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ABSTRACT 

The design of compounds that form cytotoxic, non-mutagenic 3-methyladenine adducts 

in pancreatic ß-cells is being studied in this project for potential applications in the treatment of 

diseases such as diabetes and cancer.  These compounds are composed of three components:  1) 

a cell-targeting moiety, glucosamine, which targets the insulin producing pancreatic β-cells by 

way of the GLUT-2 transporters present on these cells 2) a site-specific DNA methylating agent, 

Me-Lex, which has been shown to selectively produce cytotoxic, non-mutagenic N3-

methyladenine adducts 3) a linker component that connects the two other components together. 

The linker is a critical component because it has to be such that the cell-targeting and DNA-

methylating properties of the two functional components are maintained.  A synthetic route was 

explored, which enables the easy introduction of various linkers into the molecules.  Fluorescent 

compounds were also designed to bind weakly to DNA at the same positions as the DNA-

methylating compounds.  These fluorescent compounds will be used to calculate the binding 

constants of weakly binding compounds that bind to the minor groove of DNA at A/T rich 

regions.  The design features and the synthesis of these compounds are described. 
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 Many Americans suffer from diabetes (about 18 million) of which about 5-10 % (about 5 

million) have type-1 diabetes.1  Diabetes is a disease in which the body does not properly use, or 

does not produce, insulin.1  Insulin is a hormone secreted in the pancreas that enables cells in the 

body to take up glucose from the blood and create energy for everyday needs.  The cells that 

produce insulin in the body are pancreatic β-cells.  Type-1 diabetes results when insulin 

producing pancreatic β-cells are destroyed.  Destruction of these cells is thought to occur because 

of an immune response caused by genetic factors, viral infections, or environmental factors, but 

the mechanism of destruction is still poorly understood.2-3 

 One of the commonly used animal models to study type-1 diabetes is one in which a 

DNA damaging drug, streptozotocin (STZ), is used to kill pancreatic β-cells.  This compound, 

STZ, causes diabetes by two different mechanisms.  In one mechanism a single large dose of 

STZ is used, that causes rapid and complete destruction of pancreatic β-cells resulting in 

diabetes.4 This is a non-immune mechanism induced diabetes and is not reflective of human 

type-1 diabetes.  In the second mechanism, multiple small doses of STZ is used, which results in 

an initial drop in insulin production, followed by an immune response and causes complete 

destruction of pancreatic β-cells.4 This second mechanism, involving an immune reaction is more 

reflective of human type-1 diabetes. 

 STZ is a compound that damages (methylates) DNA at multiple sites.  However, there is 

evidence in literature to show that the particular damage, caused by STZ, that is responsible for 

the immune response in pancreatic β-cells is the formation of the 3-methyladinine (3-MeA) DNA 

adduct.4 It is difficult to study the direct correlation between the 3-MeA formation and the 

induction of the immune response resulting in diabetes in the animal models because STZ 

damages DNA at multiple sites.  In fact, damage caused by STZ at some sites on DNA (other 
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than N3-adenine) is believed to cause mutations and lead to the formation of tumors.  Thus, the 

damage at multiple sites and the consequent formation of tumors has complicated the study of 

type-1 diabetes using the STZ rodent model. 

 It would be possible to study the role of 3-MeA in triggering an immune response if one 

could generate exclusively 3-MeA in pancreatic β-cells.  Understanding the factors that trigger 

the immune response in pancreatic β-cells would provide and invaluable tool for the study of 

type-1 diabetes.  Furthermore, by understanding how to induce an immune response in a 

particular kind of cell by forming only 3-MeA DNA adducts in those cells can lead to the 

development of new drugs to target tumor cells, and destroy them by using the body�s immune 

system. 

 The goal of this project was to design and synthesize compounds to produce 3-MeA 

DNA adducts in insulin producing pancreatic β-cells.  The project involved combining an agent 

capable of causing exclusively one kind of damage on DNA (i.e. 3-MeA adduct) with a unit that 

can target this DNA-damaging agent preferentially to pancreatic β-cells.  This thesis describes 

the design and progress towards the synthesis of such molecules.  



CHAPTER 2. BACKGROUND AND SIGFIFICANCE 
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2.1. Background 

The goal of this project is to make compounds that can cause a specific kind of damage 

on DNA (i.e. 3-MeA adducts), which is believed to be the cause of the immune response that is 

responsible for the destruction of cells, and that can target pancreatic β-cells.  Such compounds 

would enable the investigation of the biological consequences of forming 3-MeA adducts in 

these insulin producing cells.  In order to design these new compounds that can produce 

exclusively 3-MeA adducts on DNA, one must first have a good understanding of the structure 

of DNA.  

2.1.1. DNA Structure and Damage 

B-DNA (deoxyribose nucleic acid) is in the shape of a double helix (Figure 2.1) with 

each strand of the double helix being composed of a negatively charged phosphate sugar 

backbone.  Connected to the sugars perpendicular to the double helix are the DNA bases adenine 

(A), thymine (T), guanine (G), and cytosine (C).  Hydrogen bonding between base pairs draws 

together the two phosphate sugar strands to form the double helix.  The base pairing is very 

specific with adenine always paired to thymine and guanine always paired to cytosine.  As a 

result of this base pairing that brings the two strands together to form the double helix, two 

grooves are created.  One groove is broad and is called the major groove.  Sites within the major 

groove are easier to access and most proteins that interact with DNA do so in the major groove.  

The other groove is narrow and deep and is called the minor groove.  Sites within this groove are 

more difficult to access.   

 As a result of the base pairing arrangement, certain sites on the DNA base pairs 

are exposed in the major groove, others are exposed in the minor groove, while  
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Figure 2.1.  Structure of DNA showing the major and minor groove. 

phosphate 
backbone 

base pairs 
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some sites are involved in the hydrogen bonding that draws the two DNA strands together, as 

can be seen from Figure 2.2.  Many of these sites are targets for DNA methylation by DNA-

methylating agents.  For example some of the sites in the G/C base pairs which lie in the major 

groove and can be methylated are the N7 site of guanine, the O6 site of guanine, and the 

exocyclic amine at the four position of cytosine.  In fact the highly accessible and most 

nucleophilic N7 site of guanine is one of the most commonly methylated sites on DNA.  The 

G/C base pair sites in the minor groove that can get methylated are N3 site of guanine and the 

exocyclic amine at the two position of guanine.  Similarly, in the A/T base pairs, the sites in the 

major groove that can be methylated are the N7 site of adenine, the exocyclic amine at the six 

position of adenine, and O4 site of thymine, and the sites which can be methylated in the minor 

groove are the N3 site of adenine and the O2 site of thymine.  In addition to the sites on the base 

pairs that can be methylated there are also sites on the phosphate backbone that can get 

methylated.  The N3-adenine site, which is the target for methylation in this project, is indicated 

by the bold arrow in Figure 2.2.   

Methylation on DNA can lead to different consequences depending on the site that is 

methylated.  For example, the most common methylation seen on DNA, at the N7-guanine site is 

believed to be one which has little or no biological consequences.5-8  On the other hand, 

methylation at the O6 site of guanine is known to lead to both mutations and cell toxicity.2-9 

Similarly, there is evidence to show that methylation at N3-A results in cytotoxicity but does not 

lead to mutations.5, 6, 9-12 Therefore, this 3-MeA adduct is a good choice when the goal is to kill a 

cell without causing other complications. 

 



 8

O

O

P-O

O
O

O

P

O

N

N

N

N

O

N

H

H

H N

N

N

O

H

H

O

O

O

G C

Guanine

Cytosine

major groove

1

23

4

5
6

7

8

9 1
2

3

4
5

6

minor groove

N

N

N

N N

H

H

O

O

CH3

HN

N

O

O
O

O

O

A T

Adenine

Thymine

minor groove

major groove

Alkylation Site:

O

 

Figure 2.2. DNA base pairing, major and minor groove sites and sites that can be     methylated 
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  2.1.2. STZ and its Properties 

 STZ, the compound that was used to induce diabetes by the destruction of pancreatic β-

cells in animal models, is a methylating agent.  It is an α-D-glucopyranose derivative of N-

methyl-N-nitrosourea (Figure 2.3) that targets the pancreatic β-cells.  STZ is believed to target 

pancreatic β-cells due to the selective uptake of the glucose moiety by the low affinity glucose 

transporter, GLUT-2, that is present on the surface of the pancreatic β-cells.13-16  

 The DNA methylation pattern by STZ is complex.  It is known to methylate DNA at 

multiple sites such as N7-guanine, O6-guanine, N7-adenine, and N3-adenine.17 Of these adducts, 

the major adduct (70 %) which is formed by STZ is the N7-methylguanine.17 N7-methylguanine, 

as discussed above is believed to be a benign adduct.5-8 STZ also forms the O6-methylguanine 

adduct that is known to lead to mutations and cause cell toxicity because it can miscode for 

thymine during DNA replication.6-9  It is believed that this adduct is responsible for the 

formation of tumors in rodents treated with STZ, and this can lead to complications when 

studying diabetes using the STZ model. The small proportion of 3-MeA formed by STZ is 

believed to be responsible for the induction of the immune response caused by STZ in the STZ-

rodent model.  Since only a small percentage of the adducts formed by STZ cause the desired 

cell-toxicity, and since STZ treatment also induces tumor formation, it is not a very good choice 

for the study of type-1 diabetes. 

 The proof that the 3-MeA adduct was the adduct that was responsible for the immune 

response in the STZ-rodent model of type-1 diabetes came from studies with transgenic animals 

which were incapable of repairing 3-MeA adducts.4  When these  
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animals were treated with low levels of STZ there was an initial drop in insulin levels, which 

soon recovered to normal levels.  However, after a certain period of time these animals 

developed diabetes because of an immune response that destroyed the pancreatic β-cells.4  When 

compared to wild type animals that did not develop diabetes when subjected to the same 

treatment, the only thing different between these transgenic animals and wild type animals was 

the inability of the transgenic animals to repair the 3-MeA adducts.4  All other adducts formed by 

the low level treatment with STZ would have been repaired by the repair enzymes.  This shows 

that, of the various DNA adducts formed by STZ, the 3-MeA adduct, when formed in low 

quantities and is unrepaired, is probably responsible for the immune response.  This hypothesis 

that low levels of 3-MeA in pancreatic β-cells can trigger an immune response against those cells 

can be directly tested only if the 3-MeA adduct can be formed exclusively in those cells.  This 

cannot be achieved by using reagents such as STZ, which form many different DNA adducts.  

Therefore, designing new compounds that can form exclusively 3-MeA adducts in pancreatic β-

cells, would enable the investigation of the role of the 3-MeA adduct in causing the immune 

response and the factors that control the immune response. 

 2.1.3. 3-MeA Formation by Me-lex 

 Me-lex (Figure 2.4), a compound described in literature,18 is known to selectively form 3-

MeA adducts (> 95 %).  Me-lex is a neutral DNA minor groove binding compound that is an N-

methylpyrrolecarboxamide dipeptide (lex) with a methylating O-methyl sulfonate ester 

functionality attached at one end.18 Me-lex targets specifically the minor groove at A/T rich 

regions on DNA and exclusively forms 3-MeA adducts in those A/T rich regions.18 The reason it 

is exclusive to the minor groove in A/T  
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rich regions is because of its unique binding interactions with the DNA in those regions as 

illustrated in Figure 2.5.  The interactions it has with DNA in A/T rich regions include H-bonds 

formed between the amide hydrogens of the pyrrole and the N3 of adenine and the exocyclic 

oxygen at the two position of thymine, and van der Waals interactions between the pyrrole 

hydrogens and the C2-position of adenine.18 Once Me-lex binds in the minor groove, the methyl 

group is transferred to the most nucleophilic site in the minor groove at A/T rich regions, the N3-

adenine by a concerted process to give the 3-MeA adduct.  The compound then becomes a 

negatively charged sulfonate and is repelled away from the negatively charged DNA backbone 

and will have no other biological consequence of its own.  Figure 2.6 shows a molecular model 

of Me-lex bound within the minor groove of DNA at A/T rich regions   

 The 3-MeA adducts that are formed in cells by Me-lex have been shown to be cytotoxic 

and non-mutagenic.  These adducts are processed by the base excision repair pathway that 

triggers poly(ADP)-ribose polymerase (PARP-1) activation.6  Over activation of PARP-1 due to 

high levels of 3-MeA depletes the cellular ATP levels and causes cell death by necrosis.  If the 

PARP-1 is inhibited, or base excision repair is absent, then the cell dies by apoptosis.6  It is 

believed that both these mechanisms of cell death, necrosis and apoptosis, are required for 

triggering an immune response. 
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Figure 2.6. Molecular model showing Me-lex bound with the minor groove of DNA at A/T rich 
regions.  This model was obtained by modification of a crystal structure of a similar 
compound bound to a DNA dodecamer. 
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 2.2. Significance 

This project describes the attempted design and preparation of new compounds that 

combine the pancreatic β-cell targeting ability of STZ with the selective N3-adenine methylating 

ability of Me-lex.  The ability to successfully target and generate only 3-MeA adducts in 

pancreatic β-cells, and inducing diabetes in rodent models using these new molecules, would be 

very helpful in the research of type-1 diabetes.  Also the low mutagenicity of 3-MeA, produced 

by these compounds would eliminate complications due to tumor formation that is reported for 

STZ rodent models of type-1 diabetes.17 

 If these compounds are successful in inducing an immune response against pancreatic β-

cells on can investigate the factors needed to induce an immune response against particular cells.  

This could lead to the development of a strategy to use the immune system itself to target and 

destroy tumor cells. 



CHAPTER 3. DESIGN AND SYNTHESIS OF DNA METHYLATING COMPOUNDS 

TARGETING PANCREATIC β-CELLS 
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3.1. Design of Molecules 

 The goal of this project is to make new molecules in order to deliver a sequence selective 

DNA methylating agent, namely one that can exclusively form 3-MeA DNA adducts, selectively 

to insulin producing pancreatic β-cells, by incorporating both cell targeting and DNA damaging 

properties in a single molecule.  Pancreatic β-cells can be targeted by glucose units which are 

selectively taken up by the GLUT-2 glucose transporters that are known to be present on these 

cells.  Exclusive DNA methylation at N3 of adenines can be achieved by using a compound 

described in literature, called Me-lex, which is capable of selectively producing 3-MeA adducts 

at A/T rich regions in the minor groove on DNA. Therefore, the strategy to make these new 

compounds capable of forming 3-MeA adducts in pancreatic β-cells is to incorporate, the 

selective DNA methylating ability of Me-lex with the pancreatic β-cell targeting ability of 

glucose.  This strategy is schematically depicted in Figure 3.1. 

 The design of the new compounds has three important components:  

1) a pancreatic β-cell targeting component which is the same as in STZ (see Figure 2.3), 

namely the glucose unit,  

2) a component that can selectively produce 3-MeA, similar to Me-lex, which will 

replace the N-methylnitrosourea group of STZ, and 

3) a variable linker component that will be used to attach the above two functional 

components together.   

Molecules designed in this manner should be able to specifically target pancreatic β-cells, similar 

to STZ, and exclusively produce 3-MeA adducts in those cells, unlike STZ which produces 

multiple DNA adducts.   
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 For compounds designed as shown in Figure 3.1 to achieve the desired goals successfully 

several factors need to be taken into account.  One important consideration is whether the 

glucose unit, which is known to target the pancreatic β-cells when the N-methylnitrosourea or 

other small units are attached to it, will be able to target pancreatic β-cells when the methylating 

Me-lex unit is attached to it. The second important factor is whether the Me-lex unit (which is 

known to produce exclusive 3-MeA adducts) will be able to still selectively target sites on DNA 

and produce exclusively 3-MeA adducts efficiently, similar to the parent Me-lex molecule, even 

when the glucose unit is tethered to it.  Therefore, the linker, which is used to connect the Me-lex 

unit to the glucose unit, assumes a critical role.  This linker, which is the only variable 

component in the design, has to be modified in order to achieve the optimum cell-targeting and 

DNA-damaging properties that are desired.  The composition of the linker can also be varied in 

order to improve the water solubility of the compounds which is required for biological 

applications. 

