-wise at 10% 

intervals from 0% until it reached 100% and the retention time of the breakthrough curve was 

recorded.  These retention times relate to ∆Q/∆C.   

Because the concentration of the solute in mobile phase and retention times are known, Q was 

determined using equation 3, and from the values of Q, the isotherm was also constructed.   

FACP Method 

 Isotherm measurements were also performed using the FACP method.  The 

chromatographic system set up for the FA method was also used for the FACP method.  After 

obtaining the plateau for the final concentration, 100%, the pumps were adjusted so that pure 

Mobile Phase was being pumped through the system.  The retention times of the  

resulting curve correlated to dQ/dC and the isotherm was derived using equation 5.  Calculating 

an isotherm using the FACP method requires the concentration of the diffuse boundary at each 

time point.  Unfortunately, at high concentrations the detector is not linear, therefore it is 

necessary to perform additional experiments measuring the UV 

 absorbance at successive step increases of the concentrate and fitting the concentration versus 

the UV absorbance to a polynomial to determine the equation which will be used to determine 

concentration for the UV absorbance of the diffuse boundary.  Closed integration of equation 5 is 

impossible, therefore it can be written as a sum of integrals.  

( ) ( ) 1n1nn
1nn QCC

2
XXQ −−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×⎟

⎠
⎞

⎜
⎝
⎛ +

=  (12) 
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with  

( )
⎟
⎠
⎞

⎜
⎝
⎛ τ−−

×=
0

0Rn

t
tt

F
1Xn  (13) 

 C = concentration of solute 

 tRn = retention time of diffuse boundary at concentration Cn 

 to = column void time 

 τ = system delay time 

 F = phase ratio 

 ECP Method  

 The single component isotherm was also measured using the ECP method.  A large, 

known concentration of Fluoxetine was injected onto the HPLC system and the back end of the 

resulting peak was analyzed.  The curve produced on the back end of the peak corresponds to 

dQ/dC and was used, just like the FACP method, to derive the isotherm.  As with the FACP 

method, the ECP method relies on measuring absorbance data and converting it to concentration 

using an additional experiment of measuring UV absorbance at successive step increases of the 

concentration and fitting the concentration to a polynomial for the calculation.  Also, as in the 

FACP method, the baseline absorbance was subtracted from all absorbencies used in the 

calculation.  Equation 12 is used for the calculating the isotherm using the ECP method, except 

since in ECP the isotherm is determined by injection a high concentration of solute rather than by 

switching from the reservoir there is no delay time.  τ is needed to correct the retention time of 

the rear boundary; therefore equation 13 in the ECP method will be replaced with: 

  

( )
0

0Rn
n

t
tt

F
1X −
×=   (14) 
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Retention Time Method 

 Injections of both enantiomers of Fluoxetine at a low (0.00016 mg/mL) and high (1.0 

mg/mL) concentrations were made onto the HPLC system.  The retention times of peaks at low 

and high concentrations for each enantiomer were determined and used to calculate the 

isotherms.   

Frontal Analysis Method for Multi-Component Isotherms 

 A multi-component isotherm was determined using the FA method for Multi-Component 

isotherms.  The principle is the same as for the single component isotherm; an HPLC system 

with a binary pump was used.  One pump introduced 100% Mobile Phase onto the system, and 

the other introduced a solution made from the racemic mixture with a known concentration of 

both enantiomers of Fluoxetine.  The amount of this solution that was placed onto the system 

was increased stepwise at 10% intervals, starting at 0% until reaching 100%.  The difference 

between the FA for single component isotherms and for multi-component isotherms is that with 

the two components, two plateaus will be obtained for each step up in concentration (an 

intermediate and final plateau).  These curves can be used to determine the isotherm by 

measuring the retention time of each front and concentration of both solutes in the intermediate 

plateaus and by implementing the mass balance equation for bother isomers. Due to competition 

the concentrations of both enantiomers at the intermediate plateaus and the retention times of the 

fronts depends on the isotherm parameters of both components.  The next step with the multi-

component system was to determine the individual concentrations of each enantiomer in the 

intermediate plateau in order to determine the isotherms.  After the solution passed through the 

