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Abstract 
 

Stress has been defined as an environmental effect on an individual that overtaxes its 

functional abilities.  The diversity of stress responses among marine mammals makes it difficult 

to develop a comprehensive diagnostic protocol to evaluate stress.  The development of a 

relatively non-invasive tool with which to evaluate stress in bottlenose dolphins (Tursiops 

truncatus) could allow for assessments of animals that may be at risk, and assessment of free-

ranging animals without capture-release.  The goal of this study was to evaluate whether 

vocalizations, specifically signature whistles, could serve as possible indicators of acute (or 

short-term) stress in bottlenose dolphins.  Recordings made during brief capture-release events 

and during focal follows of undisturbed animals in Sarasota Bay, FL, were used to address this 

question.  Although there is no evidence that capture-release events have any long or short term 

adverse impacts on members of the Sarasota dolphin community, it is likely that they are a 

source of short-term stress to the dolphins.  I asked the following questions:                                                           

Will whistle rates and number of loops (repetitive elements in whistles) be greater: 

(1)  during capture-release than during undisturbed focal follows?   

(2)  at the beginning of a capture-release session than at the end of a session?   

(3)  during an individual’s first capture-release session than during later sessions?   

(4)  when a mother is caught and released with a dependent calf than without a dependent        

calf? 

I also examined whether the duration of loops and/or inter-loop intervals, and maximum and 

minimum frequency of whistles change in any of the above contexts.  Loop number was 

significantly higher during capture-release than during focal follows, and decreased significantly 

from the beginning to the end of an individual’s capture-release session.  Loop duration was 
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significantly shorter at the beginning than at the end of an individual session.  Whistle rate was 

also significantly higher during capture-release than during focal follows, and during a dolphin’s 

first capture-release than during subsequent sessions.  Females caught with a dependent calf 

produced whistles with significantly higher maximum frequencies and shorter inter-loop 

intervals than when caught and released without a dependent calf.  Based on the results of this 

study, further research would be warranted on assessing the utility of signature whistle rate and 

loop number as behavioral indicators of short-term stress in bottlenose dolphins.  These measures 

could potentially be utilized independently, or in conjunction with physiological indicators, in 

assessments of the impact of potentially stressful human activities on bottlenose dolphins.  
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INTRODUCTION 
 

Stress has been defined as an environmental effect on an individual that overtaxes its 

functional abilities, potentially reducing its fitness (Broom and Johnson 1993).  The welfare of 

an animal, or its state in relation to how it copes with its environment, is often related to the 

stress that it experiences (Broom 1988).  Stress can be either acute or chronic.  Acute stress may 

have positive physiological effects and can potentially increase survivorship, analogous to the 

way that strenuous exercise can be strengthening (St. Aubin and Dierauf 2001).  However, 

chronic stress can in some cases have long-lasting, negative effects on immune function, 

reproduction, and growth, and may cumulatively have population level impacts (reviewed in 

Nelson 2000).   

The term “stress response” refers to a suite of physical and emotional changes that occur 

in response to a threat or stressor (Selye 1936).  The diversity of stress responses among marine 

mammals makes it difficult to develop a comprehensive diagnostic protocol to evaluate stress 

(St. Aubin and Dierauf 2001).  Establishing criteria by which to evaluate stress in dolphins was 

prioritized as a result of a 1997 amendment to the Marine Mammal Protection Act (MMPA) that 

created the International Dolphin Conservation Program Act (IDCP Act, U.S. Public Law 105-

42).  The IDCP Act mandated research aimed at determining how the stress of repeated 

encirclement and capture-release affects dolphins in the Eastern Tropical Pacific (ETP) tuna 

purse-seine fishery.  Repeated capture-release is a potential source of chronic stress for spotted 

(Stenella attenuata) and spinner dolphins (Stenella longirostris) in the ETP (Curry 1999), and 

policy makers have become concerned that this chronic stress may have detrimental effects on 

the reproductive success and overall success of these species.  Thus, the National Marine 

Fisheries Service (NMFS) recently requested a review of the current knowledge of stress in 



marine mammals, resulting in a comprehensive evaluation of the tools that are currently used to 

assess stress response in many marine mammals (not only S. attenuata and S. longirostris; e.g. 

Curry 1999; St. Aubin 2002; Pabst et al. 2002).  Although no tool was deemed to be singularly 

reliable within or among species, the information provided a useful foundation on which to base 

further development of tools for stress response assessment. 

Typically, stress hormone profiles are produced from blood samples drawn from 

restrained animals (stranded, temporary capture-release).  Stress hormones such as cortisol, 

aldosterone, and epinephrine function to increase heart rate, blood pressure and respiratory rate 

to more efficiently circulate energy and oxygen to tissues (Sapolsky 1998).  The role of cortisol 

as an indicator of stress has been well studied in selected mammals (e.g. humans, non-human 

primates, pigs, cattle; Grandin 1997; Sapolsky 1987, 1993; Clarke 1991).  Correlations are often 

made between cortisol levels and alternative indicators of stress such as heart rate or serum 

enzyme levels (Curry 1999).  In bottlenose dolphins (Tursiops truncatus), attempts have been 

made to correlate stress hormones with behavioral state, but no consistent relationship has 

emerged (Curry 1999; Frohoff 2004; St. Aubin and Dierauf 2001).  Thomson and Geraci (1986) 

compared cortisol levels in extensively chased and calm-capture-release (minimally chased) 

dolphins at captive facilities in the Florida Keys.  All of the dolphins evaluated in their study had 

been in captivity for at least one year, and had been handled frequently.  A stress response was 

observed in response to capture-release and handling even under the calmest conditions.  The 

authors reported that cortisol levels peaked shortly after the capture-release process was initiated, 

and thus showed little elevation in subsequent blood samples.  In contrast, members of the 

resident population of bottlenose dolphins in Sarasota Bay, FL, and bottlenose dolphins captured 

and released in Beaufort, NC, in 1995 appeared to exhibit only modest elevations in cortisol in 
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response to capture-release (St. Aubin et al. 1996; Ortiz and Worthy 2000).  Although cortisol is 

the most often analyzed stress response hormone, elevated levels of glucocorticoids (e.g. cortisol 

and corticosterone) can occur in non-stressful situations as well (Bercovitch et al. 1995).  In 

addition, stress hormones require the acquisition of blood samples, a process that itself may 

confer stress.  Thus, cortisol may not be a reliable indicator of stress response in cetaceans (St. 

Aubin and Dierauf 2001).  

St. Aubin and Dierauf (2001) called for the development of new and creative diagnostic 

tests that could be used to consistently detect stress in marine mammals.  The development of a 

passive means by which to evaluate stress in dolphins could allow for more efficient and 

comprehensive assessments of animals that may be at risk.  For example, behavioral 

observations have been used to assess unrestrained dolphins (captive, free-swimming; Frohoff et 

al. 2004; Santurtun and Galindo 2002).  Behaviors that were thought to be indicative of stress 

included submission to humans and/or other dolphins, agitation, or aggression (Frohoff et al. 

2004).  Loss of appetite, and changes in respiratory rate, dive and surfacing patterns, postures, 

and vocalizations have all been postulated as short term responses to stress in dolphins (Frohoff 

et al. 2004).  My study aimed to assess the potential of using vocal rates and/or other vocal 

parameters as a non-invasive means to evaluate stress in bottlenose dolphins. 

Vocal responses to stress are well documented, particularly for some domestic  

animals (e.g. pigs, cattle, and sheep), all of which share a common ancestry with cetaceans 

(reviewed in Thewissen 1994).  Watts and Stookey (1999) asserted that contemporary animal 

welfare research should aim to better understand the correlation (if any) between vocalizations of 

a distressed animal and its own perceived state of well-being.  They determined that cattle (Bos 

taurus) vocalized significantly more while being branded than mock-branded, and that branded 
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cattle produced vocalizations with a greater frequency range and a higher maximum frequency.  

Vocal rates appeared to be most affected by severe stressors (e.g. branding), while remaining 

relatively insensitive to moderate stressors (e.g. restraint).  This finding contrasts with cortisol 

and/or heart rate responses, which can elevate in response to normal handling (Watts and 

Stookey 1999; Thomson and Geraci 1986).   

Watts and Stookey (1999) suggested that the type of vocalization (determined by 

measurement of physical parameters such as frequency or duration), in addition to the rate of 

vocalization, may communicate information about an animal’s experience.  In particular, they 

found that cattle produced sounds that were context specific, and that vocal rate could vary by 

individual as well as by context.  The subjects were recorded while being processed by 

veterinary staff as well as while in isolation.  Calls produced in isolation showed less variation in 

frequency and were shorter than those produced during handling (Watts and Stookey 2001).  

Weary et al. (1997) also found that an animal’s vocal production may provide useful information 

about its behavioral state.  Domestic piglets (Sus scrofa domestica) were found to vocalize more 

often when isolated, and used higher maximum frequencies and longer call durations when kept 

in a thermally stressful environment (14°C, well below thermoneutrality for young piglets).  

