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ABSTRACT 

 

 Chromophoric dissolved organic matter (DOM) was measured in 37 rain events in 

Wilmington, NC, between September 15, 2005 to September 6, 2006.  Each rain event was 

analyzed via 3D fluorescence, UV-Vis absorption spectroscopy, nuclear magnetic resonance 

(NMR) spectroscopy, and dissolved organic carbon measurements were acquired.  All rain 

events had measurable CDOM, although there was much variability between events.     

Chromophoric DOM was found in both the C18 extract (hydrophobic) and the C18 filtrate 

(hydrophilic) fraction, but surprisingly a large fraction of the chromophoric DOM is relatively 

hydrophilic (~50%).  Using NMR, it was determined that in all rain events the majority of the 

protons were alkyl.  A strong positive correlation was found between the fluorescence and the 

overall integration of the NMR spectra.  A correlation was also found between fluorescence and 

the various integral regions of the NMR with the greatest contribution to fluorescence coming 

from the aromatic region. 

The abundance and characteristics of rainwater DOM was affected by season and storm 

origin.  Marine storms contained a larger percentage of aromatic protons relative to the terrestrial 

storms.  This coupled with lower spectral slopes and a higher percentage fluorescence in the C18 

extract samples from marine storms suggests that while the dissolved organic carbon (DOC) 

concentrations in these storms are low, the DOM in marine storms likely contains recalcitrant 

DOM which is globally distributed.  The composition of DOM in rainwater is also influenced by 

season.  Samples collected during the warm season had lower spectral slopes and lower percent 

DOC in the reconstituted fraction which suggests that warm season storms contain smaller 

molecular weight DOM.  This is a result of photodegredation during the warm season. 
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INTRODUCTION 

  

Dissolved organic matter (DOM) is a ubiquitous, integral component of Wilmington, 

North Carolina, rainwater.  The presence of significant quantities of highly chromophoric DOM 

in atmospheric waters has profound ramifications with respect to a wide variety of fundamental 

processes in atmospheric chemistry because of its impact on solar radiative transfer and its 

involvement in the oxidizing and acid generating capacity of the troposphere.  Additionally, if 

DOM constituents are surface-active they will have a direct impact on droplet population and 

consequently cloud albedo by lowering the surface tension of atmospheric waters.    

Previous studies have only been able to identify less than 50% of the organic compounds 

in rainwater (Willey et al. 2000).  DOM is by far the dominant chromophore in rainwater with 

the UV-Vis absorbance of samples decreasing exponentially between 250 to 550 nm and as such 

plays a vital role in light attenuation in atmospheric waters.  Recent research has also revealed a 

strong positive correlation between total integrated fluorescence and absorbance coefficient at 

300 nm suggesting these spectroscopic properties are directly related and that compounds 

responsible for UV-Vis absorbance are also responsible for fluorescence.  Preliminary data 

suggest that DOM plays a central role in trace metal speciation in atmospheric waters where 

complexation influences the photochemical properties of the DOM as well as the 

photochemically mediated cycling of the metals.  DOM is the dominant complexing agent for 

iron increasing the stability of Fe (II) and thus the solubility of iron in both rainwater and 

seawater.   Given the probability of multiple sources for rainwater DOM, with correspondingly 

different compositional signatures, we will also evaluate its chemical characteristics.  Humic-like 

substances, substances that have been shown as important chromophores in surface waters, can 

be derived from different sources and are notoriously ill-defined (Diallo et al. 2003), but offer 
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the most probable source of chromophoric DOM in rainwater (Capiello et al. 2003).  Humic 

substances may be incorporated into precipitation from wind blown soil particles or formed in 

the atmosphere from oxidation of soot (Decesari et al. 2002).   

In addition to quantifying how much DOM is present in rainwater; it would be extremely 

useful to begin to evaluate its chemical characteristics.  The chemical character of DOM in 

rainwater reflects its mixed origin and will be examined by UV-Vis, excitation emission 

spectroscopy (EEMs), and nuclear magnetic resonance (NMR).  While the absorption coefficient 

at 300nm has been used as an index of DOM abundance (Castillo et al. 1999), spectral slopes 

calculated from log linear least-square regressions of absorption coefficients versus wavelength 

could convey information about the molecular weight of DOM.  Excitation and emission spectra 

can be employed to discriminate between DOM types and to gain insight into the structural 

nature of the chromophores of the rainwater (Blough et al. 1995).  Finally, 
1
H NMR was used for 

analyzing the structure of macromolecular compounds (Suzuki et al. 2001).  Complex signals 

(broad or sharp lines) can be examined and characteristics such as aromatic absorbance and 

aliphatic nature can be determined. 

In summary, the goals of this thesis are two-fold.  1) Quantify DOM UV-Vis absorbance 

and fluorescence in authentic and fractionated rainwater samples collected during different 

seasons and different storm types. 2) Evaluate structural characteristics of rainwater DOM. 

EXPERIMENTAL 

Rainwater/Sampling  

Rainwater was collected on the UNCW campus on an event basis throughout the time 

period of September 15, 2005 to September 6, 2006.  The UNCW rainwater collection site is a 

large open area, approximately one-hectare, within a turkey oak, long leaf pine, and wire grass 
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community, typical of inland coastal areas in southeastern North Carolina.  This rainwater site 

(34
o
13.9'N, 77

o
52.7'W) is on the UNCW campus, approximately 8.5 km from the Atlantic 

Ocean. There are over 15 years of rainwater composition data for this site, which will be useful 

in interpretation of the data generated and also will allow comparison with other locations. 

Because of the proximity of the sampling location to the laboratory, dissolved organic matter 

(DOM) analyses can be initiated within minutes of collection, which reduces the possibility of 

compositional changes between the time of collection and analysis. 

Four Aerochem-Metrics (ACM) Model 301 Automatic Sensing Wet/Dry Precipitation 

Collectors were used to collect event rain samples.  One of these ACM containing a 4L muffled 

Pyrex glass beaker from which samples for pH, inorganic ions, dissolved organic carbon, 

hydrogen peroxide, organic acids and DOM were collected and analyzed.  The remaining three 

ACM were used for trace metal sample collection.  These consisted of a high density 

polyethylene (HDPE) funnel connected by Tygon FEP- lined tubing to a 2.2L Teflon bottle, all 

cleaned using trace metal clean procedures and protocols (Bruland et al., 1979; Bruland, 1980).  

Meteorological data including rain amounts, rain duration, time of day, surface temperature, 

wind speed, wind direction and storm origin were also recorded.  Rain events were characterized 

by E# where E represents rain event and # corresponds to a specific rain event number.  Real 

time precipitation maps were used to define the end of specific rain events, which initiated the 

sampling process. 

Trajectories  

 Air mass, 72 hour back trajectories were used to classify each individual rain event.  The 

two trajectories used in this study were terrestrial and marine.  Each trajectory is compromised of 

three regions of different heights above sea level.  The terrestrial storm is deemed as such if each 
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of the three air masses derived over land.  The marine storm is deemed as such if the three air 

masses derive over the sea.  