HPLC system, the fractions were collected at each plateau.  In order to collect solution from each 

plateau separately as it came off the system, care had to be taken to only collect the solution 
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corresponding to each plateau.  The UV absorbance plot was monitored and test tubes were 

placed to collect the solution needed leaving the UV Spectrophotometer at the end of the HPLC 

system.  These solutions were then injected back on the HPLC system, bracketed by a standard 

with a known concentration of each enantiomer.  The concentration of each enantiomer at the 

intermediate plateaus (Ci,m) could then be calculated.  The retention times of the fronts were also 

measured.  Then, the data was entered in to equation 7 to determine Q1 and Q2 at each 

breakthrough curve (C1 and C2) and from the values of Q1 and Q2 the isotherm for each 

compound could be constructed 

RESULTS AND DISCUSSION 

HPLC Method Development and Optimization 

 The first part of this research was determining whether a chosen chiral compound met the 

needed requirements; a good UV chromophore, give good separation by HPLC, and the 

availability of both enantiomers and the racemic mixture.  The next goal was to develop a 

suitable HPLC method that would give good separation and quantitation of enantiomers selected. 

 There were many different compounds researched (Stinson, 1998 and 2001) in order to 

find a suitable chiral compound.  The initial objective was to develop a normal phase HPLC 

method that would give good, reliable separation of the R- and S- enantiomers of the chiral 

compound chosen using a Chiracel OD column.   The initial Mobile Phase chosen, which would 

also be used as the diluent, was (90:10) hexane:isopropyl alcohol (IPA).  A racemic mixture of 

penicillamine was dissolved in the diluent at a concentration of 0.1 mg/mL.  The UV spectrum of 

this solution was tested using an Ultraviolet/Visible spectrophotometer.  No absorbance was 

detected between 200 nm and 1100 nm, therefore penicillamine was not a viable compound for 

this study due to the lack of chromophore and its inability to be detected by a UV detector.  The 
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next compound tested was naproxen sodium, which was not soluble in the chosen diluent (90:10 

hexane:IPA); therefore it could not be separated using the nonpolar mobile phase.  Cycloserine 

was the next compound tested.  It was soluble in the diluent, and also had noticeable absorbance; 

therefore an attempt was made to separate the enantiomers of this compound using the Chiracel 

OD column.  A reliable normal phase HPLC method could not be obtained to separate the R- and 

S- enantiomers of cycloserine.  Other chiral compounds were researched and discussed, however 

due to the limitations in obtaining the individual enantiomers of these compounds, they were 

dismissed.  Fluoxetine was finally chosen as a chiral compound that was soluble in the diluent, 

had a good absorbance, and R- and S- isomers of it could be easily obtained. 

 After a compound for study was determined, an HPLC method was developed.  Using the 

(90:10) hexane:IPA mobile phase that was originally chosen, and a Chiracel OD column, 

separation of the enantiomers could not be achieved.  The parameters of the HPLC system were 

modified.  The mobile phase composition was varied, the column temperature was varied, and 

DEA was added in an attempt to reduce the tailing, but still no separation was achieved.  Much 

reading and research was done on the HPLC separation of chiral compounds (Feng, 

2000);(Perrin, 2002);(Migliorini, 2000);(Jacobson, 1990);(Cavazzini, 2001);(Miller, 

1989);(Wainer, 1988);(Matthijs, 2004)and(Olsen et all, 1997).  Finally, a reverse phase method 

was chosen and tested (Gatti et all, 2003). The mobile phase was a buffer system using 

hexafluorophosphate mixed with an organic, in this case Acetonitrile, the chiracel column was 

used in reverse phase mode (Chiracel OD-R), and separation of the R- and S- forms of 

