
NUMERICAL SIMULATIONS
OF THE STOCHASTIC KDV EQUATION

Andrew Rose

A Thesis Submitted to the
University of North Carolina Wilmington in Partial Fulfillment

Of the Requirements for the Degree of
Master of Science

Department of Mathematics and Statistics

University of North Carolina Wilmington

2006

Approved by

Advisory Committee

Chair

Accepted by

Dean, Graduate School

This thesis has been prepared in the style and format

Consistent with the journal

American Mathematical Monthly.

TABLE OF CONTENTS

ABSTRACT . v

DEDICATION . vi

ACKNOWLEDGMENTS . vii

LIST OF TABLES . viii

LIST OF FIGURES . x

1 INTRODUCTION . 1

2 THE KDV SOLITON . 5

3 THE STOCHASTIC KDV . 14

4 THE ZABUSKY-KRUSKAL SCHEME . 25

5 NUMERICAL REALIZATION OF GAUSSIAN WHITE NOISE 29

6 STOCHASTIC KDV CODE . 36

7 RESULTS . 44

8 CONCLUSION . 69

REFERENCES . 71

APPENDIX . 73

ZK SCHEME CODE BEFORE VECTORIZATION 73

ZK SCHEME CODE AFTER VECTORIZATION 76

ZK SCHEME TIME CHECK CODE . 83

ZK SCHEME CODE WITH DAMPING . 88

BROWNIAN MOTION CHECK CODE . 95

CORRELATION CONFIRMATION CODE 96

CHECK W(t) AVERAGE RELATIONSHIP CODE 97

PLOT DAMPING DATA CODE . 97

TWO SOLITON SOLUTION CODE . 101

TWO SOLITON ZK SCHEME CODE . 101

iii

TWO SOLITON PLOT CODE . 110

SUPPLEMENTARY FUNCTIONS . 110

iv

ABSTRACT

We study the Korteweg-de Vries (KdV) equation with external noise and compare our numer-

ical simulations to known theoretical results. By using a modification of the Zabusky-Kruskal

finite difference scheme, we are able to generate numerical solutions to the stochastic KdV.

We look at the large time behavior of the stochastic KdV and verify the diffusion of soli-

tons. We find that the predicted large time behavior of the perturbed soliton is not easily

confirmed in the simulations as the initial soliton diffuses and is lost amidst the background

noise long before the asymptotic limit is reached.

v

DEDICATION

For my parents and my loving wife, who have supported me unconditionally not just during

the course of writing this thesis, but throughout my whole school career.

vi

ACKNOWLEDGMENTS

I would especially like to acknowledge the enthusiastic supervision of Dr. Russell Herman,

who has guided me from the first formulation to the last writing of this thesis. I would

also like to acknowledge Dr. Gabriel Lugo and Dr. David Rolls, who have helped build the

foundation for which my thesis is based. I would like to mention Dr. Thad Dankel, Jr.,

whose research has contributed to the literature on the Stochastic KdV equation and who

passed away while I was completing my research. Finally, I would like to acknowledge my

wife Kristine Rose and my family, for without their support I would have given up a long

time ago.

vii

LIST OF TABLES

1 Absolute Norms of errors of Numerical vs. Exact. 42

viii

LIST OF FIGURES

1 The one soliton solution with η = 1 and x0 = 5.0. 11

2 3D plot of the two soliton solution. 12

3 2D plot of two solitons interacting over the time interval [0, 1]. 13

4 The exact solution based on < u > in Equation (58) 22

5 Discretized Brownian path over [0, 1] with N = 500 time steps. 30

6 Mean and variance of 1000 samples of a standard Wiener process. 33

7 < exp(cW (t)) > vs. exp(1
2

< W 2(t) >) confirming Wadati’s identity. 35

8 Amplitude decay using the ZK scheme and the exact solution for η = 2 and

ε = 0.01 showing (a) 100 runs through (f) 500 runs. 40

9 Maximum Error comparing the ZK scheme to the Exact solution with velocity

correction. 41

10 Plot of < u(x, t) >max vs. t for both the exact and numerical solutions to the

KdV for parameters: (a): η = 1.5 and ε = 0.05, (b): η = 1.5 and ε = 0.1, (c):

η = 2 and ε = 0.05, (d): η = 2 and ε = 0.1. 45

11 Amplitude vs. time plot for 500 runs on a larger x-interval ([−10, 90]) with

ε = .1 and η = 2. 46

12 Plot of log(amplitude) vs. log(time) for data in Figure 11. 46

13 Linear portion of the log-log plot of amplitude vs. time with a linear fit for

data in Figure 11. 47

14 Amplitude vs. time plots for different values of γ (damping) and ε (noise)

using the integral solution. 49

15 Amplitude vs. time plots for different values of γ (damping) and ε (noise; on

the legend) using the ZK scheme. 50

16 Amplitude vs. time plots for different values of ε (noise; on the legend) and γ

(damping) using the ZK scheme. 52

ix

17 Amplitude vs. time plots for different values of ε and γ with number of runs

on the legend. 53

18 Power law decay rates for various realizations of noise and damping. 54

19 Power law decay rates for various realizations of noise and damping. 55

20 Plot of log(amplitude) vs. log(time) for γ = 0.5 and ε = 0.5. 57

21 Linear portion of log-log plot of amplitude vs. time with linear fit for γ = 0.5

and ε = 0.5. 58

22 3D plot of the two soliton solution using the Zabusky-Kruskal Scheme. . . . 59

23 Amplitude vs. time for the two soliton solution using the Zabusky-Kruskal

Scheme. Black and red represent the exact solution and blue and green rep-

resent the numerical solution. 60

24 Position vs. time for the two soliton solution using the Zabusky-Kruskal

Scheme showing soliton interaction. Black and red represent the exact solution

and blue and green represent the numerical solution. 61

25 Damped stochastic two soliton solution for ε = 0.01 and γ = 0.01. 62

26 Damped stochastic two soliton solution for ε = 0.5 and γ = 0.01. 63

27 Damped stochastic two soliton solution for ε = 0.01 and γ = 0.5. 64

28 Damped stochastic two soliton solution for ε = 0.5 and γ = 0.5. 65

29 Amplitude vs. time showing two soliton interaction with varying values of ε

and γ. Here black and red represent the exact solution and blue and green

represent the numerical solution. 66

30 Position vs. Time showing two soliton interaction with varying values of ε

and γ. Here black and red represent the exact solution and blue and green

represent the numerical solution. 68

x

1 INTRODUCTION

The Korteweg-de Vries (KdV) equation, given by

ut + 6uux + uxxx = 0 (1)

describes the generic evolution of long shallow waves with quadratic nonlinearity and third

order dispersion [1]. The KdV equation occurs in many fields of physics such as in water

waves, plasmas, and fiber optics. Since its discovery 111 years ago (1895), researchers have

investigated the solitary wave solutions to Equation (1), including special solutions called

solitons.

In this thesis we will look at the effects of external noise on the soliton solution of the

KdV equation modeled by the stochastic KdV equation

ut + 6uux + uxxx = ζ(t), (2)

where the inhomogeneous term ζ(t) represents one type of external noise. Miki Wadati

studied this equation analytically [9] and he determined the large time behavior of one

soliton solutions under this type of noise term. In doing this he discovered the process now

called “the diffusion of a soliton”.

The KdV soliton can be simulated using the Zabusky-Kruskal scheme, which will be

explained in detail later in the paper. We have simulated solutions of Equation (1) and com-

pared our results with Wadati’s theoretical results. We use a modification of the Zabusky-

Kruskal scheme with the added noise term to simulate our solutions.

We also have looked at the equation

ut + 6uux + uxxx − γu = ζ(t), γ > 0. (3)

which includes a damping term (γu) added to the stochastic KdV. Equation (3) can also

be simulated using the Zabusky-Kruskal scheme with minimum error by adding a correction

term. Wadati and Akutsu have studied Equation (3) extensively and we compared our

results to their theoretical results [10] as well.

Finally, we have looked at the two soliton solution [6], which can be written as

u(x, t) =
2(p2 − q2)(p2 + q2 sech2χ(x, t) sinh2 θ(x, t))

(p cosh θ(x, t) − q tanh χ(x, t) sinh θ(x, t))2
(4)

where the phases are given by

θ(x, t) = px − 4p3(t − t0) (5)

and

χ(x, t) = qx − 4q3(t − t0). (6)

We have found that the two soliton solution behaves exactly as predicted in [6], with the

soliton interaction not changing the identity of each individual soliton, but only changing the

soliton positions by a constant shift t. Our preliminary studies show that noise and damping

affect the two soliton solution in the same way that they affect the one soliton solution,

leading to the dispersion of the solitons.

In Chapter 2 we review the history of the one soliton solution beginning with the first

observation of John Scott Russell. Such solitary waves show a balance between nonlinearity

and dispersion. We will show how one can obtain the correct form for the solution to Equation

(1). We then review in Chapter 3 the theoretical analysis of the stochastic KdV and damped

stochastic KdV. These studies by Wadati [9] and Wadati and Akutsu [10] predict that the

soliton given by the averaged stochastic KdV equation will have diffusion that is clearly seen

with an amplitude decay on the order of t−3/2 (t → ∞) and that the soliton given by the

averaged damped stochastic KdV equation will have other factors besides diffusion affecting

2

it’s height and width; it will also have an amplitude decay on the order of t−1/2 e−γt (t → ∞).

To test these theories we have first numerically simulated the statistical averages of the

exact solution and Wadati’s theoretical average. Then we numerically solved the stochas-

tic KdV and damped stochastic KdV equation using a well-known finite difference scheme

combined with numerical realizations of Gaussian white noise. In Chapter 4 we explain

the Zabusky-Kruskal finite difference scheme for the KdV and in Chapter 5 we discuss the

numerical realizations of Brownian motion and Gaussian white noise. We combine these

techniques in Chapter 6 and explain our choices in the way we have written the numeri-

cal code. We explain certain nuances of MATLAB that have required us to make use of

its inherent vectorization technique and prove that our code produces results akin to the

predictions mentioned previously.

Finally, we present the results of the simulations in Chapter 7. We have found that we

can closely reproduce numerically Wadati’s prediction for an amplitude decay of t−3/2 for the

one soliton solution correctly (with a small amount of error due to our numerical scheme),

and that the effect of diffusion is clearly seen on the soliton’s amplitude. However, we were

not able to come to a clear conclusion on Wadati’s and Akutsu’s prediction for the amplitude

decay of the damped stochastic KdV with our numerical simulations. The amplitude decay

of t−1/2 e−γt was seen in some cases, but we had to use a larger time interval; this kept us

from being able to estimate the decay order because of background noise. Other types of

approximations can be tried in the future to see if it is possible to track the soliton through

this background noise. For the two soliton solution, we were able to verify that two solitons

do retain their identity after interaction when using the Zabusky-Kruskal scheme. We were

also able to see the effects of noise and damping on the individual solitons making up the

two soliton solution.

In the last chapter we summarize our results, compare them to known results produced

by previous studies, and indicate a possible direction for future studies. In the Appendix we

show the code used to produce all of the results in this paper. It is possible to expand the

3

code and use it for later research on the effects of other types of noise and perturbations for

N-soliton solutions.

4

2 THE KDV SOLITON

One of the most interesting wave phenomena that exists in the natural world is that of

solitary waves. A simple definition for a solitary water wave is “a wave that consists of a

single elevation (a rounded, smooth, and well-defined heap of water), neither proceeded nor

followed by another elevation (or depression)” [1]. This definition is only for one instance

of solitary waves; they also exist in other physical mediums. Although some waves can be

modeled by simple expressions relating the amplitude, frequency, and speed to the medium

through which they propagate, solitary waves can have a much more complex dependance

on both space and time.

Solitary waves were discovered in 1834, when John Scott Russell (who was a Scottish civil

engineer) witnessed horses pulling a barge in the Union canal in Edinburgh. He later wrote

that when he saw that the barge came to a stop, a wave “rolled forward with great velocity

assuming the form of a large solitary elevation, a rounded heap of water, which continued

its course without change of form or diminution of speed.” Russell kept up with it for as

long as possible until the wave finally dissipated. Afterwards, Russell created comparable

waves in his basement laboratory by lowering weights into a rectangular tank full of water.

By doing this, Russell confirmed the existence of solitary waves and learned that the wave’s

speed depends on its amplitude and the depth of the water. The solitary waves moved faster

in deeper water, with the taller waves traveling faster than the flatter waves.