 The pancreatic β-cell targeting ability of the glucosamine unit with modifications at the 

nitrogen is well described in literature.19-24 Several molecules such as those shown in Figure 3.2, 

with small units attached to the N of the glucosamine have been successfully targeted to cells 

with GLUT-2 glucose transporters.19-24 However, there is not much evidence in literature of large 

units being attached to glucose units and being targeted to pancreatic β-cells.  But, there is no 

evidence that indicates that such molecules, with large components attached to glucosamine 

cannot be targeted to pancreatic β-cells.  A recent patent describes the use of a porphyrin-glucose 

conjugate (Figure 3.3) in selective photodynamic therapy for cancer.25  Increased uptake of this  
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molecule by certain cancer cell lines has been described.  This increased uptake is attributed to 

the over expression of glucose transporters in these cancer cells,25 though the actual glucose 

transporters that were used to transport this molecule into cells were not identified.  If the large 

porphyrin unit is delivered within a cell by glucose transporters (possibly the GLUT-2 

transporter), then it should be possible to deliver the Me-lex unit to pancreatic β-cells via the 

GLUT-2 transporter by tethering it to glucosamine. 

 The ability of the Me-lex unit to efficiently produce exclusively 3-MeA adducts on DNA, 

despite its attachment to the glucose unit via a tether, is crucial for the success of this project.  

The glucose unit is attached at the C-terminus of the Me-lex unit, and away from the reactive 

methylating group.  It is not clear what effect the attached glucose unit will have on the 

methylating ability of the molecules.  The selective binding of the new molecules to the desired 

A/T rich sites in the minor groove of DNA is critical.  If the attached glucose unit also slides into 

the minor groove and forms favorable hydrogen bonding interactions within the groove, the 

binding affinity for these molecules will improve over the parent Me-lex molecule, and efficient 

methylation should be observed.  If on the other hand, the glucose unit has steric conflicts with 

the DNA backbone and interferes with the binding of the Me-lex unit at the A/T rich regions of 

the minor groove, then the linker will have to be of sufficient length in order to suspend the 

glucose unit outside the DNA while allowing the Me-lex unit to still bind in the target site. 

 The methylation of DNA by these molecules is a bimolecular reaction.  Therefore, 

strength of the binding of the molecules at the target site can be expected to directly affect the 

ability of these molecules to methylate the N3-A.  These compounds are designed to be weakly 

binding so that once the methyl group is transferred to the DNA, the resulting negative charge on 

the molecule will cause it to be repelled from the negatively charged phosphate backbone, and be 
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eliminated from the DNA.  However, a significant reduction in binding as compared to the 

parent Me-lex molecule, due to the attachment of the glucose unit, may compromise the 

methylating ability of the new molecules.  If such is the case, a positively charged tetraalkyl 

ammonium group can be introduced into the linker in order to increase the binding affinity.  On 

the other hand, the glucose unit may enhance the DNA binding due to favorable hydrogen 

bonding interactions within the groove, in which case one can expect efficient N3-A methylation.  

Computational methods are being employed in the laboratory to evaluate the binding of these 

new molecules at the desired target site.  Furthermore, this thesis also describes the synthesis of 

new fluorescent probes designed to measure the binding of the new compounds and 

intermediates containing the tethered glucose unit to the desired target site. 

 Based on the design considerations and the factors described above, the molecules that 

were selected for synthesis in this particular project are shown in Figure 3.4.  These two 

molecules, 1 and 2, vary in the length of the tether by one CH2 unit.  These molecules will be 

used to investigate the effect of tethering a glucose unit to the DNA methylating Me-lex 

component on the ability of these molecules to methylate the DNA.  Once the ability of these 

molecules to successfully methylate DNA is determined, these molecules can then be used in 

future studies to investigate their ability to target pancreatic β-cells via the GLUT-2 glucose 

transporter.    
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 3.2. Design of Synthetic Methodology 

 Compounds 1 and 2 were designed to test the effect of the variation in the length of the 

tether between the cell targeting glucose unit and the DNA methylating Me-lex unit by one CH2 

unit. It is expected that several variations of the linker would have to be tested before eventually 

identifying the optimum linker composition that provides favorable cell-targeting and DNA-

methylating properties.  Therefore, it is desirable to develop a synthetic methodology that allows 

for the easy introduction of modifications in the linker composition. 

 Two different approaches were taken for the synthesis of molecules 1 and 2.  The first 

approach was one that was similar to published procedures for similar compounds and would 

enable rapid completion of the target molecules.  In this synthetic approach the linker is 

introduced very early in the overall synthesis.  The second synthetic approach that was explored 

was one which would enable the introduction of variations in the linker at a late stage in the 

overall synthesis.  This approach would facilitate the efficient preparation of several molecules 

bearing different linkers. 

 The first synthetic scheme that was adopted to make compounds 1 and 2 is outlined in 

Scheme 3.1.  In this approach, the desired linker was added to the appropriate pyrrole unit, 4, in 

the second step itself to yield compounds 5 and 6.  The second pyrrole unit was then added to 

compounds 5 and 6 followed by the hydrolysis of the ester on the linker to give 14 and 15.  

These compounds can then be attached to the cell targeting glucose unit before the introduction 

of the reactive methyl sulfonate to form the final target molecules.  The reactions outlined in 

Scheme 3.1 are similar to the ones followed for the synthesis of Me-lex as described in 

literature.10 One disadvantage of this method  
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Scheme 3.1 

is that the linker is added very early in the synthetic scheme.  Therefore, every time a molecule 

with a new linker is required, the synthesis would have to be started all over right from beginning.    

 In order to be able to introduce different linkers into the molecules in a time efficient 

manor, an attempt to develop an alternative scheme in which the DNA sequence recognizing unit 

and the cell targeting unit would be made separately, and then assembled together at a late stage 

in the overall synthesis, with various linkers.  After the assembly with the appropriate linker; the 

reactive methyl sulfonate group can be introduced in the final stages of the synthesis.  A 

schematic diagram outlining this approach is shown in Figure 3.5.  The DNA sequence 

recognizing unit would terminate as a carboxylic acid, linkers would be obtained as amino-esters, 

and the cell targeting unit would be obtained in the form of an amine.  First, the DNA 

recognizing portion, as the carboxylic acid, 
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would be condensed with the linker amine to form a new amide bond.  At the other end of the 

linker, the ester would be hydrolyzed to the carboxylic acid and condensed with the amine on the 

cell targeting unit to form another amide bond.  The final product containing the methyl 

sulfonate can then be obtained in a few steps.  

 Based on this synthetic design shown in Figure 3.5, the new overall synthetic scheme that 

was attempted is outlined in Scheme 3.2.  Starting from the same nitro  
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compound, 4, as in Scheme 3.1, the second pyrrole unit is attached to form the dipyrrole 

compound 9.  The reduction of the nitro to an amino, followed by condensation with acryloyl 

chloride gives the olefin, 10.  The ester at the other end can then be hydrolyzed to 11 and the 

different linkers can then be attached at this late stage in the overall synthesis to obtain 

compounds 23 and 24.     

 The cell-targeting glucose unit in the form of glucosamine can be attached to carboxylic 

acids which can be obtained by the hydrolysis of 23 and 24.  However, before this attachment 

reaction, the OH groups had to be protected.  The protection of the OH groups on glucosamine, 

while maintaining a free amine was achieved by following procedures described in literature26 as 

shown in Scheme 3.3.  The amine of the glucosamine is first with masked with 4-

methoxybenzaldehyde to give 16.  The OH groups of 16 are then protected with by reaction with 

acetic anhydride to give 17.  Finally the amine is and the amine is isolated and stored as the 

hydrochloride salt, 18.  
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Scheme 3.3 

 When the protected glucosamine is attached to the linker, both the cell-targeting and the 

DNA sequence recognizing components are now present in the same molecule (21 and 22).  The 
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OH groups on the glucose unit can then be deprotected and the DNA-methylating methyl 

sulfonate group can be introduced in a few steps to form the desired target molecules as shown in 

Scheme 3.4.  The reactive methyl sulfonate has to be introduced in the least step after the 

deprotection of the glucose unit in order to minimize manipulations of the compound after 

introduction of the reactive methyl group.  The glucose OH groups are not reactive to the 

methylating agent under the reaction conditions used to form the methyl sulfonate.  
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3.3. Synthesis of the DNA-Recognizing Dipyrrole Component Following Scheme 3.1 

 The synthesis of the DNA recognizing dipyrrole unit, 7 or 8, starts with the 

trichloroacetylation of N-methylpyrrole.  This compound, 3, has been made on a large scale in 

the laboratory by the reaction of trichloroacetyl chloride with N-methyl pyrrole following 

published procedures.27 Compound 3 is first nitrated using fuming nitric acid with acetic 

anhydride as the solvent as shown in Scheme 3.5.  This nitration results in  
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HNO3 -40oC

4

acetic anhydride

Yield: 84 %
3

 

Scheme 3.5 

the formation of the desired 4-nitro product along with a small amount of the undesired 5-nitro 

isomer.  Carrying out the reaction at low temperatures (- 40 °C), results in improving the yield of 

the desired 4-nitro isomer and minimizing the amount of the unwanted 5-nitro isomer formed.  

Upon completion of nitration, the reaction mixture is quenched with the addition of a specific 

amount of water and stirred overnight, which results in the hydrolysis of the acetic anhydride to 

acetic acid and precipitates the product.  It turns out that the desired 4-nitro isomer is less soluble 

in water than the 5-nitro isomer and therefore, addition of an appropriate amount of water is 

essential for the isolation of pure product in this step.  Addition of too much water results in the 

precipitation of both isomers.  The trichloroacetyl group is stable to aqueous hydrolysis 

especially at room temperature, making this simple aqueous workup possible.    Filtration of the 

precipitate through a büchner funnel then results in almost pure 4 in an 84 % yield.  Occasionally 

small amounts (< 5 %) of the other isomer are also obtained but no attempt is made to further 
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purify the product at this stage because the purification is easily accomplished in subsequent 

steps.  

 The next step of the synthesis was the addition of the linker as described above from 

Scheme 3.1.  The nitropyrrole (4) was reacted with either ethyl 4-aminobutyrate hydrochloride 

(for the synthesis of 5) or with ethyl β-alanine hydrochloride (for the synthesis of 6) by stirring at 

room temperature in EtOAc using TEA as the HCl scavenger as shown in Scheme 3.6.  These 

amines react readily with the trichloroacetyl groups  
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Scheme 3.6 

eliminating chloroform, which can be easily removed by rotary evaporation.  Upon completion 

of the reaction the, insoluble TEA hydrochloride salt can be filtered from the product.  Yields 

were improved by bubbling Ar through the solution of EtOAc and TEA before the addition of 

the linker and 4 and carrying out the reaction under an Ar atmosphere.  The product was purified 

from any unreacted starting material and any of the 5-nitro-N-methylpyrrole formed in the 

previous step, by flash column chromatography to give 5 in an 86 % yield and 6 in a 57 % yield.  

The addition of the second pyrrole unit is the next step of the synthesis and is accomplished as 

shown in Scheme 3.7 below.  The nitro group in 5 or 6 was reduced with H2 gas under high 

pressure in the presence of Pd/C catalyst.  The reaction was followed by TLC and shortly after 

the disappearance of the nitro compound, the reaction was stopped, the catalyst  
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was filtered off, the solvent was removed by rotary evaporation, and the product was evacuated 

under vacuum overnight.  This intermediate product (presumably the amine) was reacted with 

another unit of 4 in EtOAc at room temperature.  The desired product (7 or 8) fell out of solution 

as a yellow precipitate that was easily filtered off.  The filtrate often contained some more of the 

product which could be precipitated and isolated upon concentration of the solution by rotary 

evaporation followed by cooling in the refrigerator.  The filtered products, the dipeptide esters 7 

and 8 were obtained in yields of 35 % and 32 % respectively.   

 

3.4. Synthesis of the DNA-Recognizing Dipyrrole Component Following Scheme 3.2 

 The alternate method of synthesis outlined in Scheme 3.2, which was developed in order 

to introduce the linker unit at a later stage, also starts with the same compound 3 which is 

nitrated to 4 as described above.  Compound 4 is condensed with commercially available methyl-

4-amino-1-methyl-1H-pyrrole-2-carboxylate, hydrochloride salt, to form the dipyrrole unit 9 as 

shown in Scheme 3.8. The reaction is carried out in EtOAc in the presence of DIEA which 

scavenges the HCl from 4-amino-1-methyl-1H-pyrrole-2-carboxylate, hydrochloride salt to form 

the free amine.  The formation of 9 results in a  
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yellow precipitate that can be filtered.  The product has to be washed with water to remove the 

DIEA hydrochloride salt and dried to give 9 in a 94 % yield. 

 Nitro compound 9 was converted into the olefin by reducing the nitro group into the 

amine and then reacting the amine with acryloyl chloride in the presence of DIEA in THF as 

shown in Scheme 3.9.  The DIEA scavenged the HCl that was formed  
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upon the reaction of the amine and the acryloyl chloride.  Flash column chromatography was 

used to purify 10 which was obtained in a 71 % yield.   

 Once the methyl ester on 10 is hydrolyzed to the carboxylic acid, various linkers can be 

added.  However, basic hydrolysis of 10 did not result in the desired olefin carboxylic acid 11 as 

shown in scheme 3.10. 



 36

N
HN

O

H3CO

N

HN

O

O

N
HN

O

HO

N

HN

O

O1)NaOH
   EtOH/H2O
2)HCl

10 11 Not Formed  

Scheme 3.10 

 NMR analysis was used to determine the identity of the product obtained.  The 1H NMR 

spectra of the starting compound 10 and the product of the hydrolysis reaction are shown in 

Figures 3.6 and 3.7 respectively.  Some of the key features in the 1H NMR spectrum of 10, as 

can be seen from Figure 3.6 a) are the two amide hydrogens around 10 ppm, the 3 olefinic 

hydrogens between 5.5-6.5 ppm, and the 3 methyl singlets between 3.5-4.0 ppm.  In the 1H NMR 

spectrum of the product obtained upon base hydrolysis of 10 (see Figure 3.6 b) the 3 methyl 

singlets are still present indicating that the ester has not been hydrolyzed.  Instead, the olefinic 

hydrogens have disappeared.  It is unlikely that the amide bond next to the olefin has been 

hydrolyzed off since both amide hydrogen peaks are still present at 10 ppm.  It is therefore likely 

that a Michael addition of a hydroxide has taken place at the alkene resulting in the formation of 

compound 12 (Scheme 3.11).  
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a)  

b)  

Figure 3.6. 1H NMR of a) 10 and b) products of reaction of 10 with NaOH.   
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This hypothesis is strengthened by the observation of two new peaks (labeled 10 and 11 in the 

spectrum) seen at 2.4 and 3.5 ppm which could represent the two new CH2 hydrogens.  No 

further attempt was made to identify compound 12. 

 Further base hydrolysis of compound 12 resulted in the loss of one of the methyl groups 

indicating that the ester can be hydrolyzed under more rigorous conditions.  However, in spite of 

attempting the hydrolysis of 10 under numerous different conditions with different reagents, the 

ester was unable to be hydrolyzed while leaving the alkene intact.  Therefore, it was decided to 

add the linker and the targeting glucose unit before the introduction of the olefin in order to 

avoid all hydrolysis reactions after the addition of the olefin.  

 The methyl ester of 9 was then converted to the carboxylic acid with NaOH in EtOH and 

H2O under reflux and then acidified and filtered to give 13 in yields close to 90 % as shown in 

Scheme 3.12.  The carboxylic acid that is formed is yellow, but after drying on the filter paper 

the product often appears to be a dark brown solid.  
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 The linkers can now be added to this nitro dipeptide carboxylic acid unit by standard 

peptide coupling methods.  The coupling reagents that were employed here were EDCI and 

HOBT.  EDCI is a water soluble carbodiimide that makes purification steps simple because it 

can be removed by liquid-liquid extraction.  Figure 3.7 shows the  
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mechanism of action of EDCI and HOBT.  The EDCI activates the carboxylic acid by forming 

the O-acylisourea intermediate.28  

 One complication that is typically seen which reduces yields in these reactions is the 

rearrangement of the O-acylisourea intermediate to give an N-acylurea that is then unreactive 

and cannot be used form the amide bond.28 Use of HOBT prevents this from occurring.  HOBT 

reacts with the O-acylisourea to form another intermediate, which does not undergo 

rearrangement and reacts with the amine to form an amide bond.28-29  It has also been reported in 

literature that the use of CuCl2 as a catalyst further reduces the occurrence of unwanted 

rearrangement reactions,28-29 though the mechanism by which CuCl2 achieves this is not clearly 

understood.   

