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ABSTRACT

Detecting genetic loci responsible for variation in quantitative traits is a prob-

lem of great importance to biologists. The location on a genetic map responsible for

a quantitative trait is referred to as Quantitative Trait Loci, or QTL. This thesis

uses a Bayesian Hierarchical Regression model which incorporates variability both

within and between lines to detect the QTL. This method is applied to a simulated

data set using the line information from Bay-0 × Shahdara population to find the

activation probability of each genetic segment via the Gibbs sampler and Monte

Carlo integration techniques. Using the activation probability, which indicates the

influence of each segment within all the models, the QTL is detected. The results

show that it is an effective way to detect QTL.
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INTRODUCTION

The identification of genetic loci responsible for variation in traits that are quan-

titative in nature is a problem of great importance to biologists. Quantitative Trait

Loci (QTL) analysis is the search for the location or loci on a genetic map respon-

sible for controlling a quantitative trait. The QTLs help researchers understand

the biochemical basis of these traits, and their evolution in populations over time.

Moreover, knowledge of these loci may aid in the design of future experiments to

manipulate these traits [1].

A genetic map shows the location of genetic markers along the chromosome and

its relative distance. One of the main goals of QTL analysis is to find the locations

on the genetic map most responsible for differences in a quantitative trait. Examples

of a quantitative trait are yield of a crop, angle opening of a flowering plant, height

of a plant, etc.

One of the earliest QTL methods was to perform an Analysis of Variance (ANOVA),

or one marker at a time analysis[1]. Since then, many more sophisticated algorithms

have evolved. Some of the most recent methods include Bayesian regression, model

selection search, composite interval mapping, multiple interval mapping, and even

some hierarchical modeling. There are a number of softwares available that perform

QTL analysis such as QTL Cartographer [2], BQTL [3], and RQTL [4]. However

most of the software packages available require only one observation per genotype(or

line).

QTL experiments involving plants will often produce multiple observations per

genotype or line. Although the observations in one line can be considered indepen-

dent of each other they are in reality “clones” because they have identical genetic

composition. To utilize existing software, most plant biologists will take the average

value (or the median value) of the quantitative trait within each line to perform a



QTL analysis.

In a plant QTL experiment, the number of clones within line i(i = 1, ..., L) is ni.

The ni clones within each line have the same marker information on their genetic

maps. As mentioned previously, when plant biologist perform QTL analysis, the ni

plants in one line are averaged to obtain one value. However, by doing this, impor-

tant information is lost. For example, if we have two lines: Line 1 has the following

information on its clones: 30, 40, 40, 50. Line 2 has the following information on its

clones: 0, 20, 100. By using the average as the measured trait value within each line,

Line 1 and Line 2 look identical with a mean of 40. However, Line 1 provides more

information regarding the quantitative trait because it has smaller variability, where

Line 2 provides less information. This extra level of variability should be included

in the model. This thesis will address the problem of incorporating the extra level of

variability via a Bayesian hierarchical regression model and will apply this method

to a simulated data set.
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BACKGROUND

Bayesian Data Analysis

Bayesian data analysis is based on probability models for observed quantities

and those in which we would like to make inferences. Probability is used to quantify

uncertainty in inference within Bayesian methods. The conclusions about unknown

parameters, and unobserved data are made in terms of probability statements [5].

Bayesian methods provide results which are, at times, easier to interpret and

understand than frequentist methods. One example is the Bayesian probability in-

terval for an unknown quantity of interest. This interval has the interpretation that

“the probability that the unknown random quantity is contained in the interval is

(1 − α) ∗ 100%”. Whereas the frequentist interval can only be interpreted with re-

spect to the “confidence” that the unknown quantity lies in the interval.

In dealing with very complex problems, the Bayesian framework has great ad-

vantages for its flexibility and generality. In a Bayesian analysis, it is easy to in-

corporate new information into an already existing model. Another advantage of

Bayesian method is the ability to create multilayered probability specifications.

Bayesian data analysis can be divided into the following three steps:

1) The full probability model involving all the observable and unobservable quanti-

ties in a problem must be specified. This model is developed using knowledge about

the underlying scientific problem and the data collection process. The Bayesian

data analysis is based on this step. 2) Incorporating information obtained from

the observed data. The posterior distribution of quantities of interest is derived

by conditioning on the observed data. Here the posterior distribution is a condi-

tional probability function. The posterior distribution of parameters can be used

to construct confidence intervals, test hypotheses or other inferential procedures. 3)

Finally, the fit of the model and the implication of the resulting posterior distribu-

3



tion need to be evaluated. It is important to know whether or not the model fits

the data well, if the substantive conclusions are reasonable, and how sensitive the

results are to the modeling assumptions in Step 1 [5]. This thesis will address steps

1 and 2 of the proposed model; however, step 3 will be left for future research.