Fluoxetine was obtained.  The method was then optimized.  The optimum chromatographic 

conditions for reversed phase separation of R- and S-Fluoxetine were as follows: 
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Chromatographic Conditions: 

 Column:  Chiralcel OD-R, 250 x 4.6 mm, 10 µm particle size 

 Column Temperature: 25º C 

 Injection Volume: 50 µL 

 Flow Rate: 1.0 mL/min 

 Mobile Phase:  60:40 50 mM hexafluorophosphate buffer (pH 5.0): Acetonitrile 

 Detection: 217 nm 

 The R-Fluoxetine peak eluted first, at ~15 minutes, and the S-Fluoxetine peak eluted at 

~17 minutes.   

 Figures 4-6 are example chromatograms of R- and S-Fluoxetine and a racemic mixture 

after optimizing the chromatographic conditions. 
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Figure 4: Example Chromatogram of 0.5 mg/mL R-Fluoxetine, chromatographic conditions on 

pg 26 
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Figure 5: Example Chromatogram of 0.5 mg/mL S-Fluoxetine, chromatographic conditions on 

pg 26 
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Figure 6: Example Chromatogram of 0.25 mg/mL Racemic Mixture of Fluoxetine, 

chromatographic conditions on pg 26 
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Measurement of Single Component Isotherms 

Frontal Analysis Method 

 Figures 7-8 show the example experimental breakthrough curves for the Frontal Analysis 

determination of both R- and S- Fluoxetine for determination of the isotherms.  Data from these 

breakthrough curves (retention times of the fronts) was obtained and Q  

 (concentration of the solute in the stationary phase) for the isotherm was calculated at each 

concentration step using equation 3 and the isotherm was constructed (Figure 9).   

  FACP Method 

 Example chromatograms for FACP method can be seen in Figures 10-11.  Q for the 

FACP method is determined from the UV absorption and retention times collected at the end of 

the FA steps in the resulting diffuse boundary until the solute elutes completely and the 

concentration reaches zero.  Q as a function of concentration in mobile phase (C) was then 

determined using equations 12 and 13 and the isotherm was constructed. (Figure 12) 

ECP Method 

 Figures 13-14 show the example chromatograms for R- and S- Fluoxetine.  Similar to the 

FACP method, data points from these chromatograms, plugged into equations 12 and 14 give the 

results for Q for each concentration in the Mobile Phase and the isotherm was constructed 

(Figure 15).  

 Retention Time Method 

 The Retention Time method, assuming the single component follows the Langmuir 

isotherm, can be performed by making just two chromatographic injections,  
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Figure 7: Example Breakthrough Curve of FA Method for R-Fluoxetine, chromatographic 

conditions on pg 26 
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Figure 8: Example Breakthrough Curve of FA Method for S-Fluoxetine,  

chromatographic conditions on pg 26 



 33

 

Frontal Analysis Method
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Figure 9:  Adsorption Isotherm calculated using Frontal Analysis Method 
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Figure 10: Example Chromatogram of the FACP method for R-Fluoxetine, 

chromatographic conditions on pg 26 
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Figure 11: Example Chromatogram of the FACP method for S-Fluoxetine, 

chromatographic conditions on pg 26 
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FACP Method
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Figure 12: Adsorption Isotherm calculated using FACP Method 
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Figure 13: Example Chromatogram of ECP Method for R-Fluoxetine  

(1.0 mg/mL solution), chromatographic conditions on pg 26
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Figure 14: Example Chromatogram of ECP Method for S-Fluoxetine  