 The two linkers were added to the dipeptide carboxylic acid 13 as shown in Scheme 3.13.  

Upon formation of the product as indicated by TLC the reaction mixture  
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was diluted with DCM, extracted with dilute base and dilute acid.  Upon cooling the DCM in the 

freezer overnight the products crystallized out of solution to give 7 in a 62 % yield and 8 in a 57 

% yield.   

 The carboxylate esters on the linkers in 7 and 8 had to be hydrolyzed to carboxylic acids 

before they could be coupled to the cell targeting unit.  This hydrolysis is very efficiently 
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achieved using NaOH in EtOH/H2O followed by acidification with yields than 90 % resulting in 

the formation of compounds 14 and 15 as shown in Scheme 3.14.   
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 Thus compounds 14 and 15 can be obtained following either Scheme 3.1 or 3.2.  

However, Scheme 3.2 has the advantage that the linker is added on at a later stage.  Due to 

complications resulting from the Michael addition at the alkene in 10 during base hydrolysis, the 

linker had to be added at an earlier step than originally planned.  Irrespective of the linker that is 

to be used, compound 13 can now be made on a large scale and then stored and used when 

needed with various linkers.  Other approaches are being explored in the laboratory in which the 

linker can be added further down the line in the synthesis. 

 

3.5. Synthesis of the Cell Targeting Glucose Unit 

 The targeting unit is introduced as D-glucosamine, which has both reactive hydroxyl 

groups and the reactive amine.  The amine will be used in the formation of the amide bond that 

will link the glucose unit to compounds 14 and 15.  In order to prevent interference from the 

hydroxyl groups, they have to be protected while leaving the amine deprotected.  This was 

accomplished as outlined below in Scheme 3.15 following  
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procedures described in literature.26 First, the amine of D-glucosamine was masked as 4-

methoxybenzylidene using 4-methoxybenzaldehyde with NaOH/water at 0°C.  The product falls 

out of the reactions mixture as a white precipitate upon cooling and can be easily filtered to give 

16 in a 75 % yield.  The OH groups were then protected with acetyl groups using acetic 

anhydride in anhydrous pyridine.  Quenching the reaction with ice water causes the product to 

fall out as a white precipitate which can be filtered out to give 17 in a 79 % yield.  Finally, the 

amine was unmasked by reacting 17 with acetyl chloride dissolved in anhydrous methanol using 

acetone as the solvent.  Upon the addition of ether at the end of the reaction, a white precipitate 

was formed which was filtered out to give the protected glucosamine hydrochloride, 18, in an 81 

% yield.  The overall yield of the three steps was 47.9%.   

 

3.6. Assembly of the DNA Recognizing Unit with the Cell Targeting Glucose Unit 

 The protected glucosamine (18) from above can be coupled with carboxylic acid termini 

of the various linkers.  The coupling reaction is carried out similar to the one described earlier for 

preparing 7 and 8 (Scheme 3.13).  The protected glucosamine was reacted with the carboxylic 
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acid (14 or 15) in the presence of EDCI, HOBT, DMAP, and CuCl2 in DMF as shown in Scheme 

3.16.  The products were isolated by crystallizing  
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Scheme 3.16 

from DCM as described earlier.  The products 19 and 20 were obtained in very high yields (90 % 

and 82 % respectively.) 

 Compounds 19 and 20 incorporate both a DNA recognizing unit, which can recognize the 

A/T rich sequences on DNA, and a cell targeting unit (glucose unit), which upon deprotection of 

the hydroxyl groups should be able to target pancreatic β-cells through the GLUT-2 transporters.  

The next stage of the synthesis is to functionalize the N-terminus of the pyrrole dipeptide unit as 

the methyl sulfonate, which will serve as the DNA methylating agent (see Scheme 3.4). 

  The nitro group of 19 and 20 was reduced to the amine and reacted with acryloyl 

chloride in the presence of DIEA in THF as shown in Scheme 3.17 to form the olefin  
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products 21 and 22.  Thus the olefinic functionality, which underwent Michael addition if 

introduced earlier, has now been attached to the molecules.  The products were then either 

crystallized out of the DCM or purified by flash column chromatography was to obtain 21 (37 %) 

and 22 (63 %).   

 These reactions of converting the nitro into the alkene typically give much higher yields 

in the absence of the sugar unit.  For example, compound 7 when reacted under the same 

conditions as described above, gives the alkene compound 23 in a 91 % yield (Scheme 3.18).  

Similarly 9 can be converted into 10 in a 71 % yield (see Scheme 3.9).   

 However, with the sugar attached, the yields for these reactions were much lower.  These 

reactions are being further optimized in the laboratory. 
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3.7. Introduction of the DNA Alkylating Methyl Sulfonate Group  

   The next step in the synthesis was to convert the alkene double bond into the sulfonic 

acid, and this is accomplished by the anti-Markovnikov addition of bisulfite (NH4HSO3) across 

the alkene double bond.  This reaction is believed to proceed by a radical mechanism.  

Compound 21 was reacted with NH4HSO3 and H2O2 in 25 % THF/H2O under reflux and then 

acidified as shown in Scheme 3.19.  After flash column  
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Scheme 3.19 

chromatography, a product was isolated as a yellow colored solid.  Earlier procedures described 

in literature used DMF as a solvent.10 However, the isolation of the product is more difficult 

when DMF is used and employing THF as solvent makes the purification and isolation of the 

product simpler.    
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 The 1H NMR spectra of 21 and the product of the reaction are shown in Figure 3.8 a) and 

b) respectively with all the key characteristics identified.  The three olefinic hydrogens (5.7-6.3 

ppm), the four different acetyl methyl hydrogens (1.9-2.0 ppm), the two aromatic amide 

hydrogens (9.8-10.0 ppm), and the two aliphatic amide hydrogens (8.0 ppm) can be clearly 

identified in the spectrum of 21 (Figure 3.8 a)) in which all the peaks are well resolved.  The 1H 

NMR spectrum of the product (Figure 3.8 b)) shows the disappearance of the alkene hydrogen 

peaks and the characteristic shifts of the CH2CH2 hydrogens next to the sulfonic acid between 

2.6-2.8 ppm.  However, in this spectrum there are more peaks than expected in the region where 

the acetyl methyl hydrogens of the protecting groups show up (1.8-2.2 ppm) and the sugar 

hydrogens are not well resolved.  It is therefore possible that there is some level of deprotection 

of the acetyl groups, or epimerization of the sugar unit resulting in a mixture of compounds in 

the product that was isolated.  This may have been caused by the treatment with concentrated 

HCl used in the acidification of the sulfonate salt.  Therefore, the identity of 25 is yet to be 

confirmed and further purification of the product is also being attempted.  

 Since it seemed possible that some deprotection of the hydroxyl groups on the glucose 

unit was taking place possibly due to the treatment with strong acid, it was decided to attempt the 

deprotection reaction directly on the sulfonate salt before acidification.  This deprotection can be 

easily accomplished by treatment with 7 N NH3 in methanol, a procedure that was tested with 

compound 19 as shown in Scheme 3.20. 
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a)   

b)  

Figure 3.8.  1H NMR of a) 21 and b) product of reaction of 21 with NH4HSO3 and H2O2. 
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Scheme 3.20 

The ammonia treatment of this compound results in the complete deprotection of the glucose unit 

and formation of 26, as can be verified by a comparison of the 1H NMR spectra of the two 

compounds 19 and 26 shown in Figures 3.9 a) and b) respectively.  However, when this 

treatment was applied to the product of the reaction shown in Scheme 3.19, the expected well 

resolved 1H NMR spectrum was not obtained.  This procedure is still under investigation in the 

lab.   

 An alternate procedure for the conversion of an alkene to the sulfonic acid, using 

NaHSO3 in EtOH/H2O at a basic pH, which is described in literature was tested.30 Using this 

procedure, 23 can be converted to the sulfonic acid, 27, as shown in Scheme 3.21 in a yield of 89 

%.  Surprisingly, under these basic reaction conditions, no Michael addition product is obtained.  

The use of these reaction conditions on compound 21 can, in principle, result in the conversion 

of the alkene into the sulfonic acid and the removal of 
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a)  

 

b)  

Figure 3.9. 1H NMR spectrum of a) 19 and b) 26 
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Scheme 3.21 

the acetyl protecting groups on the glucose unit in a single step as shown in Scheme 3.22.  This 

reaction is under investigation in the laboratory. 
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Scheme 3.22 

 There is evidence in literature that compounds containing both a sulfonic acid and a 

carboxylic acid can be reacted with amines under certain conditions which can result in the 

formation of an amide bond without complications due to the presence of the sulfonic acid.31 

This reaction was verified by coupling carboxylic acid 14 with 18 in the presence of equivalent 

amounts of the sodium salt of hexane sulfonic acid as shown in Scheme 3.23.  This reaction 

resulted in the formation of 19 in excellent yields.  Therefore, ester  
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27 was hydrolyzed to the carboxylic acid as shown in Scheme 3.24 in an 81 % yield.   
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Scheme 3.24 

Subsequently, one equivalent of NaOH was added to the sulfonic acid carboxylic acid 29, and 

the coupling reaction with the protected glucosamine 18 was attempted as outlined in Scheme 

3.25.  The initial attempt was inconclusive and this reaction is being further explored in the 

laboratory.  
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Scheme 3.25 

 If the coupling of 18 to a sulfonic acid carboxylic acid can be successfully accomplished, 

it would offer a tremendous advantage for the overall synthesis since compound 30 (Figure 3.10) 

could be prepared which could then be coupled with the appropriate linker when needed.  The 

ester on the linker could then be hydrolyzed and coupled with glucosamine, this making the 

overall synthesis of molecules with several linkers very efficient.  

 Once the desired sulfonic acid compound (28) with the deprotected glucose unit is 

prepared by one of the above methods, the reactive methyl group has to be introduced.  The 

sulfonic acid is typically converted to the methyl sulfonate by treatment with 3-methyl-p-

tolyltriazine in anhydrous dioxane.  For example compound 31 (with one imidazole and one 

pyrrole ring) to compound 33 following procedures outlined in  
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Scheme 3.26.  This reaction gives the product 33 in a 57 % yield after purification by flash 

column chromatography. 
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Scheme 3.26 

.  In order to verify that the hydroxyl groups on the glucose unit in the compounds are 

unaffected under these reaction conditions, the reaction was attempted on a test compound 16 as 

shown in Scheme 3.27.  No reaction was obtained in this case and  
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Scheme 3.27 

compound 16 was isolated intact from this reaction.  This indicated that the OH groups on the 

glucose unit would not get methylated under the conditions used to convert the sulfonic acid to 

the methyl sulfonate.   

 The synthesis is two steps away from completion and will then be ready for testing with 

DNA to determine the methylation ability of the compounds on the DNA.  Promising 
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possibilities for introducing the linker at a late stage in the overall synthesis is being further 

investigated to find the best way to construct these types of compounds with different linkers 

attached. 

   



CHAPTER 4. DESIGN, SYNTHESIS, AND CHARACTERIZATION OF NEW DNA MINOR 

GROOVE BINDING FLUORESCENT PROBES 
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4.1. Design 

The binding of the Me-lex component of the new molecules to the DNA minor groove at 

A/T rich regions is expected to be critical for their ability to methylate DNA.  The new 

compounds are, by design, weak DNA binders so that upon transferring the methyl group to 

DNA (which results in a negative charge on the molecule) they will depart without further 

interacting with the DNA.  This would ensure that the biological outcomes observed are due to 

the methylation alone, and not due to other interactions between the molecules and DNA.  

However, the strength of binding will be directly correlated to the levels of methylation observed 

in these concerted alkylation reactions, and therefore sufficient strength of binding is necessary 

in order to achieve efficient methylation.  Therefore, it was also decided to develop an assay to 

determine the DNA binding of these new compounds and understand how the binding is 

influenced by the attachment of the various linkers and the glucose unit to the Me-lex unit.  This 

knowledge would enable the efficient design and synthesis of compounds which are likely to 

have a high chance of success in methylating DNA with the targeting ligand, glucose attached. 

 Fluorescence assays have been described in literature for measuring binding constants of 

compounds which bind to the DNA minor groove at A/T rich regions.  For example, in the 

fluorescent compound Hoechst 33258 (Figure 4.1 a)) that binds to the A/T rich minor groove 

regions of DNA is used to measure the binding constants of compounds like netropsin and 

distamycin (Figure 4.1 b) and c)), which bind to the same sites on DNA.32 The fluorescence 

properties of Hoechst 33258 when bound within the minor groove of DNA are different from 

those when it is free in solution.32  This  
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difference in fluorescence has been used to determine the binding constants of the different 

compounds that compete for the same binding site.   

 The fluorescence assay described above is well suited for this study.  However, the 

fluorescent probe used, Hoechst 33258, is a strong DNA binder (Kb > 107) while the compounds 

being investigated in this project are weak binders (Kb ≈ 105) by design.  Therefore, it is unlikely 

that the compounds being tested can displace the Hoechst 33258 from the binding site.   

 In order to use this assay to determine the binding of the new compounds, a fluorescent 

probe is needed whose strength of binding to the desired target site is comparable to the binding 

strength of the compound being tested.  An extensive survey of literature did not lead to the 

identification of a suitable compound.  Therefore, it was decided to synthesize new fluorescent 

probes suitable for the study. 

 In order to design new fluorescent probes that would target the A/T rich sites in the minor 

groove of DNA it was decided to use the same DNA recognizing dipyrrole units as the 

compounds described in CHAPTER 3 and attach a fluorophore either at the C-terminus or the N-

terminus of these compounds.  Coumarin was selected as the fluorophore to be attached because 

of its favorable fluorescence properties, water solubility, and relatively planar structure which 

would enable it to slide within the DNA minor groove with minimal steric problems.  The mode 

of attachment of the coumarin to the DNA recognizing dipyrrole units is important because the 

resultant compounds must retain their ability to bind to the minor groove at A/T rich regions of 

DNA, exhibit good fluorescence properties in solution, and exhibit a change in fluorescence 

when bound to DNA.  With these characteristics in mind, four new compounds were designed 

and are shown in Figure 4.2 a)-d).  In two of the compounds (41, 42) the appropriate coumarin is 

attached at the C-terminus of the dipyrroles and the other two (34, 36) the coumarin component 
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is attached to the N-terminus of the dipyrroles.  If one of these compound exhibits sufficient 

binding to the target site and exhibits a change in fluorescence properties upon biding to the 

DNA, it can be used as a probe to investigate the DNA-binding ability of the various compounds 

and intermediates prepared in this project.   

   

4.2. Synthesis 

 The synthesis of the fluorescent probes involved the attachment of the appropriate DNA 

recognizing dipyrrole component to the appropriate coumarin component.  The two coumarin 

components that were used are shown in Figure 4.3 a) and b).  When the coumarin was to be 

connected to the N-terminus, as in compounds 34 and 36, coumarin-3-carboxylic acid (Figure 

4.3 a)) was used.  When the coumarin unit was to be connected to the C-terminus, as in 

compounds 39 and 43, 7-amino-4-methylcoumarin (Figure 4.3 b)) was used. 

 Compound 34 was prepared earlier in the laboratory by condensation of 9 with coumarin 

-3-carboxylic acid as shown in Scheme 4.1.  The nitro group on 9 was first  
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c)      d) 

Figure 4.2.  a) Coumarin attached at the N-terminus with a methyl ester at the C-                     
terminus.   

                   b) Coumarin attached at the N-terminus with a propylamide at the C-  
                    terminus.   

   c) Coumarin attached at the C-terminus with an acetamide at the N-    
    terminus.   

       d) Coumarin attached at the C-terminus with a four carbon linker with an  
        acetamide at the N-terminus. 
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reduced to the amine and used for the next step without isolation.  The amine was then reacted 

with the coumarin-3-carboxylic acid with the coupling reagents EDCI, HOBT, DMAP, and 

CuCl2 in DMF to give 34.   