Bayesian Inference

In a Bayesian setting, parameters are unknown random quantities and therefore

have a distribution. In order to make probability statements about an unknown

parameter θ given the data y, we begin with a model providing a joint probability

distribution for θ and y.

p(θ, y) = p(θ)p(y | θ) (1)

The quantity p(θ), known as the prior distribution of θ, is assumed to be

constructed from prior knowledge and expert advice. The quantity p(y | θ) is the

sampling distribution of the observed data. Using (1) and the definition of condi-

tional probability, the posterior density is:

p(θ | y) =
p(θ, y)

p(y)
=

p(θ)p(y | θ)
p(y)

(2)

The p(y | θ) is called the likelihood function when it is regard as a function of

θ, for observed y. The data y effect the posterior distribution p(θ | y) only through

the likelihood function with a chosen probability model. The ratio of the posterior

density p(θ | y) evaluated at the points θ1 and θ2 is called posterior odds.

p(θ1 | y)

p(θ2 | y)
=

p(θ1)p(θ1 | y)/p(y)

p(θ2)p(θ2 | y)/p(y)
=

p(θ1)

p(θ2)
· p(y | θ1)

p(y | θ2)
(3)

4



From (3), the posterior odds are equal to the prior odds multiplied by the likelihood

ratio.

Summarizing Inferences by Simulation

Simulation plays an important role in applied Bayesian analysis. The samples

can be generated from a probability distribution, even when the density function

cannot be explicitly integrated.

To simulate the posterior distribution of unknown parameter θ, we obtain sam-

ples from discrete and continuous prior distributions by using the inverse cumulative

distribution function or some other technique for obtaining random samples from

p(θ).

The posterior distribution in (2) contains three probability distributions: p(θ),

p(y|θ) and p(y). The marginal distribution of y, p(y), is a normalizing constant with

respect to θ for the posterior distribution of θ [5], so we can write

p(θ|y) ∝ p(y|θ)p(θ) (4)

We can use (4) to simulate the posterior distribution of θ by three steps: 1) Obtain

a random draw θi from p(θ). 2) Using θi from step 1 to obtain a random draw from

p(y|θi). Step 1 and 2 create a random draw from p(y, θ) and can be repeated many

times to get a random sample from this joint distribution. We can further use this

information to get an approximate posterior distribution.

With simulating draws from the posterior distribution of θ, we can estimate the

posterior probabilities of any quantity of interest. For instance, we can compute

posterior probability intervals, p(a < θ < b), for given a and b by the proportion in

which this event is true over the simulation.

5



Gibbs Sampler

Markov Chain Monte Carlo simulation is a general method to get draws from the

posterior distribution. It draws values of the model parameters from approximate

distributions and corrects those draws to better approximate the target posterior

distribution. The chain needs initial starting values, and then sequentially draws

and updates parameters from the approximate distributions. The approximate dis-

tributions are improved at each step in the simulation and convergent to the target

distribution. [5]

Gibbs sampler, a particular Markov Chain Monte Carlo algorithm, is very useful

in the multidimensional problem. In this method, the parameter vector is divided

into l components, θ = (θ1...θl). Each iteration draws a subset of the parameters con-

ditional on the value of all the others. For example, an ordering of the l subvectors of

θ is chosen and at each iteration t, the subset θt
j is sampled from the conditional dis-

tribution given all the other subsets of θ, i.e p(θj|θt
1, ..., θ

t
j−1, θ

t−1
j+1, ..., θ

t−1
l , y), where

θt−1
j+1 is the sampled value of θj+1 in t− 1 iteration.

For example, assume (y1, y2) are from a bivariate normal distribution with un-

known mean (θ1, θ2) and known covariance matrix (
1 ρ

ρ 1
) [5], where ρ is fixed

covariance of y1 and y2. With uniform prior distribution of θ, we have the following

posterior distribution

 θ1

θ2

 |y ∼ N


 y1

y2

 ,

 1 ρ

ρ 1


 (5)

The full conditional posterior distribution are

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1− ρ2)

θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1− ρ2)

(6)
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We can obtain a sample from the multivariate posterior distribution (5) by choosing

initial values of θ1 and θ2 to start the chain. The value of θ2 is used to draw a

random value of θ1 from p(θ1|θ2, y) in (6). This updated value of θ1 is then used

to draw a random value of θ2 from p(θ2|θ1, y) in (6). This idea is continued for t

iterations giving t draws from the multivariate posterior distribution (5).

Prior Distribution

The prior distribution should include all plausible values of the unknown param-

eter. For example, if the unknown parameter is a variance parameter, then the prior

distribution should only allow positive values. If the sample size is large, the informa-

tion about unknown parameter contained in the data will provide more information

to the posterior distribution than any prior probability specification. However, if

the sample size is small, the prior is extremely influential in the posterior distri-

bution. We can chose reasonable prior distributions in terms of our information

and knowledge, and attempt to use conjugate prior distributions whenever possible.

