
 

 

ANALYSIS OF A HIERARCHICAL BAYESIAN METHOD FOR QUANTITATIVE TRAIT 
LOCI 

 
 
 

Caroline Pearson 
 
 
 
 

A Thesis Submitted to the  
University of North Carolina Wilmington in Partial Fulfillment  

Of the Requirements for the Degree of  
Master of Science 

 
 

Department of Mathematics and Statistics 
 

University of North Carolina Wilmington 
 

2007 
 
 

Approved by 
 
 

Advisory Committee 
 
 

_____________________________                            _____________________________ 
 

_____________________________ 
Chair 

 
 
 

Accepted by 
 

_____________________________ 
Dean, Graduate School 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149230326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 ii

TABLE OF CONTENTS 

ABSTRACT....................................................................................................................... iii 

ACKNOWLEDGEMENTS............................................................................................... iv 

DEDICATION.....................................................................................................................v 

LIST OF TABLES............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

INTRODUCTION ...............................................................................................................1 

METHODS ..........................................................................................................................3 

Broman’s Interval Mapping.................................................................................................3 

Hierarchical Bayesian Model...............................................................................................5 

SIMULATIONS ................................................................................................................11 

RESULTS ..........................................................................................................................15 

CONCLUSIONS................................................................................................................22 

REFERENCES ..................................................................................................................23 

APPENDIX A....................................................................................................................25 

APPENDIX B ....................................................................................................................38 

APPENDIX C ....................................................................................................................39 

APPENDIX D....................................................................................................................40 

APPENDIX E ....................................................................................................................41 



 

 iii

ABSTRACT 

Simulations were performed to compare two methods that detect quantitative trait loci on 

plant data. Karl Broman’s interval mapping algorithm which uses only one observation value per 

plant line was compared to a hierarchical Bayesian model that allows replicates into the analysis 

and takes into account the variability within each plant line. The simulation study utilized the 

genetic map of Bay-0 X Shahdara plant with 38 genetic markers on 5 chromosomes. It is shown 

through these simulations that the hierarchical Bayesian model and Broman’s interval mapping 

algorithm are able to detect quantitative trait loci (QTL) when only a single location was chosen, 

but the hierarchical model was more powerful when two locations were chosen.  This work 

shows that when analyzing plant replicates the variability within each line has a strong impact on 

the success of the overall analyses. 
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INTRODUCTION 

 The growing interest in the genetics field has given way for much research on identifying 

locations on a genome responsible for a quantitative trait, which is referred to as quantitative trait 

loci (QTL). Alfred Henry Sturtevant constructed the first genetic map in 1913 [1] which depicts 

the relative distance between known markers or genes on an organism’s genome. The first 

analysis relating genes to quantitative traits was done in 1923 by Sax [2]. Identifying the genetic 

loci responsible for the different attributes of traits has been researched for decades and a number 

of novel methods have evolved. However, which method is the best and most appropriate is still 

under some debate.   

A single trait is usually determined by many genes; as a result, many QTLs are associated with a 

single trait. The number of QTLs associated with each phenotypic trait tells us the genetic 

makeup and the variation of this trait. For instance, a small effect can be determined if there are 

many QTLs correlated with a single trait and a large effect can be determined if there are only a 

few QTLs correlated with a single trait. The information gleamed from the QTL can help us 

better understand the chemical structure of these traits, help us better understand the evolution of 

these traits over a period of time, and eventually enable us to alter the chemical structure of these 

traits. One potential benefit of understanding plant QTLs is the ability to alter the chemical 

structure of a plant to make it more tolerant of ultraviolet (UV) radiation, which may help 

agriculturalists deal with the depleting ozone layer; this layer filters much of the UV radiation 

before it can enter the atmosphere and ultimately the terra firma. 



 

 2

One popular method for detecting QTLs is the interval mapping algorithm. This method places 

pseudo-markers in the interval to evaluate the possibility of a QTL in the interval. There are 

many different variations of interval mapping that have been predominately used today, 

however, the software packages available for interval mapping only utilize one observation per 

genotype or line. Experiments involving plant QTLs involve multiple observations per genotype 

(or plant line); therefore, they require methods that can incorporate not only the mean value but 

the variance of the genotype (or plant line). In these experiments not only is the mean value an 

important part of the data but since plants used in these experiments have identical genetic 

composition the variance also provides relevant information. For instance, if there are 5 cloned 

plants all consisting of identical genetic makeup with the height of each plant being 15.2 in, 15.6 

in, 14.9 in, 15.8 in, 15.5 in, then the mean height of these plants is 15.4 in and the variance is 

0.125.  However, if there are 5 cloned plants all consisting of identical genetic makeup with the 

height of each plant being 32.7 in, 7.3 in, 24.8 in, 10.4 in, 1.8 in, then the mean height of these 

plants is 15.4 in but the variance is 165.805. It can be seen that we can have the exact same mean 

in this example but these values are from very different populations as evident from the variance. 

Therefore, it has raised the question, are the methods developed for animal and human QTL 

analyses appropriate for plant QTL analyses? 

A hierarchical Bayesian model [3] has been developed to incorporate this type of information 

into the detection of QTLs which is explained in more detail in methods section. This thesis 

compares the performance of the hierarchical Bayesian model in [3] to an interval mapping 

algorithm of Broman [4] in a simulation study. The study investigates models with one QTL and 

two QTLs, and low and high effect sizes. 
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METHODS 

The observed quantitative trait in the plant QTL experiment will be represented as yij, with i 

= 1,…, L (L = number of plant lines) and j = 1,…, ni (ni = the number of replicates). The true 

mean of yij will be represented as θi for line i, and we assume yij ~ N(θi, σi²).  Each θi is assumed 

to be linearly dependent on the genetic composition of the plant which can be expressed as, 

 θi = β0 + β1xi1 +β2xi2+…βMxiM (1) 

where xim = 1 if the marker is from parent A and xim = 0 if the marker is from parent B. M 

represents the number of markers. 