Hillman et al. (2004) found that domestic pigs increased production of high-frequency 

vocalizations when exposed to minor thermal stress.  They did not, however, find any correlation 

between acoustic response and saliva cortisol concentrations.  Hillman et al. (2004) proposed 

that an automatic acoustic monitoring system could be employed to monitor the impacts of 

climate on the welfare of pigs in livestock housing systems.  Grandin (1998) used vocal response 

to monitor welfare issues in slaughterhouses and the improvements that resulted from 

modifications to slaughterhouse practices.  Because vocal response is variable among 
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individuals, Grandin (1998) used the proportion of cattle vocalizing, rather than an individual’s 

vocal rate, as an indicator of the condition of the overall population in slaughterhouses.  

Following an initial assessment of vocal rate, Grandin made recommendations (e.g. reduction of 

voltage in electric cattle prods, loosening of restraint collars) aimed at reducing the level of 

discomfort for the cattle.  Vocal rates decreased substantially following the slaughterhouses’ 

compliance with Grandin’s recommendations. 

Other species also appear to vary vocal rate in response to stress.  Bercovitch et al. (1995) 

found that female rhesus macaques (Macaca mulatta) were less likely to respond to moderate 

threats (e.g. mock capture-release, approach of a quasi-independent infant) with alarm calls when 

cortisol levels were suppressed (Bercovitch et al 1995).  In addition, alarm calls produced by test 

subjects with suppressed cortisol levels were low intensity pant calls rather than high intensity 

shrill calls.  Monticelli et al. (2004) measured whistle rate and whistle parameters (e.g. frequency 

maximum and minimum, duration, and number of harmonics) of guinea pig (Cavia porcellus) 

pups throughout a 15 minute isolation period.  They found a significant decrease in whistle rate 

and whistle duration from the first 30 notes to the last 30 notes produced, presumably reflecting 

habituation to the isolation context.  The guinea pig pups also increased the mean frequency of 

whistle notes from the beginning to the end of the isolation period.  These changes are similar to 

those seen in isolated common marmoset (Callithrix jacchus) pups (Newman and Goedeking 

1992).  In contrast, Wiener et al. (1990) found that squirrel monkey (Saimiri sciureus) infants 

that were completely separated from the mother (versus maintaining visual contact with the 

mother) produced fewer vocalizations than when they were allowed visual contact with the 

mother.  However, vocalizations that occurred during complete separation had higher mean 

frequencies than those produced when visual contact was allowed.  Complete separation also  
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resulted in higher plasma cortisol levels in these squirrel monkey infants.   

Rahurkar et al. (2002) examined characteristics of certain frequency bands in human 

speech and attempted to use those characteristics to distinguish between neutral and stressed 

speech.  The study was based on prior research that used a Teager Energy Operator, a voice 

stress detection program used in both military and law enforcement applications.  Rahurkar et al. 

(2002) hypothesized that certain frequency bands may be more sensitive to stress (for all 

speakers), and could therefore be used to assess stress in speech.  Heart rate and blood pressure 

were evaluated to confirm that the subjects were experiencing a physiological response to the 

stressor, and the subjects’ spoken responses to questions were recorded as the physiological 

readings were taken.  The authors determined that four particular frequency bands were highly 

affected by stress.  As a result, these bands were more heavily weighted during analysis by the 

detection scheme to more effectively and efficiently determine stressed speech in humans.   

 Lilly (1963) was the first to propose that dolphin vocalizations may serve as  

indicators of stress.  In particular, he suggested that dolphins produced a specific whistle contour 

when stressed, which he called a “distress whistle”, and to which other dolphins responded by 

offering aid.  Frohoff et al. (2004) also claimed that the type of vocalizations produced by 

bottlenose dolphins appeared to vary in response to stressors (isolation, relocation, entanglement, 

etc.), as did vocal rate.  Although Caldwell et al. (1990) did not find evidence for “distress 

whistles” (see below), they did find that certain parameters of dolphin whistles (e.g. number of 

loops, duration of loops) appeared to be closely related to the level of arousal, or behavioral 

stimulation, of an individual dolphin.  If vocal parameters are correlated with stress, this could 

provide a reliable, non-invasive method by which to evaluate stress in dolphins.  The goal of this 

study was to determine whether aspects of whistle production in bottlenose dolphins (as  

 6



described in more detail below) may serve as reliable indicators of acute (or short term) stress. 

 

Bottlenose Dolphin Whistles         

  The variety of vocalizations bottlenose dolphins employ includes broad-band burst pulsed 

sounds, broad-band clicks used in echolocation, and narrow-band frequency modulated whistles 

(Caldwell et al. 1990; Herman and Tavolga 1980).  For an individual dolphin, the third category 

includes highly stereotyped whistles as well as more variable contours (or variants; Tyack 1986; 

Sayigh et al. 1990).  For nearly 40 years, the term “signature whistle” has been used to refer to 

highly stereotyped contours in a dolphin’s repertoire.  This term was the result of work by David 

and Melba Caldwell (Caldwell and Caldwell 1965; Caldwell et al. 1990), who observed that 

isolated, captive dolphins produced whistles that exhibited individually distinctive 

characteristics, which were hypothesized to transmit identity information.  Approximately 90% 

of whistles produced by isolated animals, both in captivity and in the wild, have been found to be 

individually distinctive (Caldwell and Caldwell 1968, 1979, Caldwell et al. 1990; Sayigh et al. 

1990), and approximately 50% of whistles produced by freely swimming wild bottlenose 

dolphins in Sarasota Bay, FL, are signature whistles (or probable signature whistles; Cook et al. 

2004). 

Signature whistles appear to play an important role in social interactions (Caldwell and 

Caldwell 1965; Caldwell et al. 1990) and in maintaining group cohesion (Janik and Slater 1998).  

The individually distinctive nature of signature whistles provides a mechanism for individual 

recognition among conspecifics, a function that has been demonstrated in playback experiments 

in which dolphins showed a stronger response to whistles of kin vs. familiar non-kin (Sayigh et 

al. 1999).  Janik (2000) speculated that whistle matching, observed in wild bottlenose dolphins of 
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Moray Firth, Scotland, may allow individuals to address one another.  Janik and Slater (1998) 

found that captive dolphins produced signature whistles only when separated from group 

members, and Smolker et al. (1993) found that mother-calf reunions in Shark Bay, Australia, 

were often preceded by whistling; both of these studies support the role of signature whistles in 

maintaining group cohesion. 

 The overall contour, or pattern of frequency changes over time, of signature whistles 

tends to be highly stable, despite changes that may occur in other whistle parameters (duration 

and maximum or minimum frequency; Caldwell et al. 1990; Sayigh et al. 1990).  Signature 

whistles may consist of a single element (or loop), or repeated loops (disconnected and/or 

connected) which may be accompanied by an introductory and/or terminal loop (Figure 1, 

Caldwell et al. 1990; Sayigh et al. 1990).  Duration changes often result from variable repetition 

of loops (Esch and Sayigh, in prep.).  The number and duration of these loops has been suggested 

to vary according to a dolphin’s level of arousal (Caldwell et al. 1990).  Thus, I evaluated these 

parameters, in addition to whistle rate, inter-loop duration, and maximum or minimum 

frequency, as potential indicators of acute (or short term) stress in bottlenose dolphins.  

Whistles recorded during a health monitoring project in Sarasota Bay, FL, were used for 

this study (Scott et al. 1990; Wells 1991, 2003; Wells et al. 2004).  This project involves brief 

capture-release events, in which dolphins are encircled by a net, and then either held in the water 

or transported onto the shaded, padded deck of a boat by stretcher.  Although there is no 

evidence that these capture-release events have any long or short term adverse impacts on 

members of the Sarasota dolphin community, it is likely that they are a source of short-term 

stress to the dolphins.  Vocalizations recorded from dolphins of different ages and levels of  

capture-release experience were used to address the following questions, which are described in 
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b. Loops always disconnected
c. Loops always connected 
d. No repetitive loop structure 
Figure 1. Example of each of four signature whistle types 
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more detail below:  Will whistle rates and number of loops will be greater (1) during capture-

release than during undisturbed focal follows; (2) at the beginning of a capture-release session 

than at the end of a session; (3) during an individual’s first capture-release session than during 

later capture-release sessions; (4) when a mother is caught and released with a dependent calf 

than without a dependent calf?  If signature whistle rates and loop number increase in stressful 

conditions, then these parameters would be higher during capture-release than during 

undisturbed focal follows, as outlined in research question (1).  However, it is also likely  

that habituation (i.e., a decrease in response over time) will occur, both during the duration of a 

capture-release session, as addressed in research question (2), and over the course of several 

capture-release sessions, as addressed in research question (3).  Since temporary separation from 

a dependent calf could be stressful to a mother, I also examined whether mothers with dependent 

calves produced more whistles, as outlined in research question (4).  In addition, I asked whether 

dolphins would produce shorter loops and inter-loop intervals in each of the contexts outlined 

above.  Maximum and minimum frequencies were measured for all whistles to determine if these 

parameters vary by context.   