Reagents and Standards 

All chemicals were reagent grade or HPLC grade unless stated otherwise.  A Milli-Q Plus 

Ultra-pure water system (Millipore, Bedford, MA) provided water (>18MΩ) for all analysis, 

dilutions, reagent and standard preparations.  Internal NMR stock primary standard was prepared 

by adding 10 mg of 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid (98.0%), sodium salt to 1.0mL 

Deuterium oxide (99.96%, D2O).  The primary stock standard (0.01M) was diluted by a factor of 

ten and 20 µL was added to the sample in D2O (0.60mL) giving a final TMS concentration of 

187 µM in each sample.  

Hydrophobic DOM Extraction 

 Hydrophobic dissolved organic matter, operationally defined here as C18 extractable 

dissolved organic matter (DOM) substances, were extracted using C18 cartridges (Waters 

Chromatography, Milford, MA) by the method of Amador et al. (1990).  This technique was 

chosen over conventional methods using XAD resins because in surface waters it has been 

demonstrated that the C18 is efficient at removing the fluorescent DOM.  Amador et al. (1990) 

reported that C18 extraction of humic substances from seawater was between 22 and 84% more 

effective relative to XAD-2.  Kuo et al. (1993) also recovered 83% of an aquatic fulvic acid 

using C18 solid-phase extraction.  In addition, Amador et al. (1990) found C18 extraction better 

able to retain the UV-visible and fluorescence characteristics of the isolated humic material 

relative to XAD.  Since these were the characteristics of most interest in this study, C18 

extraction was the most logical choice of an extraction procedure.  A second advantage of using 

C18 extraction is that 90% methanol/ 10% water is the eluant rather than 0.1M NaOH.  Therefore, 
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any degradation of DOC due to high pH is avoided. 

Samples were warmed to room temperature and filtered through 0.2µm, acid-washed 

Gelman Supor® polysulfonone filters enclosed in a muffled glass filtration apparatus.   C18 

cartridges were preconditioned by washing with 2 X 5 mL 90% methanol/ 10% water followed 

by 2 X 5 mL deionized water.  Filtered rainwater was extracted by passing 50 mL, unless 

otherwise noted, through the C18 cartridge.  The cartridges were washed with 2 X 5 mL of 

deionized water to remove residual salts and DOM was eluted with 6 mL of 90%/ methanol 10% 

water solution.  Samples were pulled through C18 cartridges by the house vacuum and collected 

in a 500 mL side-arm flask.  Samples were eluted into 25mL muffled round-bottom flasks and 

concentrated to dryness under reduced pressure (Buchi Rotavapor, Model RE 111, Switzerland).  

Traces of water were removed under vacuum (Sargent-Welch Model 1400, Skokie, IL).  The 

eluted sample was then reconstituted into DI water and sonicated for 30 seconds.  Aliquots from 

the whole rainwater sample, what was retained on the cartridge, and what was not retained on the 

cartridge were analyzed. 

Terminology 

 Each rain event was extracted by the C18 cartridge resulting in three fractions being 

collected.  The fraction which was not passed through the C18 cartridge is termed the whole 

sample.  The fraction that was extracted, eluted, and reconstituted was termed the reconstituted 

sample.  The fraction that passed through the cartridge was termed filtrate. 

UV-Vis Absorption Spectroscopy 

 

 Absorption spectra was obtained between 240 and 800 nm at 1 nm intervals using a 

double-beam spectrophotometer equipped with matching 10 cm quartz cells.  Each sample was 

scanned four times, and the resulting spectra was smoothed and averaged.  The data was 



 6 

corrected for scattering and baseline fluctuations by subtracting from each spectrum the value of 

absorption at 700 nm (Del Castillo et al. 1999). 

 The absorption coefficients (a) were calculated from the absorbencies using: 

a (λ) = 2.303A(λ) / r 

where A is the absorbance (Log Io / I ) and r is the pathlength in meters.  The absorption 

coefficient at 300 nm were used as an index of colored dissolved organic matter (DOM) 

abundance.  The spectral slopes were calculated from linear least-square regressions of the plot 

of ln a(λ) vs. wavelength for the interval between 270 and 350 nm and were used as a proxy for 

molecular weight ranges.  The spectral slope will decrease with increasing molecular weight.  

Excitation emission spectroscopy 

Excitation-emission matrix (EEM) fluorescence properties are determined on a Jobin 

Yvon SPEX Fluoromax-3 scanning fluorometer equipped with a 150 W Xe arc lamp and a 

R928P detector.  Although higher resolution is possible, EEMS are generally constructed by 

using excitation wavelengths from 250 to 500nm (4 nm intervals) and scanning emission from 

280 to 550nm (4 nm intervals).  The instrument is configured to collect the signal in ratio mode 

with dark offset using 5nm bandpasses on both the excitation and emission monochromators.  

The EEMs were created by concatenating emission spectra measured every 5nm from 250 to 

500nm at 51 separate excitation wavelengths (Del Castillo et al. 1999).  Scans are corrected for 

instrument configuration using factory supplied correction factors, which are determined 

essentially as described in Method 1 of (Coble et al. 1993).  Post processing of scans is 

performed using FLToolbox 1.91 developed by Wade Sheldon (University of Georgia) for 

MATLAB® (Release 11).  The software eliminates Rayleigh and Raman scattering peaks by 

excising portions (± 10-15 nm FW) of each scan centered on the respective scatter peak.  The 
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excised data is replaced using three-dimensional interpolation of the remaining data according to 

the Delaunay triangulation method and constraining the interpolation such that all nonexcised 

data is retained.  Following removal of scatter peaks, data were normalized to a daily-determined 

water Raman intensity (275ex / 303em, 5 nm bandpasses) and converted to Raman normalized 

quinine sulfate equivalents (QSE) in ppb (Coble et al. 1998).  An average of 4  Milli-Q water 

blank extractions were subtracted to eliminate the water-Raman peaks.   Optical aberrations 

produces by spectral biases from all the optical components of the instrument were corrected.  

Replicate scans are generally within 5% agreement in terms of intensity and within bandpass 

resolution in terms of peak location.  Peak locations are labeled as defined in (Coble 1996).   

Nuclear Magnetic Resonance (NMR) 

 

Liquid phase 
1
H-NMR were recorded on a Bruker Avance 400 MHz NMR spectrometer.  

The DOM that was extracted for NMR analysis was done in the same fashion as previously 

described with the exception of adding 0.60mL of D2O and an internal standard (20 µL of 3-

(Trimethylsilyl) propionic-2,2,3,3-d4 acid (98.0%), sodium salt) to the completely dried DOM 

extract remaining in the 25mL round-bottom flask.  The solution was swirled around the flask 

and sonicated; the mixture was removed with a 5cc syringe (Popper & Sons, NY), and placed 

into a 5mm NMR tube.  The sample was placed in a sonicator for 5 seconds to assure the internal 

standard was mixed well with the sample.   