(1.0 mg/mL solution), chromatographic conditions on pg 26 
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Figure 15: Adsorption Isotherm calculated using ECP Method 
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Figure 16: Example Chromatogram of RT Method for R-Fluoxetine (1.0 mg/mL solution), the 

retention time of overloaded chromatogram used to calculate parameter b (ratio of rate constant 

of solute being adsorbed vs. rate constant of solute be desorbed) of isotherm, chromatographic 

conditions on pg 26 
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Figure 17: Example Chromatogram of RT Method for S-Fluoxetine (1.0 mg/mL solution), the 

retention time of overloaded chromatogram used to calculate parameter b (ratio of rate constant 

of solute being adsorbed vs. rate constant of solute be desorbed) of isotherm, chromatographic 

conditions on pg 26 
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Figure 18: Example chromatogram of RT method for R- and S- Fluoxetine, the retention time of 

very low concentration (0.00016 mg/mL solution) (linear chromatogram) used to calculate 

parameter a (slope of isotherm at low concentration) of R- and S-Fluoxetine isotherms, 

chromatographic conditions on pg 26 
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one with a very dilute solution and one with a concentrated solution.  The retention times of 

these injections are then used to calculate parameters “a” and “b” which can then be used with 

equation 2 to determine Q and the isotherm.  The parameter “a” is calculated from the retention 

time of a very dilute solution using equation 15. 

  

F
tta 00R −

=   (15) 

tR0 = retention time of dilute solution 

t0 = void time of the column 

F = phase ratio (equation 4) 

The parameter “b” is related to the loading factor of the column and calculated using equation 

16a and b (Golshon-Sharizi, 1987) 
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tf = retention time of the front of concentrated solution (minutes) 

tp = time it takes the solutes to travel through the injection loop (
V

P
P

F
Vt = ), where VP is 

the injection loop size (mL) 

Fv = mobile phase flow rate (mL/min) 

tR0 = retention time of dilute solution (minutes) 

t0 = void time of the column (minutes) 

nm = the amount of sample injected (mol/L) 
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b = Langmuir parameter 

Summary of Single Component Isotherm Methods 

 Tables 1 and 2 show the concentrations in the mobile phase, in mol/L of R- and S- 

Fluoxetine, respectively, and calculated Q (concentration in the stationary phase) values for the 

isotherm determinations using different methods.  Figures 19 and 20 give the graphical 

representations of this data.  As can be seen from the graphs, the results from the ECP and FACP 

methods do not compare favorably to the results from the FA method.  They do, however 

compare favorably to each other.   

 In order to easily use the isotherm data for optimization of preparative chromatography, 

they must be fitted to an isotherm model to obtain a proper isotherm model which will be used 

for optimization.  The simplest model is the Langmuir isotherm; therefore fitting the single 

component isotherm data to this model was attempted.   This can be done using Scatchard plots 

where 

bC1
aCQ
+

=  or aCQbCQ =+  or   bQa
C
Q

−=                     (17) 

Scatchard Plots 

 A Scatchard plot is a linear representation of the Langmuir model that can then be 

analyzed by linear regression.  Scatchard plots of the data obtained by Frontal Analysis, FACP 

and ECP for Q vs. Q/C were created (Figures 21-23).  If the system studied is Langmuirian, the 

graph obtained should be linear with a negative slope.  The slope of the line produced by 

graphing the data is equal to “–b” and the y-intercept is equal to “a”.  The Scatchard plot for the 

isotherm data obtained by the Frontal Analysis method is linear, indicating that this data follows 

the Langmuir isotherm model.  The Scatchard  
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  Frontal Analysis   ECP   
  C(mol/L) Q(mol/L)  C(mol/L) Q(mol/L)   
  0.057 0.600  0.00006 0.001   
  0.114 1.103  0.00039 0.007   
  0.171 1.550  0.0013 0.022   
  0.228 1.962  0.0037 0.060   
  0.285 2.349  0.0104 0.160   
  0.342 2.715  0.0250 0.310   
  0.399 3.055  0.0480 0.638   
  0.456 3.385  0.0797 1.005   
  0.526 3.773  0.1229 1.505   
     0.1763 2.065   
    0.2446 2.738  
    0.2917 3.204  

  FACP     
  C(mol/L) Q(mol/L)      
  0.0001 0.002      
  0.0009 0.016      
  0.0029 0.049      
  0.0067 0.110      
  0.0135 0.213      
  0.0245 0.368      
  0.0402 0.575      
  0.0640 0.869      
  0.0982 1.261      
 0.1503 1.809     
 0.2326 2.605     
 0.3433 3.576     
 0.4016 4.051     
         