 

Broman’s Interval Mapping 

Interval mapping is a well known method for detecting QTLs today. Karl Broman [4] wrote 

an interval mapping algorithm freely available in R language which is widely known and well 

respected for analysis on animal data. Broman’s method uses one response value per animal 

genotype. Suppose there is data on L animal lines derived from an inbred line cross. Quantitative 

trait measurements are denoted by yi with i = 1,…, L and the genotyping data are denoted by the 

xim with m = 1,…, M. Information from the known marker genotypes are used to estimate 

unknown genotypes within an interval.  With µ = model parameters and γ = QTL locations, 

given the observed data, multiple imputed versions of the QTL genotypes are then used to 

compute approximations to the posterior densities of interest p(γ|y, x) and p(µ|y, x). The posterior 

density, p(γ|y, x), is the probability that location γ  is the QTL given the quantitative trait and 

genotypes. The posterior density, p(µ|y, x), measures how well the QTL genotypes are matched 

to the observed marker data. The QTL genotype matrix is denoted as g = (gij) where rows i 
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correspond to individuals and columns j correspond to the location. The posterior distribution is 

given as, 

 p(g|y, x) ∝ p(y|g)p(g|x)  (2) 

since this distribution is conditioning on the unobserved QTL genotypes. 

Assume there are q QTLs in the model, then the location γ will have q components. Since the 

locations are not known, all possible locations are scanned to search for the QTL. So simulations 

are done by simulating genotypes at all locations in the genome from their joint distributions 

given the known marker data. A discrete grid known as the pseudomarker grid is created for 

locations spanning the genome. For every multiple pseudomarker locations u = (u1,….,uq), the ith 

realization of genotypes is an l x q matrix denoted as ri(u). Weighted sample of QTL genotypes 

is generated by, 

 WH(ri(u)) = p(y|g = ri(u))p(γ = u)   (3) 

where WH is the assumed generic model H which is a description of the distribution of 

phenotypes given the QTL genotypes. The posterior distribution of the QTL location has been 

shown to be proportional to the average weight of all pseudomarker realizations at that location.  

 p(γ = u|y, x) ∝ p(y|g)p(g|x, γ = u)p(γ = u)dg WH(ri(u))   (4) 

The idea behind interval mapping is to utilize likelihood ratio test, which can be expressed on 

the scale base 10 logarithm which is called LOD score shown below in equation 5.  

 

 

   (5) 

 

For Broman’s algorithm, the LOD score at location γ is expressed as, 

( )
( )⎥⎦
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⎣
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QTLs no assuming likelihoodmax
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 LOD(γ) = constant + log10[
μ

sup p(y, x| µ, γ)].  (6) 

Broman’s interval mapping algorithm is a well known and utilized method for QTL 

detection. However, this method assumes one observation per genotype, or per line, like most 

QTL models which assume that the variance is the same within each line (Broman and Speed 

[5]; Lander and Botsterin [6]).  The hierarchical model does not make this assumption of 

homogeneity of variance and is able to incorporate the replicate information within each line. 

 

Hierarchical Bayesian Model 

Hierarchical models have proven to be invaluable in many instances (Boone et al. [7]; 

Simmons et al. [8]).  The hierarchical Bayesian model has more flexibility to adequately analyze 

plant replicates in a QTL experiment. As described before, the true mean of yij will be 

represented as θi and the variance as σi
2 within line i as using equation (10 to model the true 

mean θi, we assume that θi ~ N(Xβ, τ²). The structure of the data for the hierarchical model is 

depicted in on the following page. In addition, the quantitative trait within each line is assumed 

to follow a normal distribution, or in other words yij ~N(θi, σi²).  The true mean θi is assumed to 

be dependent on the genetic composition via equation (10) and θi ~ N(Xβ, τ²). 
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Figure 1.    Structure of Data 
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The following assumptions are made in regards to the prior distributions, 

 βm ~ N(0,100)  (7) 

 τ2 ~ Inverse-χ2 (2)  (8) 

 2
iσ  ~ Inverse-χ2 (2).  (9) 

The Inverse-χ2 (2) has infinite variances (Boone et al. [7]) and the posterior distribution for β’s 

assume that no markers have an effect on the quantitative trait. Therefore, this forces the data to 

dictate which markers are most important with respect to the quantitative trait. Combining this 

information into a hierarchical model creates a full joint posterior distribution of the form, 
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Where i = 1, …, L, and j = 1,…, ni. 

The Gibbs Sampler, a Markov Chain Monte Carlo technique, can generate samples from the full 

joint posterior distribution in (10) by using the following conditional posterior distributions, 
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This information can be used to find posterior probabilities and ultimately determine which 

markers are important in controlling the quantitative trait. The set of all possible models is 

denoted as Λ and the Kth model by λK. The cardinality or size of Λ is denoted by |Λ|. The vector 

of unknown parameters for model K will be denoted by δK.   