Conjugate priors simplify results since the posterior can usually be put in analytic

form. The property that the posterior distribution follows the same parametric form

as the prior distribution is called conjugacy.

The following are some examples of conjugate prior distributions:

(1) If the data are obtained through a binomial experiment, the likelihood func-

tion is of the form p(y | θ) ∝ θy(1− θ)n−y. The conjugate prior for this distribution

is the Beta distribution. If we assign p(θ) ∼ Beta(α, β), then the posterior is of the
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form

p(θ | y) ∝ θy(1− θ)n−yθα−1(1− θ)β−1

= θy+α−1(1− θ)n−y+β−1

∼ Beta(θ | α + y, β + n− y)

(2) If the likelihood function of the data is assumed to be normal with un-

known mean θ and known variance σ2, then the likelihood function for a sample of

independent and identically distributed observations y = (y1, ..., yn) is:

p(y | θ) = ( 1√
2πσ

)n
∏

e−
(yi−θ)2

2σ2 ∝ exp[(− 1
2σ2 )

∑
(yi − θ)2]

where the θ is the unknown mean of a normal distribution and variance σ2 is

known. In this situation, the conjugate prior distribution is of the form:

p(θ) ∝ exp(− 1
2τ2

0
(θ − µ0)

2) namely

θ ∼ N(µ0, τ
2
0 )

Then the posterior distribution is:

p(θ | y) ∝ exp

{
−1

2

[∑
(yi − θ)2

σ2
+

(θ − µ0)
2

τ 2
0

]}
∝ exp

[
− 1

2τ 2
1

(θ − µ1)
2

]

where µ1 = ( 1
τ2
0
µ0 + n

σ2 ȳ)/( 1
τ2
0

+ n
σ2 ),

1
τ2
1

= 1
τ2
0

+ n
σ2 , and

ȳ is the mean of sample y.

So the posterior distribution is normal : θ | y ∼ N(µ1, τ
2
1 )

8



Hierarchical Model

In many instances, data will follow a hierarchical structure in which various

parameters are associated in a hierarchical fashion. For example, a study of a fitness

program was introduced to i facilities, with participants at facility i having fitness

measure θi. It is reasonable to assume that the estimates of the θi’s, which represents

a sample of facilities, should be related. This can be accomplished by assuming the

θi’s are a sample from a common population distribution [5].

In plant QTL experiment, the observed data yij with i = 1, ..., L and j = 1, ..., ni

can be used to estimate the distribution of θi, which is the underlying true mean

of line i. It is natural to model this problem hierarchically. We can model the

observable outcomes yij conditionally on certain parameters θi’s, which are given a

probabilistic specification in terms of further parameters, known as hyperparameters.

Figure 1 illustrates the structure of the data in a plant QTL experiment. The

data, yij are obtained from a distribution with mean θi, and θi depends on the

hyperparameters of β and τ .

Figure 1: Structure of Hierarchical Model
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THE QTL HIERARCHICAL MODEL

Data

The data for our model is assumed to be obtained through a design called Re-

combinant Inbred Line(RIL). RIL is a powerful design for detecting QTLs since in

theory it has the largest variation between lines and the smallest variation within

[6]. In this thesis, we use the line information from the Bay-0 × Shahdara(Bay ×

Sha) population to create a simulated QTL data set. The Bay-0 × Shahdara popu-

lation was created by Olivier Loudet and Sylvain Chaillou between 1997 and 2000 at

INRA Versailles [7]. Figure 2 illustrates the genetic map of the Bay × Sha RIL. The

genetic map shows the location of genetic markers along five chromosomes and their

relative distance. The marker information of the Bay × Sha population comprises

the data matrix X. The X matrix is an L×M matrix where L is the number of lines

and M is the number of markers. The simulated response matrix y is L×n matrix

where L is the number of lines and n is the number of observations within each line.

In this simulation, n = 10 within each line. We simulated a data set with one QTL

located on marker 4 on the first chromosome(NGA248). The simulated response yij

was created by first simulating the true θi in each line by (6)

θi = 35 + m× 3 + Rnormal (7)

Where m = 0, 1 or 2 depending on the value of the fourth marker of the first

chromosome. The Rnormal quantity is a random draw from the standard normal

distribution. Using this information, we simulated 10 observations within each line

by obtaining 10 random draws from a normal distribution with mean θi and standard

deviation 0.2.

For the hierarchical model, we assume the observed data yij are normally

10



Figure 2: Genetic Map of Bay-0 × Shahdara population

11



distributed with mean θi and variance σ2
i .

yij | θi, σ
2
i ∼ N(θi, σ

2
i )

The mean of the quantitative trait within each line, θi, is dependent on the

marker information, so we model the θi using the regression model Y = Xβ and

assume the errors are independent with equal variance:

θ | β, X, τ 2 ∼ N(Xβ, τ 2I)

where I is the L×L identity matrix.