              

METHODS 
 

Recordings from brief capture-release events in Sarasota Bay, FL (Scott et al. 1990; 

Wells 1991, 2003; Wells et al. 2004), have been collected over a period of 30 years (1975-2005), 

and many dolphins have been recorded multiple times (minimum = 1, maximum = 15, mean = 

3.3).  Most animals are of known age, which is determined primarily from observing multiple 

generations of dolphins over the course of the study (Wells 2003), or in some cases by 

examination of tooth growth layer groups (Hohn et al. 1989; Hohn 1990).  Recordings were 
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made with suction cup hydrophones placed directly on the head of each individual, allowing 

researchers to unequivocally identify the vocalizing dolphin.  The predominant whistle produced 

by an animal during a capture-release event is defined as its signature whistle.  The Sarasota 

Dolphin Community Signature Whistle Catalogue (Sayigh, unpublished data) currently contains 

signature whistles from 205 dolphins.  Since most dolphins in Sarasota Bay have been captured 

and released more than once, signature whistle identification for an individual has been 

confirmed by reviewing multiple recordings for a single animal.   

Dolphins in Sarasota Bay have also been recorded under undisturbed conditions.  Free-

swimming, known individuals were recorded during approximately 145 hours of focal follows 

conducted during May-August 1994 and May-July 1995 (Cook et al. 2004).  Localization of the 

source of whistles recorded in these follows was not possible.  However, Cook et al. (2004) were 

able to match whistles of identified individuals present during follows to whistles produced by 

the same individuals during capture-release events.  This dataset of identified signature whistles 

produced during follows was used in the current study.   

For each of the research questions being addressed, whistle rate was determined by 

evaluating the number of signature whistles produced per minute.  Using only signature whistles 

(i.e., no variant whistles) was essential to addressing whether whistle rate will be higher in a 

capture-release setting than in undisturbed conditions,  because Cook et al. (2004) were not able 

to associate variant (non-signature) whistles with a particular individual.  Thus variants were 

excluded from the current analysis of individual whistle rate variations between capture-release 

and undisturbed conditions.  To maintain consistency, only signature whistles were considered 

when determining whistle rate during capture-release for all four research questions.  Using only 

signature whistles also increases the potential utility of this approach, if it were to be used in the 
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future to assess stress levels of free-swimming dolphins.  In many cases, signature whistles can 

be identified from recordings of free-swimming dolphins, but non-stereotyped variant  

whistles are more difficult to attribute to particular individuals.  

 

Recording selection 

The capture-release process begins with the deployment of a net around the animal(s), 

followed by restraint and a series of health assessment and sampling procedures during which 

dolphin vocalizations were recorded.  For this study, only recordings that began no more than 25 

minutes after capture-release and 10 minutes after the animal was initially restrained were used.  

The logistics of a capture-release setting nearly always precluded the deployment of a 

hydrophone earlier than this.  The selection of recordings for analysis was limited by several 

criteria.  First, continuous recordings were prioritized.  Depending on the nature of the capture-

release event (e.g., number and behavior of animal(s) caught), recordings were often interrupted 

due to the need to move an animal or move a hydrophone to another animal, or because of an 

animal’s level of activity, which sometimes interfered with hydrophone attachment.  In addition, 

acoustic playback experiments were sometimes conducted during recording sessions.  Because 

these experiments may elicit a vocal response from the study animal, recordings containing 

acoustic playbacks were excluded.  I used only continuous (uninterrupted) recordings, and the 

recording length used varied by research question.  To evaluate changes in whistle rate during 

the course of a single capture-release, only continuous recordings of 40 minutes or longer were 

used.  This was the longest recording time consistently available that also allowed for a sufficient 

sample size.  Recordings used to address the other three research questions ranged from 20-30 

minutes.  Comparisons were made only between recordings of equal length.  For instance, a 
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whistle rate calculated from a 25 minute recording was compared to a whistle rate based on 

another 25 minute recording.   

Most recordings were prepared by digitizing the original analog reels (VHS and cassette) 

using a Sound Devices 744T digital recorder (sampling frequency 96kHz, 24-bit, Sound Devices, 

LLC, Reedsburg, WI, USA).  This process produced digital files that were then analyzed using 

Avisoft-SASLab Pro 3.2 (Raimund Specht, Berlin, Germany) sound analysis software, although 

several recordings were analyzed using Signal/RTSD software (version 3.0, Engineering Design, 

Belmont, MA, USA).  Each recording was manually reviewed, and every signature whistle was 

noted.  For each recording, whistles were then randomly selected (using a random number table 

generated in MS-EXCEL) for parameter measurements.  The number of whistles randomly 

selected was dependent on the research question being addressed (as described in more detail 

below).  There were several cases in which the number of signature whistles produced was less 

than the amount selected for sampling.  In these instances, comparisons of whistle parameters 

were based on means calculated from unequal sample sizes.  The physical parameters evaluated 

included maximum and minimum frequency, duration (loop and inter-loop when available), and 

the number of loops produced.  Time and frequency measurements were made manually using 

the cursor functions in each acoustic analysis software system.   

Sayigh (unpublished data) described four categories of signature whistles (see examples 

in Figure 1): 1. loops sometimes connected, sometimes not (perhaps affected by recording 

conditions), loops may vary in number and/or contour; 2. loops always disconnected, may vary 

in number and/or contour; 3. loops always connected, may vary in number and/or contour; 4. no 

repetitive loop structure.  To address whether the number and duration of loops would differ 

between contexts (as outlined in the research questions), recordings of dolphins that were known 
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to produce multi-looped whistles (categories 1-3) were among those selected for analysis (30 of 

34 animals).  Of the 205 dolphins represented in the Sarasota Dolphin Community Signature 

Whistle Catalogue, 150 produce multi-looped whistles.  However, loop duration was measured 

only for whistles with single loops (e.g. Figure 1d; 4 out of 30 whistles in my samples) and 

disconnected loops (e.g. Figure 1b; 20 out of 30 multilooped whistles in my sample).  For 

whistles with multiple connected loops (e.g. Figure 1c; 10 out of 30 multilooped whistles in my 

sample), loop duration was determined by dividing total whistle duration by the number of loops 

produced. 

 

Whistle rates and whistle selection 

Whistle rate calculation and whistle selection were specific to each research question, as 

described below.  Physical parameters (number of loops, loop and inter-loop duration, maximum 

and minimum frequency) were measured, and compared between contexts.  Statistical analyses 

are described in the following section.   

 

1.  Will whistle rate and number of loops be greater during capture-release than in 

undisturbed conditions? 

A total of 20 recordings (two from each of 10 dolphins, 7 male and 3 female) was 

analyzed.  For each of the ten dolphins, a focal follow recording and a first time capture-release 

session were selected.  The sample size was limited by the number of animals whose 

vocalizations were positively identified during focal follows by Cook et al. (2004).  First capture-

release sessions were used to standardize the analysis.  Whistle rates during capture-release were 

based on the first 30 minutes of an animal’s first recording session.  Whistle rates under 
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undisturbed conditions were calculated from the 30 minutes following the first identification of 

an animal’s signature whistle during a focal follow.  Twenty whistles were randomly selected 

from each recording and were subjected to the measurements outlined above.  When 20 whistles 

were not available, means were based on the number of whistles produced.  Of the 10 dolphins 

included in these analyses, four produced multiple connected loop whistles and six produced 

multiple disconnected loop whistles. 

 

2. Will whistle rates and number of loops be greater at the beginning of a capture-release 

session than at its end? 

A total of 20 recordings (one from each of 20 dolphins, 9 male and 11 female) was 

analyzed, with a minimum recording length of 40 minutes for each (range = 40 – 136 min, mean 

= 64).  Whistle rates during the first 10 minutes of a session were compared to whistle rates 

during the last 10 minutes of a session.  Ten whistles were randomly selected from each time 

period for parameter measurements.  Of the 20 dolphins included in these analyses, two 

produced single loop whistles, seven produced multiple connected loop whistles, and 11 

produced multiple disconnected loop whistles. 

 

3.  Will whistle rates and number of loops be greater during an individual’s first capture-

release session than during later capture-release sessions? 

A total of 30 recordings (three from each of ten dolphins, 5 male and 5 female) was used.  

Dolphins were included in this portion of the study if they had been recorded at least five times 

(49 of 205 dolphins in the recording library).  Recordings from the first, third and fifth capture-

release session were selected for each dolphin.  In one case (FB33), the third capture-release 
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recording was not suitable for analysis, and the fourth capture-release recording was used 

instead.  The following criteria were developed in order to standardize the analyses: recordings 

were 25-30 minutes in duration, they were not separated by more than five years, and the first 

recording was obtained when the subject was a juvenile (<8 years old).  However, in two cases, 

three recordings from each of two mature animals were analyzed (FB36 and FB38), for the 

purpose of comparison.  These two individuals were 12 and 10 years old, respectively, at the 

time of their first capture-release session.   

Whistle rates were calculated for each recording and compared among the three capture-

release sessions for each animal.  Twenty whistles were randomly selected from each recording 

and measured.  Of the 10 dolphins included in these analyses, two produced single loop whistles, 

one produced multiple connected loop whistles, and seven produced multiple disconnected loop 

whistles. 

 

4.  Will whistle rates and number of loops be greater when a mother is caught and released 

with a dependent calf than without a dependent calf? 