The probability of model K given the data using Bayes Rule, 

 

(15) 

 

 

Since no prior knowledge of which model is most appropriate, each λK are equally likely. Then 

p(D| λK) is calculated as, 

(16) 

 

Since the integral will be computational intensive, it can be estimated by Monte Carlo methods 

as, 
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2,000.  The posterior probability of the model given the data can be used to find the activation 

probability of a marker, P(βj ≠ 0 | D).  The activation probability is defined as, 

 (18) 

 

Since this can become computationally intensive given the total number of models is 2M and 

most genetic maps have more than 100 markers, a searching technique is utilized that that breaks 

down the genome into smaller regions by conditioning on the regions of importance. The 

searching technique first breaks the genome into N chromosomes, yielding 2N number of models 

that need to be evaluated. Then it identifies the chromosomes of importance and divides those 

regions in half. This continues until the important marker(s) are identified. The activation 

probability for each region Rj is evaluated by, 

)|(),|0()|0(
1

DpDRpDRp KK
K

jj λλ≠=≠ ∑
Λ

=

  (19) 

Regions with posterior probability larger than 0.5 are regarded as potential QTLs and 

retained in the model. Once all potential regions are identified, those regions retained are divided 

in half.  For example, in a hypothetical example with 7 chromosomes, the search algorithm 

would first find which chromosomes make a significant contribution to the QTL by searching 

through all 27 = 128 possible models and calculating the activation probability for each 

chromosome.  For this example, the following activation probabilities were obtained C1 = 0.01, 

C2 = 0.03, C3 = 0.67, C4 = 0.33, C5 = 0.90, C6 = 0.21 and C7 = 0.84.  Chromosomes 3, 5 and 7 

have activation probabilities higher than 0.5 and are kept for further analysis.  Dividing these 

chromosomes in half, there are now six regions to explore (i.e. 26 = 64 models).  These regions 

are defined as C31, C32, C51, C52, C71 and C72.  The algorithm is rerun and activation probabilities 

for each of these six regions are calculated.  Only those regions with activation probability higher 
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than 0.5 are retained and then divided in half.  This algorithm is repeated until the activation 

probabilities are calculated on individual markers. 
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SIMULATIONS 

Simulations were conducted to compare the hierarchical Bayesian method against Karl 

Broman’s interval mapping. The Bay-0 X Shahdara marker structure was used as the X matrix 

(165 lines x 38 markers) since it is a well known plant structure and consists of a small number 

of markers. Figure 2 represents the genetic map of the Bay-0 X Shahdara population created by 

Oliver Loudet and Sylvian Chaillou [9]. 
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Figure 2.    Genetic Map of Bay-0 X Shahdara Population 

 



 

 13

The Bay-0 X Shahdara population consists of 5 chromosomes which contain 6 to 9 markers 

each. Marker values (xi) were set to xi = 0, 0.5 or 1. The marker value xi = 0 came from parent A 

and the marker xi = 1 came from parent B, whereas, the marker value xi = 0.5 is a missing or 

unknown value. Ten response values (yij) were simulated per line around approximately a 26 unit 

mean (μ) which depended on the QTL location and genotypic trait.  

Simulations were done with one QTL and two QTLs on different chromosomes. The marker 

values for the one QTL simulations were obtained by 

 yij = μ + 2*ai *xi+ εij (20) 

 

where, μ = the underlying true mean and ai is the QTL effect, xi = 0, 0.5 or 1 and εij is random 

error noise.  The variance for the random error noise was simulated using two different methods. 

A simplistic approach that gave only two variances, 2
1σ and 2

2σ , was used. A random draw from 

a Bernoulli distribution with a probability of success 0.5 was used to determine variance within 

each line. The second method used a gamma distribution, to simulate different variances for each 

plant line using two different α shape parameters. For the two QTL simulations the marker 

values were obtained by 

 yij = μ + a1*x1i +a2*x2i + εij (21) 

 

where, μ = the underlying true mean and a1 and a2 are the QTL effects and εij is random error 

noise. Different effect sizes were chosen for the simulations that include the gamma distibutions. 

Slighly larger effect sizes than the perivious simulations were considered to be better suited for 

the larger degree of variance values obtained. Therefore, effect sizes 5 and 15 were evaluted for 

the one and two QTL simulations. The varaince values for these simulations were obtained from 

two gamma distibutions with μ = αβ = 4 and σ² = αβ² = 4, and μ = αβ =  8 and σ² = αβ² = 8. The 
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response values (yij) were simulated in the same manner as the simulations conducted with 

bimodal standard deviations using equation 20 for the one QTL simulations and equation 21 for 

the two QTL simulations. 



 

 15

RESULTS 

Two different methods were tested using the simulated response values and the Bay-0 X 

Shahdara genetic map (X). To determine the success of one or both methods, there were separate 

criteria associated with each method. The Interval mapping method uses LOD scores as 

described in the Methods section in equation 5. The LOD scores were calculated for separate 

locations on a chromosome, given a predetermined threshold, it is said any value greater that that 

threshold could be a potential QTL. In the Broman’s interval mapping simulations shown below, 

the threshold value was set to 11, hence, any LOD score greater then 11 was deemed significant. 

The hierarchical Bayesian method uses a conditional activation probability to determine the 

locations of interest. Activation probabilities of 0.50 or greater were deemed significant 

indicating a potential QTL. 