       
       
     
     
     

 

Table 1: Calculated values of Q and C for R-Fluoxetine using Single Isotherm Methods 
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  Frontal Analysis   ECP   
  C(mol/L) Q(mol/L)  C(mol/L) Q(mol/L)   
  0.057 0.600  0.00003 0.002   
  0.114 1.103  0.00091 0.018   
  0.171 1.550  0.0031 0.056   
  0.228 1.962  0.0037 0.060   
  0.285 2.349  0.0083 0.144   
  0.342 2.715  0.0186 0.301   
  0.399 3.055  0.0349 0.539   
  0.456 3.385  0.0567 0.816   
  0.526 3.773  0.0974 1.329   
     0.1497 1.971   
    0.2179 2.744  
    0.3042 3.646  

  FACP     
  C(mol/L) Q(mol/L)      
  8.40E-05 0.001      
  2.94E-04 0.005      
  6.74E-04 0.012      
  1.73E-03 0.031      
  3.96E-03 0.069      
  8.69E-03 0.146      
  1.72E-02 0.276      
  3.04E-02 0.465      
  5.00E-02 0.729      
 7.78E-02 1.080     
 1.17E-01 1.540     
 1.73E-01 2.145     
 2.51E-01 2.914     
 3.60E-01 3.903     
 5.02E-01 5.059     
 5.75E-01 5.603     
       
       
          

 

Table 2: Calculated values of Q and C for S-Fluoxetine using Single Isotherm Methods 
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Single Component Methods for R-Fluoxetine
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Figure 19: Experimental Data of Single Component Isotherms of R-Fluoxetine 
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Single Component Methods for S-Fluoxetine

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Concentration (mol/L)

Q
 (m

ol
/L

)

FACP FA ECP
 

Figure 20: Experimental Data of Single Component Isotherms of S-Fluoxetine 
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Scatchard Plot for FA Data
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Figure 21: Frontal Analysis Scatchard data fitted to Langmuir Model (Equation 17) 
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Scatchard Plot for FACP Data
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Figure 22: Low Concentration FACP data does not fit Langmuir Model (Equation 17) 
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Scatchard Plot for ECP Data
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Figure 23: Low concentration ECP Scatchard data does not fit Langmuir Model (Equation 17) 
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Frontal Analysis of R-Fluoxetine fitted to Langmuir Model
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Figure 24: Single Component Isotherm of R-Fluoxetine fitted to Langmuir Model 
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Frontal Analysis of S-Fluoxetine fitted to Langmuir model
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Figure 25: Single Component Isotherm of S-Fluoxetine fitted to Langmuir Model 
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  R-Fluoxetine     

    a b (L/mol) 
Qs 

(mol/L)   
 FA 10.8 1.0 10.8  
  RT 10.3 0.9 11.4   
        
        
        
  S-Fluoxetine     

    a b (L/mol) 
Qs 

(mol/L)   
 FA 12.9 0.9 14.3  
  RT 12.7 1.0 12.7   
        
        
            

 

Table 3: Scatchard data for Single Component Isotherm Measurements that fit the Langmuir 

model 
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plots for the isotherm data obtained by FACP and ECP are not linear, indicating that these data 

do not match the Langmuir model.   