For each of eight individual females, two recordings were analyzed.  The two recordings 

sessions analyzed were collected when female was captured and released (1) with a dependent 

calf and (2) without a dependent calf.  Recordings ranged from 20-30 minutes in duration.  First 

time capture-release sessions were excluded from these analyses, as first time capture-releases 

may influence whistle rates (refer to second research question).  Whistle rates were calculated for 

each recording.  Twenty whistles were randomly selected from each recording for parameter 

measurements.  Of the eight dolphins included in these analyses, two produced multiple 

connected loop whistles, and six produced multiple disconnected loop whistles. 
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Statistics 

Wilcoxon signed-rank tests (JMPIN version 4.0.2) were used to determine whether 

whistle rates were higher in one context versus another (e.g. at the beginning versus at the end of 

a capture-release session).  Significant results were those with p < 0.05.  In addition, plots of 

whistle rate over the course of each recording were generated using SASLab to evaluate changes 

in whistle rate over time.  Wilcoxon signed-rank tests were also used to assess differences in 

mean parameter measurements.  Linear regressions and Spearman’s correlation coefficients were 

calculated to investigate potential relationships between whistle rate and (a) age, (b) sex, (c) the 

number of conspecifics present during a capture-release session, and (d) capture-release number.  

All of the recordings used in this study (total dolphins = 34; total recordings = 76) were included 

in these additional analyses.   

 

RESULTS 

1.  Will whistle rate and number of loops be greater during capture-release than in 

undisturbed conditions?         

 Whistle rate and number of loops were both significantly higher during capture- release 

than during focal follows (whistle rate: p = 0.001, W = -27.5, df = 9, Table 1, Figure 2; number 

of loops: p = 0.05, W = -16.5, df = 9, Table 2).  No significant differences were found for loop 

and inter-loop duration, or maximum and minimum frequency.   

 Whistle rate was not correlated with the number of conspecifics a dolphin was in 

association with across all of the recordings (capture-releases: n = 76, Spearman’s r = -0.14, p = 

0.20, Figure 3; follows: n = 10, Spearman’s r = 0.045, p = 0.90, Figure 4).   
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      Table 1. Contextual information and whistle rates for focal follow (F) and first time capture-     
      release (C) sessions for each of 10 dolphins (gender is in parentheses). 
 

FB# 
Age 
(yrs) 

ID #'s of conspecifics 
present 

Recording length 
(min) 

Whistle rate 
(wh/min) 

FB2 (M)   
F 4 34,59(mom),62,131 30 0.27 
C 1 14,59(mom),94 30 21.93 

FB6 (M)   
F 10 59 30 0.1 
C 1 51&calf,71(mom) 30 10.37 

FB7 (F)   
F 9 9,84(mom),65,90,122,c652 30 0.4 
C 1 4,15,61,84(mom),90 30 19.93 

FB9 (F)   
F 9 7,48,65,90,122,c652 30 1.1 
C 1 10,63(mom),79 30 16.43 

FB10 (M)   
F 13 Check 30 0.33 
C 4 9,63(mom),79 30 8.23 

FB20 (M)   
F 5 25,59,75,131 30 0.17 
C 2 89(escaped) 30 6.03 

FB92 (M)   
F 7 2,34,59,62 30 0.07 
C 1 84(mom) 30 16.63 

FB122 (M)   
F 3 48,90(mom) 30 0.57 
C 2 90(mom) 30 21.4 

FB131 (F)   
F 7 20,25,59(mom),75 30 0.07 
C 3 44,183 30 10.3 

FB182 (M)   
F 6 20,25,59,75,111,131 30 0.07 
C 4 Alone 30 12.13 
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Figure 2. Comparison of changes in whistle rate between first capture-release and focal 
follow recordings for each of ten dolphins. The absence of a curve or a break in the curve 
indicates a whistle rate of 0 wh/min.  (capture-release  = black, follows = red)
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            Table 2. Mean (SD) physical parameter measurements for a) multiple disconnected 
            loop and b) multiple connected loop whistles from follow (F) and first capture-release  
            recordings (C). 
 

FB# 
Freq.max. 

(Hz) 
Freq.min. 

(Hz) 

Loop 
Duration 

(sec) 

Inter-loop 
duration 

(sec) 
# of 

loops 
# of 

whistles 
FB2   

F 15380 (1607) 6000 (825) 0.54 (.35) 0.04 (0) 1.8 (.8) 9 
C 15849 (438) 6543 (851) 0.34 (.06) 0.08 (.03) 1.9 (.6) 20 

FB6   
F 17386 (463) 7757 (458) 0.24 (.03) 0.16 (.02) 2.3 (.6) 3 
C 17359 (779) 7094 (1175) 0.28 (.05) 0.17 (.03) 3.4 (.9) 20 

FB7   
F 11429 (568) 4748 (316) 0.27 (.05) 0.13 (.02) 1.9 (.4) 11 
C 14826 (1650) 4580 (671) 0.24 (.02) 0.13 (.02) 3.4 (.9) 20 

FB9   
F 12261 (1122) 6605 (361) 0.35 (.09) 0.12 (.12) 3.1 (.4) 20 
C 14512 (1520) 7381 (566) 0.48 (.07) 0.14 (.03) 2.1 (.3) 20 

FB10   
F 13893 (1566) 5487 (680) 0.25 (.05) 0.15 (.02) 1.5 (.7) 10 
C 13403 (529) 4269 (613) 0.34 (.05) 0.15 (.02) 3.4 (.7) 20 

FB92   
F 7560 (134) 4780 (606) 0.31 (.04) 0.083 (.01) 2.5 (.7) 2 
C 7364 (219) 4343 (516) 0.29 (.04) 0.08 (.02) 2.9 (.6) 20 

 
            a. Multiple disconnected loop whistles 
 

FB# 
Freq.max. 

(Hz) 
Freq.min. 

 (Hz) 

 Loop 
Duration  

(sec) 

Inter-loop 
duration  

(sec) 
# of  

loops 
# of  

whistles 
FB20   

F 17260 (4281) 5240 (329) 0.31 (.19)   3.2 (2.2) 5 
C 11595 (1404) 5898 (488) 0.61 (.17)   2.3 (1.4) 20 

FB122   
F 14876 (773) 6847 (565) 0.44 (.07)   2.5 (1.2) 17 
C 14155 (344) 4535 (999) 0.38 (.04)   2.4 (.5) 20 

FB131   
F 15500 (0) 5300 (0) 0.420   1 (0) 2 
C 13910 (550) 4775 (308) 0.66 (.90)   2.7 (.5) 20 

FB182   
F 14800 (283) 5800 (283) 0.329   2 (0) 2 
C 16115 (1406) 4665 (644) 0.47 (.04)   3.8 (1.3) 20 

 
           b. Multiple connected loop whistles 
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 Figure 3. Number of conspecifics present versus whistle rate for all capture-release recordings (n = 76; Spearman’s           

r = -0.14, p = 0.20).  
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Number of conspecifics present vs. whistle rate for focal follows
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Figure 4. Number of conspecifics present versus whistle rate for all follow recordings (n = 10; Spearman’s r = 0.045,        
p = 0.90). 
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2. Will whistle rates and number of loops be greater at the beginning of a capture-release 

session than at the end? 

 In multi-looped whistles, the number of loops produced in the first 10 minutes was 

significantly higher than in the last 10 minutes of a capture-release session (p = 0.04, W = -37.0, 

df = 19; Table 3).  When all whistles were considered (multiple connected and disconnected 

loop, and single loop whistles), loop duration was significantly shorter during the first 10 

minutes of a session than during the last 10 minutes of a session (p = 0.01, W = -0.54, df = 19).  

Whistle rate tended to decrease from the first 10 minutes to the last 10 minutes of a capture-

release session, although this difference was also not significant (p = 0.06, W = -40.5, df = 19; 

Table 4, Figure 5).  In addition, inter-loop interval showed a non-significant tendency to decrease 

from the first to the last 10 minutes (p = 0.08, W = -11.0, df = 10; Table 3).  No significant 

differences in maximum frequency or minimum frequency were noted.  

 

3.  Will whistle rates and number of loops be greater during an individual’s first capture-

release session than during later capture-release sessions? 

 Whistle rate was significantly higher during an individual’s first capture-release  

session than its third session (p = 0.03, W = -18.5, df = 9; Table 5, Figure 6), and 

continued to decrease from the third to the fifth capture-release, although this decrease was not 

significant (p = 0.06, W = -13.5, df = 9; Table 5).  The most significant decrease was from the 

first to the fifth capture-release (p = 0.01, W = -20.5, df = 9; Table 5).  When separated by age 

class, whistle rate appeared to be much higher in young dolphins at the time of their first capture-

release.  The mean whistle rate for the younger animals during first capture-release was 16.7 

wh/min compared to 2.0 wh/min for the older animals (2-tailed t-test, p < 0.0006).  When just the  
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          Table 3.  Mean (SD) physical parameter measurements for a) multiple disconnected  
          loop and b) multiple connected loop and single loop whistles from the first and last 10       
          minutes of a single capture-release session. 
 

FB# 
Freq.max. 

(Hz) 
Freq.min. 