An initial 
1
H proton experiment (zg30, 64 scans) (Werner 1994) was used to find the 

resonance of the HDO peak which is a result of exchange of O-H and N-H protons in the sample 

with the D2O solvent.  Due to the large HDO peak, presaturation techniques (power level 20 dB) 

were used to help eliminate phasing and integration problem.  Each sample was then analyzed 

using a presaturation experiment (zgpr, 1024 scans) where: pulse angle = 30º (P1 = 9.00 µsec), 
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D1 = 3.00 sec, and PL = 60 dB.  The probe used was an inverse gradient probe.  After the 

acquisition, the FID was transformed with exponential multiplication (LB = 5).  Line Broadening 

(LB) is a mathematical manipulation of the data that enhances small signals, which may be 

otherwise lost in the baseline noise.  Phasing, calibration, and integration were done identically 

for all experiments to allow for comparisons of different rain events.  After phasing, the standard 

was set to zero ppm. 

The following regions were integrated: 9.0 to 6.5 ppm, 4.5 to 3.4 ppm, 3.3 to 1.9 ppm, 

1.9 to 1.1 ppm, 1.1 to 0.5 ppm, and 0.1 to –0.1 ppm (internal standard) were made to allow for 

comparison of different natures of extracted DOM.  The 10 to 9.5 ppm and 6.5 to 6.0 ppm 

regions were also integrated to correct for baseline anomalies and drift.  The internal standard 

was calibrated to zero and integrated to one.  The two regions that were used to correct for 

baseline drift were subtracted from the integration of the respected region after being multiplied 

by the area of the region.  Total abundance of the respective regions were then calculated as well 

as a percentage of the entire regions. 

Dissolved Organic Carbon (DOC) 

The whole rainwater and the reconstituted fraction were analyzed for its DOC and TDN 

content.  The filtrate was not analyzed for DOC concentration due to the residual methanol that 

was present in the sample causing an inaccurate measurement. Rain samples were analyzed for 

DOC by high temperature combustion (HTC) using a Shimadzu TOC 5000 total organic carbon 

analyzer equipped with an ASI 5000 autosampler as described in (Willey et al. 2000). A primary 

standard was prepared from 215 mg potassium hydrogen phthalate (KHP) dissolved in 100mL of 

Milli-Q water.  A secondary KHP solution was prepared monthly and consisted of ~25g of the 

KHP primary solution diluted gravimetrically to 250mL with Milli-Q water.  Standards in the 
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range of 33 – 400 µM C were made weekly from the secondary KHP stock solution. 

The samples were injected (75 µL) into the Shimadzu TOC-5050A furnace, filled with a 

preconditioned Shimadzu catalyst (Al2O3 impregnated with 0.5% platinum), at 680ºC.  The 

combustion products (CO2, NO•, H2O, etc.) are carried by high purity CO2 free air through an in-

built Peltier cooler at ~1ºC (electronic dehumidifier) for removal of water vapor followed by a 

Shimadzu particle filter (20 mm, sub-micron membrane) and finally into the Shimadzu detector 

cell. 

RESULTS AND DISCUSSION 

 

Volume Study to Determine C18 Extraction Efficiency 

 

 A study was conducted on rain event 620 to determine how extraction volume influences 

the total recovery of rainwater fluorescent DOC.  Total recovery was determined from the sum of 

fluorescence in the reconstituted and filtrate fractions on the C18 cartridge relative to the 

fluorescence of the whole rain.  The study involved extracting several volumes (50, 100, 200, 

and 500 mL) of the same rain and determining the fluorescence on the three fractions.  An 

extraction volume of 50 mL resulted in the greatest total recovery (~70%) of DOM fluorescence 

(Figure 1).  As the extraction volume increased, the total recovery of DOM fluorescence 

decreased.  The fraction of DOM fluorescence in the filtrate did not vary substantially with 

extraction volume, suggesting that the relative amount of DOM bound to the C18 cartridge did 

not change with increasing sample volume.  Rather the decrease in total recovery and the percent 

reconstituted on the C18 cartridge with increasing volume can be explained by an inefficient 

elution of DOM from the C18 cartridge at high extraction volumes.  Based on these results, an 

extraction volume of 50 mL was used for all rain events during this study.  
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Figure 1.  Percent reconstituted DOM fluorescence, percent filtrate, and total recovery as a 

function of rainwater extracted.  The percent fluorescence is based on the integration of the entire 

EEMs scan. 
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Figure 2.  Typical EEM spectra of rain event 417.  The A, M, C,  

  and T labels are based upon Coble (1996), where 

  A and C indicate terrestrial humic-like substances, M is marine 

  humic-like material and T indicates the presence of protein-like 

substances.  Regions used for integration for the A, C, M, and T peaks     

respectively were Ex 220-275 nm, Em 357-563 nm; Ex 320-370 nm,  

Em 435-485 nm; Ex 287-337 nm, Em 395-445nm; Ex 250-300 nm, Em 305-

355nm. 
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Absorbance and Fluorescence 

Excitation Emission Spectroscopy (EEMS) spectra were integrated and volume weighted 

averages (VWA) determined for the entire scan (scatter reducing) (Table 1a).  A typical EEM of 

rain event 417 is presented in figure 2.  The fluorescences ranged from 21.8 to 215 x 10
-3 

(Table 

1b) while the VWA fluorescence of the whole sample was 57,700 (Table 1a).  The absorbances 

ranged from 0.175 to 2.86 m-1 (Table 2a) while the VWA absorbance at 300 nm was 0.67 m-1
 

(Table 2b).  Both these values are somewhat higher than previously reported for rain collected at 

this same site (29,000 and 0.37 m
-1 

respectively)  between February 21, 2002 and August 11, 

2003 (Kieber et al., 2006).  Since the DOC concentration in this study are similar, this suggests 

that the rain analyzed during this study has higher chromophoric properties than previously 

collected rainwater samples.    

The average spectral slopes, calculated from UV-Vis absorption spectra of whole and 

reconstituted rain, were 23.5 µm
-1

 and 10.3 µm
-1

 respectively (Table 2b).  The spectral slopes 

ranged from 7.19 µm
-1

 to 45.5µm
-1 

and 6.22 µm
-1

 to 17.8 µm
-1

 respectively (Table 2a).  Previous 

work has suggested an inverse relationship of surface water DOC molecular weight with spectral 

slope coefficient (De Haan, 1993; Strome and Miller, 1978) where a higher spectral slope is 

indicative of lower molecular weight material.  Based on the properties of the C18 cartridge, the 

DOM reconstituted off the C18 cartridge is hydrophobic while the filtrate fraction is relatively 

more hydrophilic.  The material retained by the C18 cartridge is likely the high molecular weight 

compounds.  Therefore, the smaller spectral slope of the retained fraction relative to the whole 

sample agrees with previous work.  
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Table 1a.  Volume weighted average from the fluorescent integration entire scan (scatter reducing) peak maxima.  Percent integrated 

fluorescence retained, filtrate, and total recovery (relative to entire scan).  All data is represented with +/- one standard deviation.  n = 

number of samples and amt = rain amount in mm. 

  n Amt.  