Discussion of Single Component Isotherm Experiments 

 The data obtained from the Frontal Analysis measurement of R- and S-Fluoxetine was 

fitted to the Langmuir isotherm model to see whether the isotherm of the chiral components of 

Fluoxetine followed the model.  Figures 24-25 show the experimental data obtained during the 

Frontal Analysis compared to theoretical values determined by calculating a and b using 

equation 17 and determining the theoretical value for Q using  

generalized values for C.  The experimental points match well with the line representing the 

Langmuir model.  The data points also fit the model demonstrated in Figure 21 by the linear 

graph with a negative slope.  The results from the FACP and ECP measurements do not compare 

favorably to the Langmuir isotherm model.  Because the RT method assumes from the start that 

the isotherm will be Langmuiran, fitting to the model is not needed.  It will be equal to the 

model.  Table 3 shows a and b results from the Scatchard plots for the Retention Time and 

Frontal Analysis methods.  From the data in this table it can be seen that the results for a and b 

determined using the FA and RT methods are very similar.  This is further evidence that the 

single component systems for both R- and S- Fluoxetine are Langmuiran as shown by the Frontal 

Analysis and Retention Time methods.  The Scatchard plots for the ECP and FACP methods are 

not linear, especially at low concentrations. 

 There are two possible reasons for the results from the FACP and ECP methods not 

following the Langmuir model.  The first is that when the isotherm is calculated for these 

methods, the kinetic effect is disregarded.  This can result in a more significant error at low 

concentrations when the kinetic effect is more pronounced.  This is especially true in chiral 
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separation where column efficiency is low and the kinetic effect is significant.  The second 

reason is that the stationary phase has two different sites with different energy levels.  The ECP 

and FACP methods are not accurate methods for isotherm determination.  This is especially true 

for chiral compounds. 

Measurement of Binary Isotherm by Frontal Analysis 

 The determination of Multi-component Isotherm data from Frontal Analysis is similar to 

the determination for the single component; through a series of stepwise increases in the 

concentration of a mixture of R- and S-Fluoxetine.  For this experiment the racemic mixture of 

Fluoxetine was used.  Using the HPLC system, one line was inserted into a reservoir of 100% 

Mobile Phase (line A), and the other was inserted into a reservoir containing a predetermined 

concentration of the racemic mixture of Fluoxetine in Mobile Phase (line B).  The amount 

pumped through the system from line B was increased step-wise at 10% intervals from 0% until 

it reached 100% and the retention time of the breakthrough curve was recorded.    Because there 

are two components competing for adsorption sites, each breakthrough curve will have two 

plateaus, an intermediate and final plateau.  The retention time of these fronts as well as the 

concentration of each solute in the intermediate plateau are a complex function of both isomers 

due to the competitive nature of isotherms.  The retention times of these fronts can be measured 

from the breakthrough curves.  The concentration of each intermediate plateau must be measured 

by collecting the fractions on these intermediate plateaus and reinjecting them in another system 

and determining the concentrations of the two isomers using external standards by elution 

chromatography.  Figures 26 a and b show the example chromatography of a fraction collected at 

intermediate plateaus and the standard used for the determination of the concentration of R- and 

S-Fluoxetine in this fraction.. 
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  Because the concentration of the initial and final plateaus are known and the retention 

times of the intermediate and final plateaus was measured and the concentration of the 

intermediate plateau (Ci,m) can be determined by collection fractions and determining by 

reinjection and quantitation, Qi can be determined using equation 7 and an isotherm curve can be 

constructed for each compound in the mixture.  Figures 27 shows an example of one step of the 

breakthrough curve for a binary mixture and Figure 28 shows the multi-component isotherm 

data.  Figure 29 shows the binary isotherms of R- Fluoxetine determined by the Method of Mass 

Balance (MMB).  It also includes the binary isotherm of R- Fluoxetine calculated using Equation 

(8) which uses the single component isotherm parameters (the values in Table 3 calculated using 

the FA Method).  Figure 30 shows the same information for S-Fluoxetine. 

Discussion of Multi-Component Isotherm Experiments 

 Only in very rare cases can multi-component isotherms be fitted to the Langmuir model.  