 Table 1 and Table 2 summarize the results from the one and two QTL simulations using 

bimodal standard deviations, respectively. Table 3 and Table 4 summarize the results from the 

one and two QTL simulations using standard deviations derived from gamma distributions, 

respectively. Small and large effect sizes were chosen to study the power of both methods under 

different standard deviation scenarios. 
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Table 1. One QTL Simulation with Bimodal Standard Deviations 

Effects Standard 
Deviations True Locations Hierarchical 

Bayesian Method 
Broman’s Interval 
Mapping Method 

σ1 = 2.0 
σ2 = 4.5 

Chrom 3 
M 18 

Chrom 3 
M 18 (1.000)1 
M 19 (0.987)1 

Chrom 3 
M 19 (52.49)2 

2 
σ1 = 4.2 
σ2 = 9.1 

Chrom 5 
M 36 

Chrom 5 
M 35 (0.586)1 
M 36 (1.000)1 

Chrom 5 
M 37 (17.53)2 

σ1 = 2.0 
σ2 = 4.5 

Chrom 3 
M 15 

Chrom 2 
M 15 (1.000)1 
 

Chrom  2 
M 16 (117.84)2 

Chrom 3 
Loc 2.5 cM (63.05)2 12 

σ1 = 4.2 
σ2 = 9.1 

Chrom 2 
M 12 

Chrom 2 
M 11 (0.989)1 
M 12 (1.000)1 

Chrom 2 
M 13 (106.39)2 

Chrom = Chromosome; M = Marker; Loc = Location; cM = centiMorgan 
1Final conditional activation probability 
2LOD score 
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Table 2. Two QTL Simulation with Bimodal Standard Deviations 

Effects Standard 
Deviations True Locations Hierarchical 

Bayesian Method 
Broman’s Interval 
Mapping Method 

σ1 = 1.5 
σ2 = 2.5 

Chrom 1 
M 5 
 
Chrom 4 
M 24 

Chrom 1 
M 5 (1.000)1 
 
Chrom 4 
M  24 (1.000)1 

Chrom 4 
Loc: 17.5 cM 
(21.73)2 

1,2 

σ1 = 2.0 
σ2 = 4.5 

Chrom 2 
M 11 
 
Chrom 5 
M 36 

Chrom 2 
M 11 (0.997)1 
 
Chrom 5 
M 36 (1.000)1 

LOD all < 11 

σ1 = 1.5 
σ2 = 2.5 

Chrom 2 
M 14 
 
Chrom 3 
M 21 

Chrom 2 
M 14 (0.999)1 
 
Chrom 3 
M 21 (1.000)1 
M 22 (0.543)1 

Chrom 3 
Loc: 65 cM (33.94)2 

1,2 

σ1 = 2.0 
σ2 = 4.5 

Chrom 1 
M 8 
 
Chrom 3 
M 18 

Chrom 1 
M 8 (0.963)1 
 
Chrom 3 
M 18 (1.000)1 
M 19 (0.535)1 

Chrom 3 
M 19 (16.37)2 

σ1 = 1.5 
σ2 = 2.5 

Chrom 1 
M 5 
 
Chrom 4 
M 24 

Chrom 1 
M 5 (1.000)1 
 
Chrom 4 
M 24 (1.000)1 

Chrom 4 
M 25 (88.08)2 

2,12 

σ1 = 2.0 
σ2 = 4.5 

Chrom 2 
M 11 
 
Chrom 5 
M 36 

Chrom 2 
M 11 (1.000)1 
 
Chrom 5 
M 36 (1.000)1 

Chrom 5 
M 37 (93.55)2 

Chrom = Chromosome; M = Marker; Loc = Location; cM = centiMorgan 
1Final conditional activation probability 
2LOD score 
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Table 3. One QTL Simulation with Gamma Distribution Parameters 

Effects 
Gamma 

Distribution 
Parameters 

True Locations Hierarchical 
Bayesian Method 

Broman’s Interval 
Mapping Method 

α = 4, β = 1 
Chrom 1 
M 7 

Chrom 1 
M 7 (1.000)1 
M 9 (0.999)1 

Chrom 1 
M 8 (82.48)2 

5 

α = 8, β = 1 
Chrom 4 
M 29 

Chrom 4 
M 29 (1.000)1 
M 30 (0.999)1 

Chrom 4 
M 30 (49.18)2 

α = 4, β = 1 

Chrom 2 
M 16 

Chrom 2 
M 16 (1.000)1 
 

Chrom  2 
M 16 (19.37)2 

Chrom 3 
M 17 (125.38)2 15 

α = 8, β = 1 
Chrom 5 
M 33 

Chrom 5 
M 33 (1.000)1 
M 34 (0.936)1 

Chrom 5 
M 34 (90.23)2 

Chrom = Chromosome; M = Marker 
1Final conditional activation probability 
2LOD score 
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Table 4. Two QTL Simulation with Gamma Distribution Parameters 

Effects 
Gamma 

Distribution 
Parameters 

True Locations Hierarchical 
Bayesian Method 

Broman’s Interval 
Mapping Method 

α = 4, β = 1 

Chrom 1 
M 4 
 
Chrom 2 
M 14 

Chrom 1 
M 1 (0.824)1 
M 3 (1.000)1 

M 4 (0.838)1 
 
Chrom 2 
M  13 (0.822)1 

M  14 (1.000)1 

Chrom 1 
M 5 (23.91)2 

 
Chrom 2 
M 15 (22.06)2 

5,5 

α = 8, β = 1 

Chrom 2 
M 11 
 
Chrom 5 
M 32 

Chrom 2 
M 11 (1.000)1 

M 12 (0.793)1 
 
Chrom 5 
M 31 (0.795)1 

M 32 (1.000)1 

Chrom 2 
Loc: 25 cM (12.53)2 
 
Chrom 5 
Loc: 15 cM 
(14.31)2 

α = 4, β = 1 

Chrom 3 
M 18 
 
Chrom 4 
M 27 

Chrom 3 
M 18 (1.000)1 
 
Chrom 4 
M  27 (1.000)1 

M  28 (0.997)1 

Chrom 4 
M 28 (71.47)2 

5,15 

α = 8, β = 1 

Chrom 1 
M 7 
 
Chrom 3 
M 21 

Chrom 1 
M7 (1.000)1 
 
Chrom 3 
M 20 (0.998)1 

M 21 (1.000)1 

M 22 (0.999)1 

Chrom 3 
M 22 (57.95)2 

Chrom = Chromosome; M = Marker; Loc = Location; cM = centiMorgan 
1Final conditional activation probability 
2LOD score 
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The bimodal standard deviation simulations in Table 1 and in Table 2 clearly indicate that the 