 (Hz) 

Loop 
Duration 

(sec) 

Inter-loop  
duration 

(sec) 
# of  

loops 
# of  

whistles 
FB11   
First 20277 (1129) 6369 (1155) 0.32 (.04) 0.12 (.03) 3.5 (1.9) 10 
Last 20939 (287) 7235 (468) 0.33 (.03) 0.15 (.01) 2.3 (.5) 10 

FB15   
First 15687 (2383) 4517 (359) 0.32 (.06) 0.24 (.09) 2.3 (.7) 10 
Last 14300 (457) 5175 (783) 0.30 (.04) 0.21 (.03) 1.2 (.4) 10 

FB25   
First 21487 (4409) 7215 (208) 0.51 (.07) 0.07 (.02) 1.8 (.4) 10 
Last 19548 (1859) 7416 (183) 0.57 (.09) 0.06 (.02) 2 (0) 10 

FB48   
First 14186 (1487) 5209 (954) 0.19 (.07) 0.05 (.01) 3.7 (1.3) 10 
Last 13376 (393) 6226 (926) 0.21 (.06) 0.05 (.01) 3.8 (.4) 10 

FB54   
First 21274 (2765) 6241 (291) 0.41 (.06) 0.08 (.02) 3.3 (1.4) 10 
Last 21083 (2806) 5949 (440) 0.39 (.07) 0.06 (.02) 2.1 (.6) 10 

FB55   
First 12986 (2426) 4118 (1039) 0.38 (.05) 0.16 (.01) 2.2 (.6) 10 
Last 15528 (1632) 3652 (572) 0.44 (.06) 0.16 (.01) 2.5 (.5) 10 

FB71   
First 21052 (3197) 6403 (246) 0.24 (.02) 0.22 (.02) 3.1 (.3) 10 
Last 21103 (2902) 6270 (351) 0.25 (.02) 0.23 (.01) 3 (0) 10 

FB84   
First 17862 (361) 6756 (632) 0.34 (.09) 0.12 (.02) 3 (0) 3 
Last 17469 (2121) 7469 (761) 0.33 (.06) 0.09 (.02) 2.3 (.9) 7 

FB92   
First 7286 (239) 4359 (586) 0.28 (.05) 0.09 (.02) 2.9 (.6) 10 
Last 7573 (229) 4192 (306) 0.31 (.03) 0.09 (.01) 2.6 (.7) 10 

FB101   
First 14605 (4244) 4254 (902) 0.27 (.06) 0.22 (.07) 2.1 (.7) 10 
Last 20520 (3632) 4027 (620) 0.36 (.07) 0.19 (.02) 2.6 (.8) 10 

FB166   
First 11847 (252) 3809 (920) 0.49 (.06) 0.12 (.15) 3 (.7) 10 
Last 11589 (389) 3639 (859) 0.47 (.07) 0.07 (.01) 2.2 (.8) 10 

 
          a. Multiple disconnected loop whistles 
 
 
 
 
 

 24



           Table 3 cont. 
 

FB# 
Freq.max. 

(Hz) 
Freq.min. 

 (Hz) 

Loop 
Duration 

(sec) 

Inter-loop 
 duration 

(sec) 
# of  

loops 
# of  

whistles 
FB3   
First 26060 (1826) 13441 (304) 0.44 (.03)   5.0 (1.7) 10 
Last 27843 (987) 13443 (601) 0.45 (.02)   5.0 (1.1) 10 

FB24   
First 13929 (645) 5511 (1167) 0.94 (.13)   1 (0) 10 
Last 13388 (982) 4900 (197) 0.93 (.11)   1 (0) 10 

FB35   
First 14645 (1596) 5459 (675) 0.87 (.23)   1 (0) 10 
Last 15487 (2302) 5396 (284) 0.98 (.21)   1 (0) 10 

FB38   
First 15084 (1288) 5422 (263) 0.24 (.02)   3.0 (.8) 10 
Last 14683 (495) 5214 (245) 0.28 (.10)   2.2 (.6) 10 

FB 67   
First 21936 (1816) 5032 (191) 0.53 (.02)   4.0 (.7) 10 
Last 22601 (2497) 5169 (411) 0.58 (.07)   3.1 (.8) 10 

FB118   
First 17192 (986) 7078 (489) 0.47 (.07)   1.9 (.8) 10 
Last 17907 (1544) 6375 (642) 0.42 (.03)   2.8 (1.0) 10 

FB122   
First 13970 (353) 4210 (393) 0.38 (.04)   2.6 (.5) 10 
Last 14590 (233) 4650 (1276) 0.43 (.09)   1.9 (.3) 10 

FB140   
First 18560 (1829) 4003 (531) 0.37 (.08)   4.9 (1.5) 10 
Last 18686 (440) 4179 (586) 0.37 (.02)   4.9 (1.9) 10 

FB186   
First 18194 (2158) 5001 (448) 0.48 (.11)   1.4 (.5) 10 
Last 20072 (1735) 4695 (575) 0.55 (.08)   1.5 (.5) 10 

 
           b. Multiple connected loop whistles and single loop whistles 
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       Table 4. Contextual information and whistle rates for a single capture-release recording for     
       each of 20 dolphins.  Whistle rates were calculated for the first 10 minutes and the  
       last 10 minutes of each recording. 
 

FB# Gender 
Age 
(yrs) 

Capture-
release # 

ID #'s of 
 conspecifics 

 present 
Recording  

length (min) 

Whistle rate  
(wh/min) 
(first/last) 

3 F 5 3 alone 50 9.3/8.2 
11 F 2.5 3 19,25,54 40 13/17.2 
15 F 41 5 23 65 9.2/1.6 
24 M 2 1 35 41 1.9/6.4 
25 F 11 7 50,90,97 42 13.2/7 
35 F 33 3 13&calf,93 60 5.4/5.8 
38 M 20 8 17 71 2.6/4.3 
48 M 29 3 26 125 3.5/1.1 
54 F 24 9 118 84 1.8/6.5 
55 F 16 12 218 48 4.1/3.7 
67 F 21 4 65 40 11.5/5.9 
71 F 29 8 33 50 18.2/3.3 
84 F 32 6 50,90,92 68 0.8/1.7 
92 M 1 1 84 40 15.8/15.6 

101 F 10 3 196 77 12.5/2.7 
118 M 2 1 54 136 11.8/4.2 
122 M 2 1 90 103 17.6/20.5 
140 M 7 1 alone 40 15.5/4.7 
166 M 4 1 101,115,163 42 9/5.7 
186 M 3 1 117,118,157 61 13.3/14.7 
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Figure 5. Changes in whistle rate during a single capture-release session 
for each of 20 dolphins.
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                 Table 5. Contextual information and whistle rates from three recording sessions  
                 for each of 10 dolphins (gender is in parentheses). 
 

FB# 
Age  
(yrs) 

ID #'s of  
conspecifics present 

Recording  
length (min) 

Whistle rate  
(wh/min) 

FB6 (M)   
1st 1 51,71(mom),&others 30 10.37 
3rd 3 71 30 8.8 
5th 5 alone 30 1.93 

FB7 (F)   
1st 1 4,13,15,61,84(mom),90 30 19.9 
3rd 3 62,84(mom),94 30 12.93 
5th 5 9 30 2.93 

FB9 (F)   
1st 1 10,63(mom),79 25 16.72 
3rd 3 5,55,79 25 8.36 
5th 5 7 25 8.36 

FB11 (F)   
1st 1 alone (in gill net) 30 10.07 
3rd 2.5 19(mom),25,54 30 16.13 
5th 3 19,51 30 14.93 

FB32 (M)   
1st 4 5(mom),27,36,94 25 1.56 
3rd 6.5 27,33,51 25 0 
5th 7.5 alone 25 0 

FB33 (F)   
1st 2 51(mom),84&calf 25 23.84 
4th 5 44 25 6.36 
5th 5.5 alone 25 6.08 

FB36 (M)   
1st 12 38 25 0 
3rd 14.5 38,62,66,77 25 0.04 
5th 16 5,38,55 25 1.68 

FB38 (M)   
1st 10 36 25 1.08 
3rd 12.5 alone 25 0.56 
5th 14 no notes 25 0 

FB79 (F)   
1st 6 9,10,63 25 23.2 
3rd 8 37,52 25 13.72 
5th 9.5 14,61,67,76 25 5.4 

FB118 (M)   
1st 2 54(mom) 25 18.84 
3rd 7 57,186,117 25 0.04 
5th 11 79 25 0.04 
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Figure 6. Comparison of changes in whistle rate among three capture-release
recordings for each of nine dolphins.  A figure was not produced for FB32, 
who had a whistle rate of zero for more than one capture-release recording. 
The absence of a curve or a break in the curve indicates a whistle rate of 
0 wh/min (first = black, *third = red, fifth = green).
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 31

six younger animals were considered, whistle rate decreased significantly from the third to fifth 

capture-release (p = 0.04, W = -8.5, df = 5) and from the first to the fifth capture-release (p = 

0.03, W = -9.5, df = 5), and whistle rates did not differ significantly between the sexes (2-tailed 

t-test, p = 0.70).  There were no significant differences in whistle rate among any of the capture-

release sessions for the four older animals (3 males and 1 female).  However, whistle rates for 

the older males were very low in all capture-release sessions.  The single older female’s first 

capture-release whistle rate was more than six times the mean first capture-release whistle rate 

for the three males in the older class (23.2 wh/min vs. a mean of 0.88 wh/min).  The female’s 

whistle rate decreased substantially in subsequent capture-releases (first = 23.2 wh/min, third = 

13.72 wh/min, fifth = 5.4 wh/min).  Whistle rate was negatively correlated with age across all 

capture-release recordings used for this study (Spearman’s r = -0.59, p < 0.0001; Figure 7).  In 

addition, capture-release number was positively correlated with age (Spearman’s r = 0.71, p < 

0.0001; Figure 8), and negatively correlated with whistle rate (Spearman’s r = -0.46, p < 0.0001; 

Figure 9). Whistle rate declined in males and females with increasing capture-release frequency 

(Spearman’s r = -0.63, p = 0.0003 (males), r = -0.60, p < 0.0001 (females); Figure 10).   