We make the following assumptions regarding the prior distributions:

p(σ2
i ) ∼ Inv − χ2(σ2

0i)

p(βi) ∼ N(0, 100)

p(τ 2) ∼ Inv − χ2(τ 2
0 )

By setting σ2
01 = σ2

02 = ...... = σ2
0L = τ 2

0 = 1, the prior distribution of σ2
i and τ 2

have infinite means and variances [8]. The posterior distribution is:

p(θ, β, τ 2, σ2 | y) ∝
∏

i

∏
j

∏
k

p(y|θ, β, τ 2, σ2)p(θ, β, τ 2, σ2)

∝
∏

i

∏
j

∏
k

p(y|θ, σ2)p(β)p(σ2)p(τ 2)p(θ|Xβ, τ 2)

∝ (τ τ0+2+L
∏

i

(σni+σ0i+2
i ))−1 · exp

[
−
∑

i

1

2σ2
i

− 1

2τ 2
− 1

200
β′β

− 1

2τ 2
(θ −Xβ)′(θ −Xβ)−

∑
i

∑
j

1

2σ2
i

(yij − θi)
2

]
(8)

Where i = 1, ..., L j = 1, ..., 10 and k = 1, ...,M
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Posterior Distribution

We are interested in assessing how likely the observed data is given a chosen

model. The models that we consider will keep all the θi’s, σ2
i ’s and τ ; however, we

are interested in understanding which β’s are important in the model. Therefore,

we will look at a number of models with and without various β’s. The total number

of models defined in this way is 2M where M is the number of markers. We will

denote the set of all possible models by Λ, and the Kth model by δK . The vector of

unknown parameters for model K will be denoted by λK . Using this notation, the

probability of the data given model K is:

p(D|δK) =

∫
p(θ | βK , XK , τ 2)p(τ 2)p(σ2)p(βK)p(y | θ, σ2)dλK (9)

Here, p(D|δK) is the probability of the data given model K, where XK is the genomic

marker information matrix of model δK .

13



DETECT QTL WITH HIERARCHICAL MODEL

Gibbs Sampler for Hierarchical Model

To estimate the quantity (7), we need draws from the posterior distribution. We

will use a particular Monte Carlo Markov chain algorithm, the Gibbs sampler, to

obtain draws from the posterior distribution. In each iteration of the Gibbs sampler,

we get a draw of parameters conditional on the values of all the other parameters.

Thus there are four steps in the Gibbs sampler algorithm. At each iteration t, pa-

rameters τ 2, θ, β, σ2 are sampled and updated conditional on the last values of the

other parameters.

The initial starting points for the algorithm are important and we use the follow-

ing information: β(1) comes from the β’s of the regression model y ∼ x; θ(1) comes

from the average value ȳ of each line of y; σ2(1)
comes from the standard deviation

of each line of y; and τ 2(1)
comes from the deviation of ȳ. The estimates of β(1),

θ(1), σ2(1)
, and τ 2(1)

are the starting points for the Gibbs samplers to obtain random

draws for β, θ, σ2, and τ 2.

The random sample of all the parameters are obtained by generating random

draws from each of the four full conditional distributions:

(1) To obtain random draws of τ 2’s from the distribution of τ 2 conditional on

14



the other parameters p(τ 2|θ, β, σ2, y), we need

p(τ 2|θ, β, σ2, y) =
p(τ 2, θ, β, σ2|y)

p(θ, β, σ2|y)

=
p(θ|Xβ, τ 2)p(τ 2)p(σ2)p(β)p(y|θ, σ2)

p(y|θ, σ2)p(σ2)p(β)
∫

p(θ|Xβ, τ 2)p(τ 2)dτ 2

=
p(θ|Xβ, τ 2)p(τ 2)∫
p(θ|Xβ, τ 2)p(τ 2)dτ 2

∝ τ−(l+τ2
0 +2)exp

{
− 1

2τ 2
[(θ −Xβ)′(θ −Xβ) + 1]

}
∝ (τ 2)−(

l+τ2
0

2
+1)exp

{
−

[ (θ −Xβ)′(θ −Xβ) + 1]/2

τ 2

}

The conditional distribution of τ 2 is Inv-Gamma.

p(τ 2|θ, β, σ2, y) ∼ Inv −Gamma
[

l+τ2
0

2
, (θ−Xβ)′(θ−Xβ)+1

2

]
(2) To obtain random draws of θ’s from the distribution of θ conditional on the other

parameters p(θ|β, σ2, τ 2, y), we need

p(θ|β, σ2, τ 2, y) =
p(τ 2, θ, β, σ2|y)

p(τ 2, β, σ2|y)