hierarchical Bayesian method is able to detect the simulated QTLs in both one and two QTL 

scenarios. In many instances, the hierarchical Bayesian method detects adjoining markers which 

is not uncommon in QTL analysis and could indicate some underlying correlation between the 

markers. Broman’s interval mapping algorithm, in Table 1, for the one QTL simulation is also 

able to detect the approximate location of the quantitative trait, but will only detect the region 

around the QTL by selecting the marker immediately after the QTL. In Table 2, Broman’s 

interval mapping algorithm for the two QTLs scenario is only able to detect the QTL with the 

larger effect size. For the instance of effect sizes 1 and 2, Broman’s method was not able to 

detect either of the QTLs.  

The simulations with the standard deviations derived from gamma distributions in Table 3 

and Table 4, the hierarchical Bayesian method performed just as well as the bimodal standard 

deviation simulations. The hierarchical Bayesian method detected every QTL in the one and two 

QTL scenarios along with some possibly correlated markers. In the instance of two QTL 

simulation with two small effect sizes of 5 and 5 with gamma distribution parameter α = 4, the 

hierarchical Bayesian method obtains a false positive value at marker 1 on Chromosome 1 

(activation probability = 0.824). However, the hierarchical Bayesian method was still able to 

detect the correct markers 4 and 14 on Chromosomes 1 and 2, respectively. Broman’s interval 

mapping algorithm also performed similarly, as it did in the bimodal standard deviation 

simulations. However, Broman’s algorithm only identified the markers immediately after the 

QTL in the one QTL scenarios and in the two QTL scenarios it only identified the markers 

immediately after the QTL with the larger effect size. For the instance of effect size 5 and 5 in 
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the two QTL simulations, Broman’s method was able to identify the correct chromosomes; 

however, it was not able to detect either of the QTLs. 

Broman’s method never actually identifies the QTLs exactly for any of the scenarios 

presented above, only the approximate area in some instances. Whereas, the hierarchical 

Bayesian method was always able to detect the QTLs for each scenario even though the method 

did detect other markers of importance as well that could possibly be due to these markers being 

correlated. 
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CONCLUSIONS 

 Methods utilized today for QTL analysis are mainly developed for one genotype per line. 

However, plant biologists can clone plants and create replicates within each line, thus, making 

the methods and software available today lose valuable information. These methods only utilize 

one response value per line so they summarize the response values into one, usually into a mean 

or median. In the simulations shown above and in Pearson et al. [10] it is clear that the inclusion 

of the variability within each line does have a significant impact on the success of QTL analysis. 

Given smaller effect sizes, it can sometimes be a limiting factor to summarize information and 

completely disregard the variability. This can possibly lead to false positives or missing the QTL 

altogether, where in the hierarchical Bayesian model proposed, small effect sizes do not hinder 

the success of the method. However, more research on this method and comparisons to other 

software packages available is needed. 
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APPENDIX A 

FORTRAN Code (Full Model) 

 

 program gibbsrout 

 USE MSIMSL 

 

 PARAMETER (M=39,L=164,taunot=1.d0,sigmanot=1.d0,KK=102000, 

 &   kutoff=2000,sigbeta = 100.d0)    

 !    M is number of Markers (column) and L is number of lines 

       

 DOUBLE PRECISION  X(L,M),tau2(1), Xnew1(L,M), 

     &     taua,Y(L,12),dni(L),  

     &     sigma2(L),thetas(L), 

     &     ybar(L),sumy(L), 

     &     ybar2(L), 

     &     sigmaa(L),sumy2(L) 

 

      INTEGER ni(L),NOBS,M  

 

  !Setting parameters 

 dL=L + 0.d0 

 taua = taunot + (dL/2.d0)  

 NOBS = 0 

 

 open(10,file='ni.csv',status='old') 

  read(10,*) (ni(i), i = 1,L) 

 close(10) 

 

      do i = 1,L 

  dni(i) = ni(i) + 0.d0 

  sigmaa(i)=(dni(i)/2) + sigmanot  
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 enddo   

     open(16, file='bayxsha.csv', status='old') 

  do i=1,L 

   read(16,*) (X(i,j),j=1,M) 

  enddo 

  close(16) 

  

  open(19, file='ysim.csv', status='old') 

  do i=1,L 

   read(19,*) (Y(i,j), j=1,ni(i)) 

  enddo 

  close(19) 

 

  do i=1,L 

  sumy(i) = 0.d0 

  sumy2(i) = 0.d0 

  NOBS = NOBS + ni(i) 

  end do 

 

  do i=1,L 

  do j=1,ni(i) 

   sumy(i) =sumy(i) + Y(i,j)          !Create ybar 

   sumy2(i) = sumy2(i) + Y(i,j)*Y(i,j) 

     enddo 

     ybar(i) = sumy(i)/dni(i) 

  thetas(i) = ybar(i) 

  sigma2(i) = (sumy2(i) - dni(i)*(ybar(i)**2))/(dni(i) - 1.d0) 

  if (sigma2(i).eq.0.d0) sigma2(i) = 1.d0 

  ybar2(i) = sumy2(i)/dni(i) 

  enddo 

 

  do i = 1,L 
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   sumtheta = sumtheta + thetas(i) 

   sumtheta2 = sumtheta2 + (thetas(i)**2) 

  enddo 

  thetabar = sumtheta/dL 

  tau2 = (sumtheta2 - dL*(thetabar**2))/(dL - 1.d0) 

  