 The synthesis of compound 36 was accomplished in three steps starting from compound 

13 as shown in Scheme 4.2.  The first step was a coupling reaction with 13 and N-propylamine 

using the coupling reagents EDCI, HOBT, DMAP, and CuCl2 in DMF to give 35 in a 55 % yield.  

The next step involved a reduction of the nitro on 33 to  
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Scheme 4.2 

the amine as in Scheme 4.2, and the last step was a coupling reaction with coumarin-3-

carboxylic acid and the amine using the same coupling reagents as above to give 36 in a 42 % 

yield.  This compound has a propylamide group on the C-terminus of the compound instead of a 

methylester as in 34.  This variation could make a difference in binding with DNA because of the 

amide NH on 36 that can form hydrogen binding in the minor groove of DNA. 
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 In order to synthesize compounds 41 and 42, which have the coumarin units attached to 

the C-terminus, the N-terminus had to be first converted to an amide in order to contribute 

favorably to the DNA binding.  In order to do this, the nitro group on 9 was first reduced to the 

amine and acetyl chloride was used to form an acetamide at the N-terminus to give 37 in a 58 % 

yield as shown in Scheme 4.3.  The next step was a hydrolysis of the methylester to give the 

carboxylic acid 38 in a quantitative yield.   
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Scheme 4.3 

In order to prepare compound 42 the nitro group on 7 was first reduced to the amine and acetyl 

chloride was used to form an acetamide at the N-terminus to give 39 in a 43 % yield as shown in 

Scheme 4.4.  The next step was a hydrolysis of the ethylester to give  
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Scheme 4.4 

the carboxylic acid 40 in a 93 % yield.  However, attempts to couple 7-amino-4- methylcoumarin 

with carboxylic acids 38 and 40 (Scheme 4.5) have so far been  
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Scheme 4.5 

unsuccessful, probably due to the unreactive nature of the 7-amino-4-methylcoumarin because of 

the lone pair of electrons on the amine being able to be delocalized into the rings of the 
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compound.  Further efforts to accomplish this coupling reaction are currently in progress in the 

lab. 

 Coumarin-3-carboxylic acid itself is not very fluorescent, but as been reported to become 

fluorescent when the carboxylic acid is converted into an amide.  In order to verify that this is 

indeed the case, compound 43 was made in a 69 % yield by condensing coumarin-3-carboxylic 

acid with N-propylamine using EDCI as the coupling reagent as shown in Scheme 4.6.  
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Scheme 4.6 

 

4.3. Characterization of Spectral Properties 

 Compounds 34 and 36 in which the coumarin was attached to the N-terminus of the 

dipyrrole units were investigated further to see if they were suitable as fluorescent probes for the 

DNA binding assays.  Coumarin-3-carboxylic acid, which was condensed with the amine on the 

dipyrrole units to form 34 and 36, fluoresces very weakly.  In order to verify that conversion of 

this compound into an amide results in a fluorescent compound, the fluorescence properties of 43 



 67

0

0.1

0.2

0.3

0.4

0.5

0.6

200 250 300 350 400 450 500

Wavelength

A
bs

or
pt

io
n

299 nm, 0.1379 333 nm, 0.1533

O O

H
N

O

a)  

b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4. UV absorption spectra of a) coumarin-3-carboxylic acid and b) 43 at 10 µM in 

MeOH.  

O

O O

OH

43 



 68

were tested.  The UV spectra of coumarin-3-carboxylic acid and 43 are shown in Figure 4.4 a) 

and b) respectively.  The carboxylic acid has a absorbance maxima at 284 and 317 nm, while the 

amide 43 has a absorbance maxima at 299 and 333 nm.  These compounds were excited at 300 

nm in a pH 7 buffer solution at 10 µM concentration, and the fluorescence spectra of the 

compounds are shown in Figure 4.5.  As can be seen from the figure, conversion of the 

carboxylic acid to a simple amide results in a compound with strong fluorescence.         

 UV absorption spectra of compounds 34 and 36 are shown in Figure 4.6.  The absorption 

profile of these two compounds was compared with the absorption profile of compound 38 

(Figure 4.7, dipyrrole unit without attached coumarin) and that of the coumarin amide 43 (Figure 

4.4 b)) in order to identify the absorption due to the coumarin unit in compounds 34 and 36.  

This absorption maximum due to coumarin can then be used to determine the excitation 

wavelength for the fluorescent studies.  However, neither compound (34 or 36) showed a strong 

absorbance attributable only to the coumarin unit.  Both compounds had an absorption maximum 

around 300 nm and this wavelength was used as the excitation wavelength in the fluorescence 

experiments.   

 The fluorescence spectra of compounds 34 and 36 when excited at 300 nm in the pH 7 

buffer solution at 10 µM concentration are shown in figure 4.8 a) and b) respectively.  As can be 

seen from the figure, neither compound fluoresces strongly.  The reason for this lack of 

fluorescence is not clear.  Perhaps there is a lack of fluorescence due to the extended conjugation 

of the coumarin with the dipyrrole unit. 
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Figure 4.5. Fluorescence of a) coumarin-3-carboxylic acid and b) of 43 in MeOH at 10 µM 
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Figure 4.6. UV absorption spectra of a) 34 and b) 36 at a 10 µM concentration in MeOH. 
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Figure 4.7. UV absorption spectrum of 38 at a 10 µM concentration in MeOH. 
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Figure 4.8. Fluorescence of a) 34 and b) 36 in buffer at 10 µM excited at 300 nm. 
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 In order to test whether pyrrole compounds directly quench the fluorescence or whether 

the mode of connection of the coumarin unit to the pyrrole unit is responsible for the weak 

fluorescence of compounds 34 and 36, 7-hydroxy-4-methylcoumarin (a model compound which 

fluoresces strongly) was titrated with compound 38, and the change in fluorescence was recorded 

as shown in Figure 4.9.  Aliquots of a 20 mM solution of 38 were added to a 10 µM MeOH 

solution of 7-hydroxy-4-methylcoumarin in MeOH.  Each addition of 38 reduced the 

fluorescence intensity as shown in Figure 4.9.  This decrease in fluoresce could be either due to 

quenching by compound 38, or due to excitation wavelength intensity being filtered out due to 

absorption by increasing amounts of 38.  If fluorescence of 7-hydroxy-4-methylcoumarin is 

indeed being collisionally quenched by 38, then a plot of Fo/F versus concentration of compound 

38 (where Fo is the fluorescence observed in the absence of 38 and F is the fluorescence 

observed at a particular concentration of 38) should be a straight line.  If there is a complex 

formation, a curved line can result.  As can be seen from Figure 4.10, this plot is not a straight 

line.  If the reduction in fluorescence is due to excitation intensity being filtered out by 

increasing concentration of 38, then a plot of the increase in UV absorbance at 330 nm 

(excitation wavelength) versus the decrease in fluorescence should be a straight line.  The 

variation in the UV absorption profile upon addition of varying amounts of 38 is shown in Figure 

4.11, and the plot of the change in absorbance versus the change in fluorescence is shown in 

Figure 4.12.  Since this plot is a straight line, the decrease in fluorescence must be due to the 

filtering out of excitation wavelength intensity by increasing amounts of 38, where 38 is 

absorbing all the incident light intensity. 
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Figure 4.10. Fo/F vs. concentration of 38, where Fo is the fluorescence observed in the absence of 

38 and F is the fluorescence observed at a particular concentration of 38. 
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Figure 4.11. Variation in the UV absorption at varying concentrations of 38 in MeOH.
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Figure 4.12. A-Ao of 38 vs. Fo-F of 7-hydroxy-4-methyl coumarin titrated with 38, where A is 

the absorption of 38 at varying concentrations, Ao is the absorption with no 38, Fo is 
the fluorescence observed in the absence of 38, and F is the fluorescence observed at 
a particular concentration of 38. 
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 Since the mode of connection of coumarin to the dipyrrole unit appears to be responsible 

for the lack of fluorescence, it is possible that the introduction of methylene units between the 

coumarin and the dipyrroles, or the connection of the coumarin to the C-terminus (as in 

compounds 41 and 42) may result in fluorescent compounds that can be investigated for use as 

probes for measuring DNA binding.  The syntheses of such compounds are currently ongoing in 

the lab. 



CHAPTER 5. EXPERIMENTAL 
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5.1. General 

 All solvents and reagents were purchased from VWR International (West Chester, 

Pennsylvania) or Sigma-Aldrich (Atlanta, Georgia) and were of the highest grade available 

unless otherwise noted.  Flash chromatography was performed with silica gel (230/400 mesh, 

Life Force Inc.).  TLC was performed on glass plates coated with silica gel (Whatman 

International, Maidstone, England, 150 A) that had a fluorescence indicator and were detected by 

UV visualization.  All rotary evaporations were carried out using a Buchi R-3000 or a Buchi R-

114 rotary evaporator equipped with a Brinkmann model B-16 vacuum aspirator.  

Hydrogenations were performed using a Parr Hydrogenation Apparatus in a 500 mL Parr jar. 

Melting points were determined using a Mel-Temp II. 

 All anhydrous reactions were carried out under positive pressure of argon.  Glassware 

used for anhydrous reactions were dried overnight in an oven at 140 °C or dried over a flame, 

assembled while still hot, and cooled to room temperature under argon.  Solvents and reagents 

(liquids) for anhydrous reactions were obtained in bottles with sure-seal caps and transferred by 

using oven-dried needles and glass syringes. 

 All 1H NMR and 13C NMR spectra were recorded with a Bruker Avance 400 MHz 

NMR spectrometer, using deuterated DMSO as the solvent.  The deuterated DMSO was obtained 

in sealed ampoules from ACROS Organics or Sigma-Aldrich.  The spectra are reported in ppm 

and referenced to deuterated DMSO (2.49 ppm for 1H, 39.5 ppm for 13C).  The samples were 

contained in 5 mm pyrex glass tubes obtained from Wilmad- LabGlass Buena, New Jersey. 

 Ultraviolet absorbance analyses were performed on a Cary 1E UV-Visible 

spectrophotometer.  Fluorescence emissions were recorded on a SLM 8100 spectrofluorometer. 
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5.2. Fluorescence Methods 

 5.2.1. Solutions of Compounds for UV and Fluorescence   

All compounds were accurately weighed with 10 mg or more and dissolved in known 

volumes of appropriate solvents in order to make stock solutions of exact concentrations.  All 

compounds were first dissolved in methanol except 34, which was first dissolved in 1 mL of 

DMSO and then diluted into methanol.  The final percentage of DMSO when used was always 

less than 0.3 % of the total volume.  The stock solutions were diluted with a 0.01 M potassium 

phosphate buffer, pH 7.0, 0.01 M NaCl to a final concentration of 10 µM.  These solutions of the 

compounds were used for UV and fluorescence experiments. 

  

 5.2.2. UV and Fluorescence Experiments 

 UV absorption wavelengths were scanned from 200 nm to 500 nm of each of the 10 µM 

solutions in the 0.01 M potassium phosphate buffer, pH 7.0, 0.01 M NaCl to find the absorption 

maxima.  The excitation wavelength for all the compounds was set at 300 nm and the 

fluorescence was scanned from 330 nm to 500 nm. 

 For the titration of 38 with 7-hydroxy-4-methylcoumarin, the fluorescence was taken of a 

10 µM solution of 7-hdyroxy-4-methylcoumarin.  Aliquots of 2.5 µL of a solution containing 38 

at 20 mM and 7-hydroxy-4-methylcoumarin at 10 µM in MeOH were titrated in until 38 was at 

300 µM.  Thereby each addition did not change the concentration of 7-hydroxy-4-

methylcoumarin; however each addition changed the concentration of 38.  The excitation 

wavelength was 330 nm and the fluorescence was measured from 350 to 500 nm.     
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5.3. Synthesis 

 2,2,2-trichloro-1-(1-methyl-1H-pyrrol-2-yl)ethanone (3).  This compound was 

prepared earlier in the laboratory using methods described in literature.27 

 2,2,2-trichloro-1-(1-methyl-4-nitro-1H-pyrrol-2-yl)ethanone (4).  Pyrrole 3 (5.00 g, 

0.0220 mol) was dissolved in acetic anhydride (50.0 mL) in a 250 mL round bottom flask and 

cooled to -40 ºC in a dry ice/acetone bath.  Fuming nitric acid (2.5 mL) was added dropwise over 

5 minutes with constant stirring  while keeping the temperature of the reaction mixture lower 

than -30 °C by periodic addition of dry ice to the acetone bath.  After the addition of HNO3, the 

mixture was stirred for another 45 minutes at -40 °C.  The solution was then allowed to warm to 

room temperature and was stirred for an additional hour.  The solution was then cooled in an ice 

bath and then water (30 mL) was added slowly over one minute.  A yellow solid precipitated and 

was filtered under vacuum and dried to give 4 (5.04 g, 84%): mp 112-120 ºC. TLC (1:1, 

EtOAc:Hexane) Rf = 0.58.  1H NMR data: δ 8.56 (d, J = 1.73 Hz, 1H), 7.78 (d, J = 1.71 Hz, 1H), 

3.98 (s, 3H).  13C NMR data: δ 173.30, 134.73, 133.09, 121.09, 116.82, 95.02, 79.44. 

 Ethyl 4-{[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]amino}butanoate (5).   The 

nitro pyrrole 4 (8.00 g, 0.0352 mol) was dissolved in EtOAc (420 mL) and TEA (10 mL) was 

added while Ar was bubbled through the solution.  Aminobutyrate hydrochloride (5.90 g, 0.0353 

mol) was then added and the solution was allowed to stir overnight under Ar.  The white 

precipitate that was formed was filtered off and the filtrate was concentrated by rotary 

evaporation to give a brown oil.  The oil was kept under vacuum until a yellow solid formed to 

give 5 (8.58 g, 86%): mp 55-60 ºC.  TLC (1:1, EtOAc:Hexane) Rf = 0.27.  1H NMR data: δ 8.39 

(t, J = 5.37, 5.41 Hz,1H), 8.11 (d, J = 1.67 Hz, 1H), 7.41 (d, J = 1.93 Hz, 1H), 4.02 (q, J = 7.12, 

7.11, 7.11 Hz, 2H), 3.88 (s, 3H), 3.19 (q, J = 6.72, 6.04, 6.65 Hz, 2H), 2.33 (t, J = 7.4, 7.38 Hz, 
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2H), 1.73 (p, J = 7.17, 7.15, 7.15, 7.13 Hz, 2H), 1.16 (t, J = 7.10, 7.11 Hz, 3H).  13C NMR data: δ 

172.65, 159.85, 133.75, 127.85, 126.42, 107.30, 59.80, 37.94, 37.38, 30.97, 24.38, 14.11. 

Ethyl N-[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]-β-alaninate (6).  Compound 6 

was synthesized by a similar procedure similar to the one described above for 5 using 4.00 g 

(14.8 mmol) of 4 and 2.70 g (17.8 mmol) of β-alanine ethyl ester hydrochloride to obtain 6 (2.79 

g, 57 %): mp 128-129 °C. TLC (2:1, EtOAc:Hexane) Rf = 0.45.  1H NMR data: δ 8.48 (t, J = 

5.37, 5.42 Hz, 1H), 8.12 (d, J = 1.88 Hz, 1H), 7.39 (d, J = 2.00 Hz, 1H), 4.05 (q, J = 7.11, 7.11, 

7.13 Hz, 2H), 3.88 (s, 3H), 3.40 (q, J = 6.90, 5.61, 6.85, 2H), 2.53 (t, J = 6.90, 6.93 Hz, 2H), 1.16 

(t, J = 7.12, 7.14 Hz, 3H). .  13C NMR data: δ 171.20, 159.87, 133.74, 127.94, 126.23, 107.42, 

59.99, 37.38, 34.95, 33.63, 14.09. 