Unfortunately, most scientists (including George Airy, who did not agree with the em-

phasis John Scott Russell placed on solitary waves) did not believe this type of wave really

existed until 1870 (although in 1849 George Stokes, an Irish physicist, showed that solitary

waves could indeed arise from a combination of periodic waves) [2]. In 1870, English physi-

cist John Rayleigh and the French mathematician Joseph Boussinesq independently proved

that these waves existed by using the basic equations of fluid dynamics. But it wasn’t until

1895 that Diederik Johannes Korteweg and Gustave de Vries derived an equation that de-

scribed the actual propagation of the waves that Russell first witnessed and proved Rayleigh

and Boussinesq’s idea of stability. Thus, the question of whether the equations for water

waves allowed the existence of solitary wave solutions was finally answered sixty years after

Russell’s first observation in the canal [2].

The Korteweg-de Vries equation (or KdV equation as it will henceforth be called)

ut + 6uux + uxxx = 0. (7)

describes the evolution of long waves (with large length and measurable amplitude) down a

canal with a rectangular cross section.

Here u represents the wave amplitude, and ut and ux are the partial derivatives with

respect to t and x, respectively. The quantity ut represents the vertical velocity of the

wave at (x, t), ux describes the rate of change in amplitude with respect to x, and uxxx is

a dispersion term. This means that if u is the amplitude of a wave at some point in space,

then ux is the slope of the wave at that point and uxx is the concavity near the point [2].

The existence of solitary waves is due to the balancing effects of uux and uxxx in Equation

(7). The nonlinear term 6uux in Equation (7) is important because the amplitude of the

wave depends on it’s own rate of change in space; it also represents steepening. The term

uxxx implies dispersion of different frequency components. For linear problems, dispersive

waves usually are characterized by solutions

ϕ(x, t) = Aeiκx−iωt, (8)

where κ is the wave number, ω is the frequency, and A is the amplitude. In fact, the

dispersion relation, written as ω = ω(κ), coupled together with the nonlinear term mentioned

previously, is what produces the balance between nonlinearity and dispersion and generates

solitary waves (instead of the formation of other known waves) [11].

6

In 1955 at the Los Alamos Scientific Laboratory, Enrico Fermi, John Pasta and Stanislaw

Ulam used Maniac I (a very powerful computer at the time) to work on a problem involving

the conduction of heat in solids. They modeled a solid as a one-dimensional network of

masses connected by springs, with heat in the system embodied in the vibrational motion

of the masses. The simplest version of the model employs a linear equation to describe the

action of the springs; Fermi and his collaborators specified a nonlinear law: the force exerted

by a spring would be given by the sum of the displacement and a small term proportional to

the square of the displacement. They expected energy to diffuse evenly through the network.

Instead, they found that if a pulse of energy was applied to one end of the network, it flowed

through all nodes and it’s position took on a random distribution. Finally, in time the pulse

reassembled and returned to it’s initial state [3].

Norman J. Zabusky and Martin D. Kruskal were working on analyzing this mass-and

spring model in 1965 by considering what happens when the length of the springs tend to-

ward zero when they made the discovery that the limiting equation defining the continuous

system was the KdV equation. Later, Zabusky and Kruskal explored the KdV equation

through extensive computer simulations. They found that when examining multiple inter-

acting solitary waves, the waves collided and separated again with their size, shape, and

speed unchanged. The only difference was that the colliding waves had shifted from the

position they would have had if there was no collision. Hence they gave these special waves

the name of solitons, because these waves acted like particles of light [3].

A simple analytical form for the KdV soliton is given by the following expression:

u(x, t) = 2η2 sech2η(x − x0 − 4η2t). (9)

This soliton is centered at x0 + 4η2t, has an amplitude of 2η2, a width of 1
η
, and an initial

position at x0. Thus, it is a traveling wave of constant amplitude and width moving at speed

4η2.

7

This solution is easily obtained from the KdV equation. We assume in Equation (7) that

u(x, t) is a traveling wave solution of the form

u(x, t) = f(x − ct) = f(ξ), (10)

where c is the constant speed of the traveling wave [1]. Substituting Equation (10) into

Equation (7) gives us the ordinary differential equation

−c
df

dξ
+ 6f

df

dξ
+

d3f

dξ3
= 0. (11)

This in turn can be written as a perfect derivative,

d

dξ

[

−cf + 3f 2 +
d2f

dξ2

]

= 0. (12)

Equation (12) can be integrated to give

−cf + 3f 2 +
d2f

dξ2
= A, (13)

where A is an arbitrary constant. Multiplying Equation (13) by df
dξ

yields

−cf
df

dξ
+ 3f 2 df

dξ
+

d2f

dξ2

df

dξ
= A

df

dξ
. (14)

This can be rewritten as an exact derivative:

d

dξ

[

1

2

(

df

dξ

)2

+ f 3 − 1

2
cf 2 − Af

]

= 0. (15)

Integrating, we find the first order differential equation

1

2

(

df

dξ

)2

= −f 3 +
1

2
cf 2 + Af + B. (16)

8

We seek solutions such that u → 0, ux → 0, and uxxx → 0 as |x| → ∞ (otherwise, we get

periodic traveling wave solutions which are called cnoidal waves). Thus, from Equations (13)

and (16) we set A = 0 and B = 0.

Equation (16) can now be rewritten as

(

df

dξ

)2

= f 2(c − 2f). (17)

This can be solved by using the method of separation of variables. We obtain

∫

df

f
√

c − 2f
=

∫

dξ. (18)

The integration of the left side of Equation (18) can be done using the transformation

f =
1

2
c sech2θ. (19)

This gives us

c − 2f = c(1 − sech2θ) = c tanh2 θ (20)

and

df = −c sech2θ tanh θ dθ. (21)

Substituting Equations (19)-(21) into Equation (18) gives us

ξ − ξ0 = − 2√
c

∫

1

sech2θ tanh θ

sinh θ

cosh3 θ
dθ, (22)

which simplifies to

ξ − ξ0 = − 2√
c

∫

dθ (23)

or

θ = −
√

c

2
(ξ − ξ0). (24)

9

Now, we can finally substitute θ into Equation (19) which yields

f(ξ) =
c

2
sech2(

√
c

2
(ξ − ξ0)). (25)

Since u(x, t) = f(x − ct), we have

u(x, t) =
c

2
sech2

[√
c

2
(x − ct − ξ0)

]

. (26)

Writing the wave speed as c = 4η2 and the initial position ξ0 = x0, Equation (26) becomes

u(x, t) = 2η2 sech2η(x − x0 − 4η2t), (27)

which is the one soliton solution of KdV as indicated in Equation (9).

Figure 1 shows an example of this solution on the region [−10, 40]× [0, 4]. In this figure

we can see that the wave moves across the interval unchanged.

The interesting discovery in Zabusky and Kruskal’s work with the KdV equation is the

behavior of N-Soliton solutions. When two solitons collide, they interact elastically. The

exact solution for the two soliton equation is given by [6]

u(x, t) =
2(p2 − q2)(p2 + q2 sech2χ(x, t) sinh2 θ(x, t))

(p cosh θ(x, t) − q tanh χ(x, t) sinh θ(x, t))2
(28)

where the phases are

θ(x, t) = px − 4p3(t − t0) (29)

and

χ(x, t) = qx − 4q3(t − t0). (30)

In our simulations we take p = 2, q = 1.5 and t0 = 0.5. Here p and q can be varied to

produce solitons of differing amplitudes and widths. The two solitons have amplitudes of

10

Figure 1: The one soliton solution with η = 1 and x0 = 5.0.

11

2p2 and 2q2, and are traveling at a speed of 4p2 and 4q2 respectively. This means that we

can pick our p and q according to which wave we want to be larger (and henceforth have a

faster speed).

Figure 2 shows an example of the two soliton solution on the domain [−10, 10]×[0, 1] with

p = 2, q = 1.5, and t0 = 0.5. As expected, we see that the two solitons travel without change

−10

−5

0

5

10

0

0.2

0.4

0.6

0.8

1
0

5

10

x

Two Soliton Solution of KdV

t

u(
x,

t)

Figure 2: 3D plot of the two soliton solution.

until they collide; but afterwards, while their amplitudes are unchanged, their position in

time has changed considerably.

Figure 3 shows a 2-d plot of the interaction between two solitons on the domain [−10, 10]×

[0, 1] with p = 2, q = 1.5 and t0 = 0.5. The two solitons initially approach each other with

unchanging amplitude. When they collide, the two solitons do not merge into a single peak.

(The only way for this to happen is if p/q >
√

3) [6]. However, once the solitons re-emerge,

their amplitudes are the same but they experience a phase shift [6]. In general, the taller

soliton is shifted by 4
p
(ln p+q

p−q
) and the shorter soliton is shifted by 4

q
(ln p+q

p−q
).

Later analytical work by Clifford S. Gardner, John M. Greene, Martin Kruskal, and

12

0

5

10

 am
pl

itu
de

 a)

0

5

 am
pl

itu
de

 b)

0

5

 am
pl

itu
de

 c)

0

5

 am
pl

itu
de

 d)

−10 −5 0 5 10
0

5

 am
pl

itu
de

x

 e)

Two Soliton Interaction

Figure 3: 2D plot of two solitons interacting over the time interval [0, 1].

Robert M. Miura of Princeton University on the initial value problem for the KdV led to

the search for N-soliton solutions in other systems, paving the way for most of the soliton

research being done today [2].

Since the first discovery of solitary waves in 1834, a great deal of research has been done

on their formation and subsequent evolution. In spite of initial successes in this research,

to this day the KdV equation can only be solved in closed form in special cases. Also,

occurrences of these solitary waves in nature are usually subjected to additional forces,

leading to perturbations of the equation. For example, external noise (like ridges on the floor

of a long narrow canal) and friction (like damping) can affect the way the wave behaves.

To study the evolution of solitons under perturbations, we are often forced to do numerical

simulations. The simplest finite different scheme for the KdV is the one used by Zabusky-

Kruskal and will be described in Chapter 4. However, we will first consider the stochastic

KdV equation.

13

3 THE STOCHASTIC KDV

As is the case with most natural phenomena, solitary waves may be subject to random

perturbations. In this chapter we consider adding a Gaussian noise term ζ(t) to Equation

(1):

ut + 6uux + uxxx = ζ(t). (31)

Gaussian white noise ζ(t) has zero mean and is δ-correlated [9]:

< ζ(t)ζ(t′) >= 2εδ(t − t′). (32)

The solution to Equation (31) is now considered to be a random variable. Here, ε is a small

number and δ(t) is the Dirac delta function. Equation (31) is called a stochastic partial

differential equation, with u now depending on a random noise term. We will follow Wadati

[9], with a difference in sign in the nonlinear term of the KdV; the results will essentially be

the same because physically a depression for −6uux exists as opposed to a hump for +6uux.

Wadati [9] has shown that for time-dependent noise, the stochastic KdV equation can be

transformed into an unperturbed KdV equation (as seen in Equation (7)),

UT + 6UUX + UXXX = 0, (33)

by introducing the Galilean transformation (which is a transformation between two coordi-

nate systems in constant relative motion)

u(x, t) = U(X,T) + W (T), (34a)

X = x + m(t), (34b)

T = t, (34c)

m(t) = −6

∫ t

0

W (t′) dt′. (34d)

This can be seen as follows. From the chain rule, we have for a composite function of X and

T :

∂

∂x
=

∂X

∂x

∂

∂X
+

∂T

∂x

∂

∂T

=
∂

∂X
, (35)

and

∂

∂t
=

∂X

∂t

∂

∂X
+

∂T

∂t

∂

∂T

= −6W (T)
∂

∂X
+

∂

∂T
. (36)

We apply the transformations in Equations (34a)-(34d) to Equation (31) and find

ζ(t) = ut + 6uux + uxxx,

= (U + W)T − 6WUx + 6(U + W)UX + UXXX ,

= UT + 6UUX + UXXX + WT . (37)

Defining

ζ(t) = WT ,

or

W (T) =

∫ T

0

ζ(t′) dt′, (38)

Equation (37) becomes the unperturbed KdV equation in (33). Therefore, we obtain the

result

u(x, t) = U(x + m(t), t) + W (t). (39)

This is true for any exact solution of the KdV equation U .