This is due to the fact that when in a mixture, the compounds in the mixture compete for binding 

sites on the stationary phase.  Due to the differences in size and shape, the column saturation 

capacities for compounds in the mixture are different.  The Langmuir Isotherm Model is derived 

assuming that the column saturation capacities for each component will be equal; otherwise it 

violates the law of thermodynamics.  Determining the multi-component isotherm experimentally 

is very time consuming and cumbersome.  The ability to predict the multi-component isotherm 

for the single component isotherms of the compounds in the mixture makes the task much easier, 

as the  
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Figure 26a: Example Chromatogram of Fraction collected at Intermediate Plateau, 

chromatographic conditions on pg 26 
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Figure 26b: Example Chromatogram of Standard used to Calculate Concentration of R- and S-

Fluoxetine at Intermediate Plateau, chromatographic conditions on pg 26 
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Figure 27: Example of Breakthrough Curve for a Binary Mixture showing Points of 

Measurement for Determination of the Isotherm 
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Experimental Data for Racemic Mixture of Fluoxetine
 (c2/c1=1)
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Figure 28: Experimental Data for Multi-Component Isotherm of R- and S-Fluoxetine in the 

Racemic Mixture 
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Experimental vs. Calculated for R-Fluoxetine Component
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Figure 29: Experimental Competitive Isotherm Data compared to Competitive Langmuir 

Isotherm Data calculated from the Langmuir Parameters (ai and bi) of the Single Component 

Isotherm of R-Fluoxetine 
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Experimental vs. Calculated for S-Fluoxetine Component
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Figure 30: Experimental Competitive Isotherm Data compared to Competitive Langmuir 

Isotherm Data calculated from the Langmuir Parameters (ai and bi) of the Single Component 

Isotherm of S-Fluoxetine 
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single component isotherms can be determined easily either using frontal analysis in the general 

case or the simplest and easiest method, the Retention Time method (assuming that the isotherm 

is Langmurian).  As can be seen from Figure 29 and 30, the multi-component isotherm of the 

chiral compound Fluoxetine can be predicted fairly well from the isotherms of each single 

component.  The experimental competitive isotherm data closely matches with the competitive 

isotherm data predicted from the single component isotherms. 

CONCLUSION 

 The need for large scale separation methods for pharmaceutical components is evident.  

Optimizing these methods experimentally can be time consuming and a waste of large amounts 

of materials and it is impossible due to the complex nature of multi-component separation 

without understanding and implementing the theory of non-linear chromatography.  A 

mathematical model for determining the retention properties and behavior of each compound in a 

mixture and then using that information in the practical realm is a great help to both 

pharmaceutical and biotechnology companies.  The competitive equilibrium isotherm of each 

component in the mixture is necessary to feed in the mathematical model to optimize the 

separation and determine the optimum operating conditions for preparative separation.  The 

equilibrium isotherms of both enantiomers of Fluoxetine were determined experimentally by 

four different methods and then fitted to one of the most common isotherm models, the 

Langmuir Isotherm Model.  The single component isotherms of the enantiomers did not fit the 

model of the Langmuir Isotherm in all cases.  The Frontal Analysis method fit the Langmuir 

model; however the FACP and ECP methods did not.  This could be due to a kinetic effect at low 

concentrations or to the stationary phase having two sites with different energy levels.   The 

competitive equilibrium isotherm of each enantiomer in the racemic mixture was also determined 
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using the Method of Mass Balance (MMB) from the experimental data of binary frontal analysis.  

The experimental values obtained from determining the competitive binary isotherm compared 

favorably to the theoretical competitive Langmuir isotherm values predicted from the single 

isotherm data.  This is most likely due to the fact that the single component isotherm of each 

enantiomer follows the Langmuir model and also the column saturation capacity of each 

enantiomer are similar due to similar physiochemical properties of isomers.  This important 

conclusion may be generalized for all chiral separation when the single component isotherm 

follows the Langmuir model although several more experimental verifications are needed to 

confirm this generalization.   This shows that for this chiral compound, the multi-component 

isotherm may be predicted from the data obtained in determining the single component isotherm.  

The ability to predict the multi-component isotherm, without having to go through the tedious, 

cumbersome, time consuming and difficult process of determining it experimentally, could 

potentially save a company large amounts of time and money. 
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