 Ethyl 4-{[(1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]amino}-1H-

pyrrol-2-yl)carbonyl]amino}butanoate (7). Following Scheme 3.1 the nitro pyrrole ester 5 

(2.28 g, 8.06 mmol) was dissolved in ethanol (70 mL) in a 500 mL parr jar and Pd/C (2.00 g) 

was added to it.  The mixture was shaken in a hydrogenator under pressurized hydrogen (60 psi) 

until the reaction was complete as indicated by TLC (EtOAc in 45 min.).  The Pd/C was filtered 

out through celite, and the filtrate was concentrated by rotary evaporation and kept under 

vacuum overnight to yield a yellow solid.  Ethyl acetate (20 mL) was added to this solid in a 250 

mL round bottom flask and the nitro pyrrole 4 (2.20 g, 8.00 mmol) was added and the mixture 

was allowed to stir for 48 hours during which time an orange solid fell out of solution.  After the 

reaction was complete as indicated by the disappearance of the starting material by TLC (4:1, 

EtOAc:MeOH), the orange product that fell out of solution was vacuum filtered to give pure 7 

(1.15 g, 35.1%).   
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Alternate procedure following Scheme 3.2: In a flask flushed with Ar, DMAP (3.48 g, 

2.5 eq.), EDCI (3.38 g, 1.5 eq.), HOBT (5.24 g, 3 eq.), CuCl2 (0.153 g, 0.1 eq.), ethyl-4-

aminobutyrate, HCl (1.91 g, 0.114 mol), and the carboxylic acid 10 (3.33 g, 0.0114 mol) were 

added.  The solid mixture was dissolved in 75 mL anhydrous DMF and allowed to stir under Ar 

overnight at which time TLC (EtOAc) indicated the complete disappearance of 10.  The solution 

was diluted with 150 mL DCM and the organic solution was extracted with H2O (2x 150 mL), 

saturated NaHCO3 (2x 200 mL), and 1M HCl (2x 200 mL).  The organic layers were dried over 

MgSO4.  The solution was concentrated on a rotary evaporator until the volume reduced to 

approximately 20 mL.  This solution was then cooled in the freezer overnight when yellow 

crystals formed.  The yellow crystals were vacuum filtered to give pure 7 (2.86 g, 62 %): mp 

140-143ºC. TLC (EtOAc) Rf = 0.67. 1H NMR data: δ 10.24 (s, 1H), 8.19 (s, 1H), 8.09 (t, J = 5.4, 

5.59 Hz, 1H), 7.58 (t, J = 1.72, 1.45 Hz, 1H), 7.20 (s, 1H), 6.86 (t, J = 1.64, 1.48 Hz, 1H), 4.19 (q, 

J = 7.12, 7.10, 7.13 Hz, 2H), 4.04 (s, 3H), 3.80 (s, 3H), 3.18 (q, J = 6.47, 6.30, 6.22 Hz, 2H), 2.32 

(t, J = 7.51, 7.45 Hz, 2H), 1.73 (p, J = 7.00, 7.09, 7.12, 7.04 Hz, 2H), 1.17 (t, J = 7.12, 7.12 Hz, 

3H).  13C NMR data: δ 173.09, 161.55, 157.21, 134.16, 128.60, 126.68, 123.55, 121.70, 118.35, 

107.92, 104.39, 60.13, 51.64, 37.86, 36.41, 31.42, 25.07, 14.49. 

Ethyl N-[(1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]amino}-1H-

pyrrol-2-yl)carbonyl]-β-alaninate (8).  Compound 8 was synthesized following Scheme 3.1 

using a procedure similar to the one described above for 7 using 2.11 g (7.87 mmol) of 5 and 

2.149 g (7.87 mmol) of 4 to give 8 (0.975 g, 32 %).  

Following the alternate procedure in Scheme 3.2 compound 8 was made similar to the 

one described above for 7 using 0.5802 g (19.9 mmol) of 10 and 0.3216 g (19.9 mmol) of β-

alanine ethyl ester hydrochloride to obtain 8 (0.443 g, 57 %): mp 200-201 °C. TLC (EtOAc) Rf = 
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0.62.  1H NMR data: δ 10.22 (s, 1H), 8.16 (d, J = 1.20 Hz, 1H), 8.10 (t, J = 5.44, 5.58 Hz, 1H), 

7.57 (d, J = 1.88 Hz, 1H), 7.20 (d, J = 1.54 Hz, 1H), 6.83 (d, J = 1.68 Hz, 1H), 4.05 (q, J = 7.11, 

7.11, 7.12 Hz, 2H), 3.94 (s, 3H), 3.79 (s, 3H), 3.39 (q, J = 6.78, 5.89, 6.74 Hz, 2H), 2.52 (t, J = 

6.92, 7.04 Hz, 2H), 1.70 (t, J = 7.10, 7.13 Hz, 3H).  13C NMR data: δ 171.44, 161.24, 156.91, 

133.85, 128.27, 126.34, 123.03, 121.44, 118.17, 107.62, 104.17, 59.96, 37.54, 36.10, 34.89, 

34.07, 14.15. 

 Methyl 1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]amino}-1H-pyrrole-

2-carboxylate (9).  Argon was bubbled through 50 mL EtOAc containing 3.67 mL DIEA.  

Methyl 4-amino-1-methyl-1H-pyrrole-2-carboxylate, HCl (2.49 g, 0.0131 mol) was then added 

to the solution followed by the addition of the nitro compound 4 (3.58 g, 0.0131 mol) and the 

solution was allowed to stir under Ar for two days.  The yellow solid that was formed, was 

filtered out, washed with H2O, and dried under vacuum to afford the yellow solid 9 (4.05 g, 94 

%): mp 231-235 °C.  TLC (2:1, EtOAc:Hexane) Rf = 0.33 .  1H NMR data: δ 10.26 (s, 1H), 8.18 

(d, J = 1.85 Hz, 1H), 7.54 (d, 1.98 Hz, 1H), 7.45 (d, 1.92 Hz, 1H), 6.87 (d, 1.96 Hz,1H), 3.94 (s, 

3H), 3.83 (s, 3H), 3.73 (s, 3H).  13C NMR data: δ 160.73, 156.94, 133.81, 128.36, 122.15, 120.86, 

118.85, 108.28, 107.66, 51.06, 37.47, 36.28.   

Methyl-4-({[4-(acryloylamino)-1-methyl-1H-pyrrol-2-yl]carbonyl}amino)-1-methyl-

1H-pyrrole-2-carboxylate (10).  Compound 9 (0.454 g, 10.4 mmol) was dissolved in 50 mL 

EtOH and 100 mg Pd/C was added in a parr jar.  The mixture was shaken under pressurized 

hydrogen (75 psi) until 9 had disappeared as indicated by TLC (EtOAc).  The Pd/C was filtered 

out through celite, and the solution was rotary evaporated and the residue was kept under 

vacuum overnight.  The flask with the residue was flushed with Ar and the residue was dissolved 

in anhydrous THF (5 mL) and anhydrous DIEA (0.418 mL) was added to the solution.  The 
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solution was bubbled with Ar and cooled to -40 °C.  Acryloyl chloride (0.156 mL) was added 

dropwise to the solution which as then allowed to stir below -20 °C, protected from light, until 

the reaction was complete as indicated by TLC (EtOAc).  The solution was concentrated by 

rotary evaporation and the product was isolated by flash column chromatography (EtOAc) to 

afford pure 10 (0.387 g, 71 %): mp 199-203 °C.  TLC (EtOAc) Rf = 0.43.  1H NMR data: δ  

10.10 (s, 1H), 9.92 (s, 1H), 7.45 (d, J = 2.00 Hz, 1H), 7.25 (d, J = 2.00 Hz, 1H), 6.91 (d, J = 2.00 

Hz, 1H), 6.88 (d, J = 2.00 Hz, 1H), 6.35 (m, 1H), 6.17 (dd, J = 2.00, 15.2 Hz, 1H), 5.65 (dd, J = 

2.4, 7.60 Hz, 1H), 3.82 (s, 6H), 3.72 (s, 3H).  13C NMR data: δ  161.71, 160.86, 158.38, 131.55, 

125.70, 122.92, 121.84, 120.84, 118.64, 108.40, 104.16, 79.54, 78.44, 51.04, 36.25, 36.23.   

1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]amino}-1H-pyrrole-2-

carboxylic acid (13).  The nitro ester 9 (4.00 g, 0.0131 mol) was suspended in EtOH (200 mL), 

and a solution of NaOH (2.1 g, 4 eq.) in H2O (150 mL) was added.  This suspension was allowed 

to reflux until the disappearance of 9 was indicated by TLC (EtOAc).  The solution was 

concentrated by rotary evaporation to remove the majority of the EtOH.  The aqueous solution 

was cooled in an ice bath and then acidified with concentrated HCl until the final pH was 

approximately 1 when a precipitate fell out of solution.  The mixture was allowed to cool in the 

freezer for a further two hours, and the yellow solid precipitate was filtered out and rinsed with 

ice cold water and air-dried to give pure 13 (3.33 g, 87 %): mp 200-202 °C.  TLC (EtOAc) Rf = 

0.56.  1H NMR data: δ 12.24 (s, 1H), 10.27 (s, 1H), 8.18 (d, J = 1.84 Hz, 1H), 7.56 (d, J = 1.95 

Hz, 1H), 7.41 (d, J = 1.86 Hz, 1H), 6.83 (d, J = 1.96 Hz, 1H), 3.94 (s, 3H), 3.82 (s, 3H).  13C 

NMR data: δ 161.88, 156.88, 133.81, 128.29, 126.17, 121.89, 120.39, 119.84, 108.30, 107.65, 

37.47, 36.24. 
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4-{[(1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]amino}-1H-pyrrol-2-

yl)carbonyl]amino}butanoic acid (14).  Compound 7 (1.00 g, 2.46 mmol) was dissolved in 

ethanol (28 mL) at room temperature in a 250 mL round bottom flask.  To this solution, KOH 

(0.460 g, 8.61 mmol) in water (20 mL) was added and allowed to stir until all of the starting 

material had disappeared by TLC (3:1, CH2Cl2:MeOH).  Excess concentrated HCl (approx. 1 mL) 

was added until the medium was acidic, when a yellow precipitate fell out of solution.  This 

precipitate was filtered out, washed with ice cold water, and air-dried to give the product 14 

(0.855 g, 91.9 %): mp 251-254 ºC. TLC (4:1, EtOAc: MeOH) Rf = 0.35.  1H NMR data δ 12.05 

(s, 1H), 10.21 (s, 1H), 8.17 (d, J = 1.87 Hz, 1H), 8.08 (t, J = 5.62, 5.72 Hz, 1H), 7.57 ( d, J = 1.95 

Hz, 1H), 7.19 (d, J = 1.73 Hz, 1H), 6.85 (d, J = 1.79 Hz, 1H), 3.94 (s, 3H), 3.79 ( s, 3H), 3.18 ( q, 

J = 6.62, 6.09, 6.66 Hz, 2H), 2.24 (t, J = 7.42, 7.36 Hz, 2H) 1.69 (p, J = 7.10, 7.10, 7.11, 7.21 Hz, 

2H).  13C NMR data: δ 174.31, 161.19, 156.85, 133.79, 128.22, 126.31, 123.23, 121.33, 117.97, 

107.56, 104.01, 37.85, 37.50, 36.04, 31.15, 24.74. 

N-({1-methyl-4-[2-(5-methyl-3-nitrocyclopenta-1,3-dien-1-yl)prop-2-en-1-yl]-1H-

pyrrol-2-yl}carbonyl)-β-alanine (15).  Compound 15 was synthesized using a procedure similar 

to the one described above for 14 using 1.29 g (3.29 mmol) of 8 to give 15 (1.17 g, 99 %): mp 

230-234 °C. TLC (6:1, EtOAc: MeOH) Rf = 0.52.  1H NMR data: δ 12.19 (s, 1H), 10.23 (s, 1H), 

8.17 (d, J = 1.83 Hz, 1H), 8.08 (t, J = 5.52, 5.60 Hz, 1H) 7.56 (d, J = 1.98, 1H) 7.20 (d, J = 1.78 

Hz, 1H), 6.83 (d, J = 1.84, 1H), 3.94 (s, 3H), 3.80 (s, 3H), 3.35 (q, J = 7.04, 5.75, 7.13 Hz, 2H), 

2.46 (t, J = 8.31, 7.09 Hz, 2H).  13C NMR data: δ 173.01, 161.61, 156.85, 133.78, 128.24, 126.30, 

123.02, 121.36, 118.08, 107.57, 104.10, 37.50, 36.07, 34.88, 34.02. 

2-Deoxy-2-(4-methoxybenzylidene)amino-β-D-glucopyranose (16).  Compounds 16 

was synthesized from D-glucosamine hydrochloride as described in literature.26  Sodium 
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hydroxide (11 g) was dissolved in 235 mL of water in a 500 mL round bottom flask  that was 

cooled to 0 ºC and D-glucosamine hydrochloride (50.01 g, 0.232 mol) was added.  The solution 

was stirred until clear (5 min.) and 4-methoxybenzaldehyde (31.0 mL, 0.264 mol) was added and 

stirred at 0 ºC for 30 min. and then left unstirred at 0 ºC for 48 hours.  A white precipitate fell out 

of solution and was filtered under vacuum and dried to give 16 (59.76 g, 75.2 %): mp 154-155ºC.  

1H NMR data: δ 8.11 (s, 1H), 7.67 (d, J = 8.66 Hz, 2H) 6.97 (d, J = 8.68 Hz, 2H), 6.52 (d, J = 

5.67 Hz, 1H), 4.93 (d, J = 5.18 Hz, 1H), 4.82 (d, J = 5.55 Hz, 1H), 4.69 (t, J = 6.50, 6.49 Hz, 1H), 

4.55 (t, J = 5.79, 5.72 Hz, 1H), 3.78 (s, 3H), 3.72(dd, J = 5.40, 4.70, 5.39 Hz, 1H), 3.45 (m, 2H), 

3.23 (m, 1H), 3.15 (m, 1H), 2.78 (t, J = 8.35, 8.60 Hz, 1H).  13C NMR data: δ 161.25, 161.06, 

129.64 (2C), 129.11, 113.91 (2C), 95.64, 78.19, 76.86, 74.60, 70.37, 61.27, 55.29. 

 1,3,4,6-Tetra-O-acetyl-2-deoxy-2-(4-methoxybenzylidene)amino- β-D-glucopyranose 

(17).  Compound 17 was synthesized as described in literature.26 The imine 16 (55.01 g, 0.161 

mol) was dissolved in anhydrous pyridine (350 mL) at 0 ºC in a 1 L round bottom flask.  Acetic 

anhydride (200 mL) was then added to the solution and stirred while allowing the solution to 

warm to room temperature overnight.  This mixture was concentrated to half the original volume 

on a rotary evaporator maintaining the temperature below 30 °C and was then poured into ice 

water (~1 L) and stirred for 1 h.  The white precipitate that was formed was filtered under 

vacuum to give 17 (62.52 g, 78.6%): mp 172-173ºC.  1H NMR data: δ 8.27 (s, 1H), 7.64 (d, J = 

8.77 Hz, 2H), 6.97 (d, J = 8.76 Hz, 2H), 6.06 (d, J = 8.24 Hz, 1H), 5.44 (t, J = 9.67, 9.68 Hz, 1H), 

4.97 (t, J = 9.61, 9.65 Hz, 1H), 4.26 (m, 2H), 4.01 (d, J = 10.60 Hz, 1H), 3.78 (s, 3H), 3.44 (t, J = 

8.48, 9.52 Hz, 1H), 2.00 (s, 3H), 1.97 (s, 6H), 1.81 (s, 3H).  13C NMR data: δ 170.04, 169.44, 

168.98, 168.59, 164.45, 161.83, 129.93 (2C), 128.27, 114.19 (2C), 92.54, 72.35, 72.26, 71.54, 

67.82, 61.66, 55.53, 20.52, 20.43 (2C), 20.18. 
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 1,3,4,6-Tetra-O-acetyl-2-amino-2-deoxy-β-D-glucopyranose  hydrochloride (18).  

Compound 18 was synthesized as described in literature.26 Acetyl chloride (0.156 mL) was 

added to anhydrous methanol (1.08 mL) with constant stirring at 0 ºC in a 100 mL round bottom 

flask.  This mixture was then added to a stirred solution of the imine 17 (1.00 g, 0.002 mol) in 

acetone (30.4 mL) at room temperature.  This mixture was stirred for 45 min. and then cooled to 

0 ºC.  Ether (10.8 mL) was then added to the cooled solution and stirred for an additional 45 min. 

at 0 °C.  Vacuum filtration of the white precipitate gave 18 (0.665 g, 81%): mp: 120 °C-

decomposition. 1H NMR data: δ 8.83 (s, 3H), 5.90 (d, J = 8.64 Hz, 1H), 5.35 (t, J = 10.09, 9.48 

Hz, 1H), 4.92 (t, J = 9.82, 9.36 Hz, 1H), 4.17 (dd, J = 4.33, 8.12, 4.29 Hz, 1H), 4.01 (m, 2H), 

3.55 (t, J= 9.85, 9.15 Hz, 1H), 2.16 (s, 3H), 2.02 (s, 3H), 1.98 (s, 3H), 1.96 (s, 3H).  13C NMR 

data: δ 169.98, 169.78, 169.32, 168.65, 90.10, 71.60, 70.33, 67.79, 61.26, 52.12, 20.96, 20.87, 

20.51, 20.36. 