(mm) 

Integrated 

Fluorescence 

whole 

x 10
-3

 

% Integrated 

Fluorescence   

reconstituted 

%  Integrated 

Fluorescence 

filtrate 

% Integrated 

Fluorescence Total 

recovery 

All Data 37 561 57.7 

+/- 7.46 

26.7 

+/- 11.7 

52.1 

+/- 14.6 

78.8 

+/- 17.8 

All Warm 30 430 62.6 

+/- 8.98 

27.1 

+/- 12.1 

53.5 

+/- 15.6 

80.7 

+/- 18.6 

All Cold 7 131 41.7 

+/-8.69 

24.7 

+/- 10.8 

46.4 

+/- 7.50 

71.2 

+/- 13.9 

Terrestrial 

 

15 216 49.8 

+/-9.08 

26.8 

+/- 12.7 

49.1 

+/- 8.85 

75.9 

+/- 15.5 

Marine 4 33.0 50.1 

+/-6.36 

38.8 

+/- 16.3 

49.3 

+/- 6.83 

88.1 

+/- 24.9 
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Table 1b.  Ranges of volume weighted average from the fluorescent integration entire scan (scatter reducing) peak maxima.  Ranges of 

percent integrated fluorescence retained, filtrate, and total recovery (relative to entire scan) n = number of samples and amt = rain 

amount in mm. 

  N Amt.  

(mm) 

Integrated 

Fluorescence 

whole 

x 10
-3

 

% Integrated 

Fluorescence   

reconstituted 

%  Integrated 

Fluorescence 

filtrate 

% Integrated 

Fluorescence Total 

recovery 

All Data 37 561 21.8-215 9.97-53.8 32.5-107 42.5-161 

All Warm 30 430 32.7-113 9.97-53.8 32.5-107 42.5-161 

All Cold 7 131 21.8-215 11.3-39.0 38.9-58.1 50.2-97.1 

Terrestrial 

 

15 216 24.0-161 9.97-49.4 33.8-58.1 43.8-108 

Marine 4 33.0 32.4-62.9 15.7-53.9 43.4-56.8 59.1-111 
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Table 2a.  Ranges of volume weighted average of absorbance at 300 nm.  Ranges of percent absorbance retained, filtrate, and total 

recovery are represented as well as spectral slope coefficients of whole and reconstituted portions at 300 nm.   

n = number of samples and amt = rain amount in mm. 

 n Amt.  

(mm) 

Abs @  

300 nm whole 

(m
-1

) 

Abs @ 300 nm      

(m
-1

) % 

reconstituted 

Abs @ 300 

nm (m
-1

)    

% filtrate 

Abs @ 

300 nm   

(m
-1

)       

% total 

recovery 

Spectral 

slope 

coefficient 

whole(µm
-1

) 

Spectral slope 

coefficient 

reconstituted   

(µm
-1

) 

All Data 32 492 0.175-2.86 23.6-420 20.0-119 43.6-539 7.19-45.5 6.22-17.8 

All Warm 28 403 0.175-2.86 23.6-420 23.2-119 46.8-539 7.19-45.5 6.22-17.8 

All Cold 4 88.1 0.276-1.08 28.8-89.1 20.0-88.6 48.8-178 15.8-20.1 7.87-11.1 

Terrestrial 

 

14 211 0.175-2.86 23.6-350 20.0-88.6 43.6-439 16.9-45.5 6.27-17.8 

Marine 4 33.0 0.250-0.598 

 

73.8-218 26.8-43.0 100-261 7.19-37.9 7.89-12.7 
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Table 2b.  Volume weighted average of absorbance at 300 nm.  Percent absorbance retained, filtrate, and total recovery are 

represented as well as spectral slope coefficients of whole and reconstituted portions at 300 nm.  All data is represented with +/- one 

standard deviation.  n = number of samples and amt = rain amount in mm. 

 n Amt.  

(mm) 

Abs @  

300 nm whole 

(m
-1

) 

Abs @ 300 nm      

(m
-1

) % 

reconstituted 

Abs @ 300 

nm (m
-1

)    

% filtrate 

Abs @ 

300 nm   

(m
-1

)       

% total 

recovery 

Spectral 

slope 

coefficient 

whole(µm
-1

) 

Spectral slope 

coefficient 

reconstituted   

(µm
-1

) 

All Data 32 492 0.67 

+/- 0.11 

116 

+/- 99.0 

43.1 

+/- 20.4 

156 

+/- 101 

23.5 

+/- 7.17 

10.3 

+/- 2.96 

All Warm 28 403 0.72 

+/- 0.12 

124 

+/- 103 

41.3 

+/- 17.7 

165 

+/- 105 

24.1 

+/- 7.64 

10.8 

+/- 3.05 

All Cold 4 88.1 0.44 

+/- 0.11 

60.7 

+/- 25.4 

55.3 

+/- 34.8 

100 

+/- 32.2 

17.6 

+/- 2.20 

9.40 

+/- 1.37 

Terrestrial 

 

14 211 0.59 

+/- 0.16 

121 

+/- 110 

43.6 

+/- 20.7 

157 

+/- 114 

23.5 

+/- 7.37 

10.9 

+/- 3.49 

Marine 4 33.0 0.45 

+/- 0.068 

149 

+/- 65.8 

 

36.9 

+/- 8.80 

 

185 

+/- 75.0 

23.5 

+/- 13.4 

9.48 

+/- 2.19 
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Based on the fluorescence of the reconstituted and filtrate fractions relative to the 

fluorescence of the whole samples, 79% of the DOM fluorescence was accounted for in the two 

fractions (Table 1a), ranging from 42.5 to 161 % (Table 1b).  Of the recovered DOM 

fluorescence, 52% is from relatively more hydrophilic entities, ranging from 32.5 to 107%, 

because they were not retained by the hydrophobic C18 cartridge.  The fluorescent DOM in the 

reconstituted fraction, 27% of the recovered DOM fluorescence, ranging from 9.97 to 53.8%, is 

from more hydrophobic compounds.  The fraction of unrecovered DOM fluorescence most likely 

a results from inefficient elution off the C18 cartridge of very hydrophobic or strongly bound 

material.  

The results presented in Table 2b and 1a are different than similar studies done in surface 

waters.  Approximately 70% of DOM from surface waters was effectively removed by C18 

cartridge extraction which is larger than the percentage from rainwater (Amador et al. 1989).  

DOM has been proposed to consist primarily of humic-like substances which would be 

efficiently retained by the C18 cartridge (Cappiello et al., 2003).  However, since 52% of the 

rainwater fluorescent material was not retained by the C18 cartridge, this suggests rainwater 

DOM contains chromophoric molecules that are different than surface waters and probably 

contain a larger fraction of small, nonpolar molecules.   

