
Σ∆ Quantization with the Hexagon Norm in C

Michael Andrew Zichy

A Thesis Submitted to
University North Carolina Wilmington in Partial Fulfillment

Of the Requirements for the Degree of
Master of Arts

Department of Mathematics and Statistics

University North Carolina Wilmington

2006

Approved by

Advisory Committee

Chair

Accepted by

Dean, Graduate School

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149230251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This thesis has been prepared in the style and format

consistent with the journal

American Mathematical Monthly.

ii

TABLE OF CONTENTS

ABSTRACT . vi

ACKNOWLEDGMENTS . vii

1 Introduction . 1

2 Frames . 3

3 Quantization . 8

3.1 PCM Quantization . 8

3.2 Σ∆ Quantization . 13

4 Σ∆ in C . 15

5 Conclusion . 25

APPENDIX . 26

REFERENCES . 41

iii

LIST OF FIGURES

1 PCM Mean Square Error . 11

2 PCM Mean Square Error . 11

3 PCM Mean Square Error . 12

4 Σ∆ Mean Square Error . 14

5 Euclidean Norm Quantization . 15

6 Box Norm Quantization . 16

7 Diamond Norm Quantization . 18

8 Hexagon Norm Quantization . 19

9 Box Norm Quantization in C . 22

10 Box Norm Quantization in C (odd roots of unity) 22

11 Box Norm Quantization in C (even roots of unity) 23

12 Diamond Norm Quantization in C . 23

13 Hexagon Norm Quantization in C . 24

iv

LIST OF TABLES

1 1-Bit PCM: Mean Square Error . 34

2 2-Bit PCM: Mean Square Error . 35

3 3-Bit PCM: Mean Square Error . 36

4 1-Bit Σ∆: Mean Square Error . 37

5 Σ∆ Box Quantization in C: Mean Square Error 38

6 Σ∆ Diamond Quantization in C: Mean Square Error 39

7 Σ∆ Hexgon Quantization in C: Mean Square Error 40

v

ABSTRACT

It has been shown that Pulse Code Modulation (PCM) Quantizer Schemes and

Σ∆ Quantizer Schemes can be used to quantize one dimensional data for transmis-

sion and recovery with each scheme having its own advantages and disadvantages.

This work will discuss the viability of a two dimensional Σ∆ Quantization scheme for

use in transmission and recovery. Three distinct two dimensional quantizer norms,

the Box, the Diamond, and the Hexagon norm, will be compared using the Mean

Square Error to show that the Hexagon Quantizer norm out performs the others and

serves the purpose for a practical two dimensional quantizer.

vi

ACKNOWLEDGMENTS

I would like to thank Dr. Michael Freeze for teaching me how to write in a

mathematics paper and Dr. Mark Lammers for teaching me what to write in a

mathematics paper. Without their guidance and support I could never have come

as far as I have, and for that they have my respect and my gratitude.

vii

1 Introduction

There is a lot of signal information in a thirty minute symphony. A myriad of

instruments are playing different notes while cavatinas, concertos, glissandos, trills,

and a host of other musical terms that my high school band years failed to prepare

me for are occurring at each and every moment. Every moment is full of information

that is invaluable to the symphony. How can one hope to put a seemingly infinite

amount of information onto a CD so that the symphony can be enjoyed days later

at one’s leisure?

This question in signal processing was answered with the introduction of the

Nyquist-Shannon Sampling Theorem which showed that Fourier transforms offer a

way of taking continuous data and “sampling” it for the most important pieces. This

sampling creates a discrete set, similar to the way the entirety of a symphony can be

stored in a few black dots and marks on sheet music, that can be used for storage,

transmission, and recovery . In this paper, the signals of interest will be the analog

signals created by having already sampled a continuous signal.

However, this analog signal itself will not suffice for the purpose of real signal

transmission and recovery. Computers are naturally restricted to a set number of

bits in which to process information. In other words, although one may succeed in

reducing an entire thirty minute symphony’s information into a mere 100 irrational

numbers, this will be worthless to a computer that only understands the language

of 0’s and 1’s.

A method will be necessary to convert analog signals over to “digital” signals,

i.e. to convert the finite numbers that make up the analog signal into a smaller set

of numbers from a specifically chosen alphabet. This conversion will be taken care

of by a process called “quantization”. Of course, this quantization will introduce

error and it will be important to both measure and minimize this error. This paper

will compare two different methods of quantization, PCM Quantization and Σ∆

Quantization, and compare their error using a new Quantizer in R2.

The first step toward a digital representation of an analog signal x is to expand

the signal over a given dictionary en such that

x =
∑

cnen

where the cn are real or complex numbers. This step can be achieved through use

of the concept of Frames developed by Duffin and Schaeffer in 1952. However, while

this representation is certainly discrete, it is not ”digital” since the coefficients are

real or complex valued. The second step in the process, the quantization, reduces

the continuous range of this sequence to a discrete set. We create a new signal

x̃ =
∑

qnen

where qn are elements of a discrete, finite set called the quantization alphabet. The

performance of the quantizer can be measured using the approximation error ‖x−x̃‖
where ‖ · ‖ is a suitable norm.

2

2 Frames

When working with applications it is often convenient to assume that the signals

of interest are elements of a Hilbert space (i.e. an inner product space with a defined

norm). So a signal x can be thought of as a vector in a Hilbert space such as H = Rn

or H = Cn. Frames are a special type of dictionary {en} which can be used to give

stable redundant decompositions of a signal. Informally, a frame can be thought of

as a spanning set of the given vector space with a few minor restrictions, but to be

technical the following definition is used.

Definition 2.1 (Frame) A collection F = {en} in a Hilbert Space H is a frame

for H if there exists 0 < A ≤ B < ∞ such that

∀x ∈ H,A‖x‖2 ≤
∑

n

|〈x, en〉|2 ≤ B‖x‖2

The constants A and B are called the frame bounds, and if A = B, then F is called

a tight frame.