 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[(4-{[(1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-

yl)carbonyl]amino}-1H-pyrrol-2-yl)carbonyl]amino}butanoyl)amino] hexopyranose (19).  

In a flask flushed with Ar, 18 (3.23 g, 8.4 mmol) was dissolved in 70 mL anhydrous DMF along 

with EDCI (2.49 g, 1.5 eq.), DMAP (2.57 g, 2.5 eq.), HOBT (3.86 g, 3 eq.), and CuCl2 (0.113 g, 

0.1 eq.).  Once in solution, the carboxylic acid 14 (3.16 g, 8.4 mmol) was then added and the 

solution was allowed to stir at room temperature over two days until disappearance of starting 

material as indicated by TLC (3:1, EtOAc: MeOH).  The solution was diluted with 100 mL DCM 

and the organic solutions was extracted with H2O (2x, 100 mL), saturated NaHCO3 (2x, 150 mL), 

and 1M HCl (2x, 150 mL).  The organic layer was dried over MgSO4.  The resulting solution 

was rotary evaporated until a solid began to fall out of solution.  The solution was then warmed 

up again until the solid redissolved and was then cooled slowly in the freezer when yellow solid 
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crystals fell out of solution, which were filtered and dried to give the product 19 (5.35 g, 90.1 %): 

mp 174-177 °C. TLC (6:1, CHCl3: MeOH) Rf = 0.51.  1H NMR data: δ 10.23 (s, 1H), 8.17 (s, 

1H), 8.05 (m, 2H), 7.56 (d, J = 1.70 Hz,1H), 7.19 (s, 1H), 6.84 (s, 1H), 5.70 (d, J = 8.83 Hz, 1H), 

5.16 (t, J = 9.90, 10.05 Hz, 1H), 4.88 (t, J = 9.83, 9.71 Hz, 1H), 4.18 (m, 1H), 3.99 (m, 3H), 3.94 

(s, 3H), 3.78 (s, 3H), 3.09 (m, 2H), 2.06 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H), 1.91 (s, 3H), 1.64 (m, 

2H).  13C NMR data: δ  172.27, 170.06, 169.62, 169.29, 168.92, 161.13, 156.86, 133.78, 128.23, 

126.30, 123.19, 121.32, 118.00, 107.56, 104.00, 91.73, 72.17, 71.52 , 68.06, 61.48, 51.80, 37.97, 

37.49, 36.04, 33.26, 25.68, 20.51 (2C), 20.41, 20.32. 

 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[(3-{[(1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-

yl)carbonyl]amino}-1H-pyrrol-2-yl)carbonyl]amino}propanoyl)amino] hexopyranose (20).  

Compound 20 was synthesized using a procedure similar to the one described above for 19 using 

1.00 g (2.75 mmol) of 15 and 1.05 g (2.75 mmol) of 18 to give 20 (1.57 g, 82 %): mp 169-173 ° 

C. TLC (6:1, CHCl3:MeOH) Rf = 0.53.  1H NMR data: δ 10.27 (s, 1H), 8.19 (d, J = 1.78 Hz, 1H), 

8.12 (d, J = 9.17 Hz, 1H), 8.05 (t, J = 5.52, 5.67 Hz, 1H), 7.59 (d, J = 1.87 Hz, 1H), 7.22 (d, J = 

1.68 Hz, 1H), 6.82 (d, J = 1.75, 1H), 5.72 (d, J = 8.84 Hz, 1H), 5.18 (t, J = 9.65, 10.26 Hz, 1H), 

4.89 (t, J = 9.77, 9.71 Hz, 1H), 4.19 (dd, J = 4.42, 8.04, 4.28 Hz, 1H), 3.98 (m, 3H), 3.95 (s, 3H), 

3.80 (s, 3H), 3.30 (q, J = 6.40, 6.95 Hz, 2H), 2.31 (t, J = 7.45, 7.19 Hz, 2H), 2.01 (s, 3H), 2.00 (s, 

3H), 1.97 (s, 3H), 1.88 (s, 3H).  13C NMR data: δ 170.80, 170.05, 169.61, 169.28, 168.88, 161.14, 

156.86, 133.77, 128.24, 126.29, 122.99, 121.38, 118.13, 107.63, 103.99, 91.68, 72.16, 71.51, 

68.02, 61.49, 51.87, 37.50, 36.05, 35.55, 35.39, 20.52 (2C), 20.42, 20.25. 

 1,3,4,6-tetra-O-acetyl-2-{[4-({[4-({[4-(acryloylamino)-1-methyl-1H-pyrrol-2-

yl]carbonyl}amino)-1-methyl-1H-pyrrol-2-yl]carbonyl}amino)butanoyl]amino}-2-

deoxyhexopyranose (21).  Compound 19 (1.00 g, 1.425 mmol) was dissolved in 100 mL EtOH 
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and 500 mg Pd/C was added in a parr jar.  The mixture was shaken under pressurized hydrogen 

(75 psi) until 19 had disappeared as indicated by TLC (3:1, EtOAc:MeOH).  The Pd/C was 

filtered out through celite, and the solution was concentrated by rotary evaporation and the 

residue was kept under vacuum overnight.  The flask with the residue was flushed with Ar, and 

the residue was dissolved in anhydrous THF (30 mL) and anhydrous DIEA (0.869 mL) was 

added to the solution.  The solution was bubbled with Ar and cooled to -40 °C.  Acryloyl 

chloride (0.116 mL) was added dropwise to the solution which was then allowed to stir below -

20 °C, protected from light, until the reaction was complete as indicated by TLC (6:1, 

CHCl3:MeOH).  The solution was concentrated by rotary evaporation and was dissolved in 30 

mL DCM and extracted with 20 mL H20.  The DCM layer was crystallized to give pure 21 

(0.3845 g, 37 %): mp 130-135 °C.  TLC (6:1, CHCl3:MeOH) Rf = 0.48.  1H NMR data: δ  10.09 

(s, 1H), 9.88 (s, 1H), 8.01 (m, 2H), 7.25 (d, J = 1.78 Hz, 1H), 7.17 (d, J = 1.77 Hz, 1H), 6.90 (d, J 

= 1.83 Hz, 1H), 6.84 (d, J = 1.80 Hz, 1H), 6.36 (m, 1H), 6.17 (m, 1H), 5.70 (d, J = 8.85 Hz, 1H), 

5.64 (dd, J = 2.80, 7.94, 2.22 Hz, 1H), 5.16 (t, J = 10.35, 9.60 Hz, 1H), 4.88 (t, J = 9.52, 9.70 Hz, 

1H), 4.17 (dd, J = 4.75, 8.08, 4.20 Hz, 1H), 4.00 (m, 4H), 3.83 (s, 3H), 3.78 (s, 3H), 3.10 (q, J = 

6.65, 6.68, 6.32 Hz, 2H), 2.04 (s, 3H), 2.00 (s, 3H), 1.96 (s, 3H), 1.91 (s, 3H), 1.64 (p, J = 7.32, 

7.20, 7.08, 7.37 Hz, 2H).  13C NMR data: δ  172.23, 170.05, 169.61, 169.28, 168.91, 161.65, 

161.24, 158.30, 131.50, 125.62, 123.03, 122.90, 121.99, 121.69, 118.44, 117.87, 104.16, 103.98, 

91.74, 72.18, 71.52, 68.06, 61.48, 51.80, 37.94, 36.19, 35.96, 33.27, 25.72, 20.42 (3C), 20.33. 

 1,3,4,6-tetra-O-acetyl-2-{[3-({[4-({[4-(acryloylamino)-1-methyl-1H-pyrrol-2-

yl]carbonyl}amino)-1-methyl-1H-pyrrol-2-yl] carbonyl}amino)propanoyl]amino}-2-

deoxyhexopyranose (22).  Compound 22 was synthesized using a procedure similar to the one 

described above for 21 using 0.500 g (0.723 mmol) of 20 and 59 µL (0.723 mmol) of acryloyl 
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chloride to give 22 (0.327 g, 63 %): mp 137-137 ° C. TLC (6:1, CHCl3:MeOH) Rf = 0.30.  1H 

NMR data: δ 10.11 (s, 1H), 9.90 (s, 1H), 8.09 (d, J = 9.16 Hz, 1H), 7.97 (t, J = 5.28, 5.69 Hz, 

1H), 7.26 (d, J = 1.59 Hz, 1H), 7.19 (d, J = 1.61, 1H), 6.90 (d, J = 1.72 Hz, 1H), 6.80 (d, J = 1.67 

Hz, 1H), 6.35 (m, 1H), 6.17 (dd, J =  1.99, 14.91, 2.15 Hz, 1H), 5.71 (d, J = 8.84 Hz, 1H) 5.66 

(dd, J = 1.98, 8.02, 2.16 Hz, 1H), 5.17 (t, J = 9.73, 10.19 Hz, 1H), 4.88 (t, J = 9.80, 9.76 Hz, 1H), 

4.18 (dd, J = 4.63, 8.07, 4.30 Hz, 1H), 3.97 (m, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 3.29 (m, 2H), 

2.29 (t, J = 7.47, 7.25 Hz, 2H), 1.99 (s, 3H), 1.98 (s, 3H), 1.96 (s, 3H), 1.87 (s, 3H).  13C NMR 

data: δ  170.81, 170.05, 169.62, 169.29, 168.89, 161.64, 161.23, 158.29, 131.49, 125.62, 123.01, 

122.70, 122.03, 121.68, 118.44, 118.00, 104.10, 103.99, 91.68, 72.16, 71.51, 68.01, 61.48, 51.85, 

41.34, 36.19, 35.97, 35.58, 35.37, 20.52, 20.42 (2C), 20.25. 

 Ethyl 4-({[4-({[4-(acryloylamino)-1-methyl-1H-pyrrol-2-yl]carbonyl}amino)-1-

methyl-1H-pyrrol-2-yl]carbonyl}amino)butanoate (23).  The NO2PyPyγOEt 7 (1.45 g, 3.58 

mmol) was dissolved in ethanol (200 mL) and Pd/C (500 mg) was added in a parr jar.  The 

mixture was shaken under pressurized hydrogen (75 psi) until 7 had disappeared as indicated by 

TLC (EtOAc).  The Pd/C was filtered out through celite, and the solution was rotary evaporated 

down to afford the amine which was kept under vacuum overnight.  The amine flushed with Ar 

was dissolved in anhydrous THF (44 mL) and anhydrous DIEA (2.07 mL) was added to the 

solution.  The solution was bubbled with Ar and cooled to -40 °C.  Acryloyl chloride (0.292 mL) 

was added dropwise to the solution and allowed to stir below -20 °C protected from light until 

the reaction was complete as indicated by TLC (6:1, CHCl3:MeOH).  The solution was 

concentrated by rotary evaporation dissolved in 30 mL EtOAc and extracted with 30 mL H20.  

The EtOAc layer was dried over MgSO4 and concentrated by rotary evaporation to give pure 23 

(1.40 g, 91 %): mp 70-75 °C.  TLC (EtOAc) Rf = 0.29.  1H NMR data: δ  10.09 (s, 1H), 9.89 (s, 
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1H), 8.03 (t, J = 5.46, 5.59 Hz,1H), 7.26 (d, J = 1.41 Hz, 1H), 7.17 (d, J = 1.32 Hz, 1H), 6.90 (d, 

J = 1.52 Hz, 1H), 6.85 (d, 1.45 Hz, 1H), 6.36 (m, 1H), 6.19 (dd, J = 1.90, 15.04, 1.99 Hz, 1H), 

5.65 (dd, J = 1.87, 2.02 Hz, 1H), 4.03 (q, J = 7.11, 7.11, 7.13 Hz, 2H), 3.83 (s, 3H), 3.78 (s, 3H), 

3.17 (q, J = 6.49, 6.11, 6.47 Hz, 2H), 2.29 (t, J = 7.80, 7.49 Hz, 2H), 1.72 (p, J = 6.97, 7.08, 7.06, 

7.04 Hz, 2H), 1.16 (t, J = 7.10, 7.10 Hz, 3H).  13C NMR data: δ 172.73, 161.64, 161.30, 158.29, 

131.51, 125.59, 123.04, 122.89, 122.00, 121.70, 118.44, 117.87, 104.18, 103.96, 59.76, 37.71, 

36.20, 35.96, 31.06, 24.72, 14.13. 

 1,3,4,6-tetra-O-acetyl-2-deoxy-2-({4-[({1-methyl-4-[({1-methyl-4-[(3-

sulfopropanoyl)amino]-1H-pyrrol-2-yl}carbonyl)amino]-1H-pyrrol-2-

yl}carbonyl)amino]butanoyl}amino)hexopyranose (25).  The alkene 21 (1.00 g, 1.37 mmol), 

was dissolved in THF (20 mL) and H2O (80 mL) was added.  To the solution, 45 % NH4HSO3 (6 

mL) and 50 % H2O2 (0.5 mL) were added and the solution was allowed to reflux for 16 hours at 

which time TLC (6:1, CHCl3, MeOH) indicated the complete disappearance of 21 and the 

formation of a baseline spot.  The solution was concentrated by rotary evaporation and the solid 

was washed with MeOH, which gave a yellow solution leaving behind a white salt.  The yellow 

solution was concentrated by rotary evaporation to give a yellow solid that was dissolved in a 

minimal amount of H2O.  The solution was acidified to a pH of approximately 1 with 

concentrated H2SO4 and the aqueous solution was evaporated off.  Flash column 

chromatography (1:1:1, EtOAc:DCM:MeOH) was used to purify the resulting solid to give 

slightly impure 25 (294 mg, 26.5 %): mp � decomposition 170 °C.  TLC (1:1:1, 

EtOAc:DCM:MeOH) Rf = 0.57.  1H NMR data: δ  10.02 (s, 1H), 9.91 (s, 1H), 8.09 (m, 2H), 7.11 

(s, 1H), 7.09 (s, 1H), 6.80 (s, 2H), 5.20 (m, 1H), 5.00 (m, 1H), 4.85 (m, 1H), 4.15 (m, 2H), 4.00 
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(m, 2H), 3.82 (s, 3H), 3.78 (s, 3H), 3.12 (m, 2H), 2.68 (m, 2H), 2.57 (m, 2H), 2.15 (m, 2H), 1.75 

(m, 2H). 

 2-deoxy-2-[(4-{[(1-methyl-4- {[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl] amino}-

1H-pyrrol-2-yl)carbonyl]amino}butanoyl)amino]hexopyranose (26).  Compound 19 (10 mg) 

was dissolved in 7 N NH3 in MeOH and allowed to stir at room temperature until 19 had 

disappeared as indicated by TLC (6:1, CHCl3:MeOH).  The solution was concentrated by rotary 

evaporation to give 26.  1H NMR data: δ  10.23 (s, 1H), 8.17 (d, J = 2.0 Hz, 1H), 8.09 (s, 1H), 

7.63 (m, 1H), 7.57 (d, J = 2.0 Hz, 1H), 7.20 (d, J = 2.0 Hz, 1H), 6.85 (d, J = 2.0 Hz, 1H), 4.91 (m, 

2H), 4.41 (m, 1H), 3.94 (s, 3H), 3.80 (s, 3H), 3.58 (m, 2H), 3.16 (m, 2H), 2.15 (m, 2H), 1.75 (m, 

2H). 