 !Different x matrix************************************* 

 !************************************************** 

  do i = 1,L 

      Xnew1(i,1) = X(i,1) 

 enddo 

 

      do ic1 = 0,1 

  do ic2 = 0,1 

   do ic3 = 0,1 

    do ic4 = 0,1 

     do ic5 = 0,1 

 

 open(50,file='Bayesoutput.txt',status='old',access='append') 

 write(50,*) "Model ", ic1,ic2,ic3,ic4,ic5 

 close(50) 

 

 M1 = 1 

 if (ic1.eq.1) M1 = M1 + 9 

 if (ic2.eq.1) M1 = M1 + 7 

 if (ic3.eq.1) M1 = M1 + 6 

 if (ic4.eq.1) M1 = M1 + 8 

 if (ic5.eq.1) M1 = M1 + 8 

   

 do i = 1,L 

 nbegin = 2 

  if (ic1.eq.1) then  
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   k = 2 

   do nmark = nbegin, (nbegin + 8) 

    Xnew1(i,nmark) =  X(i,k) 

    k = k + 1 

   enddo 

   nbegin = nbegin + 9 

  endif 

  if (ic2.eq.1) then  

   k = 11 

   do nmark = nbegin, (nbegin + 6) 

    Xnew1(i,nmark) =  X(i,k) 

    k = k + 1 

   enddo 

   nbegin = nbegin + 7 

  endif 

  if (ic3.eq.1) then  

   k = 18 

   do nmark = nbegin, (nbegin + 5) 

    Xnew1(i,nmark) =  X(i,k) 

    k = k + 1 

   enddo 

   nbegin =  nbegin + 6 

  endif 

  if (ic4.eq.1) then  

   k = 24 

   do nmark = nbegin, (nbegin + 7) 

    Xnew1(i,nmark) =  X(i,k) 

    k = k + 1 

   enddo 

   nbegin = nbegin + 8 

  endif 

  if (ic5.eq.1) then  
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   k = 32 

   do nmark = nbegin, (nbegin + 7) 

    Xnew1(i,nmark) =  X(i,k) 

    k = k + 1 

   enddo 

  endif 

 enddo 

 CALL Gibbs (Xnew1,Y,ni,L,M1,taua,sigmaa,ybar, 

 &   thetas,ybar2,tau2,KK,kutoff, 

      &   sigma2,M,NOBS,sigbeta) 

 

 enddo 

 enddo 

 enddo 

 enddo 

 enddo 

 

 !************************************************** 

      stop     

 end 

 

c ********************************************************************* 

c ********************************************************************* 

  

! ________________________________________________________________   

! SUBROUTINES 

 

 SUBROUTINE Gibbs (Xold,Y,ni,L,M1,taua,sigmaa, 

  &   ybar,thetasold,ybar2,tau2old,KK,kutoff, 

      &   sigma2old,M,NOBS,sigbeta) 

 

 DOUBLE PRECISION Xold(L,M),XB(L),tau2(1), 
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      &     taua,taub(1),sigmab(L),Y(L,12),betamu(M1), 

      &     covarbeta(M1,M1),sigma2old(L),thetamu(L), 

     &     thetasold(L),thetasig(L),ybar(L), 

      &     stdtau2(1),betasst(M1),stdsig(L),ybar2(L), 

      &     stdtheta(L),sigmaa(L),minloglik,SSE, 

      &     liktemp(KK),temp4,temp5,maxloglik,XTX(M1,M1), 

 &     sumtemp4,bayesfac,RSIG(M1,M1),TOL,betas(M1), 

 &     X(L,M1),tau2old(1),DMACH,thetas(L),sigma2(L), 

 &     xregress(NOBS,M1),yregress(NOBS),SST, 

 &      XTXold(M1,M1),betasst2(M1) 

 

      INTEGER ni(L),IRANK,KK,kutoff  

 

 TOL = 100.0*DMACH(4) 

 minloglik = 1.d8 

 maxloglik =  -1.d8 

 sumtemp4 = 0.d0 

 tau2(1) = tau2old(1) 

 icount = 0 

 

 do i =1,L 

  do j = 1,M1 

   X(i,j) = Xold(i,j) 

 enddo 

 enddo 

 

   num = 1 

  do i = 1,L 

   do j = 1,ni(i) 

    yregress(num) = Y(i,j) 

    num = num + 1 

   enddo 
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  enddo 

 

   num2 = 1 

  do i = 1,L 

   do k = 1,ni(i) 

    do j = 1,M1 

     xregress(num2,j) = X(i,j) 

    enddo 

    num2 = num2 + 1 

   enddo 

  enddo 

 

 CALL DRLSE (NOBS, yregress, M1, xregress, NOBS, 0, betas,  

 &  SST, SSE) 

 

 CALL DMURRV (L, M1, X, L, M1, betas, 1, L, XB)  

              !Mult matrix x vector 

 do i =1,L 

  thetas(i) = thetasold(i) 

  sigma2(i) = sigma2old(i) 

 enddo 

 

 CALL DMXTXF (L, M1, X, L, M1, XTX, M1)           

              !Calculates XTX 

  do i = 1,M1 

  do j=1,M1 

   XTXold(i,j) = XTX(i,j) 

 enddo 

 enddo 

 

  !Gibbs Sampler 

  do k=1,KK 
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 !***** THETAS  *************************** 

  CALL thetapar (tau2,sigma2,XB,L,ybar,ni,thetamu,thetasig) !parameter  

  CALL DRNNOR (L,stdtheta) 

  do i=1,L 

  thetas(i) = stdtheta(i)*thetasig(i) + thetamu(i) 

  enddo 

 !***** TAU   *************************** 

  CALL tauparm (thetas,XB,L,taub) 