I will restrict discussion in this paper to tight frames as they have nice properties

and the results could be generalized to non-tight frames if one were so inclined. Also,

because it will be necessary in this paper to create frames of arbitrary size it will be

convenient to use roots of unity.

Definition 2.2 (N th Roots of Unity) The N th roots of unity are given by

e
2πi
N = cos(

2πn

N
) + i · sin(

2πn

N
)

for 0 ≤ n < N

When working over C, the roots of unity create a frame. However, the roots of

unity can also be generalized to higher dimensions using harmonic frames. Thus, for

example, if working over R2 and a frame with 4 vectors is desired, then the frame

vectors can be generated by {e1, e2, e3, e4} =

{




cos(0π
4

)

sin(0π
4

)


 ,




cos(4π
4

)

sin(4π
4

)


 ,




cos(8π
4

)

sin(8π
4

)


 ,




cos(12π
4

)

sin(12π
4

)


}

or simply

e1 =




1

0


 , e2 =




0

1


 , e3 =



−1

0


 , e4 =




0

−1




The following shows how a frame will be used in signal processing.

Definition 2.3 (Analysis Operator) Let {en} be a frame for a Hilbert Space H

with frame bounds A and B. The analysis operator

F : H 7−→ `2

is defined by (Fx)k = 〈x, ek〉. The operator S = F ∗F is called the frame operator

and satisfies

AI ≤ S ≤ BI

where I is the identity operator on H. The inverse of S, S−1, is called the dual

frame operator and satisfies

B−1I ≤ S−1 ≤ A−1I

Frames are useful in signal processing because of the following theorem.

Theorem 2.1 Let {en} be a frame for H with frame bounds A and B, and let S be

the corresponding frame operator. Then {S−1en} is a frame for H with frame bounds

4

B−1 and A−1. Further, for all x ∈ H

x =
∑

n

〈x, en〉(S−1en)

=
∑

n

〈x, (S−1en)〉en

These atomic decompositions are the first step towards a digital representation. If

the frame is tight with frame bound A, then both frame expansions are equivalent and

thus

∀x ∈ H, x = A−1
∑

n

〈x, en〉en

Recall that all the frames in this paper will be tight frames and so the above equality

will hold.

To illustrate the process of deconstructing and reconstructing a signal, it will be

helpful to see a worked out example. Suppose the Hilbert Space chosen is H = R2

and the vector to be transmitted is x =




a

b


. Further suppose that the frame cho-

sen is F = {e1, e2, e3, e4} as above (i.e e1 =




1

0


 , e2 =




0

1


 , e3 =



−1

0


 , e4 =




0

−1


). Thus, F =




1 0

0 1

−1 0

0 −1




and so F




a

b


 =




a

b

−a

−b




. In other words,

to transmit the vector x =




a

b


, four numbers {a, b,−a,−b} are sent instead.

5

Computing the frame operator:

S = F ∗F =




1 0 −1 0

0 1 0 −1







1 0

0 1

−1 0

0 −1




=




2 0

0 2




Thus,

S−1 =




1
2

0

0 1
2




After the transmission of a, b, −a and −b, the receiver can use the above theorem

to reconstruct the original vector:

x =
3∑
1

〈x, en〉(S−1)

= aS−1




1

0


 + bS−1




0

1


 + (−a)S−1



−1

0


 + (−b)S−1




0

−1




= a




1
2

0


 + b




0

1
2


 + (−a)



−1

2

0


 + (−b)




0

−1
2




=




1
2
a + 0 +−1

2
(a) + 0

0 + 1
2
b + 0 +−1

2
(−b)




=




a

b




Note that if the frame chosen had been a basis, only two numbers would have

been sent. In R2, only two numbers are actually necessary (and in general, in Rd only

d numbers are needed). Choosing only d vectors for a frame in Rd is called “critically

6

sampling.” However, there are many benefits to “oversampling” the vector. A frame

that sends more information than necessary is said to be redundant and will be vital

to signal processing as shall be shown in the next section.

7

3 Quantization

In the previous example, the vector x =




a

b


 was broken down by the frame

and transmitted as the numbers a, b, −a and −b. While this is certainly analog,

it is not digital. Suppose, for example, that a = cos(1) and b = sin(1). Unless

there is a way to convert this discrete data to digital data, frames will be useless for

signal processing. Naively, binary could be offered as a solution; however, binary

proves to be computationally inefficient and expensive to transmit. If the fraction

41
64

is to be transmitted in binary, the number .101001 must be sent. Suppose that,

unfortunately, unforeseen circumstances cause the signal to be disturbed and instead

the information received is .001001 (a mere one digit switch up) or the fraction

9
64

. Binary lacks any efficient means to deal with lost or corrupted information (a

situation that may be more common then previously realized when one considers

that information is often rounded or truncated in the transmission process). A more

efficient scheme that converts discrete data to digital would, therefore, be preferred.

3.1 PCM Quantization

Because it is necessary to take the xn = 〈x, en〉 and approximate it with a

quantized number qn from a set digital alphabet (depending on whether one were

allotted 2-bits, 4-bits, 8-bits, etc.), a natural choice would be to use a quantization

technique known as the 2 d1/δe-level PCM quantizer with step size δ given by

replacing xn = 〈x, en〉 with qn = δ(dxn/δe − 1/2) from the alphabet defined by

A = {(−K + 1/2)δ, (−K + 3/2)δ, ..., (−1/2)δ, (1/2)δ, ..., (K − 1/2)δ} where K ∈ N.

In other words, the qn in the alphabet that is closest to xn will be what is used to

approximate xn. This idea of “closeness” will require that a suitable norm on the

given Hilbert Space be chosen. Again, an example will help clarify exactly how the

process works:

Suppose the vector x =




cos(1)

sin(1)


 is to be transmitted. Here the space H = R2

will be convenient to work over. It is assumed that the given alphabet isA = {1,−1},
thus the step size δ = 2. Further suppose that the frame size is N = 3. Thus,

x =




0.54030230586814

0.84147098480790




F =




1 0

−0.5 0.86602540378444

−0.5 −0.86602540378444




Computing the frame coefficients gives the sequence:

xn = {0.54030230586814, 0.45858409645708, − 0.99888640232522}

PCM simply rounds each frame coefficient to the nearest member of the alphabet.