   2-[(5-{[(5-{[(4-ethoxy-4-oxobutyl)amino]carbonyl}-1-methyl-1H-pyrrol-3-

yl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)amino]-2-oxoethanesulfonic acid (27).  To a 

solution of alkene ester 23 (1.4 g, 3.26 mmol) in 65 mL of 4:1 EtOH: H2O, NaHSO3 (678 mg, 

6.52 mmol) in 10 mL of H2O was added.  The pH was adjusted to about 8 with 5 % NaOH and 

the mixture was refluxed until 23 had disappeared and a spot appeared on the baseline by TLC 

(6:1 CHCl3: MeOH).  The solution was cooled in an ice bath and concentrated HCl was added 

until the pH was about 1.  The solvents were removed by rotary evaporation and the residue was 

dried under vacuum.  The residue was then stirred in EtOH and the insoluble white salt was 

filtered off.  This yellow solution was then concentrated by rotary evaporatin and dried to afford 

the sulfonic acid ester 27 (1.48 g, 89 %): TLC (1:1:1 EtOAc:DCM:MeOH) Rf = 0.57.  1H NMR 

data: δ 9.96 (s, 1H), 9.85 (s, 1H), 8.03 (t, 1H), 7.16 (d, 1H), 7.14 (d, 1H), 6.84 (s, 2H), 4.03 (q, 

2H), 3.80 (s, 3H), 3.77 (s, 3H), 3.16 (m, 2H), 2.66 (m, 2H), 2.54 (m, 2H), 2.30 (t, 2H), 1.70 (q, 

2H), 1.16 (t, 3H).    
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 4-[({1-methyl-4-[({1-methyl-4-[(sulfoacetyl)amino]-1H-pyrrol-2l}carbonyl) amino]-

1H-pyrrol-2-yl}carbonyl)amino]butanoic acid (29).  The sulfonic acid ester 27 (1.48 g, 3.26 

mmol) was dissolved in EtOH (60 mL) and NaOH (832 mg) dissolved in H2O (50 mL) was 

added.  This solution was allowed to stir until the disappearance of 27 indicated by TLC (1:1, 

EtOAc:MeOH).  The solution was then cooled in an ice bath and concentrated HCl was added 

until acidic (pH approximately 1).  The solution was concentrated by rotary evaporation to give a 

white and yellow solid, which was sitrred with EtOH which resulted in a yellow solution and an 

insoluble white solid.  The solid was filtered off and the yellow solution was rotary evaporated 

down to give pure 29 (1.31 g, 81 %): mp 184-188 °C.  TLC (1:1:1 EtOAc:DCM:MeOH) Rf = 

0.55.  1H NMR data: δ 9.97 (s, 1H), 9.85 (s, 1H), 8.03 (t, 1H), 7.16 (d, 1H), 7.14 (d, 1H), 6.84 (s, 

2H), 3.80 (s, 3H), 3.77 (s, 3H), 3.18 (m, 2H), 2.67 (m, 2H), 2.54 (m, 2H), 2.23 (t, 2H), 1.69 (q, 

2H).  13C NMR data: δ 174.37, 168.32, 161.37, 158.43, 122.94, 122.72, 122.11, 122.09, 118.21, 

117.88, 104.27, 103.98, 59.82, 47.55, 36.16, 36.00, 32.23, 31.23, 24.81. 

 [1-methyl-4-[1-methyl-4-(2-propenamido)-imidazole-2-carboxamido]pyrrole-2-

carboxamido]propane (31).  Compound 31 was previously made in the laboratory following 

procedures described in literature.10 

 [1-methyl-4-[1-methyl-4-(3-sulfopropanamido)imidazole-2-carboxamido]-pyrrole-2-

carboxamido]propane (32).  To a solution of alkene 31 (0.500 g, 1.4 mmol) in 50 mL of 4:1 

EtOH: H2O, NaHSO3 (291 mg, 2.8 mmol) in 5 mL of H2O was added.  The pH was adjusted to 

about 8 with 5 % NaOH and the mixture was refluxed until 31 had disappeared and a spot 

appeared on the baseline on TLC (EtOAc).  The solution was cooled in an ice bath and 

concentrated HCl was added until the pH was about 1 and the solution was cooled in the freezer 

for 2 h.  A yellow precipitate fell out of solution which was filtered out to give 32 (0.364 g, 59 
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%): mp 264-268 °C.  TLC (1:1:1 EtOAc:DCM:MeOH) Rf = 0.55.  1H NMR data: δ 10.35 (s, 1H), 

10.00 (s, 1H), 8.00 (s, 2H), 7.41 (d, J = 0.71 Hz, 1H), 7.20 (s, 1H), 6.93 (s, 1H), 3.92 (s, 3H), 

3.78 (s, 3H), 3.10 (d, J = 5.03 Hz, 2H), 2.68 (m, 2H), 2.62 (m, 2H), 1.47 (sextet, J = 7.28, 7.06, 

7.34, 7.23, 6.85 Hz, 2H), 0.85 (t, J = 7.37, 6.59 Hz, 3H).  13C NMR data: δ 169.11, 161.15, 

155.18, 135.37, 133.77, 123.45, 121.05, 118.01, 113.97, 104.20, 47.10, 36.08, 35.13, 31.77, 

22.64, 11.51.   

 [1-methyl-4-[1-methyl-4-(3-(methoxysulfonyl)-propanamido)imidazole-2-

carboxamido]pyrrole-2-carboxamido]propane (33).  Compound 32 (0.136 g, 0.309 mmol) 

was suspended in anhydrous dioxane (22 mL) and warmed to 55 °C in an oil bath.  To the 

suspension, 3-methyl-p-tolyltriazine (100 mg, 2.2 eq) was added and the mixture was allowed to 

stir for 5 h when a new spot appeared on TLC (EtOAc).  The product was purified by flash 

column chromatography (EtOAc) to give 33 (79.2 mg, 56.6 %) which was stored under Ar in the 

freezer to prevent hydrolysis:  1H NMR data: δ 10.48 (s, 1H), 9.94 (s, 1H), 8.03 (t, J = 5.70, 5.37 

Hz, 1H), 7.41 (s, 1H), 7.26 (s, 1H), 6.89 (s, 1H), 3.92 (s, 3H), 3.85 (s, 3H), 3.78 (s, 3H), 3.66 (t, J 

= 12.41, 12.73 Hz, 2H), 3.12 (q, J = 6.77, 6.37, 6.16 Hz, 2H), 2.83 (t, J = 13.16, 14.38 Hz, 2H), 

1.47 (sextet, J = 7.32, 7.36, 7.21, 7.24, 7.20 Hz, 2H), 0.85 (t, J = 7.42, 7.30 Hz, 3H).  

 Methyl 1-methyl-4-{[(1-methyl-4-{[(2-oxo-2H-chromen-3-yl)carbonyl] amino}-1H-

pyrrol-2-yl)carbonyl]amino}-1H-pyrrole-2-carboxylate (34).  This compound was made 

previously in lab using procedures similar to forming 36.  

 1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]amino}-N-propyl-1H-

pyrrole-2-carboxamide (35).  To a solution of propylamine (0.281 mL, 3.42 mmol), EDCI 

(1.01 g, 1.5 eq), DMAP (1.04 g, 2.5 eq), HOBt (1.57 g, 3 eq), and CuCl2 (46 mg, 0.1 eq) in dry 

DMF (30 mL), the carboxylic acid (13) (1.0 g, 3.42 mmol) was added.  The solution was allowed 
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to stir under Ar until 13 had disappeared as indicated by TLC (EtOAc).  The solution was diluted 

with 60 mL EtOAc and washed with H2O (2x, 60 mL), saturated NaHCO3 (2x, 115 mL), and 1M 

HCl (2x, 115 mL).  The organic layer was dried over MgSO4 and the resulting yellow solution 

was concentrated by rotary evaporation to give pure 35 (0.627 g, 55%): mp 222-226 °C.  TLC 

(EtOAc) Rf = 0.43.  1H NMR data: δ 10.22 (s, 1H), 8.17 (d, J = 1.85 Hz, 1H), 8.05 (t, J = 5.69, 

5.68 Hz, 1H), 7.57 (d, J = 1.99 Hz, 1H), 7.19 (d, J = 1.78 Hz, 1H), 6.83 (d, J = 1.86 Hz, 1H), 3.94 

(s, 3H), 3.79 (s, 3H), 3.11 (q, J = 6.48, 6.97, 6.43 Hz, 2H), 1.47 (sextet, J = 7.40, 7.34, 7.08, 7.22, 

7.33 Hz, 2H), 0.85 (t, J = 7.36, 7.44 Hz, 3H).    13C NMR data: δ 161.11, 156.85, 133.79, 128.24, 

126.32, 123.37, 121.30, 117.87, 107.56, 103.92, 37.50, 36.03, 22.60, 11.46. 

 1-methyl-4-{[(1-methyl-4-{[1-(2-oxo-2H-chromen-3-yl)vinyl]amino}-1H-pyrrol-2-

yl)carbonyl]amino}-N-propyl-1H-pyrrole-2-carboxamide (36).  The NO2PyPyNHPr 35 

(0.200 g, 0.60 mmol) was dissolved in ethanol (20 mL) and Pd/C (160 mg) was added in a parr 

jar.  The mixture was shaken under pressurized hydrogen (75 psi) until 35 had disappeared as 

indicated by TLC (EtOAc).  The Pd/C was filtered out through celite, and the solution was 

concentrated by rotary evaporation to afford a residue which was kept under vacuum overnight.  

The residue in the flask was dissolved in dry DMF (10 mL) and EDCI (178 mg, 1.5 eq), DMAP 

(147 mg, 2 eq), HOBt (276 mg, 3 eq), and CuCl2 (8 mg, 0.1 eq) were added.  To this solution 

coumarin-3-carboxylic acid (114 mg, 0.6 mmol) was added and allowed to stir until the 

coumarin-3-carboxylic acid as indicated by TLC (EtOAc).  The solution was diluted with 20 mL 

EtOAc and the organic solution was extracted with H20 (2x, 20 mL), saturated NaHCO3 (2x, 40 

mL), and 10 % HCl (2x, 40 mL).  The organic layer was dried over MgSO4 and the solution was 

cooled in the freezer to crystallize the product and the crystals were filtered out to afford the pure 

yellow 36 (120 mg, 42 %): mp 200-202 °C. TLC (EtOAc) Rf = 0.45.  1H NMR data: δ 10.52 (s, 
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1H), 9.86 (s, 1H), 8.89 (s, 1H), 8.01 (m, 2H), 7.76 (td, J = 1.57, 7.09, 1.16, 5.87, 1.6 Hz, 1H), 

7.53 (d, J = 8.31 Hz, 1H), 7.48 (t, J = 6.89, 7.3 Hz, 1H), 7.41 (d, J = 1.78 Hz, 1H), 7.17 (d, J = 

1.77 Hz, 1H), 7.09 (d, J = 1.84 Hz, 1H), 6.84 (d, J = 1.85 Hz, 1H), 3.87 (s, 3H), 3.79 (s, 3H), 

3.11 (q, J = 6.48, 6.98, 5.98 Hz, 2H), 1.48 (sextet, J = 7.40, 7.33, 7.10, 7.21, 7.29 Hz, 2H), 0.86 (t, 

J = 7.34, 7.46 Hz, 3H).  13C NMR data: δ 161.21, 160.75, 158.14, 158.09, 153.83, 147.00, 134.15, 

130.27, 125.29, 123.29, 123.16, 121.93, 120.78, 119.45, 118.91, 118.60, 117.68, 116.25, 104.37, 

104.01, 36.30, 35.95, 22.62, 11.47. 

 Methyl 4-{[(4-acetyl-1-methyl-1H-pyrrol-2-yl)carbonyl]amino}-1-methyl-1H-

pyrrole-2-carboxylate (37).  The nitro compound 9 (0.50 g, 1.63 mmol) was dissolved in 60 mL 

EtOH and Pd/C (0.40 g) was added in a parr jar.  The mixture was shaken under pressurized 

hydrogen (75 psi) until 9 had disappeared as indicated by TLC (EtOAc).  The Pd/C was filtered 

out through celite, and the solution was rotary evaporated down to afford a residue which was 

kept under vacuum overnight.  The residue in the flask was dissolved in dry THF (15 mL) under 

Ar and DIEA was added to the solution (0.568 mL).  The solution was cooled to -30 °C and Ar 

was bubbled through the solution for 10 minutes.  Acetyl chloride (0.116 mL) was added drop 

wise to the solution and was allowed to stir as it warmed to room temperature until the residue 

spot had disappeared as indicated by TLC (EtOAc).  The solution was concentrated by rotary 

evaporation and the solid was dissolved in 15 mL EtOAc.  This was extracted with H2O (2x, 15 

mL) and 10 % HCl (2x, 15 mL) and the organic layer was dried over MgSO4.  The organic layer 

was concentrated by rotary evaporation and cooled in the freezer overnight to allow the product 

to fall out of solution, which was filtered to afford pure 37 (0.300 mg, 58 %): mp 182-183 °C. 

TLC (EtOAc) Rf = 0.22.  1H NMR data: δ 9.88 (s, 1H), 9.82 (s, 1H), 7.44 (d, J = 1.78 Hz, 1H), 

7.13 (d, J = 1.63 Hz, 1H), 6.88 (d, J = 1.87 Hz, 1H), 6.83 (d, J = 1.72 Hz, 1H), 3.82 (s, 3H), 3.80 
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(s, 3H), 3.72 (s, 3H), 1.96 (s, 3H).  13C NMR data: δ 166.49, 160.81, 158.40, 122.90, 122.47, 

122.19, 120.77, 118.51,  118.17, 108.36, 103.88, 50.97, 36.18, 36.09, 23.08. 

 4-{[(4-acetyl-1-methyl-1H-pyrrol-2-yl)carbonyl]amino}-1-methyl-1H-pyrrole-2-

carboxylic acid (38).  Compound 37 (0.185 g, 0.581 mmol) was dissolved in EtOH (10 mL) and 

NaOH (0.93 g) in H2O (7.5 mL) was added to the solution.  The solution was allowed to reflux 

until 37 had disappeared as indicated by TLC (EtOAc) in about 3 hr.  The solution was 

concentrated by rotary evaporation and the aqueous solution was cooled in an ice bath.  Cold 

concentrated HCl was added until the pH was about 1 when a yellow precipitate fell out.  The 

precipitate was filtered to give pure 38 (0.177 g, 100 %): mp 135-138 °C.  TLC (4:1, CHCl3: 

MeOH) Rf = 0.31.  1H NMR data: δ 12.14 (s, 1H), 9.85 (s, 1H), 9.82 (s, 1H), 7.40 (d, J = 1.9 Hz, 

1H), 7.13 (d, J = 1.75 Hz, 1H), 6.82 (m, 2H), 3.80 (s, 6H), 1.96 (s, 3H).  13C NMR data: δ 166.50, 

161.97, 158.36, 122.60, 122.53, 122.16, 120.30, 119.49, 118.12, 108.37, 103.83, 36.15, 36.10, 

23.08. 

 Ethyl 4-{[(4-{[(4-acetyl-1-methyl-1H-pyrrol-2-yl)carbonyl]amino}-1-methyl-1H-

pyrrol-2-yl)carbonyl]amino}butanoate (39).  Compound 39 was synthesized using a procedure 

similar to the one described above for 37 using 0.500 g (1.23 mmol) of 7 and 88 µL (1.23 mmol) 

of acetyl chloride to give 39 (0.328 g, 64 %): mp 126-128 ° C. TLC (6:1, CHCl3:MeOH) Rf = 

0.52.  1H NMR data: δ 9.85 (s, 1H), 9.83 (s, 1H), 8.02 (t, J = 5.45, 5.74 Hz), 7.16 (d, J = 1.69 Hz, 

1H), 7.13 (d, J = 1.71 Hz, 1H), 6.84 (d, J = 1.78 Hz, 1H), 6.82 (d, J = 1.77 Hz, 1H), 4.03 (q, J = 

7.15, 7.11, 7.11 Hz, 2H), 3.80 (s, 3H), 3.78 (s, 3H), 3.16 (q, J = 6.57, 5.79, 6.49 Hz, 2H), 2.31 (t, 

J = 7.44, 7.44 Hz, 2H), 1.96 (s, 3H), 1.72 (quintet, J = 7.16, 7.17, 7.14, 7.33 Hz, 2H), 1.16 (t, J = 

7.10, 7.09 Hz, 3H).  13C NMR data: δ 172.73, 166.47, 161.30, 158.36, 122.86, 122.69, 122.10, 

122.05, 118.02, 117.84, 104.20, 103.76, 59.77, 37.70, 36.12, 35.95, 31.06, 24.72, 23.07, 14.14.  
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 4-{[(4-{[(4-acetyl-1-methyl-1H-pyrrol-2-yl)carbonyl]amino}-1-methyl-1H-pyrrol-2-

yl)carbonyl]amino}butanoic acid (40).  Compound 40 was synthesized using a procedure 

similar to the one described above for 38 using 0.328 g (0.787 mmol) of 39 to give 40 (0.292 g, 

93 %): mp 122-125 ° C. TLC (1:1:1, DCM:EtOAc:MeOH) Rf = 0.24.  1H NMR data: δ 12.02 (s, 

1H), 9.85 (s, 1H), 9.82 (s, 1H), 8.03 (t, J = 5.85 Hz, 1H), 7.16 (d, J = 1.73 Hz, 1H), 7.13 (d, J = 

1.74 Hz, 1H), 6.84 (d, J = 1.80 Hz, 1H), 6.82 (d, J = 1.83 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 

3.16 (q, J = 6.60, 6.07, 6.62 Hz, 2H), 2.23 (t, J = 7.42, 7.38 Hz, 2H), 1.96 (s, 3H), 1.69 (quintet, J 

= 6.93, 7.28, 7.32, 7.29 Hz, 2H).  13C NMR data: δ 174.33, 166.49, 161.31, 158.36, 122.91, 

122.69, 122.10, 122.03, 118.02, 117.83, 104.81, 103.75, 37.83, 36.13, 35.96, 31.16, 24.76, 23.07. 