Before we go further, we will discuss Brownian motion, from which we derive Gaussian

15

white noise, and the definition of stochastic processes. This is necessary to understand what

role Brownian motion plays in the formulation of the stochastic KdV equation.

Brownian motion was first discovered by Robert Brown in 1827, while studying pollen

particles floating in water under a microscope [7]. He noticed that the small particles moved

in a random fashion and he became intrigued by the cause of this motion. Brown was able to

rule out the possibility of the pollen being alive by using particles of dust but an explanation

of the random motion was not given until Louis Bachelier wrote his 1900 Ph.D. thesis,

“The Theory of Speculation.” In 1910 Albert Einstein and Marian Smoluchowski further

cemented the explanation when they described how the particles collided with randomly

moving molecules of water. Small particles would receive a random number of impacts of

random strength from random directions over a period of time [7]. This work was based on

of one of Einstein’s famous 1905 papers for which the world celebrated the centennial this

past year (2005).

In a series of papers originating in 1918 [7], Wiener formalized the theory of Brownian

motion in terms of stochastic processes. To understand stochastic processes, it is necessary

to introduce random variables. A formal definition of random variables can be found in [7]

but for the purposes of this work it suffices to think of a random variable as a variable whose

value is not known but whose statistical distribution is. Now we are able to define stochastic

processes:

Definition 1 A Stochastic Process (X(t), t ∈ T) is a collection of random variables.

That is for each t ∈ T , X(t) is a random variable.

Because the index t is often interpreted as time, we can refer to X(t) as the state of the

process at time t. The set T is called the index set of the process. However, in the case of

Brownian motion, T defines an interval of the real line, 0 ≤ t ≤ T because its increments

are independent and stationary.

Brownian motion is considered a continuous-time stochastic process [7]. A standard

16

Brownian motion, or standard Wiener process, over [0, T] is a collection of random variables

W (t) that depend continuously on t ∈ [0, T]. Furthermore, Brownian motion satisfies the

following three conditions [5]:

1. W (0) = 0 (with probability 1).

2. For 0 ≤ s < t ≤ T the random variable given by the increment W (t) − W (s) is

normally distributed with mean zero and variance t − s; equivalently, W (t) − W (s) ∼
√

t − sN(0, 1), where N(0, 1) denotes the standard normal distribution.

3. For 0 ≤ s < t < u < v ≤ T the increments W (t) − W (s) and W (v) − W (u) are

independent, which means that each increment does not depend on any of the preceding

increments.

We also note that W (t) has a probability density function given by:

ft(x) =
1√
2πt

exp−x2/2t, −∞ < t < ∞. (40)

Thus, averages (or expectation values) of random variables may be computed as integrals

of the form < g(x) >=
∫ ∞
−∞ g(x)f(x) dx. Therefore, we can easily compute averages of

solutions of the stochastic KdV equation.

We consider the one-soliton solution of Equation (33) in the form

U(X,T) = 2η2 sech2(η(X − 4η2T − X0)), (41)

where X0 is the new initial position. Then, the transformation in Equation (34) leads directly

to an exact solution of the stochastic KdV equation (31):

u(x, t) = 2η2 sech2

(

η

(

x − 4η2t − x0 − 6

∫ t

0

W (t′) dt′
))

+ W (t), (42)

where W (t) is Brownian motion (as seen in Equation (38)) and x0 = X0.

17

We now consider the effect of noise on the soliton’s amplitude for an ensemble of solutions.

For example, we can examine the behavior of the average < u(x, t) > of the solution and

compare it to the exact solution [9]:

< u(x, t) >= 2η2

〈

sech2

(

η

(

x − 4η2t − x0 − 6

∫ t

0

W (t′) dt′
))〉

.

Wadati computes this average by first converting the hyperbolic function into an expo-

nential series,

sech2z = 2
∞

∑

n=1

(−1)n+1ne2nz. (43)

Wadati then proceeds by computing

< u(x, t) >= 8η2

∞
∑

n=1

(−1)n+1n

〈

exp

[

2nη

(

x − 4η2t − x0 − 6

∫ t

0

W (t′) dt′
)]〉

.

To complete this computation, some useful relations are used (these depend on the properties

of Gaussian white noise, < ζ >= 0 and Equation (32)) [9]:

< W (t) >= 0, (44)

< W (t1)W (t2) >= 2ε min(t1, t2), (45)

< exp (cW (t)) >= exp

(

1

2
c2 < W 2(t) >

)

. (46)

We can use these identities to show that

〈

exp

(

±12nη

∫ t

0

W (t′) dt′
)〉

= exp

(

72n2η2

∫ t

0

∫ t

0

< W (t1)W (t2) > dt2dt1

)

,

= exp(48n2η2εt3). (47)

18

This leads to the following expression for the average:

< u(x, t) >= 8η2

∞
∑

n=1

(−1)n+1nena+n2b, (48)

where

a = 2η(x − x0 − 2η2t),

b = 48η2εt3.

Wadati then develops expressions that give an analytical interpretation to this result

and allow for explorations of this solution for large time [9]. Differentiating the series with

respect to a and b leads to the partial differential equation

wb = waa (49)

for w(a, b) =< u(x, t) > . Furthermore, setting b = 0 in Equation (48) and comparing to

Equation (43), we have that

w(a, 0) = 2η2 sech2a

2
. (50)

Equations (49) and (50) give us the initial-boundary value problem for the heat, or diffusion,

equation on the real line. The equation can be solved using the standard Fourier transform

technique [9]. We define the Fourier transform

ŵ(k, b) =

∫ ∞

−∞
w(a, b)e−iak da, (51)

and its inverse transform

w(a, b) =
1

2π

∫ ∞

−∞
ŵ(k, b)eiak dk. (52)

The heat equation leads to the simple initial value problem consisting of a first order ordinary

19

differential equation

ŵb = −k2ŵ, (53)

with initial value

ŵ(k, 0) = 2η2

∫ ∞

−∞
sech2

(a

2

)

e−iak da

= 8η2 πk

sinh πk
. (54)

The solution of this problem

ŵ(k, b) = 8η2 πk

sinh πk
e−bk2

(55)

and the solution u(x, t) of the diffusion equation is then found from the inverse Fourier

transform of Equation (55) as

u(x, t) =
4η2

π

∫ ∞

−∞

πk

sinh πk
eiak−bk2

dk. (56)

One can apply the Convolution Theorem to this result by noting that ŵ(k, b) = f̂(k)ĝ(k, b)

for

f̂(k) = 8η2 πk

sinh πk

and

ĝ(k, b) = e−bk2

.

The inverse transforms for each of these are given by

f(a) = 2η2 sech2a

2

20

and

g(a, b) =
1√
4πb

e−a2/4b.

The last expression is just the statement that the Fourier transform of a Gaussian distribution

(function g(a, b)) is also a Gaussian distribution [9]. Combining these results, we have

< u(x, t) > = w(a, b)

= (f ∗ g)(a)

=

∫ ∞

−∞
f(s)g(a − s) ds

=

∫ ∞

−∞

(

2η2 sech2 s

2

)

(

1√
4πb

e−(a−s)2/4b

)

ds

=
η2

√
πb

∫ ∞

−∞
e−(a−s)2/4b sech2 s

2
ds. (57)

This result will be used later when we analyze our numerical results. We will refer to this

average as < u(x, t) >.

Wadati shows that the asymptotic behavior of the mean solution < u(x, t) > is given by

< u(x, t) >∼ η√
3πε

1

t3/2
exp

(

−(x − x0 − 4η2t)2

48εt3

)

, t → ∞ (58)

where f(t) ∼ g(t) means f(t)
g(t)

→ 1 as t → ∞. Large times are those that have b = 48κ2εt3 > 1.

In Figure 4 it is evident that the soliton undergoes a diffusion as a function of time exactly

as predicted by Wadati [9]. In Chapter 7 we will verify that the diffusion is on the order of

t−3/2. Each wave in Figure 4 is actually the position of one wave as it propagates in time.

In the next chapter, we will look at a numerical scheme for simulating the KdV solution and

later we will look at the behavior of the waves as t → ∞ (most people concentrate on the

“tail” end of the soliton, but we will be considering the whole wave).

We are also interested in looking at the effect of friction on the soliton, by adding a

21

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16 18 20

x

Figure 4: The exact solution based on < u > in Equation (58)

22

damping term (γu) to the stochastic KdV equation to give

ut + 6uux + uxxx − γu = ζ(t). (59)

Equation (59) describes the wave propagation in a one-dimensional chain. We assume that

the noise ζ(t) does not depend on the coordinate x. It corresponds to the situation where

the whole wave is perturbed coherently [11].

As with the stochastic KdV, we can introduce transformations of the dependent and

independent variables:

u(x, t) = U(X,T) + W (T), (60a)

X = x + m(t), (60b)

where

W (t) = e−γt

∫ t

t0

η(s)eγsds (61)

and

m(t) = −6

∫ t

t0

W (s)ds. (62)

It is readily seen that U(x, t) satisfies

Ut + 6UUx + Uxxx + γU = 0, (63)

which leads us to the non-stochastic KdV equation [11]. Approximate solutions are known

for the damped KdV [10]. These will be useful in obtaining approximate solutions of a

damped stochastic KdV equation.

Following a similar analysis as done with noise, we can show that [10]

< u(x, t) >=
η2

√
πb

∫ ∞

−∞
e−(a−s)2/4b sech2 s

2
ds. (64)

23

with

η(t) = η0e
−2γt,

a = 2η(x − x0 − 2η2t),

b =
36η2

εγ2

[

2εγt − 3 + 4e−εγt − e−2εγt
]

(65)

The large t behavior for the damped stochastic KdV is therefore predicted by Wadati to be

on the order of t−1/2 e−γt. We can see this because as t → ∞, the exponential part of b will

disappear and we will be left with 1√
b

= 1√
t
. Large times are those for b > 1. We will explore

the results of our numerical simulations in Chapter 7.

24

4 THE ZABUSKY-KRUSKAL SCHEME

In this chapter we consider a numerical model which can be used to simulate the solution of

the KdV equation in Equation (7) for the initial condition u(x, 0) = 2η2 sech2η(x−x0). Here

x0 is the initial position of the wave. The results of the simulation are then compared to

the exact solution in Equation (9). In 1965, Zabusky and Kruskal studied the KdV equation

numerically using the following finite difference approximation with a centered difference in

time [3]:

ut =
u(j, n + 1) − u(j, n − 1)

2∆t
+ O(∆t2) (66)

u =
u(j + 1, n) + u(j, n) + u(j − 1, n)

3
+ O(∆x2) (67)

ux =
u(j + 1, n) − u(j − 1, n)

2∆x
+ O(∆x2) (68)

uxxx =
u(j + 2, n) − 2u(j + 1, n) + 2u(j − 1, n) − u(j − 2, n)

2∆x3
+ O(∆x2), (69)

where t = n∆t and x = a + j∆x. The scheme is typically used with periodic boundary

conditions (ours was based on the time interval we chose).

The linear stability condition for this numerical scheme is given by [8]

∆t ≤ [6∆x|u| + 4(∆x)−3]−1. (70)

which can be satisfied by taking ∆t ≤ (∆x)3

4
≤ [6∆x|u| + 4(∆x)−3]−1. We now show how to

derive this linear stability condition using numerical analysis.

Because this is a linear stability analysis, we use the term aux instead of uux, with

a = maxx,t u over the domain of interest. The linearized Zabusky-Kruskal scheme becomes

u(j, n + 1) = u(j, n − 1) − 6a
∆t

∆x
(u(j + 1, n) − u(j − 1, n)) − (71)

∆t

∆x3
(u(j + 2, n) − 2u(j + 1, n) + 2u(j − 1, n) − u(j − 2, n)).

We can seek solutions of the form u(j, n) = ξneijk∆x where ξ is the amplification factor and k

is the wave number. For stability we must have |ξ| ≤ 1. If we substitute this form of u(j, n)

into Equation (71) we get

ξ = ξ−1 − 6a
∆t

∆x
(2i sin k∆x) − ∆t

∆x3
(e2ik∆x − 2eik∆x + 2e−ik∆x − e−2ik∆x), (72)

which simplifies to

ξ = ξ−1 − 2ia
∆t

∆x
6 sin k∆x − 2i

∆t

∆x3
(sin 2k∆x − 2 sin k∆x). (73)

Multiplying Equation (73) by ξ and using the double angle formula yields

0 = ξ2 + 2i sin(k∆x)
∆t

∆x

[

6a +
2

∆x2
(cos k∆x − 1)

]

ξ + 1. (74)

Defining

2β = 2i sin(k∆x)
∆t

∆x

[

6a +
2

∆x2
(cos k∆x − 1)

]

yields

0 = ξ2 + 2βξ + 1

which leads to

ξ± = −β ±
√

β2 − 1 (75)

as a solution. Note that ξ+ξ− = 1. This means that we have |β| ≤ 1 as a stability condition.