Since the given alphabet is A = {−1, 1}, the frame coefficients compute to:

qn = {1, 1,−1}

These frame coefficients are what get transmitted to the receiver who then uses the

theorem to reconstruct an approximation of the original signal:

x ≈ A−1

3∑
n=1

qnen

9

where

S = F ∗F =




1 −0.5 −0.5

0 0.86602540378444 −0.86602540378444







1 0

−0.5 0.86602540378444

−0.5 −0.86602540378444




and thus,

S−1 =




2
3

0

0 2
3




The receiver reconstructs the original signal:

x ≈
(

3

2

)−1 3∑
n=1

qnen

x ≈ 2

3


1 ·




1

0


 + 1 ·




−0.5

0.86602540378444


− 1 ·




−0.5

−0.86602540378444







x ≈




.66666666666667

1.1547005383793




Computing the error |x− x̃| yields

√
(0.54030230586814− .66666666666667)2 + (0.84147098480790− 1.1547005383793)2

Thus |x − x̃| = .337758352. It has been shown that the Mean Square Error of

the PCM scheme is approximately on the order of 1
N

[1] and since N = 3 for this

example, the error is not unreasonable. One would expect that as N increases, the

error would decrease to acceptable levels. In Figure 1, the Mean Square Error of

five hundred different trials for each 2 ≤ N ≤ 64 using the N th-roots of unity and

the alphabet A = {−1, 1} is shown.

10

0 10 20 30 40 50 60 70
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 1: PCM Mean Square Error

Notice that as N increases, the error does not seem to be uniformly decreas-

ing. This oscillation occurs because the PCM scheme does not consistently operate

well with a small alphabet. In the above example, the smallest possible alphabet

was chosen for simplicity. Thus, while some of the results where approximately

on the order of 1
N

, others became unstable and were not. Increasing the size of

the alphabet will yield the expected results. If the alphabet is increased in size to

A = {−1,−0.5, 0.5, 1}, and we take the Mean Square Error of five hundred trials

again, then the results are as shown in Figure 2.

0 10 20 30 40 50 60 70
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Figure 2: PCM Mean Square Error

If the alphabet were increased even more toA = {−1,−0.75,−0.5,−0.25, 0.25, 0.5, 0.75, 1},
the results are even better as shown in Figure 3.

It should be noted that as the size of N increases, the PCM scheme does improve,

11

0 10 20 30 40 50 60 70
0.02

0.025

0.03

0.035

0.04

0.045

Figure 3: PCM Mean Square Error

but it appears to improve only up to a point. It appears that the error function is

asymptotic. This result is explained by the fact that the Mean Square Error can be

shown to have an additive constant on the order of δ2. Thus, improving the size of

the alphabet is necessary to improve the MSE past a certain size frame vector.

12

3.2 Σ∆ Quantization

While the PCM scheme is easy to implement, it fails to take full advantage of the

redundancy of the frame. Also, if the alphabet must be restricted to a small size,

then the scheme has a chance of becoming unstable and not producing accurate

reconstructions. Another scheme, called Σ∆ Quantization, better handles small

alphabets and utilizes the redundancy of the frame.

In the Σ∆ scheme, a running tab on the errors created as xn is approximated by

qn is kept so that the scheme can compensate. Put simply, if the scheme recognizes

that it has rounded the last few xn’s down, it may round the next xn up to even out

the error and vice versa. Σ∆ Quantization works similarly to the PCM case in that

an alphabet A, a step size δ, and a frame size N are chosen. The difference occurs

in how the quantizer operates.

Definition 3.1 (Σ∆ Quantizer) The first order Σ∆ Quantizer is defined by the

iteration

un = un−1 + xn − qn

qn = Q(un−1 + xn)

where u0 = 0 and Q(u) is defined by:

Q(u) = arg minq∈A|u− q|

In other words, Q(u) is the element of the alphabet closest to u. If two members

of the alphabet are equally close, the larger number is chosen.

Looking back at the example from before. Suppose the vector x =




cos(1)

sin(1)




is to be transmitted. Again, working over the space H = R2 using the N th-roots of

13

unity and the alphabet A = {−1, 1} the frame coefficients are calculated:

xn = {0.54030230586814, 0.45858409645708, − 0.99888640232522}

Quantizing gives the following:

q1 = Q(u0 + x1) = Q(0 + 0.54030230586814) = 1

u1 = u0 + x1 − q1 = 0 + 0.54030230586814− 1 = −.45969769413186

q2 = Q(u1 + x2) = Q(−.45969769413186 + 0.45858409645708) = −1

u2 = u1+x2−q2 = −.45969769413186+0.45858409645708−(−1) = .99888640232522

q3 = Q(u2 + x3) = Q(.99888640232522 + (−0.99888640232522)) = 1

Thus, the appropriate quantized sequence qn = {1, − 1, 1} would be used to re-

construct an approximation of the original signal.

In Figure 4, five hundred random vectors of appropriate norm were used to

compute the Mean Square Error where 2 ≤ N ≤ 64 using the N th-roots of unity

and the alphabet A = {−1, 1}.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

Figure 4: Σ∆ Mean Square Error

14

4 Σ∆ in C

In R, the quantization amounts to dividing the number line into a set number

of regions. Working in Rd, the quantization problem becomes a problem of “tiling”

the space. For example in R2, notice that the Euclidean norm |~x| =
√

x2 + y2 is not

a reasonable norm since it creates areas of overlap.