=
p(θ|Xβ, τ 2)p(y|θ, σ2)∫
p(θ|Xβ, τ 2)p(y|θ, σ2)dθ

∝ exp

[
− 1

2τ 2
(θ −Xβ)′(θ −Xβ)−

L∑
i=1

ni∑
j=1

1

2σ2
i

(yij − θi)
2

]

∝ exp

{
L∑

i=1

[
−1

2

(
1

τ 2
+

ni

σ2
i

)
θ2

i +

(
Xiβ

τ 2
+

Ci

σ2
i

)
θi

]}

∝ exp


L∑

i=1

−1

2

(
1

1
τ2 +

ni
σ2

i

) (θi −
Xiβ
τ2 + Ci

σ2
i

1
τ2 + ni

σ2
i

)2



Where Xi is the ith line of X, and Ci =
∑ni

j=1 yij
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The conditional distribution of θi is Normal.

p(θi|τ 2, β, σ2, y) ∼ N

(
Xiβ

τ2 +
Ci
σ2

i
1

τ2 +
ni
σ2

i

, 1
1

τ2 +
ni
σ2

i

)
(3) To obtain random draws of β’s from the distribution of β conditional on the

other parameters p(β|θ, σ2, τ 2, y), we need

p(β|θ, σ2, τ 2, y) =
p(θ|Xβ, τ 2)p(β)∫
p(θ|Xβ, τ 2)p(β)dβ

∝ exp

[
−β′β

200
− 1

2τ 2
(θ −Xβ)′(θ −Xβ)

]
∝ exp

{
−1

2

[
β′
(

I

100
+

X ′X

τ 2

)
β − 2

τ 2
θ′Xβ

]}
∝ exp

{
−1

2

[
β −

(
I

100
+

X ′X

τ 2

)
X ′θ

τ 2

]′(
I

100
+

X ′X

τ 2

)
[
β −

(
I

100
+

X ′X

τ 2

)
X ′θ

τ 2

]}

Where I is L×L identity matrix.

The conditional distribution of β is Normal.

p(β|θ, σ2, τ 2, y) ∼ N
[(

I
100

+ X′X
τ2 )X′θ

τ2 , ( I
100

+ X′X
τ2

)−1
]

(4) To obtain random draws of σ2’s from the distribution of σ2 conditional on the

other parameters p(σ2|τ 2, θ, β, y), we need

p(σ2|τ 2, θ, β, y) =
p(y|θ, σ2)p(σ2)∫
p(y|θ, σ2)p(σ2)dσ2

∝
L∏

(σ2
i )

−(
σ2
0
2

+
ni
2

+1)exp

{
−

[
L∑

i=1

1

2σ2
i

+
L∑

i=1

ni∑
j=1

1

2σ2
i

(yij − θi)
2

]}

∝
L∏

(σ2
i )

−(
σ2
0+ni
2

+1)exp

{
−

L∑
i=1

(
1

2σ2
i

)[ ni∑
j=1

(yij − θi)
2 + 1

]}
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The conditional distribution of σ2
i is Inv-Gamma.

p(σ2
i |τ 2, θ, β, y) ∼ Inv −Gamma

[
σ2
0+ni

2
,

∑ni
j=1(yij−θi)

2+1

2

]
To diminish the effect of the starting distribution, we discard first 5, 000 from

100, 000 iterations for each parameter. We assume that the distribution of the simu-

lated parameter values, for large enough iteration t, are close to the target distribu-

tion. Figure 3, Figure 4 and Figure 5 illustrate the sampled values from the Gibbs

sampler for β5,β16 and β32.

Figure 3: β5 from Gibbs Sampler
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Figure 4: β16 from Gibbs Sampler
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Figure 5: β32 from Gibbs Sampler
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Detect QTL

Detecting the location on a genome responsible for a quantitative trait is equiva-

lent to selecting the most appropriate model for data. The set of all possible models

is denoted by Λ, and we will denote the cardinality or size of Λ by |Λ|. Thus, we are

interested in p(δK |D), the probability of model K given the data. Using Bayes rule,

we see that:

p(δK |D) =
p(D|δK)p(δK)∑|Λ|

K=1 p(D|δK)p(δK)
(10)

Since we assume we have no prior knowledge on which model is the most appropriate,

we assign equally likely probabilities to all δK ’s. The quantity p(D|δK) is calculated

by

p(D|δK) =

∫
p(D|δK , λK)p(λK |δK)dλK (11)

However, this integral is computationally intensive and may be estimated via Monte

Carlo methods by

∫
p(D|δK , λK)p(λK |δK)dλK ≈ 1

t

t∑
i=1

p(D|λ(i)
K , δK)p(λ

(i)
K |δK) (12)

Where λ
(i)
K , i = 1, ..., t are sample from the posterior distribution. We can use this

information to calculate the activation probability defined as p(βKj 6= 0|D) where

p(βj 6= 0|D) =

|Λ|∑
K=1

p(βj 6= 0|δK , D)p(δK |D) (13)

However, to calculate the activation probability for each β would means that 2M

models need to be created. This may become computationally challenging, so we

will define a search algorithm that sequentially divides the genome into smaller and

smaller segments until segments with QTLs are identified.