  CALL drngam(1,taua,stdtau2) 

  tau2(1) = taub(1)/stdtau2(1) 

 

 !***** BETA  *************************** 

 CALL betapar (XTX,M1,tau2,L,thetas,X,betamu,covarbeta,sigbeta) 

 CALL DCHFAC (M1, covarbeta, M1, TOL, IRANK, RSIG, M1)   

            ! Cholesky factor 

 

 CALL DRNNOR(M1,betasst) 

 CALL DMURRV(M1,M1,RSIG,M1,M1,betasst,1,M1,betasst2) 

  do i=1,M1 

  betas(i) = betasst2(i) + betamu(i) 

  enddo 

 

 CALL DMURRV (L, M1, X, L, M1, betas, 1, L, XB) !Mult matrix x vector 

 

 do i = 1,M1 

  do j=1,M1 

   XTX(i,j) = XTXold(i,j) 

  enddo 

 enddo 

 

!  ***** SIGMA  *************************** 

 CALL sigmaparm (ybar,ybar2,ni,thetas,L,sigmab) 
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 CALL drngam(L,sigmaa(1),stdsig) 

  do i = 1,L 

  sigma2(i) = sigmab(i)/stdsig(i) 

  enddo 

 

 CALL llike (betas,XB,tau2,Y,sigma2,thetas, 

     &  L,M1,sigmaa,taua,temp4,temp5,sigbeta,icountup) 

  

   liktemp(k)=temp4 

   if ((temp5.ge.maxloglik) .and. (k.ge.kutoff)) maxloglik = temp5 

   if ((temp5.le.minloglik) .and. (k.ge.kutoff)) minloglik = temp5 

   if (k.ge.kutoff) icount = icount + icountup 

   enddo     ! Here ends the simulation for the Gibbs Sampler 

      do k=(kutoff+1),KK 

  sumtemp4 = sumtemp4 + liktemp(k) 

 enddo 

  denom = (KK-(kutoff+1.0)+0.d0) 

  bayesfac = sumtemp4/denom 

 write(*,*) 'bayesfac = ', bayesfac ,maxloglik,minloglik 

 

 open(50,file='Bayesoutput.txt',status='old',access='append') 

 write(50,*)  bayesfac  

 close(50) 

 

  return 

  end 

 

 SUBROUTINE tauparm (thetas,XB,L,taub) 

 DOUBLE PRECISION sumTXB,taub(1),thetas(L),XB(L) 

 INTEGER L 

  

     sumTXB=0.d0 
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     do i=1,L 

   sumTXB=sumTXB + (thetas(i) - XB(i))*(thetas(i) - XB(i))  

     &  +1.d0 

 

   enddo 

 

  taub(1)=0.5*sumTXB 

 return 

     end 

  

 SUBROUTINE sigmaparm (ybar,ybar2,ni,thetas,L,sigmab) 

 DOUBLEPRECISION ybar(L),thetas(L),sumythetas,sigmab(L),ybar2(L), 

 & dni(L) 

 INTEGER ni(L) 

  

  sumythetas=0.d0 

   

  do i=1,L 

  dni(i) = ni(i) + 0.0 

  sigmab(i) = 0.5*(1+(dni(i)*ybar2(i) - 2*thetas(i)*dni(i)* 

 &   ybar(i) + dni(i)*thetas(i)*thetas(i))) 

  enddo 

 return 

  end 

 

 SUBROUTINE betapar (XTX,M1,tau2,L,thetas,X,betamu,covarbeta, 

 & sigbeta) 

 DOUBLE PRECISION XTX(M1,M1),step1(M1,M1),covarbeta(M1,M1), 

 & mupart2(M1),thetas(L),betamu(M1),tau2(1),X(L,M1) 

 INTEGER M1,L 

 

  do i=1,M1 
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  do j=1,M1 

  if (i.eq.j) then  

  step1(i,j)=(1/sigbeta)+((1/tau2(1))*XTX(i,j)) 

   else 

    step1(i,j) =  ((1/tau2(1))*XTX(i,j)) 

  endif 

  enddo 

  enddo 

 

  CALL DLINDS (M1, step1, M1, covarbeta, M1) 

  CALL DMURRV (L, M1, X, L, L, thetas, 2, M1, mupart2) 

 

  do i = 1,M1 

   mupart2(i) = mupart2(i)/tau2(1) 

  enddo 

 

  CALL DMURRV (M1, M1, covarbeta, M1, M1, mupart2, 1, M1, betamu) 

 

  return 

  end 

     

       SUBROUTINE thetapar (tau2,sigma2,XB,L,ybar,ni,thetamu,thetasig) 

  DOUBLE PRECISION tau2(1),sigma2(L),XB(L),ybar(L),thetamu(L), 

 &  thetasig(L),dni(L) 

  INTEGER L ,ni(L) 

 

  do i=1,L 

  dni(i)=ni(i) + 0.0 

 

  thetamu(i) = (1/tau2(1))*(tau2(1)*sigma2(i)/(dni(i)*tau2(1) 

 & +sigma2(i)))*XB(i) +(1/sigma2(i)) 

 & *(tau2(1)*sigma2(i)/(dni(i)*tau2(1)+sigma2(i)))* 
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 & dni(i)*ybar(i) 

  enddo 

 

  do i=1,L 

   thetasig(i) = sqrt(tau2(1)*sigma2(i)/(dni(i)*tau2(1) 

 & +sigma2(i))) 

  enddo 

 

  return 

  end 

  

    SUBROUTINE llike (betas,XB,tau2,Y,sigma2,thetas, 

     &  L,M1,sigmaa,taua,flik,likehood2,sigbeta,icountup) 

  