Now we have
∣

∣

∣

∣

sin k∆x
∆t

∆x

[

6a +
2

∆x2
(cos k∆x − 1)

]∣

∣

∣

∣

≤ 1. (76)

Now, note that |sin k∆x| ≤ 1 and that the largest magnitude that | cos k∆x− 1| can have is

2. Therefore, we have that

∆t

∆x

[

6a +
4

∆x2

]

≤ 1, (77)

26

which is the stability condition we wanted to prove. The stability condition can easily be

implemented in MATLAB by requiring that ∆t = (∆x)3

4
.

The leading order terms for the truncation error can be obtained by using Taylor expan-

sions. If we denote the numerical scheme by ũ and the actual solution using u, the numerical

scheme can be rewritten as

ũt =
u(t + ∆t) − u(t − ∆t)

2∆t
≈ ut +

1

6
∆t2uttt

ũ =
u(x + ∆x) + u(x) + u(x − ∆x)

3
≈ u +

1

3
∆x2uxx

ũx =
u(x + ∆x) − u(x − ∆x)

2∆x
≈ ux +

1

6
∆x2uxxx

ũxxx =
u(x + 2∆x) − 2u(x + ∆x) + 2u(x − ∆x) − u(x − 2∆x)

2∆x3
≈ uxxx

+
1

4
∆x2uxxxxx.

So, we are numerically solving

0 = ũt + 6ũũx + ũxxx ' ut + 6uux + uxxx + E(u), (78)

where the scheme has truncation error E(u) = 1
6
∆t2uttt + ∆x2{2uxuxx + uuxxx + 1

4
uxxxxx}

[3].

When the numerical results from this method were compared to the exact results in

Equation (9) in [3], it was found that all of the features of the soliton are accurate (compared

to the exact solution), except for the soliton center, whose position can be corrected by

replacing the center with

v =
dxc

dt
= 4η2 − 4

5
η4∆x2, (79)

where the first term is the velocity of the unperturbed soliton, and the second term is the

correction due to the truncation error [3]. Herman [3] analyzed this error as a perturbation

of the KdV equation to show that the main effect of numerical error is the velocity given by

27

Equation (79).

Having selected a numerical scheme to simulate the KdV, we must decide how to simulate

the noise term to allow comparison with the analytical results described by Wadati [9]. In

the next chapter, we will look at the numerical realization Gaussian white noise and it’s

integral, Brownian motion.

28

5 NUMERICAL REALIZATION OF GAUSSIAN WHITE NOISE

We have already discussed the theory behind Gaussian white noise and Brownian motion.

However, for computation purposes, we will need to use discretized Brownian motion, where

W (t) is specified at discrete t values. Let, δt = T/N for some positive integer N and let

Wj denote W (tj) with tj = jδt. Previous conditions given for Brownian motion tell us that

W0 = 0 with probability 1 and

Wj = Wj−1 + dWj, j = 1, 2, . . . , N (80)

where each dWj is an independent random variable of the form
√

δtN(0, 1). Here N(0, 1)

denotes a normally distributed random variable with zero mean and unit variance.

We can easily implement discretized Brownian motion in MATLAB, using its generic

random number function which produces an independent “pseudorandom” number from the

N(0, 1) distribution. The numbers generated by the random number generator are scaled by
√

δt and are used as increments in the FOR loop that creates the numerical array W, which

contains the cumulative sums of dW .

We can graph the path for one realization of Brownian motion. A sample MATLAB code

for a discretized Brownian path on the interval t = 0 . . . 1 with dt = .002 is given by the

following [5]:

randn(’state’,100) % set the state of randn

T = 1; N = 500; dt = T/N;

dW = sqrt(dt)*randn(1,N); % increments

W = cumsum(dW); % cumulative sum

Figure 5 is an example of Brownian motion over the interval [0, 1] with the number of points

N = 500. This code uses MATLAB’s random number generator (called randn) to produce

independent “pseudorandom” numbers from the N(0,1) distribution. The state command

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

t

W
(t

)

Discretized Brownian Path

Figure 5: Discretized Brownian path over [0, 1] with N = 500 time steps.

30

allows us to generate the same numbers each time. To generate different sets of numbers we

remove the state command. The numbers from randn are scaled by
√

δt and W is created

as an array of the cumulated sums of each of these numbers. In Figure 5 we plot W (t) vs.

t and the discrete data points have been connected with lines so the discretized Brownian

path can easily be visualized.

We recall that given a suitable function h(t), the integral
∫ T

0
h(t)dt may be approximated

by the Riemann sum
N−1
∑

j=0

h(tj)(tj+1 − tj), (81)

over the discrete points tj = jδt. Similarly, we can consider a sum of the form

N−1
∑

j=0

h(tj)(W (tj+1) − W (tj)), (82)

which can be regarded as an approximation to the stochastic integral
∫ T

0
h(t)dW (t). In this

instance, h(t) is being integrated with respect to Brownian motion.

The “derivative” of W with respect to t is

dW

dt
= η. (83)

We are interested in finding dW , so we see that

dW = ηdt. (84)

This value is called Gaussian white noise, and it is the quantity in which we are interested.

It can be approximated by ∆W = W (tj+1) − W (tj), as seen in (82).

A stochastic process {X(t), t ≥ 0} is called Gaussian, or normal, if the random vari-

ables W (t1), . . . ,W (tn) have a multivariate normal distribution for all n ≥ 1, t1, . . . , tn

[7]. Therefore, Brownian motion (and it’s derivative) is also a Gaussian process, with each

31

W (t1),W (t2), . . . ,W (tn) being expressed as a linear combination of the independent nor-

mal random variables W (t1),W (t2) − W (t1),W (t3) − W (t2), . . . ,W (tn) − W (tn−1). Also,

{dW (t), 0 ≤ t < ∞} is white because it can be imagined that a time varying function f(t)

propagates through a white noise medium (where all frequencies are being “played”) to yield

the output
∫ a

b
f(t)dW (t) [7]. This function will have zero autocorrelation over space.

Before we introduce the Gaussian white noise into the Zabusky-Kruskal scheme, we must

first confirm that our MATLAB code upholds the properties of Brownian motion (i.e. stan-

dard Wiener process) and Wadati’s identities that have previously been mentioned. In

Figure 6, we can see that this process has empirical mean close to zero and a variance

t − s = t for s = 0, as expected. For times larger than 1000 we could expect the sample

variance to be even closer to a straight line with slope of one.

Next, we want to confirm Wadati’s identities in Equations (44) and (45) [9]. The following

snippet of MATLAB code is used to confirm these identities (with varied parameters):

N=2000; eps=0.1; mu=sqrt(2*eps); s=0; dt=0.1; t1=5; t2=8;

k1=round(t1/dt+1); k2=round(t2/dt+1);

for j=1:N

t=(j-1)*dt;

r=randn(N,1);

w=zeros(N,1); w(1)=w0;

for i=2:N

w(i)=w(i-1)+mu*sqrt(dt)*r(i);

end s=s+w(k1)*w(k2); end s=s/N

The first identity we would like to investigate is given by

< W (t1)W (t2) >= 2ε min(t1, t2).

For the case 2ε = 1, with times t1 = 5 and t2 = 8, we expect < W (5)W (8) >= 5 over many

32

0 200 400 600 800 1000
−200

0

200

400

600

800

1000
Mean and Variance of 1000 samples of standard Wiener Process

time t

M
ea

n
an

d
V

ar
ia

nc
e

Mean
Variance

Figure 6: Mean and variance of 1000 samples of a standard Wiener process.

33

realizations of the noise. When we processed the previous code 1000 times we received an

answer of 4.9122. Next, we want to introduce the multiplier of µ =
√

2ε in order to give the

right expected value for products of Wiener processes. Using the previous code with ε = 0.1

should give us < W (t1)W (t2) >= 2(0.1)5 = 1.0. The answer we find is 1.0296. Because

there is some random deviation, we would like to see if taking the mean over several more

runs (2000) will help get us closer to 1. Using the previous code snippet, we arrive at an

answer of 1.0296. Finally, to check the expected value for general times (with dt = .1), we

use the previous code and found an answer of 1.0113 (which is even closer to 1).

The other identity to confirm is

< exp(cW (t)) >= exp(
1

2
< W 2(t) >).

We see the results of our MATLAB code in Figure 7. In Figure 7 we can see that this

identity is approximately confirmed. If we increased the number of runs the lines should be

almost indistinguishable.

In the next chapter we will show how we can present our simulation results for the KdV

equation with and without noise.

34

0 0.5 1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

mean W(t)

m
ea

n
W

2

W(t)2

eW(t)

Figure 7: < exp(cW (t)) > vs. exp(1
2

< W 2(t) >) confirming Wadati’s identity.

35

6 STOCHASTIC KDV CODE

From the beginning, we have been interested in comparing our results to Wadati’s ([9]

and [10]) for large times (t → ∞). Unfortunately, we found that our initial code for the

Zabusky-Kruskal scheme (herein ZK scheme) required at least 90000 time steps (using varied

parameters), in addition to the code for calculating the exact solution for comparison reasons

(otherwise we would not be following the soliton long enough). On a computer with a 2.6

gHZ Intel P4 processor and 512 MB of RAM, our initial code required nearly 50 hours.

To fully utilize the computing resources we have, it is therefore necessary to explore how

MATLAB allocates memory and computes expressions using loops.

The following is a snippet of the initial code we wrote to compute each solution of the

stochastic KdV:

for count=1:runs

% Generate Gaussian noise

for j=1:Tsteps

dW(j)=mu*sqrt(dt)*randn;

end;

% Time Loop

for i=3:Tsteps

% Generate solution using Zabusky-Kruskal scheme

for j=3:N-1

u2(j)=u0(j)-((2*dt*u1(j+1))/(dx))*(u1(j+1)-u1(j-1)+...

u1(j)+u1(j-1)-1/(dx^2))+((2*dt*u1(j-1))/(dx))*...

(u1(j)+u1(j-1)-1/(dx^2))-(dt*u1(j+2))/dx^3+...

(dt*u1(j-2))/dx^3+(dW(i)+dW(i-1));

end;

end;

Of course this is only part of the code, but we are interested in looking at the repeated

calculations required when we implement the ZK scheme in this way. In this snippet, we

see that there are three nested for loops that must be run for MATLAB to compute one

solution of the KdV equation using the ZK scheme. We also see that there is a fourth loop

required to generate Gaussian noise. If the arrays (u0,u1,u2,dW) are not initialized in order

from largest to smallest, not only could it take MATLAB up to 50 hours to complete 500

runs, but we would be limited by the computer’s RAM.

Fortunately, MATLAB supports vectorization (as seen at the MATLAB homepage), or

the process of writing code that utilizes matrix operations or other fast built-in functions

instead of using time consuming loops. The following is a sample of the code we used for

vectorization:

A=(spdiags(-2*ones(N1),1,N1,N1)+spdiags(ones(N1),2,N1,N1)

...+spdiags(2*ones(N1),-1,N1,N1)

...+spdiags(-ones(N1),-2,N1,N1))*dt/dx^3;

B=(spdiags(ones(N1),1,N1,N1)+spdiags(-ones(N1),-1,N1,N1))*dt/dx;

C=(spdiags(ones(N1),1,N1,N1)+spdiags(ones(N1),0,N1,N1)

...+spdiags(ones(N1),-1,N1,N1))*2;

D=spdiags(ones(Tsteps),0,Tsteps,Tsteps)+...

spdiags(ones(Tsteps),-1,Tsteps,Tsteps); for chunk=1:NChunks

for i=istart:Tsteps

for count=1:runs

dW=mu*sqrt(dt)*randn(1,Tsteps);

% Generate solution using Zabusky-Kruskal scheme with

% vectorization.