The algorithm first divides the genome into chromosomes. The Bay × Sha pop-

20



ulation has five chromosomes which we label as a, b, c, d, and e. In this case, we

have 25 models which need to be fit and their corresponding p(δK |D) calculated with

(9), (10), and (11). Using (12) the activation probability of each chromosome can

be computed. Table 1 shows the activation probability for each chromosome. The

search algorithm then identifies areas or regions of interest as those with activation

probabilities greater than 0.5. Since the activation probability of chromosome a and

c are more than 0.5, we divide each of the chromosome a and c into two parts and

find the activation probability for each segment by the same procedure. As Table

2 shows, the activation probability of segment 1 and segment 2 of chromosome a,

a1 and a2, are more than 0.5. Thus we further divide each of a1 and a2 into two

parts. So we get segments a11, a12, a21 and a22. Table 3 shows the activation

probability of these four segments. With the same processing, each of a11 and a12

is divided into two pieces. Table 4 shows the activation probability of each segment.

Segment a122 represents marker 4 of chromosome a has the only activation prob-

ability larger than 0.5, so we conclude that the QTL is on marker 4 of chromosome a.

Table 1: Activation probability of each chromosome

Chromosome Activation Probability

a 1.0000

b 0.3976

c 0.6026

d 0.3972

e 0.0003
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Table 2: Activation probability of segments from first and third chromosomes

Segments Activation Probability

a1 1.0000

a2 0.9364

c1 0.0634

c2 0.0631

Table 3: Activation probability of segments from first chromosome

Segments Activation Probability

a11 0.8185

a12 0.9273

a21 0.1147

a22 0.1086

Table 4: Activation probability of first four markers

Segments Activation Probability

a111 0.0416

a112 0.0143

a121 0.0837

a122 1.0000
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CONCLUSION

To utilize existing software, most biologists take the average value of the quan-

titative trait within each line to perform plant QTL analysis. Therefore, important

information about the variability within and between each line is lost. The Bayesian

Hierarchical Regression model which can incorporate information of extra level vari-

ations of quantitative trait lines is an effective method to detect QTL. We applied

this method to a simulated data set from the line information of Bay-0 × Shahdara

population in which the QTL was located on the fourth marker of the first chromo-

some. We used the Bayesian Hierarchical Regression model to model the data set

and compare models. The activation probability was calculated to determine which

β’s are most important for controlling the Quantitative Trait. Since fitting every

possible model would be computationally challenging, we constructed a conditional

search algorithm that systematically divides segments on the genome into smaller

and smaller segments until QTLs are identified. The simulated data set had a QTL

located on the fourth marker of the first chromosome and was identified via our

Bayesian Hierarchical Regression model.

Although the QTL is detected in the simulated data set, a few issues remain for

the further investigation. (1) A sensitivity analysis should be done on the variance

of the β’s. We need ascertain how our model output depends upon the variance of

the β’s. This is an important method for checking the quality of our model. (2)

Trying different starting points to evaluate our method. (3) Applying this method

to the real data set.
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APPENDIX A

SAS and Fortune Program for QTL

FULL MODEL

SAS code:

proc iml;

use x;

read all var(’x1’:’x99’) into xx;

use y;

read all var(’y1’:’y10’) into yy;

use data;

read all var(’beta1’:’beta99’) into beta;

read all var(’theta1’:’theta162’) into theta;

read all var(’sigma1’:’sigma162’) into sigma;

read all var(’tau’) into tau;

n=nrow(beta);

L=nrow(yy);

ni=ncol(yy);

start fmodel(tau0,sigma0,n,L,ni,beta,sigma,theta,tau,xx,yy);

res=j(n,1,0);

do i=1 to n;

term1=(tau0+2+L)#log(tau[i,]);

term2=(ni+sigma0+2)#sum(log(sigma[i,]));

term3=sum(1/sigma[i,]);

term4=beta[i,]*beta[i,]‘/10000;

m=theta[i,]‘-xx*beta[i,]‘;
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term5=(1+m‘*m)/tau[i,];

p=j(L,ni,0);

do j=1 to ni;

p[,j]=(yy[,j]-theta[i,]‘)##2/sigma[i,]‘;

end;

term6=sum(p);

res[i,]=-0.5*(term1+term2+term3+term4+term5+term6);

end;

result=sum(exp(res-max(res)))/n;

return(result);

finish;

mm=fmodel(2,2,n,L,ni,beta,sigma,theta,tau,xx,yy);

print mm;

quit;