–2

–1

0

1

2

–2 –1 1 2

Figure 5: Euclidean Norm Quantization

In the figure above, all the possible vectors are inside the bold circle of radius

1 about the origin. All the calculated xn’s are therefore in the circle of radius 2

about the origin and need to be rounded to one of the points (1, 0), (0, 1), (−1, 0),

(0,−1) (i.e. qn’s represented by the centers of the four inner circles). So the point

xn = (1.5, 0.5) would be quantized to the point qn = (1, 0) since it falls in that

circle. Note, however, that some areas are overlapped and thus it becomes difficult

to determine which qn to round to (such as the point (0.5, 0.5)), while other regions

are not represented in the circles at all (such as the point(1.3, 1.3)) and thus cannot

be rounded to any of the qn’s.

The problem with the Euclidean norm is that it does not “tile” the space. It

creates regions of overlap and misses regions entirely. The goal will be to tessellate

the plane so as to have a clear quantization scheme, but to tessellate using regular

shapes so that the quantization is not overly complex. One such norm that would

be suitable would be the Box norm | · | = sup |x, y|:

–2

–1

1

2

–2 –1 1 2

Figure 6: Box Norm Quantization

It might first be beneficial to prove that the Box norm is, in fact, an actual norm.

Definition 4.1 (Norm) Given an n-dimensional vector −→v , | · | is a norm given

that:

1) |−→v | ≥ 0 and |−→v | = 0 iff −→v =
−→
0

2) |k−→v | = |k||−→v | for any scalar k

3) |−→v1 +−→v2 | ≤ |−→v1 |+ |−→v2 |

The Box Norm clearly satisfies the first criterion since it is defined to be the

16

absolute value of the largest of the vector’s elements. To prove it satisfies the second

condition, note:

|k−→v | = |




kx

ky


 | = sup |kx, ky| = |k| sup |x, y| = |k||−→v |

For the third condition, note that:

|−→v1 +−→v2 | = |




x1 + x2

y1 + y2


 | = sup |x1 + x2, y1 + y2|

If x1 + x2 > y1 + y2, then

sup |x1 + x2, y1 + y2| = |x1 + x2| ≤ |x1|+ |x2|

by the triangle inequality and thus

|−→v1 +−→v2 | ≤ |−→v1 |+ |−→v2 |

The proof is similar if y1 + y2 > x1 + x2. Thus, the Box Norm is a norm.

Note that the boxes completely tessellate the plane (and more specifically the

region of norm 2 that is of immediate concern) and the box is also a regular shape

so the norm is not overly complicated to compute. In the figure above, all the points

xn will fall within the large two by two square, and each will be quantized to one of

the points (1, 1), (1,−1), (−1, 1), (−1,−1) depending on which of the four smaller

squares the point falls in.

Another suitable norm would be the Diamond norm: | · | = |x|+ |y|:
Again, to show that the Diamond Norm is in fact a norm is not difficult. The

first condition is clear since the sum of the absolute value of two numbers will always

17

–2

–1

1

2

–2 –1 1 2

Figure 7: Diamond Norm Quantization

be positive or zero and zero just in the case that those two numbers were both zero.

The second condition can be shown to be satisfied:

|k−→v | = |




kx

ky


 | = |kx|+ |ky| = |k||x|+ |k||y| = |k| (|x|+ |y|) = |k||−→v |

And the third can be shown as well given that:

|−→v1 +−→v2 | = |




x1 + x2

y1 + y2


 | = |x1 + x2|+ |y1 + y2|

and by the triangle inequality used twice

|x1 + x2|+ |y1 + y2| ≤ |x1|+ |x2|+ |y1|+ |y2| = |x1|+ |y1|+ |x2|+ |y2| = |−→v1 |+ |−→v2 |

Thus, the Diamond Norm is a norm.

18

This is basically a modified version of the Box norm. Note that all the xn’s will

fall within the large diamond, and each will get mapped to the point (1, 0), (0, 1),

(−1, 0), or (0,−1) depending on which smaller diamond the xn resides in.

The reason it is so important for |−→x | ≤ 1 is because falling outside this region

will create instability in the Σ∆ Quantization scheme. Any vector −→x such that

|−→x | ≤ 1 is at most one unit away from any quantizer (by creation), so |un| ≤ 1

thus the computations never involve going outside the region | · | ≤ 2. The Σ∆

Quantization scheme is such that all xn’s that are outside the region | · | ≤ 1 will

get shifted back inside the by the corresponding un’s. This is why it is so important

for |−→x | ≤ 1. Otherwise, computations may send calculations outside of the | · | ≤ 2

region that the un’s will not be able to shift back. Situations such as this could

involve having to round an incredibly large xn to a much smaller set number of the

alphabet creating large errors.

A third norm considered is the Hexagon norm: |·| = 1√
3

[
|y|+ |

√
3

2
x− 1

2
y|+ |−

√
3

2
x− 1

2
y|

]

–2

–1

0

1

2

–3 –2 –1 1 2

Figure 8: Hexagon Norm Quantization

19

Again, it needs to be shown that the Hexagon Norm is a true norm. It is easy

to see that it satisfies the first condition as it is defined to be a positive number

multiplied by the sum of three absolute values. This quantity will always be positive

except in the case that both x and y were zero. For the second condition, note that:

|k−→x | = |




kx

ky


 | = 1√

3

[
|ky|+ |

√
3

2
kx− 1

2
ky|+ |−

√
3

2
kx− 1

2
ky|

]

=
1√
3

[
|k||y|+ |k||

√
3

2
x− 1

2
y|+ |k||−

√
3

2
x− 1

2
y|

]

= |k| 1√
3

[
|y|+ |

√
3

2
x− 1

2
y|+ |−

√
3

2
x− 1

2
y|

]
= |k||−→x |

The proof of the third condition relies on using the triangle inequality three times:

|−→v1+−→v2 | = 1√
3

[
|y1 + y2|+ |

√
3

2
(x1 + x2)− 1

2
(y1 + y2)|+ |−

√
3

2
(x1 + x2)− 1

2
(y1 + y2)|

]

and since |y1 + y2| ≤ |y1|+ |y2|

≤ 1√
3

[
|y1|+ |y2|+ |

√
3

2
x1 +

√
3

2
x2 − 1

2
y1 − 1

2
y2|+ |−

√
3

2
x1 +

−√3

2
x2 − 1

2
y1 − 1

2
y2|

]

and similarly,

≤ 1√
3

[
|y1|+ |y2|+ |

√
3

2
x1 − 1

2
y1|+ |

√
3

2
x2 − 1

2
y2|+ |−

√
3

2
x1 − 1

2
y1|+ |−

√
3

2
x2 − 1

2
y2|

]

which can be shown using the associative property to be

= |−→v1 +−→v2 |

Thus the Hexagon Norm is a norm.