% The separate terms are given in vectorized form as

37

% UXXX=A*u1;

% UX=B*u1;

% U=C*u1;

% u2 = uu0-UXXX-U.*UX;

u2 = u0 -A*u1-(C*u1).*(B*u1)+ddW(i)*ones(size(u0));

end;

end;

end;

Here u0 is the solution with the initial condition, u1 is the first solution after the initial

condition, and u2 is used to compute the rest of the solution of the ZK scheme. UXXX

is given by A*u1, which means that the first solution after the initial is multiplied by the

matrix A (which sets up sparse matrices for the actual ZK scheme). The other terms of

the KdV equation are computed similarly. We decided to use chunks and timesteps so that

the individual matrix computations could be handled by MATLAB. Otherwise, MATLAB’s

allocated memory would fill up before computation is complete.

This code does essentially the same thing as the previous code. There are still three

FOR loops present in the code, but now all of the calculations are done using the matrix

operator .* (which performs cumulative multiplications on all elements of the array at one

time instead of one at a time). All of the arrays are now initialized earlier in the code from

biggest to smallest, which aids MATLAB’s memory allocation since the smaller arrays can fit

in the “holes” in memory created by the bigger ones. Also, pre-allocation of arrays prevents

MATLAB from continuously setting up arrays during the run. We also use sparse matrices

in our setup to save space, since sparse matrices remove all extra zeros while retaining the

general form and structure of the code.

Using the code KDV TIME CHECK found in the Appendix, we find that running this

code with 2000 time steps takes 1.859 seconds to complete with FOR loops and 1.125 seconds

with vectorization (all parameters are the same for each block of code). While this does not

38

appear significant, if we calculate how long it would take to do a run with 90000 time steps

500 times, we see that with FOR loops it will take 11 hours and with vectorization it will

only take up to 5 hours. This is a big difference! Coupled with the fact that without proper

array allocation running the code with FOR loops can take up to an estimated 50 hours for

each parameter set explored. Vectorization is a very important thing to consider.

Now we must confirm that the ZK scheme gives us results close to those of the exact

KdV (ut + 6uux + uxxx = 0) for the one soliton solution. To do this, we ran the vectorized

code given in the appendix for one run. Figure 9 gives us the error between the numerical

scheme and exact solution generated by the vectorized code. As we can see, when the code

is considered on the interval x ∈ [−10, 40] with 16000 time steps (dt ≈ .7), the relative error

between the ZK scheme and the exact solution is on the order of 10−3. The small fluctuations

seen in Figure 9 are present because the ZK scheme has a truncation error on the order of

O(∆t2 + ∆x2). Therefore, the error is sufficiently small; we now have a scheme that can be

used to simulate the KdV equation.

We are next interested in seeing how the ZK scheme compares to the exact solution when

noise is introduced (as seen in equation (31)) and the ensemble average is computed. We

processed the vectorized code for 500 runs, where a “run” is defined as one realization of

the solution; these solutions are then averaged over the 500 runs. Each of these runs was

done on the domain [−10, 40] × [0, 4] with 16000 time steps (using dt = dx3

4
), as was done

before, and the L∞ norm of the maximum value of the differences in amplitude for both the

ZK scheme and the exact solution was found. The following table shows the error of the ZK

scheme when compared to the exact solution for each given ε:

In Table 1 the norm column contains theL∞ norms of the differences of the numerical

and exact data. We can see that the errors begin on the order of 10−2 and are slightly larger

or smaller as ε gets smaller and smaller (as expected, as smaller ε means less influence on

the numerical scheme).

Having succeeded in improving the efficiency of the code, we must decide how many runs

39

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

time t

m
ax

 a
m

pl
itu

de

exact
numerical

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time t

m
ax

 a
m

pl
itu

de

exact
numerical

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

time t

m
ax

 a
m

pl
itu

de

exact
numerical

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

time t

m
ax

 a
m

pl
itu

de

exact
numerical

(c) (d)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

time t

m
ax

 a
m

pl
itu

de

exact
numerical

(e)

Figure 8: Amplitude decay using the ZK scheme and the exact solution for η = 2 and
ε = 0.01 showing (a) 100 runs through (f) 500 runs.

40

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
x 10

−3

time t

m
ax

im
um

 e
rr

or
 o

f e
xa

ct
 v

s.
 n

um
er

ic
al

Figure 9: Maximum Error comparing the ZK scheme to the Exact solution with velocity
correction.

41

Numerical Vs. Exact
Epsilon Norm

.1 0.023
.01 0.005
.001 0.009
.0001 0.006
.00001 0.006

.5 0.067
.05 0.010
.005 0.003
.0005 0.007
.00005 0.006

.25 0.018
.025 0.011
.0025 0.004
.00025 0.006
.000025 0.006

Table 1: Absolute Norms of errors of Numerical vs. Exact.

42

to do to get the smallest error possible. Figure 8 justifies why we chose to do 500 runs to

get the best possible data. These runs were done on the domain [−10, 40] × [0, 4] for 16000

time steps with an ε of 0.1. As we progress from (a) to (e), we see that the ZK scheme’s

amplitude begins to converge closer and closer to the exact solution with minimum amount

of error. The best fit is seen in figure (e), where 500 runs were completed. We decided to

keep 500 runs as the maximum number of runs because of the error and computing time

constraints.

43

7 RESULTS

We present here the results of our simulations using the vectorized code. As we can see from

Figure 8, the amplitude of the soliton decreases largely by the end of the interval we are

observing. Therefore, it seems that Wadati’s “diffusion” does appear in the results. However,

more experimentation is required to verify Wadati’s prediction of a decay on the order of

t−3/2 for no damping and t−1/2 e−γt for damping.

Figure 10 shows 500 runs for several values of ε and η, over the space interval [−10, 40].

As we can see in Figures 10 (a-b), with η = 1.5, there is almost no difference between

the ZK scheme and the exact solution with varied ε. However, in Figures 10 (c-d), with

η = 2.0, there is some deviation around t = 2.5. This deviation is not seen when we increase

the x-interval to a new interval of [−10, 90] and increase the number points sampled from

N = 500 to N = 1000 (this way dx and dt is not affected), as depicted in Figure 11. Here,

the numerical solution is closer to the exact solution. So, any time the soliton has η = 2.0

(or greater), a larger x-interval needs to be used to reduce the error in averaging. This is

necessary because the soliton travels faster and some “walk” off due to Brownian motion.

Now we want to verify that the decay of these averaged solutions is on the order of

t−3/2 for no damping as Wadati predicted. Figure 12 shows a log-log plot of 500 runs with

maximum amplitude versus the time of the averaged numerical solution (with ε = .05 and

η = 1.5 for 16000 time steps): As we see in Figure 12, the amplitude exhibits a power law

behavior for t > 1 which satisfies t3 >> 1
48η2ε

. We want to look at the linear portion of

the log-log plot and use MATLAB’s polynomial fit function so we can estimate the slope.

Namely, if y = Atb, then ln y = b ln t + ln A. Therefore, the slope of the linear fit for ln y vs,

ln t gives us the decay constant b that were are seeking.

We found the linear regression line using MATLAB’s polynomial fit function. We see in

Figure 13 that the lines are almost indistinguishable, and from the linear fit we get a slope of

−1.47 ± .01 (this was found using the formula for uncertainty found in [4]). The confidence

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time t

m
ax

 a
m

pl
itu

de

exact
numerical

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time t
m

ax
 a

m
pl

itu
de

exact
numerical

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

time t

m
ax

 a
m

pl
itu

de

exact
numerical

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

time t

m
ax

 a
m

pl
itu

de

exact
numerical

(c) (d)

Figure 10: Plot of < u(x, t) >max vs. t for both the exact and numerical solutions to the
KdV for parameters: (a): η = 1.5 and ε = 0.05, (b): η = 1.5 and ε = 0.1, (c): η = 2 and
ε = 0.05, (d): η = 2 and ε = 0.1.

45

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

time

am
pl

itu
de

500 runs for ε =.1 and η =2

exact
numerical

Figure 11: Amplitude vs. time plot for 500 runs on a larger x-interval ([−10, 90]) with ε = .1
and η = 2.

−6 −5 −4 −3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

log t

lo
g(

am
p)

Figure 12: Plot of log(amplitude) vs. log(time) for data in Figure 11.

46

Figure 13: Linear portion of the log-log plot of amplitude vs. time with a linear fit for data
in Figure 11.

47

interval is based on an r2 value of .9879, which means that our linear fit explains 98% of the

variation of the log-log values. Therefore, Wadati’s prediction of the decay order being t−3/2

is seen in our numerical simulations.

We next looked at how damping effects the amplitude of the soliton with and withouse

noise. Recall the theoretical solution in Equation (64)

< u(x, t) >=
η2

√
πb

∫ ∞

−∞
e−(a−s)2/4b sech2 s

2
ds, (85)

where

a = 2η(x − x0 − 2η2t) (86)

and

b =
36η2

εγ2

[

2εγt − 3 + 4e−εγt − e−2εγt
]

(87)

First, we want to look at the integral solution for < u(x, t) > in Equation (85) to see

how noise and damping both effect the amplitude decay of the soliton. We can find the

peak < u(x, t) >max, by setting a = 0 and numerically integrating. This is done by using

MATLAB’s quad function and we found that our numerical integral produced little error.

In Figure 14 we show some of our results for different values of γ and ε. We start with

small γ and small ε in the upper left hand corner and progress to large γ and large ε in the

bottom right hand corner. As is expected, when small damping and small noise are present,

the amplitude decays slower than in the presence of larger damping and larger noise. The

interesting fact in Figure 14 is that in the presence of larger damping and little noise (for

example γ = 0.3, 0.5 and ε = 0.01, 0.1), it appears that the amplitude’s decay does not

depend on the noise as much as it does on the damping. We will verify that the numerical

solution of the stochastic KdV also exhibits this behavior.

As we have done before, we now want to explore the results we get when we apply our

modified Zabusky-Kruskal numerical method to the damped, stochastic KdV equation and

48

0 5
0

1

2
γ = 0.01 ε = 0.01

0 5
0

1

2
γ = 0.01 ε = 0.1

0 5
0

1

2
γ = 0.01 ε = 0.3

0 5
0

1

2
γ = 0.01 ε = 0.5

0 5
0

1

2
γ = 0.1 ε = 0.01

0 5
0

1

2
γ = 0.1 ε = 0.1

0 5
0

1

2
γ = 0.1 ε = 0.3

0 5
0

1

2
γ = 0.1 ε = 0.5

0 5
0

1

2
γ = 0.3 ε = 0.01

0 5
0

1

2
γ = 0.3 ε = 0.1

0 5
0

1

2
γ = 0.3 ε = 0.3

0 5
0

1

2
γ = 0.3 ε = 0.5

0 5
0

1

2
γ = 0.5 ε = 0.01

0 5
0

1

2
γ = 0.5 ε = 0.1

0 5
0

1

2
γ = 0.5 ε = 0.3

0 5
0

1

2
γ = 0.5 ε = 0.5

Figure 14: Amplitude vs. time plots for different values of γ (damping) and ε (noise) using
the integral solution.

49

0 2 4 6 8
0

0.5

1

1.5

2
γ = 0.01

0 2 4 6 8
0

0.5

1

1.5

2
γ = 0.1

0 2 4 6 8
0

0.5

1

1.5

2
γ = 0.3

0 2 4 6 8
0

0.5

1

1.5

2
γ = 0.5

0.01 0.1 0.3 0.5

Figure 15: Amplitude vs. time plots for different values of γ (damping) and ε (noise; on the
legend) using the ZK scheme.

50

take an ensemble average. We will look at different values of γ and ε to see if our numerical

results are close to those of the integral solution in Equation (64). In Figure 15, we see that

using small γ values and small ε (0.01) values leads to the slower decay of the soliton than

for larger values of γ and ε (larger values are 0.5). As we increase the values of ε and γ, we

see the decay at a faster rate. These results are exactly as we had expected based upon the

integral solution in Equation (85) because larger γ means more decay.

Now we want to make sure noise effects the soliton in the way it should. In Figure 16,

we see a group plot with varied ε values. The decay of the amplitude is the same as before,

with larger values meaning faster decay. Figure 16 also shows us the large effect that noise

has on damping, where a large presence of noise means faster decay.