However, whistle rate appeared to decline more quickly with age in males (Spearman’s   r = -

0.74, p < 0.0001 (males), r = -0.65, p < 0.0001 (females); Figure 11).  No significant differences 

in loop number, maximum and minimum frequency, or loop and inter-loop duration across 

capture-release sessions were detected.  There were non-significant trends for minimum 

frequency to decrease from the first to the fifth capture-release (p = 0.07,  W = -9.0, df = 6; Table 

6) and for inter-loop interval to decrease from the first to the third capture-release (p = 0.06, W = 

-6.5, df = 4; Table 6).   



 
Age vs. whistle rate
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Figure 7. Age versus whistle rate for all dolphins (n = 34) across all capture-release recordings (n = 76; Spearman’s         
r = -0.59, p < 0.0001). 
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 Capture-release number vs. age
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Figure 8. Capture-release number versus age for all dolphins (n = 34) across all capture-release recordings (n = 76;  
Spearman’s r = 0.71, p < 0.0001). 
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Capture-release number vs. whistle rate
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Figure 9. Capture-release number versus whistle rate for all dolphins (n = 34) across all capture-release recordings (n = 76; 
Spearman’s r = -0.46, p < 0.0001). 
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Capture-release number vs. whistle rate by sex
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Figure 10. Capture-release number versus whistle rate for all capture-release recordings of males (n = 31; Spearman’s    
r = -0.63, p = 0.0003) and females (n = 45; Spearman’s r = -0.60, p < 0.0001).  
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Age vs. whistle rate by sex
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Figure 11. Age versus whistle rate for all capture-release recordings of males (n = 31; Spearman’s, r = -0.74, p < 0.0001)  
and females (n = 45; Spearman’s, r = -0.65, p < 0.0001). 
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  Table 6. Mean (SD) physical parameter measurements for a) multiple disconnected  
  loop and b) multiple connected loop and single loop whistles from multiple capture-     
  release sessions. 

 

FB# 
Freq.max. 

(Hz) 
Freq.min.  

(Hz) 

Loop 
Duration  

(sec) 

Inter-loop  
duration 

(sec) 
# of  

loops 
# of  

whistles 
FB6   

1st 17359 (779) 7094 (1175) 0.28 (.05) 0.17 (.03) 3.4 (.9) 20 
3rd 18509 (1511) 6451 (682) 0.32 (.04) 0.13 (.02) 2.4 (.5) 20 
5th 18813 (2666) 6585 (682) 0.34 (.06) 0.09 (.03) 3.4 (1.6) 20 

FB7  
1st 14826 (1650) 4580 (671) 0.24 (.02) 0.13 (.02) 3.4 (.9) 20 
3rd 12582 (1115) 4012 (495) 0.22 (.02) 0.11 (.01) 2.9 (.9) 20 
5th 12703 (673) 4897 (836) 0.26 (.05) 0.12 (.01) 3.3 (.6) 20 

FB9  
1st 14512 (1520) 7381 (566) 0.48 (.07) 0.14 (.03) 2.1 (.31) 20 
3rd 13688 (1029) 7448 (231) 0.48 (.04) 0.12 (.01) 2 (0) 20 
5th 13398 (702) 7242 (326) 0.41 (.07) 0.12 (.02) 2.2 (.5) 20 

FB11  
1st 17827 (1083) 7431 (499) 0.30 (.04) 0.34 (.19) 3.1 (1.3) 20 
3rd 20363 (979) 6493 (963) 0.33 (.03) 0.12 (.03) 3.4 (1.5) 20 
5th 18678 (986) 6303 (533) 0.37 (.04) 0.18 (.05) 3.2 (.8) 20 

FB33  
1rt 17932 (672) 6755 (1023) 0.29 (.03) 0.15 (.02) 3.3 (1.4) 20 
4th 16538 (910) 6259 (1169) 0.28 (.02) 0.16 (.02) 4 (.9) 20 
5th 16326 (892) 6582 (1237) 0.29 (.03) 0.17 (.02) 3.1 (.6) 20 

FB36  
1st      0 
3rd 17050 3350 0.41 0.06 2.0 1 
5th 17338 (1116) 3397 (419) 0.33 (.06) 0.03 (.01) 2.1 (.5) 20 

FB38  
1st 15100 (719) 5367 (529) 0.27 (.04) 0.11 (.02) 2.1 (1.0) 20 
3rd      0 
5th 15255 (852) 5397 (649) 0.18 (.02) 0.14 (.03) 2.4 (.5) 14 

 
  a. Multiple disconnected loop whistles 
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      Table 6, cont. 
 

FB# 
Freq.max. 

(Hz) 
Freq.min.  

(Hz) 

Loop 
Duration 

(sec) 

Inter-loop 
duration 

(sec) 
# of  

loops 
# of  

whistles 
FB32   

1st 16640 (791) 5080 (2000) 0.75 (.21)   1 (0) 20 
3rd           0 
5th           0 

FB79   
1st 17375 (498) 3025 (434) 0.63 (.05)   1 (0) 20 
3rd 17470 (807) 3605 (584) 0.64 (.09)   1 (0) 20 
5th 15150 (2594) 2695 (397) 0.74 (.15)   1 (0) 20 

FB118   
1st 16900 (804) 7216 (571) 0.53 (.14)   1.5 (.6) 6 
3rd 16600 7400 0.34   1 1 
5th 16800 7300 0.70   1 1 

 
      b. Multiple connected loop whistles and single loop whistles 
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4.  Will whistle rates and number of loops will be greater when a mother is caught 

and released with a dependent calf than without a dependent calf? 

 Females captured and released with a dependent calf produced whistles with 

significantly higher maximum frequencies (p = 0.01, W = -16.0, df = 7; Table 7) and 

shorter inter-loop intervals (p = 0.01, W = -10.50, df = 5; Table 7) than the same females 

caught and released without calves.  No significant differences in whistle rate (Table 8, 

Figure 12), loop number or duration, or minimum frequency were detected.  

 

DISCUSSION 

 Whistle rate and loop number emerged from this study as the most promising 

potential vocal indicators of short-term stress in bottlenose dolphins.  Dolphins produced 

a significantly higher number of loops during capture-release than during focal follows, 

and in the first 10 minutes than in the last 10 minutes of their first capture-release session.  

These findings suggest that multi-looped signature whistles may contain information 

about the signaler’s motivational state, as is the case with social signals of other species 

(reviewed in Weary and Fraser 1995; Watts and Stooky 2001).  There are several 

possible explanations for the changes in loop number observed in this study.  First, if the 

stress of the capture-release context contributes to the production of more loops, as is 

indicated by the difference observed between capture-release and focal follow recordings, 

then habituation to the capture-release context may have caused the decrease in loop 

number over the course of a single session.  However, increased loop number in the 

capture-release context may reflect an increased motivation to communicate rather than 

an increased stress level.  Decreases in loop number over the course of a capture-
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            Table 7. Mean (SD) physical parameter measurements for a) multiple disconnected  
            loop and b) multiple connected loop whistles from capture-releases with and without  
            a dependent calf. 
 

FB# 
Freq.max. 

(Hz) 
Freq.min. 

(Hz) 

Loop 
Duration 

(sec) 

Inter-loop  
duration 

(sec) 
# of  

loops 
# of  

whistles 
FB11   
w/calf 20737 (1867) 5672 (736) 0.41 (.05) 0.10 (.01) 3 (.5) 20 
w/out 18678 (986) 6303 (533) 0.37 (.04) 0.18 (.05) 3.2 (.8) 20 
FB51   
w/calf 15142 (1741) 6505 (619) 0.27 (.13) 0.11 (.03) 3.3 (.6) 20 
w/out 14997 (2624) 5940 (536) 0.28 (.12) 0.17 (.07) 4.6 (.7) 20 
FB54   
w/calf 21479 (2754) 6270 (331) 0.40 (.05) 0.08 (.02) 3.2 (1.3) 20 
w/out 17546 (974) 6917 (530) 0.40 (.04) 0.12 (.02) 2.1 (.4) 20 
FB55   
w/calf 13834 ( 2560) 3993 (822) 0.39 (.05) 0.16 (.01) 2.2 (.6) 20 
w/out 1458 (703) 4382 (655) 0.39 (.02) 0.19 (.02) 1.9 (.3) 20 
FB71   
w/calf 22424 (3805) 6544 (463) 0.22 (.02) 0.18 (.04) 3.6 (1) 20 
w/out 20358 (2933) 6408 (256) 0.24 (.02) 0.22 (.02) 3.1 (.3) 20 
FB84   
w/calf 18791 (1343) 6912 (498) 0.35 (.08) 0.10 (.02) 3.2 (.6) 15 
w/out 17908 (3795) 4819 (963) 0.39 (.11) 0.11 (.03) 2.5 (1.2) 15 

 
           a. Multiple disconnected loop whistles 
 
 

FB# 
Freq.max. 