20

Here, all the xn’s will fall within the large hexagon and get mapped to the point

(1, 0), (1,
√

3), (1,−√3), (−1
2
,
√

3
2

), (−1
2
,−

√
3

2
), or (−2, 0). Note that the hexagons

completely tessellate the space, and while they actually cover more space than is

needed, this does not cause any problems. As it turns out, the Hexagon norm can

be shown to be the best at minimizing the mean square error in R2 [4].

In R3, it has been shown that the truncated octahedron best minimizes the mean

square error, and for higher dimensions the problem is still unsolved.

One might note that C behaves very much like the space R2 and can be be “tiled”

in a similar fashion using the Box, Diamond, and Hexagon norms. So instead of

sending vectors from Rd to R to quantize, vectors in Rd could be sent to C. Since

the Σ∆ Quantizer performs better than the PCM Quantizer given the same δ and N

in the one dimensional quantizer case, it would be suspected that the Σ∆ Quantizer

should perform better than the PCM Quantizer in the two dimensional case as well.

Suppose a vector in C2 represents the signal to be transmitted. Using the Har-

monic Frame eN =




cos(2π(k−1)
N

)

sin(2π(k−1)
N

)


 it will be possible to convert the original signal

into an analog signal composed of a finite number of elements in C. These complex

numbers can the be quantized similar to the example above using either the PCM,

the box, the diamond, or the hexagon quantizer.

Let




a1 + b1i

a2 + b2i


 be a vector in C2. Using the box quantizer norm | · | = sup |x, y|

using the N th-roots of unity and comparing the log log plot of the mean square error

of 500 random trials yields the following results: The two distinct linear patterns

developing are an expected result from the choice of odd roots of unity versus even

roots of unity. Comparing the two separately yields:

21

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

Figure 9: Box Norm Quantization in C

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

Figure 10: Box Norm Quantization in C (odd roots of unity)

Using the diamond quantizer norm | · | = |x| + |y| with the N th-roots of unity

3 ≤ N ≤ 64 and comparing the log log plot of the mean square error of 500 random

22

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

Figure 11: Box Norm Quantization in C (even roots of unity)

trials yields the following results: Again a sharp division can be seen between the

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

Figure 12: Diamond Norm Quantization in C

choice of even and odd roots of unity.

Using the hexagon quantizer norm | · | = |x| + |y| with the N th-roots of unity

3 ≤ N ≤ 64 and comparing the log log plot of the mean square error of 500 random

trials yields the following results: In this case, two distinct lines form where every

23

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Figure 13: Hexagon Norm Quantization in C

third root of unity is chosen. This arises from the properties of the hexagon norm.

24

5 Conclusion

It has been shown that any vector in Rd can be mapped to a sequence in R using a

suitable frame, and that this mapping can be quantized into a digital signal suitable

for transmission and recovery in signal processing. Both the PCM Quantizer and

the Σ∆ Quantizer work, but the PCM scheme was shown to be heavily dependent

on the size of δ because increasing the size of the frame N will only improve the MSE

up to a point asymptotically. Since the size of the alphabet cannot always feasibly

be increased in practice, the PCM scheme may not be the best scheme to implement.

Since the Σ∆ Quantization Scheme does not necessarily need to use a larger alphabet

to be comparable in practice to the PCM scheme, it may be more useful in certain

applications. Also, since it has also been shown that quantizing in higher orders (i.e.

R2 versus R) reduces the mean square error and that, in particular, the hexagon

quantizing scheme minimizes mean square error in R2, it would be prudent to test

the value of a frame that maps Rd to R2 (or C).

In this paper, three distinct quantizer norms, the Box, the Diamond, and the

Hexagon, were compared using the mean square error of each. The Hexagon proved

to be noticeably better at minimizing the mean square error. Thus, if the goal is

to quantize a signal by mapping Rd to a sequence in two dimensional space C, the

Hexagon Quantizer is a good choice for minimizing error.

APPENDIX

1-Bit PCM in R2

clear for g=2:64

for L=1:500

%%%%%%%%%%Vector Creation%%%%%%%%%%

test=1; while test==1

O=[(2*rand-1); (2*rand-1)];

if sqrt(O(1)^2+O(2)^2)<=1

test=0;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Frame%%%%%%%%%%

N=g; for k=1:N

e(k,1)=[cos(2*pi*(k-1)/N)];

e(k,2)=[sin(2*pi*(k-1)/N)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Atomic Decompostion%%%%%%%%%%

for n=1:N

x(n)=[e(n,1),e(n,2)]*conj(O);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%PCM Quanitzation%%%%%%%%%%

u=zeros(1,N+1); for j=1:N w(j)=x(j); R=real(w(j));

%%%%%%%%%%%%%%%

if R>0

Q(j)=1;

else

Q(j)=-1;

end

%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Reconstruction%%%%%%%%%%

A=e’*e; F=(conj(Q)*e*A(1)^-1)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MSE(L)=abs(O(1)-F(1))^2+abs(O(2)-F(2))^2; end error(g)=mean(MSE);

end

X=3:g;

plot(X,error(X));