Now that we are satisfied that the modified Zabusky-Kruskal numerical scheme yields

results that are close to Wadati’s integral solution for < u >max, we want to make sure that

the number of runs we chose (500) is sufficient for giving us good results. In Figure 17

we see that not only do the amplitude plots look like they should, but also that the curve

obtained using 500 runs is indistinguishable from that using 1500 runs. Technically, using

1500 runs gives a sample average with smaller variance, but we also have to take computing

constraints into consideration. Although it is harder to see the curves for large noise and

damping levels, we can see that for small values of noise strength (ε = 0.01) the solutions

are visually close to each other.

We are finally ready to see if the decay order is close to the predicted value of t−1/2 e−γt

for damping. Figure 18 has a time interval of [0, 10] and as we can see, small values of ε

and small values of γ give us a decay order greater than t−1/2, which is not what Wadati and

Akustu predicted in [10]. However, for large values of ε and γ, we see that the decay order

is a lot closer to t−1/2. Therefore, we are interested in seeing how far out in time we should

go to get a closer decay order of t−1/2. In Figure 19 we display the integral solution for the

time interval [0, 100]. The best result (-0.516) we obtained is for γ = 0.5 and ε = 0.5. Even

this value has a 3.1% error. Thus, we are not able to confirm the exact value for the decay

51

0 2 4 6 8
0

0.5

1

1.5

2
ε = 0.01

0 2 4 6 8
0

0.5

1

1.5

2
ε = 0.1

0 2 4 6 8
0

0.5

1

1.5

2
ε = 0.3

0 2 4 6 8
0

0.5

1

1.5

2
ε = 0.5

0.01 0.1 0.3 0.5

Figure 16: Amplitude vs. time plots for different values of ε (noise; on the legend) and γ
(damping) using the ZK scheme.

52

0 5
0

1

2
γ = 0.01 ε = 0.01

0 5
0

1

2
γ = 0.01 ε = 0.1

0 5
0

1

2
γ = 0.01 ε = 0.3

0 5
0

1

2
γ = 0.01 ε = 0.5

0 5
0

1

2
γ = 0.1 ε = 0.01

0 5
0

1

2
γ = 0.1 ε = 0.1

0 5
0

1

2
γ = 0.1 ε = 0.3

0 5
0

1

2
γ = 0.1 ε = 0.5

0 5
0

1

2
γ = 0.3 ε = 0.01

0 5
0

1

2
γ = 0.3 ε = 0.1

0 5
0

1

2
γ = 0.3 ε = 0.3

0 5
0

1

2
γ = 0.3 ε = 0.5

0 5
0

1

2
γ = 0.5 ε = 0.01

0 5
0

1

2
γ = 0.5 ε = 0.1

0 5
0

1

2
γ = 0.5 ε = 0.3

0 5
0

1

2
γ = 0.5 ε = 0.5

100 250 500 1000 1500

Figure 17: Amplitude vs. time plots for different values of ε and γ with number of runs on
the legend.

53

0 0.5 1

−4

−2

0
γ = 0.01 ε = 0.01

−1.43

0 0.5 1

−4

−2

0
γ = 0.01 ε = 0.1

−1.431

0 0.5 1

−4

−2

0
γ = 0.01 ε = 0.3

−1.431

0 0.5 1

−4

−2

0
γ = 0.01 ε = 0.5

−1.431

0 0.5 1

−4

−2

0
γ = 0.1 ε = 0.01

−0.996

0 0.5 1

−4

−2

0
γ = 0.1 ε = 0.1

−0.997

0 0.5 1

−4

−2

0
γ = 0.1 ε = 0.3

−0.997

0 0.5 1

−4

−2

0
γ = 0.1 ε = 0.5

−0.997

0 0.5 1

−4

−2

0
γ = 0.3 ε = 0.01

−0.667

0 0.5 1

−4

−2

0
γ = 0.3 ε = 0.1

−0.672

0 0.5 1

−4

−2

0
γ = 0.3 ε = 0.3

−0.672

0 0.5 1

−4

−2

0
γ = 0.3 ε = 0.5

−0.672

0 0.5 1

−4

−2

0
γ = 0.5 ε = 0.01

−0.583

0 0.5 1

−4

−2

0
γ = 0.5 ε = 0.1

−0.592

0 0.5 1

−4

−2

0
γ = 0.5 ε = 0.3

−0.593

0 0.5 1

−4

−2

0
γ = 0.5 ε = 0.5

−0.593

Figure 18: Power law decay rates for various realizations of noise and damping.

54

0 1 2

−4

−2

0
γ = 0.01 ε = 0.01

−1.201

0 1 2

−4

−2

0
γ = 0.01 ε = 0.1

−1.201

0 1 2

−4

−2

0
γ = 0.01 ε = 0.3

−1.201

0 1 2

−4

−2

0
γ = 0.01 ε = 0.5

−1.201

0 1 2

−4

−2

0
γ = 0.1 ε = 0.01

−0.594

0 1 2

−4

−2

0
γ = 0.1 ε = 0.1

−0.594

0 1 2

−4

−2

0
γ = 0.1 ε = 0.3

−0.594

0 1 2

−4

−2

0
γ = 0.1 ε = 0.5

−0.594

0 1 2

−4

−2

0
γ = 0.3 ε = 0.01

−0.527

0 1 2

−4

−2

0
γ = 0.3 ε = 0.1

−0.528

0 1 2

−4

−2

0
γ = 0.3 ε = 0.3

−0.528

0 1 2

−4

−2

0
γ = 0.3 ε = 0.5

−0.528

0 1 2

−4

−2

0
γ = 0.5 ε = 0.01

−0.515

0 1 2

−4

−2

0
γ = 0.5 ε = 0.1

−0.516

0 1 2

−4

−2

0
γ = 0.5 ε = 0.3

−0.516

0 1 2

−4

−2

0
γ = 0.5 ε = 0.5

−0.516

Figure 19: Power law decay rates for various realizations of noise and damping.

55

order, because we have to go so far out in time to get values close to −1/2; it is possible that

the soliton has dispersed completely by then and we are only picking up background noise.

We still want to look at the numerical solution and see what we get for the decay order,

so we do the same analysis that was previously done without damping. In Figure 20 we

show a log-log plot for the data we have generated with 2000 runs for damping. We see that

towards the end of the time interval that there is a lot of deviation. This is because we have

not gone far enough out into time ([0, 4]) with our runs. So, we try and find a region where

the graph is linear. In Figure 21 we notice that the regression line looks like it fits our data

fairly well. We get a decay order of −1.63 ± .03 (using the formula for uncertainty found

in [4]). The r2 value we are given for this linear fit is .9099, so 91% of the variation of our

log-log data is explained by this linear fit. This is to be expected as our log-log data is not

as smooth as it was before with our noise data.

We are also interested in trying our scheme for the two-soliton solution of the KdV

equation. In Figure 22, we see that the behavior of the waves is exactly what we expect

in the classical sense, the only thing that changes about the waves once they collide is their

position in time, everything else about the wave stays the same. In Figures 23 and 24

we see that the Zabusky-Kruskal generated soliton solution follows the exact solution fairly

closely, but some oscillations are present in Figure 23 due to numerical error. The general

behavior of the ZK soliton remains the same however.

Now, we are interested in looking at the effect of damping and noise on the two soliton

solution. As we can see in Figure 25, the two soliton solution with damping and noise follows

the same basic path as the unperturbed two soliton solution. However, in Figures (26)-(28),

we see that as ε and γ increase, the waves decay much quicker, sometimes before their

collision is complete. Our numerical scheme has a problem with tracking the soliton since

the soliton is basically nonexistent after its diffusion. In Figure 29, we plot the amplitude

vs. time for the ZK soliton against that of the exact solution with the decaying amplitudes

coming from the ZK scheme. We see that the amplitudes of both solitons decay in the same

56

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

log t

lo
g(

am
p)

Figure 20: Plot of log(amplitude) vs. log(time) for γ = 0.5 and ε = 0.5.

57

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

log t

lo
g(

am
p)

log data
linear fit

Figure 21: Linear portion of log-log plot of amplitude vs. time with linear fit for γ = 0.5
and ε = 0.5.

58

Figure 22: 3D plot of the two soliton solution using the Zabusky-Kruskal Scheme.

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5
Amplitude vs Time

time

am
pl

itu
de

Figure 23: Amplitude vs. time for the two soliton solution using the Zabusky-Kruskal
Scheme. Black and red represent the exact solution and blue and green represent the nu-
merical solution.

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−10

−8

−6

−4

−2

0

2

4

6
Position vs Time

time

po
si

tio
n

Figure 24: Position vs. time for the two soliton solution using the Zabusky-Kruskal Scheme
showing soliton interaction. Black and red represent the exact solution and blue and green
represent the numerical solution.

61

Figure 25: Damped stochastic two soliton solution for ε = 0.01 and γ = 0.01.

62

Figure 26: Damped stochastic two soliton solution for ε = 0.5 and γ = 0.01.

63

Figure 27: Damped stochastic two soliton solution for ε = 0.01 and γ = 0.5.

64

Figure 28: Damped stochastic two soliton solution for ε = 0.5 and γ = 0.5.

65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5
Amplitude vs Time for ε=.01 and γ=.01

time

am
pl

itu
de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9
Amplitude vs Time for ε=.5 and γ=.01

time
am

pl
itu

de

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

3

4

5

6

7

8

9
Amplitude vs Time for ε=.01 and γ=.5

time

am
pl

itu
de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

0

1

2

3

4

5

6

7

8

9
Amplitude vs Time for ε=.5 and γ=.5

time

am
pl

itu
de

(c) (d)

Figure 29: Amplitude vs. time showing two soliton interaction with varying values of ε
and γ. Here black and red represent the exact solution and blue and green represent the
numerical solution.

66

way as we saw for the one soliton solution: faster decay for large ε and γ. For large values

of ε, the amplitudes of the wave appear to decay almost to zero. The severe oscillations in

Figure 29 ((b) and (d)) are most likely due to the fact that we expected two peaks to be

present; however, when the two solitons interact there is only peak present, so we pick up

extraneous information. This is readily seen on the time interval [0.3, 0.5] (near where the

two solitons collide).

Finally, in Figure 30, we see that for small values of ε and γ, the positions of the solitons

are almost exactly the same as their nonperturbed counterparts. However, for large values of

ε and γ, the positions are displaced considerably. The explanation is that as the amplitudes

of the solitons decay; the solitons will travel much slower or they are lost in the background

noise. It is also much harder to follow both solitons in the region of the interaction or the

peak range. This behavior is seen again with severe oscillations present on the time interval

[0.3, 0.5].

In conclusion, we found just like the one soliton soluton, the two soliton solution is

affected by noise and damping in the same way, with more damping and more noise causing

the waves to diffuse and disperse. We should only track the solitons when the peaks can be

found so we can get an idea as to the area in which they interact.

67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−10

−8

−6

−4

−2

0

2

4

6
Position vs Time for ε=.01 and γ=.01

time

po
si

tio
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−10

−5

0

5

10

15

20
Position vs Time for ε=.5 and γ=.01

time

po
si

tio
n

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−10

−8

−6

−4

−2

0

2

4

6
Position vs Time for ε=.01 and γ=.5

time

po
si

tio
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−10

−5

0

5

10

15

20
Position vs Time for ε=.5 and γ=.5

time

po
si

tio
n

(c) (d)

Figure 30: Position vs. Time showing two soliton interaction with varying values of ε and γ.
Here black and red represent the exact solution and blue and green represent the numerical
solution.

68

8 CONCLUSION

In this thesis, we have studied the KdV equation (1), the stochastic KdV equation with noise

(2), the stochastic KdV equation with damping (3), and the two-soliton solution to the KdV

equation (4).

We have found that the finite difference scheme for the KdV equation, the Zabusky-

Kruskal method, as explained in Chapter 4, is accurate enough to be employed in simulating

both the unperturbed KdV equation and the damped stochastic KdV equation, as long as

there is a correction term added to take into consideration that the numerical soliton will be

moving slower than the actual soliton [3].

We have also found that when employing the Zabusky-Kruskal scheme for the stochastic

KdV, Gaussian white noise can be generated with little numerical error, and our results

follow those found in Wadati [9]. Our numerical scheme produces results that follow his

exact integral very closely, and that the decay found when looking at the average solutions

of the noise perturbed solitons approaches t−3/2, exactly as Wadati predicted. The Zabusky-

Kruskal scheme also performs well when compared to the exact integral Wadati and Akutsu

predicted in [10], and although we did not get exactly what they predicted for the decay order

of the damped soliton (t−1/2 e−γt) we succeeded in showing that the soliton behaves exactly

as predicted, both for the damping case and the damping with noise case. Vectorization

of the code used to generate these numerical results is required as MATLAB is not used

effectively otherwise.