(Hz) 
Freq.min. 

(Hz) 

Loop 
Duration  

(sec) 

Inter-loop  
duration 

(sec) 
# of  

loops 
# of  

whistles 
FB 67   
w/calf 23021 (2040) 4988 (190) 0.62 (.04)   3.3 (.8) 20 
w/out 18630 (963) 4930 (198) 0.63 (.07)   3.1 (.8) 20 

FB 163   
w/calf 26130 (1908) 3765 (290) 0.53 (.07)   3 (1) 20 
w/out 20625 (2123) 4600 (294) 0.78 (.05)   1 (0) 4 

 
           b. Multiple connected loop whistles 
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          Table 8. Contextual information and whistle rates for recordings of eight                   
            females caught and released with and without a dependent calf 
 

FB# 
Age 
(yrs)  

Capture-
release # 

ID #’s of 
Conspecifics 

present 
Recording 

length (min) 
Whistle rate 

(wh/min) 
FB11   

with calf 14 13 19,51 30 6.07 
w/out calf 3 5 146 30 14.93 

FB51   
with calf 46 4 27,32,33 20 5.6 

w/out calf 47 7 alone 20 8.5 
FB54   

with calf 24 9 118 30 1.27 
w/out calf 17 6 alone 30 1.83 

FB55   
with calf 16 12 218 30 4.6 

w/out calf 7.5 11 29,71 30 4.3 
FB67   

with calf 21 4 65 28 7.5 
w/out calf 20 3 14,66,79 28 6.96 

FB71   
with calf 28 7 95 30 9.7 

w/out calf 29 8 33 30 7.03 
FB84   

with calf 32 6 50,90,92 30 0.5 
w/out calf 43 7 5,33 30 1.13 

FB163   
with calf 20 2 168 27 6.26 

w/out calf 21 3 14,94 27 0.52 
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Figure 12. Comparison of changes in whistle rate between recordings of females 
caught and released with and without a dependent calf.  The absence of a curve or a break
in the curve indicates a whistle rate of 0 wh/min (without calf = black, with calf = red).
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release session may be a result of fatigue, rather than habituation.  Loop duration was also 

significantly shorter, or compressed, during the first 10 minutes of a session.  Weary and Fraser 

(1995) determined that quantifiable differences existed in rate, intensity and duration of piglet 

calls, and that these differences reflected various degrees of need.  In domestic animals, 

researchers have proposed that vocal responses to forced isolation could be due to a distress 

reaction that is context specific, an attempt to communicate with conspecifics, or both (Watts and 

Stooky 2000).  It is not known whether variation in loop number and duration result from the 

potential stress of isolation or other aspects of the capture-release context, if they in some way 

enhance communication with conspecifics, or if they may serve both or alternative functions.  

Variation of loop number and duration might allow dolphins to communicate additional 

information, such as motivational state, while also conveying identity.  The results from this 

study suggest that loop number, in particular, would be a useful parameter on which to focus 

future studies of the effects of stress on bottlenose dolphin vocalizations.  

 Signature whistle rate was also significantly lower during follows than during capture-

releases.  This finding was expected to some degree, based on prior work by Cook et al. (2004), 

who found that signature whistles comprised 50% of the vocal repertoire of free-ranging 

bottlenose dolphins, as opposed to 90% of the vocal repertoire of temporarily restrained 

bottlenose dolphins (as described by Caldwell et al. 1990).  However, the differences in signature 

whistle rate found in this study ranged from one to two orders of magnitude, with mean whistle 

rates of 0.3 and 14.3 whistles per minute during follows and capture-releases respectively.  

Signature whistle imitation, or mimicry, has been observed in bottlenose dolphins (Tyack 1986; 

Janik 2000).  It is possible that some of the signature whistles identified in focal follow 

recordings were imitations produced by a dolphin other than the individual with whom the 
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signature whistle is associated (based on the Sarasota Dolphin Community Signature Whistle 

Catalogue).  If mimicry occurred in the focal follow recordings, then the actual rate of signature 

whistle production by an individual would be lower than the rate reported in the current study 

(Cook et al. 2004).  Therefore, the difference between signature whistle rates in first time 

capture-release versus focal follow recordings would be even greater than that reported here. 

 Stress may have contributed to the higher whistle rates observed in the capture-release vs. 

focal follow contexts.  Several additional or alternative factors may also have influenced this 

difference.  First, whistle rates during focal follows were compared to first-time capture-release 

recordings for the same animals, which is the context in which the highest whistle rates occurred.  

Another factor may have been the ages of the animals.  The two oldest animals in the sample 

were only four years old in their capture-release recording, and the remaining eight animals were 

between one and three years old.  In contrast, ages of the animals during focal follows ranged 

from 3-13 years.  Dolphins that were two years old or less when first capture-released whistled at 

significantly higher rates than dolphins that were four years or older at the time of first capture-

release.  Still another possible factor affecting differences in whistle rate between contexts was 

that seven of the ten animals were still dependent calves when capture-released, but only one 

(FB122) was still dependent on his mother during follows.  Since whistles are commonly used to 

maintain contact between mothers and calves (Sayigh et al. 1990), whistle rates may be higher in 

dependent than independent calves.  These factors are discussed in greater detail in the following 

paragraphs. 

The findings of this project indicate that while significant patterns in whistle parameters 

relative to a dolphin’s involvement in capture-release operations can be detected, there is no 

indication of any long-term adverse impact.  In fact, findings suggest that habituation occurs 
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within a capture-release session, and from one session to the next. These data are in accordance 

with data on multi-generational residency and social structure stability (Wells 2003) along with 

increases in the numbers of dolphins regularly using Sarasota Bay (pers. comm. R.S. Wells) that 

suggest that the Sarasota dolphin community is not experiencing any adverse long-term impacts 

from the capture-release program. Bottlenose dolphins are capable of both associative (classical 

and operant conditioning) and non-associative (habituation and sensitization) learning (Herman 

1968; Herman and Arbeit 1971; Herman et al. 2001).   Behavioral habituation is defined as 

learning to disregard stimuli that are without significance and is considered one of the simplest 

forms of non-associative learning (Cerbone and Sadile 1994).  However, there is conflicting 

evidence regarding whether dolphins experience habituation to capture-release (Curry 1999; St. 

Aubin et al. 1996; Thomson and Geraci 1986).  Thomson and Geraci (1986) determined that 

dolphins that had been handled in captivity for many years continued to produce a physiological 

stress response, even when capture-released under calm conditions.  St. Aubin et al. (1996) 

suggested that the lower levels of cortisol measured in semi-domesticated dolphins may be a 

result of behavioral conditioning to medical husbandry procedures, while higher levels of 

cortisol in wild dolphins may be a result of the stress of the capture-release process.  In the 

Eastern Tropical Pacific, where spinner and spotted dolphins are routinely capture-released in the 

tuna purse-seine fishery, dolphins appear to anticipate the backdown process (the sinking of the 

cork-line to release dolphins from the net) and subsequent release (Norris et al. 1978; Curry 

1999).  Dolphins were observed remaining stationary near the release area of the net prior to 

backdown (Santurtun and Galindo 2002).  Once the net was lowered for release, the dolphins 

quickly moved out of the net.  This shift from apparent passivity to high-energy movement might 

indicate that the dolphins were familiar with the chronology of capture-release, and therefore 
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avoided attempting to escape until backdown was initiated.  Thus, this response is more likely a 

result of associative learning than habituation.  Among bottlenose dolphins that are infrequently 

capture-released as part of a capture-release health assessment program conducted in Sarasota 

Bay, FL, inexperienced animals appear much more likely to attempt to escape from the net than 

those experienced with the capture-release process, and more often become entangled as a result 

(pers. comm. R. S. Wells).  Experienced dolphins tend to remain in the middle of the net 

compass and often are more easily restrained.  It thus appears likely that dolphins recall prior 

capture-release experiences, and that this may influence their behavior in subsequent capture-

releases.  However, young dolphins whistled at higher rates than older dolphins across all 

capture-release recordings; thus the decrease in whistle rate between capture-releases could be a 

result of maturation rather than capture-release experience.  Since age and capture-release 

experience are significantly related to each other, it is difficult to tease apart the relative 

influence of these factors.  A related factor that could affect whistle rates is dependency on the 

mother.  Of the six animals in the present study that were two years old or less at the time of first 

capture-release, five were dependent calves and one was no longer a dependent calf.  In many 

species, including bottlenose dolphins, young animals respond to isolation from their mother by 

vocalizing (e.g., piglets: Fraser 1975; Weary and Fraser 1995; guinea pigs: Monticelli et al. 

2004; several rodent species: Okon 1971; cattle: Marchant-Forde et al. 2002; bottlenose 

dolphins: Sayigh et al. 1990).   