         DOUBLE PRECISION  betas(M1),XB(L),tau2(1), 

      &     taua,Y(L,10),btb,thetas(L), 

      &     sigma2(L),sigmaa(L),lik1,lik2,likehood,flik, 

 &     likehood2 

       INTEGER M1,L 

 

    lik1=0.d0 

    lik2=0.d0 

    btb=0.d0 

    icountup = 0 

 

    do i=1,L 

  lik1= lik1 - (sigmaa(i))*dlog(sigma2(i)) -  

     & (1/(2.d0*sigma2(i))) -  

     & (1/(2.d0*tau2(1)))*  

     & (thetas(i) - XB(i))* 

     & (thetas(i) - XB(i)) 
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      end do 

  

     do i=1,L 

  do j=1,10 

   lik2 = lik2 -(1/(2.d0*sigma2(i)))*(Y(i,j)-thetas(i))* 

 &  (Y(i,j)-thetas(i)) 

  end do 

     end do 

 

     do i = 1,M1 

  btb=btb + betas(i)*betas(i) 

  end do 

 

     likehood = lik1 + lik2 - (taua)*dlog(tau2(1))  

     & - (1/(2.d0*tau2(1))) - (1/(2.d0*sigbeta)) * btb 

  likehood2=likehood + 3000  !Adjusting likelihood 

  if (likehood2.gt.10.d0) icountup = 1 

  if (likehood2.gt.10.d0) likehood2 = -9999.d200 

     flik = dexp(likehood2) 

  return 

  end 
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APPENDIX B 

R Code for One QTL Simulation with Bimodal Standard Deviations 

 

Xold<-read.table('bayxsha.csv',sep=',') 

 X<-Xold[,-1] 

y<-matrix(nrow=length(X[,1]),ncol=10) 

meany<-rep(0,length(X[,1])) 

mu<-26 

effect<-2 

QTL<-12 

for (i in 1:length(X[,1])) 

{if (X[i,QTL]==1) meany[i]<-mu + 2*effect 

if (X[i,QTL]==0.5)  meany[i]<-mu + effect 

if (X[i,QTL]==0) meany[i]<-mu} 

 

for (i in 1:length(X[,1])) 

{poin<-sample(c(0,1),1,replace=TRUE) 

if (poin==0)  

{for (j in 1:10) 

   {y[i,j]<-rnorm(1,meany[i],4.2)}} 

if (poin==1) 

   {for (j in 1:10) 

{y[i,j]<-rnorm(1,meany[i],9.1)}} 

} 

write.table(y,'ysim.csv',sep=',',row.names=FALSE,col.names=FALSE) 
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APPENDIX C 

R Code for Two QTL Simulation with Bimodal Standard Deviations 

 

Xold<-read.table('bayxsha.csv',sep=',') 

 X<-Xold[,-1] 

y<-matrix(nrow=length(X[,1]),ncol=10) 

meany<-rep(0,length(X[,1])) 

mu<-26 

effect1<-2 

effect2<-12 

QTL1<-11 

QTL2<-36 

meany<-vector(length=length(X[,1])) 

for (i in 1:length(X[,1])) 

{meany[i]<-mu+effect1*(X[i,QTL1])+effect2*(X[i,QTL2])} 

 

for (i in 1:length(X[,1])) 

{poin<-sample(c(0,1),1,replace=TRUE) 

if (poin==0)  

{for (j in 1:10) 

   {y[i,j]<-rnorm(1,meany[i],2.0)}} 

if (poin==1) 

   {for (j in 1:10) 

{y[i,j]<-rnorm(1,meany[i],4.5)}} 

} 

write.table(y,'ysim.csv',sep=',',row.names=FALSE,col.names=FALSE) 
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APPENDIX D 

R Code for One QTL Simulation with Gamma Distribution Parameters 

 

Xold<-read.table('bayxsha.csv',sep=',') 

 X<-Xold[,-1] 

y<-matrix(nrow=length(X[,1]),ncol=10) 

meany<-rep(0,length(X[,1])) 

mu<-26 

effect<-15 

QTL<-16 

for (i in 1:length(X[,1])) 

{if (X[i,QTL]==1) meany[i]<-mu + 2*effect 

if (X[i,QTL]==0.5)  meany[i]<-mu + effect 

if (X[i,QTL]==0) meany[i]<-mu} 

 

sigvec<-rep(0,length(X[,1])) 

sigvec<-rgamma(length(X[,1]),shape=4,scale=1) 

 

for (i in 1:length(X[,1])) 

{for (j in 1:10) 

   {y[i,j]<-rnorm(1,meany[i],sigvec[i])} 

} 

write.table(y,'ysim.csv',sep=',',row.names=FALSE,col.names=FALSE) 
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APPENDIX E 

R Code for Two QTL Simulation with Gamma Distribution Parameters 

 

Xold<-read.table('bayxsha.csv',sep=',') 

 X<-Xold[,-1] 

y<-matrix(nrow=length(X[,1]),ncol=10) 

meany<-rep(0,length(X[,1])) 

mu<-26 

effect1<-5 

effect2<-5 

QTL1<-11 

QTL2<-32 

meany<-vector(length=length(X[,1])) 

for (i in 1:length(X[,1])) 

{meany[i]<-mu+effect1*(X[i,QTL1])+effect2*(X[i,QTL2])} 

 

sigvec<-rep(0,length(X[,1])) 

sigvec<-rgamma(length(X[,1]),shape=8,scale=1) 

 

for (i in 1:length(X[,1])) 

{for (j in 1:10) 

   {y[i,j]<-rnorm(1,meany[i],sigvec[i])} 

} 

write.table(y,'ysim.csv',sep=',',row.names=FALSE,col.names=FALSE) 