The UV-Vis absorbance percentages were also calculated in the same fashion as the 

fluorescence, but since the total recoveries were greater than 100% (ranges of 81.4 to 539%) it 

appears that a contamination was present (Table 2b).  Previous work on whole rainwater showed 

a positive correlation between fluorescence and absorbance (Kieber et al. 2006).  The absorbance 

and fluorescence of whole rainwater measured in my study fall within the range of previously 

reported absorbance and fluorescence values indicating the contamination was likely picked up 
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during the extraction procedure.  The reported absorbances include the subtraction of the 

absorbance from blank extractions, determined by passing milli-Q water through clean C18 

cartridges.  Therefore, the contamination in the sample is in addition to the absorbances 

associated with these blanks.   

Dissolved Organic Carbon 

Dissolved organic carbon analysis was performed on a subset of rainwater samples.  The 

VWA absorbance (Table 3a)  and fluorescence (Table 3b) of the whole rain, along with the 

percent of fluorescence reconstituted, filtrate, and total recovery in this subset of samples is 

similar to the values obtained using the whole data set.  Tables 4a and 4b include the respective 

ranges for the fluorescence and absorbance.  This indicates that the DOC sample subset provides 

a representative fraction of the whole data set.  The VWA DOC concentration was 62 µM, 

ranging from 29.6 to 599µM, which is similar to the previously reported value of 61 µM for 

rainwater collected at the same site (Kieber et al. 2006). The C18 reconstituted fraction of the 

rainwater accounted for 42%, ranging from 12.8 to 126%, of the DOC from the rain sample.  

This suggests that C18 reconstituted DOC is a significant fraction of the uncharacterized DOC in 

rainwater.  The total recovery of DOC could not be determined since the filtrate was 

contaminated with residual methanol.  The 42% should be viewed as a minimum estimate as 

some fraction of the DOC most likely was retained and not eluted off the C18 cartridge based on 

the approximate 20% of the DOC fluorescence not recovered from the C18 cartridge.  For surface 

water samples, the percentage of DOC extracted by C18 cartridges were less than the percentage 

of chromophoric material retained (based on fluorescence or UV absorbance) (Simjouw et al., 

2005; Kim et al., 2003).  The reverse was found with rainwater, providing further evidence that 

the chromophoric DOC in rainwater is different from surface water DOM.  Previously, the 
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portion of characterized DOC in rain consisted of organic acids (Kieber et al. 2006), compounds 

which would be expected to be present in the filtrate portion of the extracted rain.  Therefore, the 

42% of DOC found in the reconstituted fraction consists of organic matter which has not 

previously been characterized in rainwater. 
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Table 3a.  DOC subset of volume weighted average of absorbance at 300 nm.  Percent absorbance retained, filtrate, and total recovery 

are represented as well as spectral slope coefficients at 300 nm.  All data is represented with +/- one standard deviation.  n = number 

of samples and amt = rain amount in mm. 

DOC 

subset 

n Amt.  

(mm) 

Abs @  

300 nm whole 

(m
-1

) 

Abs @ 300 nm      

(m
-1

) % 

reconstituted 

Abs @ 300 

nm (m
-1

)    % 

filtrate 

Abs @ 

300 nm   

(m
-1

)       

% total 

recovery 

Spectral 

slope 

coefficient 

whole(µm
-1

) 

Spectral slope 

coefficient 

reconstituted  

(µm
-1

) 

All Data 17 237 0.70 

+/- 0.24 

134 

+/- 125 

37.9 

+/- 8.79 

 

173 

+/- 131 

24.3 

+/- 8.65 

 

9.82 

+/- 2.75 

All Warm 15 193 0.76 

+/- 0.27 

146 

+/- 128 

39.0 

+/- 7.60 

185 

+/- 133 

25.3 

+/- 8.69 

10.0 

+/- 2.87 

All Cold 2 

 

44.0 0.46 

+/- 0.33 

42.2 

+/- 18.9 

25.5 

+/- 7.84 

67.7 

+/- 26.8 

16.4 

+/- 0.757 

8.35 

+/- 0.680 

Terrestrial 

 

10 153 0.59 

+/- 0.14 

143 

+/- 125 

37.0 

+/- 11.1 

180 

+/- 132 

24.1 

+/- 8.32 

9.97 

+/- 3.22 

Marine 2 16.0 0.41 

+/- 0.10 

95.5 

+/- 30.6 

 

41.0 

+/- 10.2 

 

136 

+/- 40 

 

28.2 

+/- 13.6 

10.5 

+/-3.07 
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Table 3b.  DOC subset of volume weighted average DOC and integrated fluorescence.  Percent DOC retained and percent integrated 

fluorescence retained, filtrate, and total recovery (relative to entire scan).  All data is represented with +/- one standard deviation.   n = 

number of samples and amt = rain amount in mm. 

DOC 

subset 

n Amt.  

(mm) 

DOC 

whole  

( µM) 

% DOC 

reconstituted 

 

Integrated 

Fluorescence 

whole 

x 10
-3 

% Integrated 

Fluorescence 

reconstituted 

%  Integrated 

Fluorescence 

filtrate 

% Integrated 

Fluorescence  

Total recovery 

All Data 18 260 62.3 

+/- 

4.45 

41.6 

+/-  28.69 

54.7 

+/- 10.6  

24.02 

+/- 11.71 

49.76 

+/- 10.44 

73.78 

+/- 17.74 

All Warm 15 193 137 

+/- 

28.59 

35.1 

+/- 19.27 

62.0 

+/- 13.02 

25.12 

+/- 12.54 

51.54 

+/- 10.85 

76.66 

+/- 18.58 

All Cold 3 

 

67.0 39.5 

+/- 

4.43 

74.6 

+/- 49.46 

33.8 

+/- 5.69 

18.52 

+/- 3.46 

41.41 

+/- 2.80 

59.93 

+/- 6.18 

Terrestrial 

 

10 153 111 

+/- 

23.36 

30.5 

+/- 18.34 

41.8 

+/- 8.52 

24.3 

+/- 13.71 

50.35 

+/- 9.31 

74.65 

+/- 18.03 

Marine 2 16.0 59.6 

+/- 

3.03 

38.1 

+/- 13.56 

44.0 

+/- 10.09 

28.85 

+/- 18.60 

56.79 

+/- 6.83 

85.64 

+/- 21.55 
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Table 4a.  Ranges for DOC subset of volume weighted average DOC and integrated fluorescence.  Ranges of percent DOC retained 

and percent integrated fluorescence retained, filtrate, and total recovery (relative to entire scan).  n = number of samples and amt = 

rain amount in mm. 

DOC 

subset 

n Amt.  