A final factor potentially influencing changes in whistle rate between capture-releases is 

gender.  Of  the four older animals (>4 years old) included in the longitudinal data set, the 

female’s first capture-release whistle rate was over six times higher than the mean first capture-

release whistle rate for all three males.  Females appeared to maintain higher signature whistle 
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rates than males across age class and capture-release events, which may be related to their social 

structure.  In Sarasota Bay, as bottlenose dolphins are weaned and reach independence, they 

leave their natal group and associate with other juveniles.  Once sexual maturity is reached, 

females often interact with other females, including those from their natal group, while males 

usually travel alone, in pairs, or in very small groups (Scott et al. 1990).  Females, therefore, 

often engage in more social interactions than males.  If signature whistles function as contact 

calls, and in maintaining group cohesion, one would expect higher signature whistle production 

in females than in males.  However, a larger sample size is needed to determine whether 

decreases in whistle rate across multiple capture-releases occur differentially in males and 

females and among age classes.  Such sex and age differences are important to understand before  

whistle rates can potentially be used as indicators of stress. 

Females caught and released with a dependent calf produced whistles with significantly 

higher maximum frequencies and significantly shorter inter-loop intervals than those without 

dependent calves.  Higher frequency vocalizations are often produced in stressful situations.  

Pigs produce higher frequency vocalizations in response to separation, handling, and pain 

(Weary et al. 1997).  When isolated, guinea pig pups (Monticelli et al. 2004) and squirrel 

monkey infants (Wiener et al. 1990) also produce calls with higher mean frequencies.  Thus, the 

higher maximum frequencies observed in females separated from their dependent calves could 

be related to the stressful nature of this situation.  It is unlikely that the frequency difference is a 

product of maturation, since the mean age of females caught with a dependent calf (25 years) 

was similar to that of females caught without a dependent calf (23 years).  Of the 20 recordings 

analyzed for this research question, 18 were made when the female was mature.  It is also 

unlikely that differences in maximum frequency are due to different amounts of prior capture-
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release experience, since females in both groups had similar amounts of experience (mean 

capture-release number: with a dependent calf = 7.1, without a dependent calf = 6.3).  A possible 

factor contributing to the observed difference in maximum frequency could be that higher 

frequency sounds are easier to localize (Heffner and Heffner 1992), and thus may aid in the 

reunion of females and their calves when they are separated in the wild.  Higher frequency 

sounds attenuate more quickly in a marine environment, but may serve to broadcast location 

more effectively over short distances.  Further research is needed into the abilities of dolphins to 

localize sounds of varying frequencies in a variety of environmental conditions in order to test 

this idea. 

 Surprisingly, the shorter inter-loop intervals produced by females with dependent calves 

did not coincide with higher loop number.  Shorter inter-loop intervals result in faster repetitions 

of loops.  These faster repetitions may combine with higher maximum frequency to convey an 

alternative type of information than that conveyed by whistle rate or loop number.  Female 

dolphins showed no significant difference in whistle rate or number of loops when with or 

without a dependent calf.  Many of the females had extensive prior experience with capture-

release, possibly resulting in reduced whistle rates independent of calf presence or absence.  Of 

the 16 recording sessions analyzed, 11 were at least the fifth capture-release for that individual.  

For those dolphins that had been capture-released less than five times (n = 3), the two recordings 

used were not separated by more than one year in order to control for other factors that might 

influence whistle rate between recordings, such as maturation and habituation.  However, 14 of 

the 16 recordings were obtained when the subject was at least 14 years old, beyond the age at 

which female bottlenose dolphins are fully mature (Wells and Scott 1999).  Thus, the combined 
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effects of age and capture-release experience may have influenced the lower whistle rates in 

these mature females.  

 Whistle rate during the course of a single capture-release was highly variable.   

This variability may be related to the various activities in which the dolphin was engaged.  These 

activities included movement of the animal (e.g. from water to boat), relocation closer to a 

conspecific, or a variety of sampling protocols.  Anecdotal reports indicate that whistle rate often 

appears to decrease while the animal is on the boat (pers. comm. Laela Sayigh).  On occasion, 

blubber biopsy samples are obtained for environmental contaminant analyses (Wells et al. 2005), 

or, more rarely, a tooth may be extracted for age determination (Hohn et al. 1989).  Dolphins 

receive local anesthesia before either of these procedures are performed.  White et al. (1995) 

measured the effect of local anesthetic on piglets’ vocal responses to castration, and found that 

call rate was lower in anesthetized piglets.  However, field notes accompanying acoustic 

recordings do not consistently report the activity in which dolphins were engaged during 

recordings, so it is difficult to correlate whistle rate with any specific sampling activity. 

           Inter-individual variability in vocal responses can also be affected by a variety of factors, 

including social rank and temperament.  Subordinate pigs are far more stressed than dominant 

pigs as a result of transport (McGlone et al. 1993).  Rank could be a factor influencing the higher 

whistle rates seen in young animals in this study, although it is not known if age is related to 

social rank in free-ranging dolphins.  Temperament in cattle is a heritable trait that seems to 

impact vocal response to handling and isolation (Watts and Stooky 2001).  Specifically, the 

authors found that cattle phenotype influenced an animal’s proclivity to vocalize.  In addition, 

Watts et al. (2001) determined that both genetic and age factors influenced the vocal rate of 

isolated bulls.  Watts and Stooky (2001) found that an animal that vocalized during one trial was 
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more likely to vocalize in a second trial of the same experiment.  Thus, individual variation can 

occur in vocal responses even if all individuals are exposed to the same treatment (Watts and 

Stooky 2001).  Similar factors could contribute to the variability in whistle rates among 

bottlenose dolphins.  Sayigh (1992) found a great deal of individual variability in whistle 

responses to playback experiments, and observed that some individuals tended to be more or less 

vocal than others, regardless of context.  In particular, FB84 (dolphin #16 in Sayigh 1992) 

showed low whistle rates during playbacks experiments carried out from 1989-1991.  In the 

current study, FB84 also had whistle rates that were substantially lower than those of most other 

females (including ones of comparable age and capture-release experience; Tables 4 and 8, 

Figures 5 and 12).  This suggests that signature whistle rate in bottlenose dolphins may be 

affected by temperament, as was found by Watts and Stooky (2001) for cattle.  Comparisons of 

whistle rates by the same individuals in a variety of contexts would provide insights into the 

effects of temperament on vocal production, as would comparisons of whistle production in 

different maternal lineages.  Finally, inter-individual variability in whistle rates might have 

resulted from differences in the degree of prior capture-release experience among dolphins.  The 

recordings analyzed to evaluate changes in whistle rate during a single capture release session 

ranged from the first to the twelfth session for an individual dolphin.  If whistle rate decreases 

with increasing capture-release experience, dolphins with more extensive capture-release 

experience would have lower whistle rates at the beginning of a session  

than dolphins with less experience. 

The general stability of most whistle parameters supports the existence of individually 

distinctive signature whistles.  Loop duration was stable for each individual in all contexts except 

for within a single capture-release session.  Minimum frequency was not significantly different 
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between contexts for any individual, although there was an overall tendency for it to decrease 

from the first to the fifth capture-release.  Sayigh and Williams (unpublished data) observed a 

similar decrease in minimum frequency over time in female bottlenose dolphins, and speculated 

that it may be related to maturation.  Maximum frequency and inter-loop interval were stable 

except when comparing whistles of females capture and released with or without a dependent 

calf.  Physical features of whistles that remain relatively stable for an individual across contexts 

contribute to the individually distinctive nature of a signature whistle.  Therefore, despite recent 

unsubstantiated suggestions to the contrary (McCowan and Reiss 1995, 2001), the results of this 

study indicate that bottlenose dolphins produce individually distinctive vocalizations, and that 

several parameters of signature whistles can vary with context.   

Signature whistle rate and loop number have the potential to serve as indicators of stress 

in bottlenose dolphins and warrant further research.  Since bottlenose dolphins have individually 

distinctive whistles, whistle rate and loop number could potentially be used to monitor the 

welfare of individual dolphins for which signature whistles have been identified (e.g. Sarasota 

Bay population, captive dolphins).  Future work should include comparisons of loop number and 

signature whistle rate in free-ranging dolphins in the presence and absence potential sources of 

stress, such as jet skis, predators, or swimmers participating in swim-with-dolphins programs.  

Buckstaff (2004) found that signature whistle production increased as dolphins in Sarasota Bay, 

FL were approached by boats, supporting the results of the current study.  Loop number and 

whistle rate could also be monitored for dolphins in captive facilities that are undergoing 

construction or habitat alterations.  The introduction of a new dolphin into a captive facility 

might create stress for both the new and established dolphins.  Whistle rate and loop number 

could therefore potentially provide information about the process of acclimation for newly 
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acquired dolphins.  These parameters could also be monitored in an outdoor captive facility both 

before and after a hurricane or some other predicted weather event.   

If the patterns in whistle parameters detected in this study persist once effects  

such as age and prior capture-release experience have been quantified, these measures could be 

utilized in conjunction with physiological indicators to groundtruth their reliability as indicators 

of various types of stressors in bottlenose dolphins.  Although more work is needed, this study 

indicates that acoustic monitoring holds promise as a non-invasive means of assessing the impact 

of potentially stressful situations on bottlenose dolphins.  
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