Finally, we have found that for the exact two-soliton solution, the Zabusky-Kruskal

scheme’s results are close to those predicted for both noise and damping, as the waves

follow the behavior outlined in [12] and [6].

Further avenues of research include looking at other numerical methods to simulate the

stochastic KdV, further study of the damped soliton case to see why the slope of decay does

not exactly match up for the numerical and exact, and studying different colors of noise to

see their effect on the soliton. Another way to track the solitons in the two soliton solution

should also be found so we can keep up with the peak even as it is lost in the background

noise. It may be possible for our code to be expanded to use other wave forms as well.

70

REFERENCES

[1] P. G. Drazin and R. S. Johnson, “Solitons: an Introduction,” New York: Cambridge

University Press, 1989.

[2] R. L. Herman, “Solitary Waves,” American Scientist, vol. 80, July-August 1992, 350-

361.

[3] R. L. Herman and C. J. Knickerbocker, “Numerically Induced Phase Shift in the KdV

Soliton,” Journal of Computational Physics, vol. 104, no. 1, January 1993, 50-55.

[4] Jack Higbie, “Uncertainty In The Linear Regression Slope,” American Journal of

Physics, vol. 59, no. 2, 1990, 184-185.

[5] Desmond J. Higham, “An Algorithmic Introduction to Numerical Simulation of Stochas-

tic Differential Equations,” SIAM Review, vol. 43, no. 3, 2001, 525-546.

[6] G. L. Lamb, Jr., “Elements of Soliton Theory,” New York: John Wiley & Sons, 1980.

[7] Sheldon M. Ross, “Introduction to Probability Models,” Sixth Ed., San Diego: Aca-

demic Press, 1997.

[8] A. C. Vliegenthart, “On Finite-Difference Methods for the Korteweg-de Vries Equation,”

Journal of Engineering Mathematics, vol. 5, no. 2, April 1971, 137-155.

[9] Miki Wadati, “Stochastic Korteweg-de Vries Equation,” Journal of the Physical Society

of Japan, vol. 52, no. 8, August 1983, 2642-2648.

[10] Miki Wadati and Yasuhiro Akutsu, “Stochastic Korteweg-de Vries Equation with and

without Damping,” Journal of the Physical Society of Japan, vol. 53, no. 10, October

1984, 3342-3350.

[11] G. B. Whitham, “Linear and Nonlinear Waves,” New York: John Wiley & Sons, 1974.

[12] Tohru Yoneyama, “The Korteweg-de Vries Two-Soliton Solution as Interacting Two

Single Solitons,” Prog. Theor. Phys., V 71, # 4, April 1984, 843-846.

72

APPENDIX

ZK SCHEME CODE BEFORE VECTORIZATION

% This code uses the Zabusky-Kruskal scheme and Brownian motion to

% simulate the Stochastic KdV equation with white noise.

clear

% sKdV Parameters

eta=1.0; x0=5.0; a=-10; b=20; epsilon = 0.01;

% Run Parameters

runs=300; Tsteps=90000; N=500;

% Time and space increments

x=linspace(a,b,N+1); dx=(b-a)/N; dt=dx^3/4; t=(0:Tsteps-1)*dt;

% Noise initialization

mu=sqrt(2*epsilon); dW=zeros(1,N);

% Initialize Ensemble Average of Soliton Solutions

uu=zeros(Tsteps,N+1);

% Loop through several ensembles

for count=1:runs

count

% Generate Gaussian noise

for j=1:Tsteps

dW(j)=mu*sqrt(dt)*randn;

end;

% Brownian motion and its first integral

Iw=zeros(Tsteps,1);

w(1)=0;

Iw(1)=w(1)/2*dt;

for j=2:Tsteps

w(j)=w(j-1)+dW(j);

Iw(j)=Iw(j-1)+(w(j-1)+w(j))/2*dt;

end

% Calculate u0 and u1 from exact solution for first data points

u0=funckdv(x,0,eta,x0);

u1=funckdv(x,dt,eta,x0);

u2=zeros(size(u0));

uu(1,:)=uu(1,:)+u0;

uu(2,:)=uu(2,:)+u1;

% Time Loop

for i=3:Tsteps

% Generate solution using Zabusky-Kruskal scheme

for j=3:N-1

u2(j)=u0(j)-((2*dt*u1(j+1))/(dx))*...

74

(u1(j+1)-u1(j-1)+u1(j)+...

u1(j-1)-1/(dx^2))+((2*dt*u1(j-1))/(dx))*...

(u1(j)+u1(j-1)-...

1/(dx^2))-(dt*u1(j+2))/dx^3+...

(dt*u1(j-2))/dx^3+(dW(i)+...

dW(i-1));

end;

% Set boundary conditions to account for

% background noise level

% and forcing first derivatives to

% vanish on the ends

u2(1)=mean(u2(N-1-N/50:N-1));

u2(2)=u2(1);

u2(N+1)=u2(2);

u2(N)=u2(1);

% Update u0 and u1 for next run

u0=u1;

u1=u2;

uu(i,:)=uu(i,:)+u2;

end;

end;

% Calculate final value of uu

uu=uu/runs;

75

ZK SCHEME CODE AFTER VECTORIZATION

% This code uses the Zabusky-Kruskal scheme and Brownian motion to

% simulate the Stochastic KdV equation with white noise, with

% vectorization

% Due to memory allocation, we break up the code into time chunks -

% Revised

clear

% sKdV Parameters

% eta and x0 are soliton parameters

% Space interval is [a,b]

% Noise strength is given by epsilon and mu

% epsilon is in noise correlator

% mu is in the Gaussian white noise term

eta=1.0; x0=5.0; a=-10; b=40; epsilon = 0.1; mu=sqrt(2*epsilon);

% Run Parameters

%

% runs = Number of realizations over the noise

% Tsteps = Number of time steps per chunk

% NChunks = Number of time interval intervals of length Tsteps

% TTotal = Total number of time steps

% N = Number of spatial subintervals

76

% Tinc = Increment used for saving averages

% TSave = Number of time steps used for saving averages

runs=1; Tsteps=2000; NChunks = 8; TTotal = Tsteps*NChunks; N=500;

Tinc=10; TSave = TTotal/Tinc; cnt1=0; cnt2=0; cnt3=0;

% Time and space increments

dx=(b-a)/N; dt=dx^3/4; t=(0:TTotal-1)*dt; x=linspace(a,b,N+1);

vel=4*eta^2-4/5*eta^4*dx^2;

% Array Initializations - Grouped roughly largest to smallest

disp(’Inititializing arrays ...’)

uu=zeros(TSave,N+1);

uexave=zeros(TSave,N+1);

uex=zeros(Tsteps,N+1);

W=zeros(Tsteps,N+1);

u0old=zeros(runs,N+1);

u1old=zeros(runs,N+1);

totruns=zeros(size(1:TSave));

u0=zeros(size(1:N+1));

u1=zeros(size(u0));

u2=zeros(size(u0));

ichunk=zeros(size(1:Tsteps));

tchunk=zeros(size(ichunk));

w=zeros(size(ichunk));

dW=zeros(size(ichunk));

IW=zeros(size(ichunk));

77

dWold=zeros(size(1:runs));

wold=zeros(size(1:runs));

Iwold=zeros(size(1:runs));

ichunk2=zeros(size(1:Tsteps/Tinc));

tchunk2=zeros(size(ichunk2));

m=zeros(NChunks,1);

time=zeros(size(1:NChunks));

% uxxx and ux matrix factors using sparse matrix function spdiag

%

% A B C are for Zabusky Kruskal Scheme

% D is for noise term

N1=N+1; A=(spdiags(-2*ones(N1),1,N1,N1)+spdiags(ones(N1),2,N1,N1)

...+spdiags(2*ones(N1),-1,N1,N1)...

+spdiags(-ones(N1),-2,N1,N1))*dt/dx^3;

B=(spdiags(ones(N1),1,N1,N1)+spdiags(-ones(N1),-1,N1,N1))*dt/dx;

C=(spdiags(ones(N1),1,N1,N1)+spdiags(ones(N1),0,N1,N1)

...+spdiags(ones(N1),-1,N1,N1))*2;

D=spdiags(ones(Tsteps),0,Tsteps,Tsteps)+...

spdiags(ones(Tsteps),-1,Tsteps,Tsteps);

% Loop through time chunks

disp(’Computing ...’)

h = waitbar(0,’Please wait...

’,’Name’,’Zabucheck’);

for chunk=1:NChunks

78

chunk;

t0=clock;

% The computation is broken into chunks to conserve on memory

% allocation to large matrices. Each chunk consists of Tsteps

% time steps. The interval goes from it01 to it1. All indices are

% grouped as ichunk = it01:it1 and the corresponding times are

% given as tchunk. ichunk2 is the set of indices used to saving

% the averages in steps of Tinc. tchunk2 saves the

% corresponding times.

it0=(chunk-1)*Tsteps;

it1=chunk*Tsteps;

it01=it0+1;

ichunk=it01:it1;

ichunk2=(it0/Tinc+1):(it1/Tinc);

tchunk = t(ichunk);

tchunk2(ichunk2) = t(it01:Tinc:it1);

% Loop through several ensembles

for count=1:runs

waitbar((chunk-1+count/runs)/NChunks ,

...h ,[’Chunk = ’ num2str(chunk) ’ Run = ’ num2str(count)])

% Generate Gaussian noise

%

% dW gives the Brownian noise increments

% w is the Brownian noise and needs the total over increments

% over all chinks. Thus wold saves the previous value for a

79

% given run. Iw is the integral of

% w from t=0 and is needed for the exact solution.

% Iwold saves integral over previous chunks

% for each run. ddW is the numerical discretization of the

% Gaussian white needed in the sKdV. It is an average of two

% values of neighboring increments where the 2 is suppressed

% due to the 2dt in the forward difference

% approximation of ut.

dW=mu*sqrt(dt)*randn(1,Tsteps);

w=wold(count)+cumsum(dW);

wold(count)=w(Tsteps);

Iw=Iwold(count)+(cumsum(w)-w/2-w(1)/2)*dt;

Iwold(count)=Iw(Tsteps);

ddW = D*dW’;

if chunk>1

ddW(1)=dW(1)+dWold(count);

end

dWold(count)=dW(Tsteps);

% Generate Exact Solution

%

% The computation of the exact solution is done using

% vectorization and the sum of each run for all space and

% time is saved.

amp=2*eta^2;

[X,T] = meshgrid(eta*(x+x0), eta*vel*tchunk+6*eta*Iw);

80

W=repmat(w,N+1,1)’;

uex = W+amp*(sech(X-T)).^2;

% uex was reduced

uexave(ichunk2,:)= uexave(ichunk2,:)+uex(1:10:Tsteps,:);

% Generate Numerical Solution of PDE

%

% Initialize

% u0 = u at first time step in time block for each chunk.

% u1 = u at second time step in time block for each chunk.

% u2 = new value of u based on ZK scheme.

% uu = running sum over each run

%

% If chunk=1, then the scheme is just starting and we use the

% exact solution to obtain the first two time steps.

% For other chunks we need to carry over the old u0 and u1

% from the last chunk and same run.

if chunk==1

u0=uex(1,:)’;

u1=u0-(A*u0)/2-((C*u0).*(B*u0))/2;

uu(1,:)=uu(1,:)+u0’;

totruns(1)=totruns(1)+1;

u2=zeros(size(u0));

istart=3;

else

u0=u0old(count,:)’;

81

u1=u1old(count,:)’;

istart=1;

end

% Time Loop

for i=istart:Tsteps

% Generate solution using Zabusky-Kruskal scheme with

% vectorization; The separate terms are vectorized

% UXXX=A*u1;

% UX=B*u1;

% U=C*u1;

% u2 = uu0-UXXX-U.*UX;

u2 = u0 -A*u1-(C*u1).*(B*u1)+ddW(i)*ones(size(u0));

% Calculate boundary conditions

u2(1)=mean(u2(3:3+N/50));

u2(2)=mean(u2(4:4+N/50));

u2(N+1)=mean(u2(N-1-N/50:N-1));

u2(N)=mean(u2(N-2-N/50:N-2));

% Update u0 and u1 for next run and add u2 to

% running sum uu totruns keeps track of

% acceptable runs at a given time

u0=u1;

82

u1=u2;

it0i=it0+i;

if mod(it0i-1,Tinc)==0 & max(abs(u2))<10

uu(ceil(it0i/Tinc),:)=uu(ceil(it0i/Tinc),:)+u2’;

totruns(ceil(it0i/Tinc))...