2-Bit PCM in R2

clear for g=2:64

for L=1:500

%%%%%%%%%%Vector Creation%%%%%%%%%%

test=1; while test==1

O=[(2*rand-1); (2*rand-1)];

if sqrt(O(1)^2+O(2)^2)<=1

test=0;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Frame%%%%%%%%%%

N=g; for k=1:N

e(k,1)=[cos(2*pi*(k-1)/N)];

e(k,2)=[sin(2*pi*(k-1)/N)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Atomic Decompostion%%%%%%%%%%

for n=1:N

x(n)=[e(n,1),e(n,2)]*conj(O);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%PCM Quanitzation%%%%%%%%%%

u=zeros(1,N+1); for j=1:N w(j)=x(j); R=real(w(j));

%%%%%%%%%%%%%%%

if R>0

if R>1/2

Q(j)=1;

else

Q(j)=1/2;

end

else

if R<-1/2

Q(j)=-1;

else

Q(j)=-1/2;

end

end

%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Reconstruction%%%%%%%%%%

A=e’*e; F=(conj(Q)*e*A(1)^-1)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MSE(L)=abs(O(1)-F(1))^2+abs(O(2)-F(2))^2; end error(g)=mean(MSE);

end

X=3:g; plot(X,error(X));

27

1-Bit Σ∆ in R2

clear for g=2:64

for L=1:500

%%%%%%%%%%Vector Creation%%%%%%%%%%

test=1; while test==1

O=[(2*rand-1); (2*rand-1)];

if sqrt(O(1)^2+O(2)^2)<=1

test=0;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Frame%%%%%%%%%%

N=g; for k=1:N

e(k,1)=[cos(2*pi*(k-1)/N)];

e(k,2)=[sin(2*pi*(k-1)/N)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Atomic Decompostion%%%%%%%%%%

for n=1:N

x(n)=[e(n,1),e(n,2)]*conj(O);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Sigma-Delta Quanitzation%%%%%%%%%%

u=zeros(1,N+1); for j=1:N w(j)=x(j)+u(j); R=real(w(j));

%%%%%%%%%%%%%%%

if R>0

Q(j)=1;

else

Q(j)=-1;

end u(j+1)=u(j)+x(j)-Q(j);

%%%%%%%%%%%%%%%

end

%%%

%%%%%%%%%%Reconstruction%%%%%%%%%%

A=e’*e; F=(conj(Q)*e*A(1)^-1)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MSE(L)=abs(O(1)-F(1))^2+abs(O(2)-F(2))^2; end error(g)=mean(MSE);

end

X=3:g; plot(X,error(X));

28

Σ∆ Box Quantization in C

clear

for g=2:64

for L=1:500

%%%%%%%%%%Vector Creation%%%%%%%%%%

O=[(2*rand-1)+(2*rand-1)*i; (2*rand-1)+(2*rand-1)*i];

x=real(O);

y=imag(O);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Frame%%%%%%%%%%

N=g; for k=1:N

e(k,1)=cos(2*pi*(k-1)/N);

e(k,2)=sin(2*pi*(k-1)/N);

end

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Atomic Decompostion%%%%%%%%%%

x=(e*O)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Sigma-Delta Quanitzation%%%%%%%%%%

u=zeros(1,N+1); for j=1:N w(j)=x(j)+u(j); R=real(w(j));

I=imag(w(j));

%%%%%%%%%%%%%%%

if I>0

if R>0

Q(j)=1+i;

else

Q(j)=-1+i;

end

else

if R<0

Q(j)=-1-i;

else

Q(j)=1-i;

end

end u(j+1)=u(j)+x(j)-Q(j);

%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Reconstruction%%%%%%%%%%

A=e’*e; F=(Q*e*A(1)^-1)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MSE(L)=abs(O(1)-F(1))^2+abs(O(2)-F(2))^2; end error(g)=mean(MSE);

end

X=3:g;

loglog(X,error(X),’s’);

29

Σ∆ Diamond Quantization in C

clear

for g=2:64

for L=1:500

%%%%%%%%%%Vector Creation%%%%%%%%%%

test=1; while test==1

O=[(2*rand-1)+(2*rand-1)*i; (2*rand-1)+(2*rand-1)*i];

x=real(O);

y=imag(O);

if abs(x)+abs(y)<=1

test=0;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Frame%%%%%%%%%%

N=g; for k=1:N

e(k,1)=cos(2*pi*(k-1)/N);

e(k,2)=sin(2*pi*(k-1)/N)*i;

end

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Atomic Decompostion%%%%%%%%%%

x=(e*O)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Sigma-Delta Quanitzation%%%%%%%%%%

u=zeros(1,N+1); for j=1:N w(j)=x(j)+u(j); R=real(w(j));

I=imag(w(j));

%%%%%%%%%%%%%%%

if I>R

if I>-R

Q(j)=i;

else

Q(j)=-1;

end

else

if I>-R

Q(j)=1;

else

Q(j)=-i;

end

end u(j+1)=u(j)+x(j)-Q(j);

%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Reconstruction%%%%%%%%%%

A=e’*e; F=(Q*e*A(1)^-1)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MSE(L)=abs(O(1)-F(1))^2+abs(O(2)-F(2))^2;

end

error(g)=mean(MSE);

end

30

X=3:g;

loglog(X,error(X),’d’);

31

Σ∆ Hex Quantization in C

clear

for g=2:64

for L=1:500

%%%%%%%%%%Vector Creation%%%%%%%%%%

test=1; while test==1

O=[(2*rand-1)+(2*rand-1)*i; (2*rand-1)+(2*rand-1)*i];

x=real(O);

y=imag(O);

if 1/sqrt(3)*(abs(y)+abs(sqrt(3)/2*x-1/2*y)+abs(-sqrt(3)/2*x-1/2*y))<=1

test=0;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Frame%%%%%%%%%%

N=g; for k=1:N

e(k,1)=cos(2*pi*(k-1)/N);

e(k,2)=sin(2*pi*(k-1)/N);

end

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Atomic Decompostion%%%%%%%%%%

x=(e*O)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Sigma-Delta Quanitzation%%%%%%%%%%

u=zeros(1,N+1); for j=1:N w(j)=x(j)+u(j); R=real(w(j));

I=imag(w(j));

%%%%%%%%%%%%%%%

if I>0

if R>0

if I>sqrt(3)/2

if I>(-sqrt(3)*R+sqrt(3))