Fortune code:

program Gibbs

USE MSIMSL

PARAMETER (M=39,L=165,taunot=0.5,sigmanot=0.5,KK=100000,

& kutoff=2000)

! M is number of Markers (column) and L is number of lines

DOUBLE PRECISION betas(M),XTX(M,M),X(L,M),XB(L),tau2(1),

& taua,taub(1),sigmab(L),Y(L,12),betamu(M),

& covarbeta(M,M),sigma2(L),thetamu(L),thetas(L),

& thetasig(L),ybar(L),sumy(L),RSIG(M,M),TOL,

& stdtau2(1),betasst(M),stdsig(L),ybar2(L),
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& stdtheta(L),sigmaa(L),sumy2(L),minloglik,

& liktemp(KK),temp4,temp5,maxloglik,

& sumtemp4,bayesfac,

& yregress(1620),xregress(1620,M),SST,SSE,

& savebeta5(KK), savebeta6(KK), savebeta16(KK),

& savebeta32(KK)

INTEGER ni(L),IRANK

!Setting parameters

taua = taunot + (L/2)

TOL = 100.0*DMACH(4)

minloglik = 1.d8

maxloglik = -1.d8

sumtemp4 = 0.d0

NOBS = 0

do i = 1,L

sigmaa(i)=(ni(i)/2) + sigmanot

enddo

!Read data

do i = 1, L

ni(i) = 10

enddo

open(16, file=’bayxsha2.csv’, status=’old’)

do i=1,L

read(16,*) (X(i,j),j=1,M)

enddo

close(1)

open(19, file=’newy.csv’, status=’old’)
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do i=1,L

read(19,*) (Y(i,j), j=1,ni(i))

enddo

close(19)

do i=1,L

sumy(i) = 0.d0

sumy2(i) = 0.d0

NOBS = NOBS + ni(i)

end do

do i=1,L

do j=1,ni(i)

sumy(i) =sumy(i) + Y(i,j) !Create ybar

sumy2(i) = sumy2(i) + Y(i,j)*Y(i,j)

enddo

ybar(i) = sumy(i)/ni(i)

thetas(i) = ybar(i)

sigma2(i) = (sumy2(i) - ni(i)*(ybar(i)**2))/(ni(i) - 1)

if (sigma2(i).eq.0.d0) sigma2(i) = 1.d0

ybar2(i) = sumy2(i)/ni(i)

enddo

do i = 1,L

sumtheta = sumtheta + thetas(i)

sumtheta2 = sumtheta2 + (thetas(i)**2)

enddo

thetabar = sumtheta/L

tau2 = (sumtheta2 - L*(thetabar**2))/(L - 1)

c Getting ready for regression
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num = 1

do i = 1,L

do j = 1,ni(i)

yregress(num) = Y(i,j)

num = num + 1

enddo

enddo

num2 = 1

do i = 1,L

do k = 1,ni(i)

do j = 1,M

xregress(num2,j) = X(i,j)

enddo

num2 = num2 + 1

enddo

enddo

CALL DRLSE (NOBS, yregress, M, xregress, NOBS, 0, betas,

& SST, SSE)

CALL DMXTXF (L, M, X, L, M, XTX, M) !Calculates XTX

CALL DMURRV (L, M, X, L, M, betas, 1, L, XB) !Mult matrix x vector

!Gibbs Sampler

do k=1,KK

!***** THETAS ***************************

CALL thetapar (tau2,sigma2,XB,L,ybar,ni,thetamu,thetasig) !parameter

CALL DRNNOR (L,stdtheta)

do i=1,L

thetas(i) = stdtheta(i)*thetasig(i) + thetamu(i)
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enddo

!***** TAU ***************************

CALL tauparm (thetas,XB,L,taub)

CALL drngam(1,taua,stdtau2)

tau2(1) = taub(1)/stdtau2(1)

!***** BETA ***************************

CALL betapar (XTX,M,tau2,L,thetas,X,betamu,covarbeta)

CALL DCHFAC (M, covarbeta, M, TOL, IRANK, RSIG, M) ! Cholesky factor

CALL DRNMVN (1, M, RSIG, M, betasst, M)

do i=1,M

betas(i) = betasst(i) + betamu(i)

enddo

CALL DMURRV (L, M, X, L, M, betas, 1, L, XB) !Mult matrix x vector

! ***** SIGMA ***************************

CALL sigmaparm (ybar,ybar2,ni,thetas,L,sigmab)

CALL drngam(L,sigmaa(1),stdsig)

do i = 1,L

sigma2(i) = sigmab(i)/stdsig(i)

enddo

savebeta5(k) = betas(5)

savebeta6(k)=betas(6)

savebeta16(k) =betas(16)

savebeta32(k)=betas(32)