(mm) 

DOC 

whole  

( µM) 

% DOC 

reconstituted 

 

Integrated 

Fluorescence 

whole 

x 10
-3 

% Integrated 

Fluorescence 

reconstituted 

%  Integrated 

Fluorescence 

filtrate 

% Integrated 

Fluorescence  

Total recovery 

All Data 18 260 29.6-

599 

12.8-126 24.0-215 9.97-49.4 32.5-69.9 42.5-119 

All Warm 15 193 47.1-

599 

12.8-75.7 24.0-215 9.97-49.4 32.5-69.9 42.5-119 

All Cold 3 

 

67.0 29.6-

49.4 

26.8-126 32.7-34.9 14.8-21.6 38.9-44.5 53.7-66.1 

Terrestrial 

 

10 153 42.0-

326 

12.8-71.5 24.0-161 9.97-49.4 33.8-67.8 43.8-117 

Marine 2 16.0 56.1-

64.9 

28.5-47.7 56.1-64.9 15.7-42.0 46.9-67.0 62.6-109 
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Table 4b.  Ranges for DOC subset of volume weighted average of absorbance at 300 nm.  Ranges of percent absorbance retained, 

filtrate, and total recovery are represented as well as spectral slope coefficients at 300 nm.  n = number of samples and amt = rain 

amount in mm. 

DOC 

subset 

n Amt.  

(mm) 

Abs @  

300 nm whole 

(m
-1

) 

Abs @ 300 nm      

(m
-1

) % 

reconstituted 

Abs @ 300 

nm (m
-1

)    % 

filtrate 

Abs @ 

300 nm   

(m
-1

)       

% total 

recovery 

Spectral 

slope 

coefficient 

whole(µm
-1

) 

Spectral slope 

coefficient 

reconstituted  

(µm
-1

) 

All Data 17 237 0.170-2.46 23.0-420 20.0-55.6 43.0-475 14.4-45.5 6.42-16.3 

All Warm 15 193 0.170-2.46 23.0-420 28.8-55.2 51.8-475 14.4-45.5 6.42-16.3 

All Cold 2 

 

44.0 0.403-0.564 28.7-55.6 20.0-31.1 48.7-150 15.87-16.9 7.87-8.83 

Terrestrial 

 

10 153 0.170-2.33 23.7-350 20.0-55.6 43.6-405 16.9-45.5 6.27-12.79 

Marine 2 16.0 0.256-0.598 

 

73.8-117 31-51 105-168 18.7-37.9 8.35-12.8 
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Nuclear Magnetic Resonance (NMR) 

 NMR spectroscopy is a powerful tool for the determination of functional groups in DOM.  

The nuclear magnetic resonance spectra that are obtained for pure organic compounds in solution 

generally consist of very sharp, well-defined lines (Aiken et al. 1985).  The extreme sharpness of 

these lines allows one to detect very small differences in the magnetic environments of nuclei.  

However, DOM mixtures are complex and result with broader peaks.   

Comparisons of 
1
H-NMR integral areas allows for comparison of different chemical 

natures of DOM. The relative regions of this study are identified by five most representative 

categories of functional groups in the 
1
H-NMR spectra: Ar-H: aromatic protons (9-6.5 ppm), 

CH-O: protons on carbon atoms singly bound to oxygen atoms (4.5-3.3 ppm), CH-C=: aliphatic 

protons on carbon atoms adjacent to carbonyl groups or aromatic rings (3.2-1.9 ppm), CH2- 

groups (1.9-1.1 ppm), and CH3- groups (1.1-0.5 ppm). Comparison of the total NMR integration 

as well as integrals of the individual regions allows for comparisons of abundances of different 

protons in different rain samples.  

As shown in the NMR spectra of two different rain events (Figure 3 a and b), the most 

intense bands can be seen within the region of 4.5 to 0.8 ppm which includes the CH-O, CH-C=, 

CH2 and CH3  groups.  On occasion, bands in the aromatic region of 9.0 to 6.5 ppm can be 

observed.  The terrestrial originated storm had a higher total integration (Figure 4a) as well as a 

higher percentage of CH-O protons than the marine originated storm (Figure 4b), while the blank 

reveals very low integration and intensity in all regions (Figures 3c and 4a).     
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Figure 3.  NMR spectra of (a) rain event 633, terrestrial; (b) rain event 642, marine; and (c) 

blank.    

 

 

 

 

 

 

 

a.  E 633; Terrestrial 

b.  E 642; Marine 

c.  Blank 

MeOH 

MeOH 

MeOH 
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Figure 4 (a) Average of respective NMR integrated regions and (b) % integration of respective 

regions for marine (E642) and terrestrial (E633) originated storms. 

 

In order to assess whether the NMR differences between rain events are not due to 

variability in the method, a variability study of rain event E 658 was conducted on 4 aliquots.  

Average total integrations as well as the average integrations in the respective regions were 

determined (Table5).   

 

Table 5.  Variability study: standard deviations, relative standard deviations, and  

averages of NMR integral regions of E 658. 

 Ar-H 

 

CH-O 

 

CH-C= 

 

CH2- 

 

CH3- 

 

Average 

Integration 

0.359 
 

3.03 
 

4.98 
 

7.51 
 

2.15 
 

Relative% 

Standard 

Deviation 

27.3 
 

8.24 
 

3.53 
 

8.82 
 

4.63 
 

Standard 

deviation 

0.0983 
 

0.250 
 

0.176 
 

0.663 
 

0.100 
 

a. b. 
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The relative standard deviation was 27.3% for the Ar-H region, which is large in comparison to 

the other regions.  This is due to the average integration value being small.   

However, the Ar-H region shows the smallest standard deviation (Figure 5).  The largest 

standard deviation is from the CH2- region.  All other relative standard deviations were less than 

9% indicating low variability from the extraction and NMR methods. 

0

1

2

3

4

5

6

7

8

9

Ar-H CH-O CH-C= CH2- CH3-

Region

In
te

g
ra

ti
o

n
 (

p
p

m
)

 
Figure 5.  Average NMR integrated regions of 4 samples of rain event 658 with respective 

standard deviations per integrated area.  

 

Fluorescence total integration from the whole (Figure 6) and reconstituted fraction values 

of 36 rain events were plotted against the total NMR integration.  Whole and reconstituted 

fluorescence total integration values were also plotted against each individual NMR integral 

area.  
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Figure 6.  Whole fluorescence vs. total NMR integration of all rain samples. 

 

Tables 6 through 9 show the slopes, R values, and P values resulting from each plot of whole and 

reconstituted total fluorescence integration values vs NMR integrals.  A strong correlation exists 

between the total (P< 0.001) and individual integrated NMR regions and both the whole and 

reconstituted fluorescence (Table 6).  Comparing the slopes of the fluorescence vs the integral 

values of individual NMR regions (∆ Fluorescence/ ∆ NMR integration), the greatest contributor 

to the fluorescence is the Ar-H region (Table 6).  Thus, although the Ar-H region is the smallest 

contributor to the total NMR integration (Figure 5), it is the largest contributor to the 

fluorescence, suggesting that the Ar-H region is responsible for most of the fluorescence.   

Total NMR integration values, as well as each individual NMR integral areas, were also 

plotted against the whole and reconstituted DOC values. Strong correlations exist between the 

total (P < 0.001) and individual integrated NMR regions and both whole and reconstituted DOC 

values (Table 7).  Comparing the slopes of the integrals of individual NMR regions vs DOC 

(∆NMR integration/∆DOC), the NMR regions showing the greatest increase with increasing 
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DOC are the CH-C= and CH2 hydrogens. The region which contributes least to the DOC is the 

aromatic region (Table 7).   