Q(j)=1+sqrt(3)*i;

else

Q(j)=-1/2+sqrt(3)/2*i;

end

else

if I>sqrt(3)*R

Q(j)=-1/2+sqrt(3)/2*i;

else

Q(j)=1;

end

end

else

if I<-sqrt(3)*R-sqrt(3)

Q(j)=-2;

else

Q(j)=-1/2+sqrt(3)/2*i;

end

end

else

if R>0

32

if I>-sqrt(3)/2

if I<-sqrt(3)*R

Q(j)=-1/2-sqrt(3)/2*i;

else

Q(j)=1;

end

else

if I<sqrt(3)*R-sqrt(3)

Q(j)=1-sqrt(3)*i;

else

Q(j)=-1/2-sqrt(3)/2*i;

end

end

else

if I>sqrt(3)*R+sqrt(3)

Q(j)=-2;

else

Q(j)=-1/2-sqrt(3)/2*i;

end

end

end u(j+1)=u(j)+x(j)-Q(j);

%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Reconstruction%%%%%%%%%%

A=e’*e; F=(Q*e*A(1)^-1)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MSE(L)=abs(O(1)-F(1))^2+abs(O(2)-F(2))^2;

end

error(g)=mean(MSE);

end

X=3:g;

loglog(X,error(X),’*’);

33

Table 1: 1-Bit PCM: Mean Square Error

Frame Size MSE Frame Size MSE
2 0.648528248 34 0.410736701
3 0.574001293 35 0.424579709
4 0.811630553 36 0.420722031
5 0.469701899 37 0.44557524
6 0.557813196 38 0.430658705
7 0.452630873 39 0.409684012
8 0.499225796 40 0.449015146
9 0.461099592 41 0.414092245

10 0.465944299 42 0.44046093
11 0.434443826 43 0.428079372
12 0.43078891 44 0.429065429
13 0.459050334 45 0.408205121
14 0.458178024 46 0.464250227
15 0.411389744 47 0.434710816
16 0.46250938 48 0.419387548
17 0.410761618 49 0.423828961
18 0.415023041 50 0.422846122
19 0.421012195 51 0.432714168
20 0.450910526 52 0.439917516
21 0.427359557 53 0.414665513
22 0.4446631 54 0.420230816
23 0.464722386 55 0.418325637
24 0.411485437 56 0.410625521
25 0.42283856 57 0.422219382
26 0.426195756 58 0.445510031
27 0.434408817 59 0.412881979
28 0.439197678 60 0.420506076
29 0.437540964 61 0.415907798
30 0.432011104 62 0.427941463
31 0.418296366 63 0.414117599
32 0.427217959 64 0.419153875
33 0.446251476

34

Table 2: 2-Bit PCM: Mean Square Error

Frame Size MSE Frame Size MSE
2 0.332805323 34 0.111697611
3 0.143970898 35 0.107671586
4 0.184823736 36 0.105298586
5 0.130257553 37 0.100403565
6 0.145783377 38 0.10443728
7 0.110815116 39 0.102429272
8 0.137809965 40 0.104313066
9 0.11068989 41 0.103228197

10 0.129049286 42 0.108014067
11 0.106920306 43 0.104945844
12 0.117585723 44 0.103220852
13 0.1052316 45 0.106511164
14 0.115839299 46 0.103231011
15 0.106435848 47 0.100578285
16 0.113321051 48 0.107613603
17 0.109250062 49 0.103715278
18 0.11079712 50 0.103045101
19 0.102299366 51 0.102554119
20 0.109022393 52 0.106547184
21 0.107940285 53 0.100768101
22 0.107214351 54 0.10497011
23 0.101572884 55 0.106246516
24 0.107043184 56 0.105752576
25 0.100394887 57 0.10295952
26 0.107899915 58 0.100862261
27 0.102431448 59 0.105740038
28 0.10419473 60 0.104266403
29 0.104687348 61 0.106932566
30 0.103667659 62 0.101012643
31 0.101687223 63 0.102886489
32 0.105911959 64 0.105937041
33 0.103155276

35

Table 3: 3-Bit PCM: Mean Square Error

Frame Size MSE Frame Size MSE
2 0.274722006 34 0.026243285
3 0.035740169 35 0.025599742
4 0.044928512 36 0.025710023
5 0.029569574 37 0.026401684
6 0.035171576 38 0.0258084
7 0.029041616 39 0.025385973
8 0.034422432 40 0.026592808
9 0.028765878 41 0.025903501

10 0.030843766 42 0.026401994
11 0.028082765 43 0.026006964
12 0.028870793 44 0.026080654
13 0.02701129 45 0.02630949
14 0.029133612 46 0.02623817
15 0.026465422 47 0.024909117
16 0.027871659 48 0.02571832
17 0.025747015 49 0.025547506
18 0.027924764 50 0.025828734
19 0.025785243 51 0.025070287
20 0.028267967 52 0.026221782
21 0.025609438 53 0.026040602
22 0.027822555 54 0.02567042
23 0.026287345 55 0.025514798
24 0.026885939 56 0.025930967
25 0.026250375 57 0.025939971
26 0.026463009 58 0.02653471
27 0.026630383 59 0.025810525
28 0.026800096 60 0.026465421
29 0.025954505 61 0.025732863
30 0.025978082 62 0.025998212
31 0.026301094 63 0.025649199
32 0.026456498 64 0.025895889
33 0.026337403

36

Table 4: 1-Bit Σ∆: Mean Square Error

Frame Size MSE Frame Size MSE
2 0.620337749 34 0.000627
3 1.481652393 35 0.004108
4 0.577886597 36 0.000582
5 0.435272281 37 0.003621
6 0.204452036 38 0.000489
7 0.171424772 39 0.00314
8 0.078983911 40 0.000462
9 0.086884557 41 0.002676