 2-oxo-N-propyl-2H-chromene-3-carboxamide (43).  Compound 43 was synthesized 

using a procedure similar to the one described above for 35 using 100 mg (0.525 mmol) of 

coumarin-3-carboxylic acid and 31 mg (0.525 mmol) of N-propylamine to give 43 (83 mg, 68.6 

%):  mp 119-121 °C.  TLC (EtOAc) Rf = 0.63.  1H NMR data: δ 8.49 (s, 1H), 8.69 (m, 1H), 7.96 

(d, J = 7.75 Hz, 1H), 7.73 (t, J = 7.35, 6.88 Hz, 1H), 7.50 (d, J = 8.32 Hz, 1H), 7.43 (t, J = 7.60, 

7.46, 1H), 3.27 (q, J = 6.90, 6.60, 6.14 Hz, 2H), 1.53 (sextet, J = 7.39, 7.37, 7.27, 7.17, 7.07 Hz, 

2H), 0.89 (t, J = 7.33, 7.46 Hz, 3H).  13C NMR data: δ  161.11, 160.51, 153.91, 147.35, 134.08, 

130.30, 125.20, 119.22, 118.57, 116.20, 40.88, 22.32, 11.44. 
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 The goal of this project was to design and synthesize compounds to produce 3-MeA 

adducts in insulin producing pancreatic β-cells.  The project involved combining an agent 

capable of causing one kind of damage on DNA (i.e. 3-MeA adduct) with a unit that can target 

this damaging agent preferentially to pancreatic β-cells.  Two different molecules were designed 

in which the cell targeting glucose unit and the DNA damaging Me-lex unit were to be linked by 

a three carbon linker or a four carbon linker shown in Figure 6.1.  A synthetic route for these 

molecules was devised comprised of 12-15 steps.  Out of the 12-15 steps of the synthesis, both of 

these molecules have been accomplished to within 2-3 steps of the final product.  Compounds 21 

and 22 shown below in Figure 6.2 have been synthesized.  

 A second goal of this project was to make these molecules in a way to introduce the 

linkers at a later stage.  Therefore, the goal was to make compound 11 shown in Figure 6.3.  

However, this route had to be modified since the ester was unable to be hydrolyzed to the 

carboxylic acid without the Michael addition at the alkene taking place.  Compound 24 was 

successfully made and there are reports that an amide can be made in the presence of a sulfonic 

acid this was verified with the test reaction described Scheme 3.23.  This process is being further 

explored in the laboratory. 

 During the course of the project it was decided to develop a binding assay to measure the 

strength of binding of the new compounds with the glucose unit attached to the target site on 

DNA because this is expected to influence the efficiency of methylation of these compounds.  A 

fluorescence assay was decided upon and two different potential fluorescent probes were 

synthesized in this project as shown in Figure 6.4.  Initial experiments have indicated that neither 

of these compounds fluoresces very strongly and  
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Figure 6.1. Structure of the final compounds to be made where R = CH2CH2CH2 or CH2CH2. 



 104

N

H
N

O

H
N

N

NH

O R

O

N
H

O

O

AcO
OAc

CH2OAc

OAc

21, R = CH2CH2CH2
22, R = CH2CH2   

Figure 6.2. Structure of the compounds completed thus far. 
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therefore, they cannot be used directly for measurements of binding constants of the compounds 

made in this project.  The experiments indicate that the mode of connection of the coumarin to 

the dipyrroles that quenches the fluorescence and new compounds are being designed shown in 

Figure 6.5 to identify the best probe to use for these studies. 

 Once the final compounds which have the DNA-methylating unit and the cell-targeting 

unit completed these molecules can be tested with DNA for their ability to methylate DNA.  A 

measurement of these compounds obtained from the fluorescence assays can then be used to 

correlate the strength of the binding to the levels of methylation.  When the best candidates are 

identified cell targeting ability of these compounds will be investigated using cell which have the 

GLUT-2 transporter and those which do not have the GLUT-2 transporter. 



 108

N

H
N O

HN

N

H
N

O

O

O

O

N
H

N

H
N

O

H
N

N

NH

O

O

N
H

O

O

O

O

 

Figure 6.5. Compounds to be made to test for fluorescence. 



 109

REFERENCES 

1. American Diabetes Association.  �All About Diabetes.�  Diabetes Information.  

www.diabetes.org/about-diabetes.jsp.  2006. 

2.  Simone, E.; Eisenbarth, G. S.  �Chronic autoimmunity of type I diabetes.�    

 Hormone and Metabolic Research.  1996, 28(7), 332-336. 

3.    Greiner, D.L.; Rossini, A.A.; Mordes, J.P.  �Translating Data from Animal Models into 

Methods for Preventing Human Autoimmune Diabetes Mellitus: Caveat Emptor and 

Primum non Nocere.� Clinical Immunology. 2001, 100(2), 134-143. 

4. Cardinal, J. W.; Margison, G. P.; Mynett, K. J.; Yates, A. P.; Cameron, D. P.;  Elder 

R. H.  �Increased susceptibility to streptozotocin-induced β-cell apoptosis  and delayed 

autoimmune diabetes in alkylpurine-DNA-N-glycosylase-deficient  mice.�  Mol. Cell. 

Biol. 2001, 21, 5605-5613.  

5. Fronza, Gilberto; Gold, Barry.  �The Biological Effects of N3-Methyladenine.�  Journal 

of Cellular Biochemistry. 2004, 91, 250-257. 

6. Tentori, L.; Olindo F.; Fossile E.; Muzi A.;Vergati M.; Portarena I.; Amici C.; Gold, B.; 

Graziani G.  �N3-Methyladenine Induces Early Poly(ADP-Ribosylation), Reduction of 

Nuclear Factor-κB DNA Binding Ability, and Nuclear Up-Regulation of Telomerase 

Activity.�  Molecular Pharmacology.  2004, 67, 572-581. 

7. Lawley, P. D..  �Carcinogenesis by Alkylating Agents.�  Chemical Carcinogens.  1984, 1, 

325-484, American Chemical Society, Washington, DC. 

8. Beranek, D. T.; Weis, C. C.; Swenson, D. H..  �A Comprehensive Quantitative Analysis 

of Methylated and Ethylated DNA Using HPLC.�  Carcinogenesis.  1980, 1, 595-605. 



 110

9. Shah, Dharini; Gold, Barry.  �Evidence in Escherichia coli that N3-Methyladenine 

Lesions and Cytotoxicity Induced by a Minor Groove Binding Methyl Sulfonate Ester 

Can Be Modulated in Vivo by Netropsin.�  Biochemistry. 2003, 42, 12610-12626. 

10. Varadarajan, Sridhar; Shah, Dharini; Dande, Prasad; Settles, Samuel; Chen, Fa-Xian; 

Fronza, Gilberto; Gold, Barry. �DNA Damage and Cytotoxicity Induced by Minor 

Groove Binding Methyl Sulfonate Esters.� Biochemistry. 2003, 42, 14318-14327. 

11. Monti, P; Iannone, R; Campomenosi, P; Ciribilli, Y; Varadarajan, S; Shah, D; Menichini, 

P; Gold, B; Fronza, G.  �Nucleotide Excision Repair Defect Influences Lethality and 

Mutagenicity Induced by Me-Lex, a Sequence-Selective N3-Adenine Methylating Agent 

in the Absence of Base Excision Repair.�  Biochemistry.  2004, 43, 5592-5599.       

12. Engelward, B. P.; Allan, J. M.; Dreslin, A.J.; Kelly, J.D.; Gold, B.; Samson, L.D.  �3-

Methyladenine DNA Lesions Induce Chromosome Abberations, Cell Cycle Delay, and 

Apoptosis.�  J. Biol. Chem.  1998, 273, 5412-5418. 

13. Ito, Mikio.  �Streptozotocin-induced diabetic animal models.�  Sogo Rinsho.  2004,  53(4), 

1479-1481. 

14.    Schnedl, W.J.; Ferber, S.; Johnson, J.H.; Newgard, C.B.  �STZ transport and cytotoxicity. 

Specific enhancement in GLUT2-expressing cells.�  Diabetes.  1994, 43(11), 1326-33. 

15. Wang, Z.; Gleichmann, H.  �GLUT2 in pancreatic islets: crucial target molecule  in 

diabetes induced with multiple low doses of streptozotocin in mice.�  Diabetes.  1998, 

47(1), 50-6. 

16.   Elsner, M.; Guldbakke, B.; Tiedge, M.; Munday, R.; Lenzen, S.  �Relative 

 importance of transport and alkylation for pancreatic beta-cell toxicity of 

 streptozotocin.�  Diabetologia (2000), 43(12), 1528-1533. 



 111

17. Bolzàn, Alejandro D.; Bianchi, Martha S.  �Genotoxicity of Streptozotocin.� Mutation 

Research.  2002, 512, 121-134. 

18. Zhang, Yi; Chen, Fa-Xian; Mehta, Pratibha; Gold, Barry.  �Groove-and Sequence-

Selective Alkylation of DNA by Sulfonate Esters Tethered to Lexitropsins.� 

Biochemistry.  1993, 32, 7954-7965. 

19. Elsner, M.; Guldbakke, B.; Tiedge, M.; Munday, R.; Lenzen, S.  �Relative importance of 

transport and alkylation for pancreatic beta-cell toxicity of streptozotocin.�  Diabetologia.  

2000, 43(12), 1528-1533. 

20.  Elsner, M.; Tiedge, M.; Guldbakke, B.; Munday, R.; Lenzen, S.  �Importance of the 

GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan.� Diabetologia.  

2002, 45(11), 1542-1549. 

21.  Mossman, Brooke T.; Wilson, Glenn L.; Craighead, John E.  �Chlorozotocin:  a 

diabetogenic analog of streptozocin with dissimilar mechanisms of action on pancreatic 

beta cells.�  Diabetes.  1985, 34(6), 602-10. 

22.  Tutwiler, G. F.; Bridi, G. J.; Kirsch, T. J.; Burns, H. D.; Heindel, N. D.  �Hyperglycemic 

activity of some non-nitrosated streptozotocin analogs.�    Proceedings of the Society for 

Experimental Biology and Medicine.  1976, 152(2), 195-198. 

23. Bhuyan, B. K.; Peterson, A. R.; Heidelberger, Charles.  �Cytotoxicity, mutations and 

DNA damage produced in Chinese hamster cells treated with streptozotocin, its analogs, 

and N-methyl-N'-nitro-N-nitrosoguanidine.�  Chemico-Biological Interactions.  1976, 

13(2), 173-179. 



 112

24.  Ficsor, Gyula; Zuberi, Riaz I.; Suami, Tetsuo; Machinami, Tomoya.  �Differential 

mutagenicity of streptozotocin analogs of the carbohydrate moiety.�  Chemico-Biological 

Interactions.  1974, 8(6), 395-402. 

25. Zheng, Gang; Glickson, Jerry D.; Chance, Britton.  �Preparation of 2-aminodeoxy-

glucose derivatives as antineoplastic agents targeted via GLUT transporters.�  PCT Int. 

Appl.  2004, 71 pp.  CODEN: PIXXD2  WO  2004110255  A2  20041223  CAN 

142:56618  AN 2004:1124548    CAPLUS 

26. Medgyes, Adél; Farkas, Erzsébet; Liptá, András; Pozsgay, Vince.  �Synthesis of the 

Monosaccharide Units of the O-Specific Polysaccharide.� Tetrahedron.  1997, 12, 4159-

4178. 

27. Xiao, Juhauna; Yuan, Gu; Huang, Weiqiang; Chan, Albert; Lee, Daniel. �A Convenient 

Method for the Synthesis of DNA-Recognizing Polyamides in Solution.� J. Org. Chem. 

2000, 65, 5506-5513. 

28. Grayson, Ian.  �Water-soluble carbodiimide � an efficient agent for synthesis.�  

Pharmaceutical Intermediates.  2000, 86-88. 

29. Miyazawa, Toshifumi; Otomatsu, Toshihiko; Fukui, Yoshimasa; Yamada, Takashi; 

Kuwata, Shigeru.  �Racemization-free and Efficient Peptide Synthesis by the 

Carbodiimide Method using 1-Hydroxybenzotriazole and Copper (II) Chloride 

simultaneously as Additives.�  J. Chem. Soc., Chem. Commun.  1988, 419-420. 

30. Fuhrhop, Jurgen-Hinrich; David, Hans-Hermann; Mathieu, Joachim; Liman, Ulrich; 

Winter, Hans-Jorg; Boekema, Egbert.  �Bolaamphiphiles and Monolayer Lipid 

Membranes Made from 1,6,19,24-Tetraoxa-3,21-cyclohexatriacontadiene-2,5,20,23-

tetrone.�  J. Am. Chem. Soc.  1986, 108, 1785-1791. 



 113

31. Tangallapally, Rajendra; Yendapally, Raghunandan; Lee, Robin; Hevender, Kirk; Jones, 

Victoria; Lenaerts, Anne; McNeil, Michael; Wang, Yuehong; Franzblau, Scott; Lee, 

Richard.  �Synthesis and Evaluation of Nitrofuranylamides as Antituberculosis Agents.�  

J. Med. Chem.  2004, 47, 5276-5283. 

32. Brown, K. A.; He, G.; Bruice, T. C.  �Microgonotropens and Their Interactions with 

DNA. 2. Quantittative Evaluation of Equilibrium Constants for 1:1 and 2:1 Binding of 

Dien-Microgonotropen-a, -b, and �c as well as Distamycin and Hoechst 33258 to 

d(GGCGCAAATTTGGCGG)/d(CCGCCAAATTTGCGCC).�  Journal of the American 

Chemical Society. 1993, 115, 7072-7079. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



 114

APPENDIX  

Appendix A.  Structure, number, and percent yields of the compounds. 
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Appendix B.  List of Abbreviations 

3-MeA � 3-methyladenine  

3-MeG � 3-methylguanine 

6-MeG � 6-methylguanine 

A - adenine 

A/T � adenine-thymine 

C - cytosine 

DCM � dichloromethane 

DIEA - diisopropylethylamine 

DNA � deoxyribose nucleic acid 

DMAP - 4-Dimethylaminopyridine 

DMF � dimethylformamide 

DMSO � methyl sulfoxide 

EDCI - 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimidehydrochloride 

EtOAc � ethyl acetate 

EtOH � ethanol 

G � guanine 

HCl � hydrochloric acid 

HOBT - Hydroxybenzotriazole 

Me-lex � methyl lexitropsin 

MeOH � methanol 

NaCl � sodium chloride 

NaOH � sodium hydroxide 
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NMR � nuclear magnetic resonance 

Pd/C � palladium on carbon 

STZ � streptozotocin 

TEA � triethylamine 

THF - tetrahydrofuran 

TLC � thin layer chromatography 

T - thymine 

UV � ultra violet 

 
 

 
 