Tables 10 and 11 show the slopes, R values, and P values resulting from each plot of 

whole and reconstituted total fluorescence integration values of each respective peak (A, C, M, 

and T) vs NMR integrals.  A correlation exists between all fluorescence peaks and individual 

integrated NMR regions in the whole fluorescence (Table 10).  A strong correlation (P < 0.001) 

exists in all regions of the whole fraction of the A and C peaks for all NMR integration areas.  

The aromatic region has a lesser correlation (P < 0.02) in the M peak.  In the T peak, a lesser 

correlation (P < 0.01) exists with the CH2 region.  In the reconstituted fraction, a strong 

correlation of (P < 0.001) exists in all region except the aromatic region (Table 11).  Comparing 

the slopes of the individual fluorescence peaks vs the integral values of individual NMR regions 

(∆ Fluorescence/ ∆ NMR integration), the greatest contributor to the fluorescence is the Ar-H 

region (Table 10 and 11).  When the individual peaks are compared to the total fluorescence the 

same trend is apparent, the Ar-H region is the smallest contributor to the total NMR integration 

(Figure 5), but it is the largest contributor to the fluorescence, suggesting that the Ar-H region is 

responsible for most of the fluorescence.   

Impact of Storm Origin 

Rain events were subdivided as either terrestrial or marine in order to determine influence 

of storm origin on the amount and composition of DOM in rainwater.  NMR data further 

explains how storm origin influences the composition of DOM in rain.  Total Fluorescence vs 

NMR integral regions were compared for marine rains vs terrestrial rains. The only and strongest 

correlation in the marine samples (Table 8) exists in the Ar-H region.  Interestingly, in marine 

rains, the aromatic region is the only region that showed significant correlation (P<0.1) between 
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fluorescence and NMR integration values, but the aromatic region is the only NMR region that 

shows no correlation with fluorescence in the terrestrial storms (Table 9).   

Table 6.  Slope, R value, and P value for whole and reconstituted fluorescence values compared 

to respective integrations areas from NMR analysis.  n= number of samples    

Integration  

Area 

n=36 

Slope 

Whole 

R value 

Whole 

P value 

Whole 

Slope 

Reconstituted 

R value 

Reconstituted 

 

P value 

Reconstituted 

Total  

 

1605.0 0.790 <0.001 505.14 0.761 <0.001 

Ar-H 

 

49691 0.393 <0.02 16727 0.405 <0.02 

CH-O 

 

8001.4 0.804 <0.001 2472.5 0.761 <0.001 

CH-C= 

 

4888.9 0.753 <0.001 1571.7 0.741 <0.001 

CH2 

 

4000.7 0.778 <0.001 1245.7 0.742 <0.001 

CH3 

 

14704 0.743 <0.001 4674.0 0.723 <0.001 

 

 

 

 

 

 

 

 

Table 7.  Slope, R value, and P value for whole and reconstituted DOC values compared to 

respective integrations areas from NMR analysis.  n= number of samples    

Integration  

Area 

n=17 

Slope 

Whole 

x 10
3 

R value 

Whole 

P value 

Whole 

Slope 

Reconstituted 

R value 

Reconstituted 

x 10
3
 

P value 

Reconstituted 

Total  

 

136 0.729 <0.001 0.4565 756 <0.001 

Ar-H 

 

0.200 0.064 <0.1 0.0063 543 <0.02 

CH-O 

 

27.0 0.702 <0.01 0.0982 795 <0.001 

CH-C= 

 

41.0 0.728 <0.001 0.1367 754 <0.001 

CH2 

 

51.8 0.716 <0.001 0.1649 708 0.001 

CH3 

 

16.6 0.747 <0.001 0.0504 703 <0.01 
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Table 8.  Slope, R value, and P value for whole and reconstituted fluorescence values of Marine 

storms compared to respective integrations areas from NMR analysis.  n= number of samples    

Integration  

Area 

n=4 

Slope 

Whole 

R value 

Whole 

P value 

Whole 

Slope 

Reconstituted 

R value 

Reconstituted 

 

P value 

Reconstituted 

Total  

 

-1188.4 0.618 >0.1 -466.64 0.464 >0.1 

Ar-H 

 

241815 0.872 <0.1 119548 0.824 <0.1 

CH-O 

 

13147 0.429 >0.1 5482.5 0.341 >0.1 

CH-C= 

 

-2942.2 0.721 >0.1 -1207.7 0.565 >0.1 

CH2 

 

-2794.2 0.679 >0.1 -1122.2 0.521 >0.1 

CH3 

 

2203.9 0.079 >0.1 3935.6 0.270 >0.1 

 

 

 

 

 

 

 

Table 9.  Slope, R value, and P value for whole and reconstituted fluorescence values of 

Terrestrial storms compared to respective integrations areas from NMR analysis.  n= number of 

samples    

Integration  

Area 

n=14 

Slope 

Whole 

R value 

Whole 

P value 

Whole 

Slope 

Reconstituted 

R value 

Reconstituted 

 

P value 

Reconstituted 

Total  

 

1440.8 0.744 <0.01 440.39 0.650 <0.01 

Ar-H 

 

41395 0.435 >0.1 14136 0.424 >0.1 

CH-O 

 

9167.7 0.782 <0.001 2973.6 0.724 <0.01 

CH-C= 

 

4289.1 0.757 <0.01 1270.4 0.641 0.01 

CH2 

 

3300.7 0.710 <0.01 990.24 0.608 <0.02 

CH3 

 

10134 0.517 <0.05 3373.6 0.492 <0.1 
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Table 10.  Slope, R value, and P value for whole fluorescence values of peaks A, C, M, and T compared to respective integrations 

areas from NMR analysis.  n= number of samples   

Whole A  

peak 

A  

peak 

A 

peak 

C  

peak 

C  

peak 

C 

peak 

M 

 peak 

M  

peak 

M  

peak 

T  

peak 

T 

 peak 

T 

peak 

Integratio

n Area 

n=36 

slope R 

value 

P 

value 

slope R 

value 

P 

value 

slope R 

value 

P 

value 

slope R  

value 

P 

value 

Total 

 

248.9 0.743 <0.001 108.2 0.688 <0.001 227.2 0.791 <0.001 84.88 0.546 <0.001 

Ar-H 

 

6653 0.842 <0.001 2894 0.306 <0.100 6768 0.392 <0.020 4813 0.515 <0.001 

CH-O 

 

1251 0.765 <0.001 561.3 0.732 <0.001 1090 0.778 <0.001 468.2 0.618 <0.001 

CH-C= 

 

738.1 0.691 <0.001 313.7 0.626 <0.001 700.4 0.765 <0.001 264.9 0.535 <0.001 

CH2- 

 

624.0 0.734 <0.001 270.6 0.679 <0.001 575.4 0.789 <0.001 186.8 0.474 <0.010 

CH3- 

 