CALL llike (betas,XB,tau2,Y,sigma2,thetas,

& L,M,sigmaa,taua,temp4,temp5)

liktemp(k)=temp4

if ((temp5.ge.maxloglik) .and. (k.ge.kutoff)) maxloglik = temp5
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if ((temp5.le.minloglik) .and. (k.ge.kutoff)) minloglik = temp5

enddo

open(100,file=’savebeta.csv’,status=’new’)

do nnum = 1,KK

write(100,*) savebeta5(nnum),savebeta6(nnum),

& savebeta16(nnum),savebeta32(nnum)

enddo

close(100)

do k=(kutoff+1),KK

sumtemp4 = sumtemp4 + liktemp(k)

enddo

bayesfac = sumtemp4/(KK-(kutoff+1))

open(50,file=’Bayesoutput.txt’,status=’new’)

write(50,*) "Sumtemp 4 = ",sumtemp4

write(50,*) "Bayes factor = ", bayesfac

write(50,*) "Minimum log-likelihood = ", minloglik

write(50,*) "Maximum log-likelihood = ", maxloglik

close(50)

end

! SUBROUTINES

SUBROUTINE tauparm (thetas,XB,L,taub)

DOUBLE PRECISION sumTXB,taub(1),thetas(L),XB(L)

INTEGER L

sumTXB=0.d0

do i=1,L

sumTXB=sumTXB + (thetas(i) - XB(i))*(thetas(i) - XB(i)) +1

enddo
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taub(1)=0.5*sumTXB

end

SUBROUTINE sigmaparm (ybar,ybar2,ni,thetas,L,sigmab)

DOUBLEPRECISION ybar(L),thetas(L),sumythetas,sigmab(L),ybar2(L)

INTEGER ni(L)

sumythetas=0.d0

do i=1,L

sigmab(i) = 0.5*(1+(ni(i)*ybar2(i) - 2*thetas(i)*ni(i)*ybar(i)

& + ni(i)*thetas(i)*thetas(i)))

enddo

end

SUBROUTINE betapar (XTX,M,tau2,L,thetas,X,betamu,covarbeta)

DOUBLE PRECISION XTX(M,M),step1(M,M),covarbeta(M,M),mupart2(M),

& thetas(L),betamu(M),tau2(1),X(L,M)

INTEGER M,L

do i=1,M

do j=1,M

if (i.eq.j) then

step1(i,j)=(1/100)+((1/tau2(1))*XTX(i,j))

else

step1(i,j) = ((1/tau2(1))*XTX(i,j))

endif

enddo

enddo

CALL DLINDS (M, step1, M, covarbeta, M)

CALL DMURRV (L, M, X, L, L, thetas, 2, M, mupart2)

do i = 1,M
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mupart2(i) = mupart2(i)/tau2(1)

enddo

CALL DMURRV (M, M, covarbeta, M, M, mupart2, 1, M, betamu)

end

SUBROUTINE thetapar (tau2,sigma2,XB,L,ybar,ni,thetamu,thetasig)

DOUBLE PRECISION tau2(1),sigma2(L),XB(L),ybar(L),thetamu(L),

& thetasig(L)

INTEGER L ,ni(L)

do i=1,L

thetamu(i) = (1/tau2(1))*(tau2(1)*sigma2(i)/(ni(i)*tau2(1)

& +sigma2(i)))*XB(i) +(1/sigma2(i))

& *(tau2(1)*sigma2(i)/(ni(i)*tau2(1)+sigma2(i)))*

& ni(i)*ybar(i)

enddo

do i=1,L

thetasig(i) = sqrt(tau2(1)*sigma2(i)/(ni(i)*tau2(1)

& +sigma2(i)))

enddo

end

SUBROUTINE llike (betas,XB,tau2,Y,sigma2,thetas,

& L,M,sigmaa,taua,flik,likehood2)

DOUBLE PRECISION betas(M),XB(L),tau2(1),

& taua,Y(L,10),btb,thetas(L),

& sigma2(L),sigmaa(L),lik1,lik2,likehood,flik,

& likehood2

INTEGER M,L

lik1=0.d0
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lik2=0.d0

btb=0.d0

do i=1,L

lik1= lik1 - (sigmaa(i))*dlog(sigma2(i)) -

& (1/(2*sigma2(i))) -

& (1/(2*tau2(1)))*

& (thetas(i) - XB(i))*

& (thetas(i) - XB(i))

end do

do i=1,L

do j=1,10

lik2 = lik2 -(1/(2*sigma2(i)))*(Y(i,j)-thetas(i))*

& (Y(i,j)-thetas(i))

end do

end do

do i = 1,M

btb=btb + betas(i)*betas(i)

end do

likehood = lik1 + lik2 - (taua)*dlog(tau2(1))

& - (1/(2*tau2(1))) - (1/200) * btb

likehood2=likehood +500 !Adjusting likelihood

flik = dexp(likehood2)

end
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