10 0.033713668 42 0.00032
11 0.05451842 43 0.002598
12 0.018475699 44 0.000298
13 0.039977654 45 0.002339
14 0.010789488 46 0.000259
15 0.027653237 47 0.002166
16 0.007856289 48 0.000233
17 0.019499681 49 0.001948
18 0.005407689 50 0.000225
19 0.016295705 51 0.001771
20 0.003889141 52 0.000183
21 0.012355784 53 0.001617
22 0.002565235 54 0.000141
23 0.010310468 55 0.001522
24 0.002034552 56 0.000132
25 0.00835463 57 0.001408
26 0.001701006 58 0.000126
27 0.006756405 59 0.001316
28 0.001353012 60 0.000125
29 0.00599411 61 0.001204
30 0.001130268 62 9.25E-05
31 0.005006218 63 0.001131
32 0.000897055 64 9.14E-05
33 0.004699891

37

Table 5: Σ∆ Box Quantization in C: Mean Square Error

Frame Size MSE Frame Size MSE
2 1.338607906 34 0.00440137
3 2.75931564 35 0.01220089
4 0.990437065 36 0.004752211
5 0.954220783 37 0.010581858
6 0.382229778 38 0.004864637
7 0.363888721 39 0.009472614
8 0.181601927 40 0.003934411
9 0.2004324 41 0.00913089

10 0.089897283 42 0.00442896
11 0.131818469 43 0.008370071
12 0.047363899 44 0.004223266
13 0.08854045 45 0.009390505
14 0.028164598 46 0.003631785
15 0.067782779 47 0.007791177
16 0.021638835 48 0.003494275
17 0.048224397 49 0.008135321
18 0.01715245 50 0.002818651
19 0.039210666 51 0.007488333
20 0.013196406 52 0.003081322
21 0.030835791 53 0.006839986
22 0.009430021 54 0.003771295
23 0.02674824 55 0.006408415
24 0.008893955 56 0.003051065
25 0.022787516 57 0.006524748
26 0.008487247 58 0.003572032
27 0.018106343 59 0.007728195
28 0.006760919 60 0.003795593
29 0.015408719 61 0.005341693
30 0.005408784 62 0.003369402
31 0.01513251 63 0.00504539
32 0.006057833 64 0.003336606
33 0.013796187

38

Table 6: Σ∆ Diamond Quantization in C: Mean Square Error

Frame Size MSE Frame Size MSE
2 0.631269255 34 0.002420049
3 1.363916459 35 0.006472463
4 0.499390981 36 0.002171014
5 0.44547029 37 0.005663609
6 0.201989346 38 0.002057077
7 0.182383143 39 0.004734409
8 0.100543653 40 0.001947249
9 0.10733345 41 0.004080599

10 0.048205278 42 0.002302635
11 0.067148864 43 0.005164168
12 0.021385435 44 0.001429697
13 0.045284008 45 0.003956065
14 0.013776672 46 0.002397833
15 0.032401088 47 0.004424651
16 0.010638195 48 0.001787132
17 0.022762885 49 0.00384094
18 0.008953481 50 0.001647673
19 0.018758099 51 0.003567393
20 0.00748326 52 0.001897542
21 0.016022281 53 0.003382196
22 0.004631731 54 0.001590657
23 0.013346379 55 0.003820959
24 0.004127449 56 0.001158107
25 0.011513521 57 0.003163394
26 0.00391933 58 0.001614724
27 0.010405501 59 0.002962785
28 0.004092723 60 0.00138221
29 0.008172954 61 0.002639189
30 0.002597238 62 0.001383741
31 0.007795052 63 0.002920447
32 0.002360181 64 0.001784979
33 0.006778393

39

Table 7: Σ∆ Hexgon Quantization in C: Mean Square Error

Frame Size MSE Frame Size MSE
2 0.863553796 34 0.00516455
3 1.166452999 35 0.004860178
4 0.963260884 36 0.001428072
5 0.491057453 37 0.004446481
6 0.221938646 38 0.004156592
7 0.242062856 39 0.001150329
8 0.150115578 40 0.003663515
9 0.075851192 41 0.003312087

10 0.099516949 42 0.000946732
11 0.0751925 43 0.002996299
12 0.030222923 44 0.002905167
13 0.055425447 45 0.000773193
14 0.038257163 46 0.002744111
15 0.016001339 47 0.002513353
16 0.032351894 48 0.000648661
17 0.024958083 49 0.002319411
18 0.010118304 50 0.00222959
19 0.020327227 51 0.000564329
20 0.017593496 52 0.002088716
21 0.006575223 53 0.001914808
22 0.014955578 54 0.000497343
23 0.012772635 55 0.001711905
24 0.004342819 56 0.001717233
25 0.011301876 57 0.000377398
26 0.009690305 58 0.001675956
27 0.003217666 59 0.00156751
28 0.008315828 60 0.000425089
29 0.007411958 61 0.001467484
30 0.002539001 62 0.001403218
31 0.006668663 63 0.000374892
32 0.005768432 64 0.001313284
33 0.00184459

40

REFERENCES

[1] John J. Benendetto, Alexander M. Powell, and Özgür Yilmaz, “Sigma-Delta

(Σ∆) Quantization and Finite Frames,” IEEE, to appear

[2] Mark Lammers, Alexander M. Powell, and Özgür Yilmaz, “Optimal Alternate

Dual Frames for Digital to Analog Conversion,” preprint

[3] Ingrid Daubechies and Ron DeVore, “Approximating a bandlimited function

using very coarsely quantized data: A family of stable sigma-delta modulators

of arbitrary order,” Annals of Mathematics, 158 (2003), pp. 679-710

[4] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices, and Groups, New

York: Springer-Verlag, 1988, pp. 56-61

[5] Antti-Veikko Rosti. Tampere University of Technology. Jun 22 07:50:46 BST

2004. Mar 24 2006. <http://www.cs.tut.fi/sgn/arg/rosti/1-bit/>

[6] David Jimenez, Long Wang, and Yang Wang, “PCM Quantization Errors and

The White Noise Hypothesis,” preprint