2317 0.716 <0.001 1016 0.669 <0.001 1977 0.712 <0.001 818.5 0.545 <0.001 
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Table 11.  Slope, R value, and P value for reconstituted fluorescence values of peaks A, C, M, and T compared to respective 

integrations areas from NMR analysis.  n= number of samples 

Resonstituted A 

peak 

A  

peak 

A 

peak 

C  

peak 

C 

peak 

C  

peak 

M 

 peak 

M 

peak 

M 

peak 

T 

 peak 

T 

 peak 

T  

peak 

Integration 

Area 

n=36 

slope R 

value 

P 

value 

slope R 

value 

P 

value 

slope R 

value 

P 

value 

slope R 

value 

P 

value 

Total 

 

86.33 0.740 <0.001 31.62 0.752 <0.001 46.46 0.703 <0.001 31.66 0.610 <0.001 

Ar-H 

 

2898 0.413 <0.020 1009 0.399 <0.020 1550 0.390 <0.020 1460 0.468 <0.010 

CH-O 

 

426.5 0.749 <0.001 155.3 0.752 <0.001 219.7 0.682 <0.001 154.4 0.611 <0.001 

CH-C= 

 

264.0 0.710 <0.001 97.83 0.730 <0.001 145.2 0.690 <0.001 100.3 0.607 <0.001 

CH2- 

 

213.1 0.720 <0.001 77.87 0.730 <0.001 115.8 0.691 <0.001 75.99 0.578 <0.001 

CH3- 

 

794.7 0.705 <0.001 287.8 0.709 <0.001 420.4 0.659 <0.001 287.9 0.575 <0.001 
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Alkyl protons (Figure 4a) are the majority of the protons of C18 extracted material for 

both storm types with a greater integration in the terrestrial storm while the aromatic region 

offers the smallest integration.  A greater percentage of protons in the Ar-H region (Figure 4b) 

are evident in the marine originated vs terrestrial storm while only contributing a small 

percentage (1-3%) of the overall integral percentages.  However, the aromatic region is the 

biggest contributor to fluorescence.  Figure 7 represents the entire data set of terrestrial and 

marine storms showing again that alkyl protons are the majority of the protons of C18 extracted 

material and do not vary by storm origin.  Again, the aromatic region is the greatest contributor 

to fluorescence and does vary by storm origin. 

The NMR analysis indicates that DOM collected from marine and terrestrial storms are 

compositionally different and this data is supported with fluorescence, Uv-Vis absorbance, and 

Doc data.  A greater percent fluorescent DOC was present in the reconstituted fraction compared 

to terrestrial indicating that the reconstituted fraction likely contains aromatic DOC, supporting 

the NMR findings.  The spectral slope in the reconstituted fraction was lower in the terrestrial 

derivded rains relative to the marine derived.  The DOC concentration was higher in the 

terrestrial derived rains relative to marine.  More DOC was reconstituted in marine storms 

possibly because of the more recalcitrant, hydrophobic, and higher molecular weight matter.  

This may explain the background DOC of 20 µM observed in all marine rains.  Higher DOC in 

terrestrial storms is due to the storm having more organic acids which will pass through the C18 

cartridge because they are hydrophilic, thus not being retained on the cartridge.  Relative 

abundance of DOM as a fraction of DOC increases in marine storms because the hydrophilic 

portion has been removed.   
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    Figure 7.  Average of respective integrated regions and % integration of respective 

    NMR regions for all marine and terrestrial originated storms with standard deviations. 
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Seasonality 

 All rain events were separated into warm and cold seasons in order to determine the 

impact of season on the variability of DOM in rainwater.  The warm and cold seasons 

correspond to the growing and non-growing seasons.  The warm season was defined as April 1 to 

September 31, while the cold season was defined as October 1 to March 31.  The DOC 

concentration in rainwater collected during the warm season (137µM) is larger relative to cold 

season rainwater (40 µM) (Table 3a).  The concentrations ranged from47.1 to 599 µM for the 

warm season and 29.6 to 49.4 µM for the cold season (Table 3b).  The % DOC reconstituted 

varied seasonally, 35 and 75% for the warm and cold season respectively, indicating a 

compositional difference in the DOC.  The percentage DOC ranged from 12.8 to 75.7% and 26.8 

to 126% respectively for the warm and cold seasons.  This compositional difference is also 

supported with the spectral slope data.  Both the whole and reconstituted samples had a higher 

slope in the warm season.  The same pattern was reported previously in Kieber et al. (2006).  

Lower molecular weight is present in the summer due to higher organic acids which are known 

as DOM photodegredation products that can compromise as much as 45% of the DOC pool in 

rain.  This indicates a shift to lower molecular weight DOM in summer months. 

In summary, the objectives of my thesis were to quantify DOM UV-Vis absorbance and 

fluorescence in authentic and fractionated rainwater samples collected during different seasons 

and different storm types and to evaluate structural characteristics of rainwater DOM.  

Fluorescence, UV-Vis absorbance, and DOC concentrations, whole and fractionated, were 

measured in rainwater collected in Wilmington, NC, between September 15, 2005 to September 

6, 2006.  The concentration of DOC in rain varied between 30 and 599 µM and on average 

approximately half of the DOC was present in the C18 extractable fraction of the rainwater.  
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While all rain events contained fluorescent DOC, approximately half of the fluorescent DOC was 

present in the C18 filtrate fraction of the rainwater which contains the more hydrophobic portion 

of the DOC.  This was not expected since it was previously thought that a majority of 

chromophoric DOC would be retained by the C18 cartridge.  The C18 extractable DOC has been 

shown as an important complexor of metals, so understanding the composition of DOC in this 

fraction is important.  Since half of the chromophoric DOC is present in the hydrophilic portion 

of the rain, the DOC is also important since the DOM in this fraction of rainwater will attenuate 

light in the atmosphere.   

NMR spectra of the C18 extractable DOM in rainwater provided structural information 

about the DOM.  A majority of the protons in the C18 extractable DOM are bound to alkyl 

carbons, but the aromatic region of the NMR spectra appears to be the region which changes the 

most dramatically between storms.  The overall abundance of aromatic protons does not change 

between storms, but the contribution of protons in this region to the overall integration of the 

NMR spectra does change.  In marine storms the aromatic protons are a more significant 

contributor to the overall NMR spectra integration compared to terrestrial storms.  Marine storms 

also have lower DOC concentrations, lower spectral slopes, and a larger percent of the 

fluorescent material in the C18 extractable fraction of the rainwater.  It has been observed that 

marine rainwater collected from remote sites have a DOC concentration of 20µM.  This 

background DOM could be the aromatic, large molecular weight DOM which I observed in my 

marine rainwater samples.  As a result of the aromaticity and large molecular weight this Dom 

might be recalcitrant and globally distributed. 
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Further studies will be conducted to examine the photodegredation of DOC in rainwater 

as well as additional characterization of DOC via NMR analysis.  Stable and radiocarbon isotope 

analysis of rainwater will also be conducted. 
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