=totruns(ceil(it0i/Tinc))+1;

end

end;

u0old(count,:)=u0;

u1old(count,:)=u1;

end;

diff=etime(clock,t0);

time(chunk)=diff;

waitbar(chunk/NChunks,h,[’Chunk = ’ num2str(chunk)])

end close(h) disp(’Finishing up ...’) uu=uu/runs;

uexave=uexave/runs;

plot(tchunk2,max(uexave’))

hold on

plot(tchunk2,max(uu’),’r’)

hold off

figure

plot(tchunk2,max(abs(uexave-uu)’))

ZK SCHEME TIME CHECK CODE

clear

% KdV Parameters

83

eta=1.0; x0=5.0; a=-10; b=40; epsilon = 0.1; mu=sqrt(2*epsilon);

% Run Parameters

Tsteps=2000; N=500;

% Time and space increments

dx=(b-a)/N; dt=dx^3/4; t=(0:Tsteps-1)*dt; x=linspace(a,b,N+1);

vel=4*eta^2-4/5*eta^4*dx^2;

% Generate Gaussian noise

dW=mu*sqrt(dt)*randn(1,Tsteps);

w=cumsum(dW);

Iw=(cumsum(w)-w/2-w(1)/2)*dt;

% Generate Exact Solution

amp=2*eta^2; [X,T]=meshgrid(eta*(x+x0), eta*vel*t+6*eta*Iw);

W=repmat(w,N+1,1)’;

uex=W+amp*(sech(X-T)).^2;

% Generate Numerical Solution of PDE

u0=uex(1,:);

u1=uex(2,:);

u2=zeros(size(u0));

% Start clock

t0=clock;

84

% Time Loop

for i=3:Tsteps

ddW=(dW(i)+dW(i-1)); % Stochastic term

% Generate solution using Zabusky-Kruskal scheme with loops

for j=3:N-1

u2(j)=u0(j)-((2*dt*u1(j+1))/(dx))*(u1(j+1)-u1(j-1)+...

u1(j)+u1(j-1)-1/(dx^2)) ...

+((2*dt*u1(j-1))/(dx))*(u1(j)+u1(j-1)-1/(dx^2))-...

(dt*u1(j+2))/dx^3+(dt*u1(j-2))/dx^3+ddW;

end;

% BCs by linear fit

u2(1)=mean(u2(3:3+N/50));

u2(2)=mean(u2(4:4+N/50));

u2(N+1)=mean(u2(N-1-N/50:N-1));

u2(N)=mean(u2(N-2-N/50:N-2));

% Update u0 and u1 for next run

u0=u1;

u1=u2;

end;

% Stop clock

t1=clock; tdiff=etime(t1,t0); disp([’Elapsed time for using loops =

’, num2str(tdiff)]);

85

% ---

% Start clock

t0=clock;

% uxxx and ux matrix factors using sparse matrix function spdiag

N1=N+1;

A=(spdiags(-2*ones(N1),1,N1,N1)+spdiags(ones(N1),2,N1,N1)+...

spdiags(2*ones(N1),-1,N1,N1) ...

+spdiags(-ones(N1),-2,N1,N1))*dt/dx^3;

B=(spdiags(ones(N1),1,N1,N1)+spdiags(-ones(N1),-1,N1,N1))*dt/dx;

C=(spdiags(ones(N1),1,N1,N1)+spdiags(ones(N1),0,N1,N1)+...

spdiags(ones(N1),-1,N1,N1))*2;

% Generate Numerical Solution of PDE

uu0=uex(1,:)’;

uu1=uu0-(A*uu0)/2-((C*uu0).*(B*uu0))/2;

uu2=zeros(size(uu0))’;

umax=zeros(size(t));

% Time Loop

for i=3:Tsteps

% Generate solution using Zabusky-Kruskal scheme with

% vectorization; The separate terms are

% UXXX=A*uu1;

86

% UX=B*uu1;

% U=C*uu1; This term contains the 6

in 6u*ux

% uu2 = uu0-UXXX-U.*UX;

ddW=dW(i)+dW(i-1);

% ddW=dW(i); Using this shows large errors!

uu2 = uu0 -A*uu1-(C*uu1).*(B*uu1)+ddW*ones(size(uu0));

% BCs by linear fit

uu2(1)=mean(uu2(3:3+N/50));

uu2(2)=mean(uu2(4:4+N/50));

uu2(N+1)=mean(uu2(N-1-N/50:N-1));

uu2(N)=mean(uu2(N-2-N/50:N-2));

% Get Error

umax(i)=max(abs(uex(i,:)-uu2’));

% Update u0 and u1 for next run

uu0=uu1;

uu1=uu2;

end;

% Stop clock

t1=clock; tdiff=etime(t1,t0); disp([’Elapsed time without loops = ’,

num2str(tdiff)]);

87

ZK SCHEME CODE WITH DAMPING

% This code uses the Zabusky-Kruskal scheme and Brownian motion to

% simulate the Stochastic KdV equation with white noise using

% vectorization.

clear

% sKdV Parameters

% eta and x0 are soliton parameters

% Space interval is [a,b]

% Noise strength is given by epsilon and mu

% epsilon is in noise correlator

% mu is in the Gaussian white noise term

eta0=1; x0=5.0; a=-10; b=90; epsilon = 0.1; gamma = 0.1;

mu=sqrt(2*epsilon);

% Run Parameters

%

% runs = Number of realizations over the noise

% Tsteps = Number of time steps per chunk

% NChunks = Number of time interval intervals of length Tsteps

% TTotal = Total number of time steps

% N = Number of spatial subintervals

% Tinc = Increment used for saving averages

% TSave = Number of time steps used for saving averages

88

runs=500; Tsteps=2000; NChunks = 16; TTotal = Tsteps*NChunks;

N=1000; Tinc=10; TSave = TTotal/Tinc; cnt1=0; cnt2=0; cnt3=0;

% Time and space increments

dx=(b-a)/N; dt=dx^3/4; t=(0:TTotal-1)*dt; x=linspace(a,b,N+1);

gamk=gamma/dx^2;

% Array Initializations - Grouped roughly largest to smallest

disp(’Inititializing arrays ...’)

uu=zeros(TSave,N+1);

uexave=zeros(TSave,N+1);

uex=zeros(Tsteps,N+1);

W=zeros(Tsteps,N+1);

u0old=zeros(runs,N+1);

u1old=zeros(runs,N+1);

totruns=zeros(size(1:TSave));

u0=zeros(size(1:N+1));

u1=zeros(size(u0));

u2=zeros(size(u0));

ichunk=zeros(size(1:Tsteps));

tchunk=zeros(size(ichunk));

w=zeros(size(ichunk));

dW=zeros(size(ichunk));

IW=zeros(size(ichunk));

dWold=zeros(size(1:runs));

wold=zeros(size(1:runs));

Iwold=zeros(size(1:runs));

89

ichunk2=zeros(size(1:Tsteps/Tinc));

tchunk2=zeros(size(ichunk2));

m=zeros(NChunks,1);

time=zeros(size(1:NChunks));

% uxxx and ux matrix factors using sparse matrix function spdiag

%

% A B C are for Zabusky Kruskal Scheme

% D is for noise term

N1=N+1;

A=(spdiags(-2*ones(N1),1,N1,N1)+spdiags(ones(N1),2,N1,N1)+...

spdiags(2*ones(N1),-1,N1,N1) ...

+spdiags(-ones(N1),-2,N1,N1))*dt/dx^3;

B=(spdiags(ones(N1),1,N1,N1)+spdiags(-ones(N1),-1,N1,N1))*dt/dx;

C=(spdiags(ones(N1),1,N1,N1)+spdiags(ones(N1),0,N1,N1)...

+spdiags(ones(N1),-1,N1,N1))*2;

D=spdiags(ones(Tsteps),0,Tsteps,Tsteps)+...

spdiags(ones(Tsteps),-1,Tsteps,Tsteps);

% Loop through time chunks

disp(’Computing ...’) h = waitbar(0,’Please wait...

’,’Name’,’Zabucheck’); for chunk=1:NChunks

chunk;

t0=clock;

% The computation is broken into chunks to conserve on memory

90

% allocation to large matrices. Each chunk consists of Tsteps

% time steps. The interval goes from it01 to it1. All indices are

% grouped as ichunk = it01:it1 and the corresponding times are

% given as tchunk. ichunk2 is the set of indices

% used to saving the averages in steps of Tinc. tchunk2

% saves the corresponding times.

it0=(chunk-1)*Tsteps;

it1=chunk*Tsteps;

it01=it0+1;

ichunk=it01:it1;

ichunk2=(it0/Tinc+1):(it1/Tinc);

tchunk = t(ichunk);

tchunk2(ichunk2) = t(it01:Tinc:it1);

% Loop through several ensembles

for count=1:runs

waitbar((chunk-1+count/runs)/NChunks ,h ,...

[’Chunk = ’ num2str(chunk) ’ Run = ’ num2str(count)])

% Generate Gaussian noise

%

% dW gives the Brownian noise increments

% w is the Brownian noise and needs the total over increments

% over all chunks. Thus wold saves the previous value for a

% given run. Iw is the integral of w from t=0 and is

91

% needed for the exact solution. Iwold saves integral

% over previous chunks

% for each run. ddW is the numerical discretization

% of the Gaussian white needed in the sKdV. It is an

% average of two values of neighboring increments

% where the 2 is suppressed

% due to the 2dt in the forward difference

% approximation of ut.

dW=mu*sqrt(dt)*randn(1,Tsteps);

w=wold(count)+cumsum(dW);

wold(count)=w(Tsteps);

Iw=Iwold(count)+(cumsum(w)-w/2-w(1)/2)*dt;

Iwold(count)=Iw(Tsteps);

ddW = D*dW’;

if chunk>1

ddW(1)=dW(1)+dWold(count);

end

dWold(count)=dW(Tsteps);

% Generate Exact Solution

%

% The computation of the exact solution is done using

% vectorization and the sum of each run for all space and

% time is saved.

[X,T] = meshgrid(x+x0,tchunk);

92

W=repmat(w,N+1,1)’;

uex = 2*eta0^2*exp(-4/3*gamma*T).*(sech(eta0*...

exp(-2/3*gamma*T).*(X-3*eta0^2/gamma*...

(1-exp(-4*gamma/3*T))+3*eta0^4/10/gamk*...

(1-exp(-8*gamma/3*T))+(exp(2*...

gamma/3*T)-1)/2/eta0))).^2;

uexave(ichunk2,:)= uexave(ichunk2,:)+uex(1:10:Tsteps,:);...

% Generate Numerical Solution of PDE

%

% Initialize

% u0 = u at first time step in time block for each chunk.

% u1 = u at second time step in time block for each chunk.

% u2 = new value of u based on ZK scheme.

% uu = running sum over each run

%

% If chunk=1, then the scheme is just starting and we use the

% exact solution to obtain the first two time steps.

% For other chunks we need to carry over the old u0 and u1

% from the last chunk and same run.

if chunk==1

u0=uex(1,:)’;

u1=u0-(A*u0)/2-((C*u0).*(B*u0))/2-gamma*u0*dt;;

uu(1,:)=uu(1,:)+u0’;

totruns(1)=totruns(1)+1;

93

u2=zeros(size(u0));

istart=3;

else

u0=u0old(count,:)’;

u1=u1old(count,:)’;

istart=1;

end

% Time Loop

for i=istart:Tsteps

% Generate solution using Zabusky-Kruskal scheme with

% vectorization; The separate terms are vectorized as

% UXXX=A*u1;

% UX=B*u1;

% U=C*u1;

% u2 = uu0-UXXX-U.*UX;

u2 = u0 -A*u1-(C*u1).*(B*u1)+ddW(i)*ones(size(u0))-...

gamma*u1*2*dt;

% Calculate boundary conditions

u2(1)=mean(u2(3:3+N/50));

u2(2)=mean(u2(4:4+N/50));

u2(N+1)=mean(u2(N-1-N/50:N-1));

u2(N)=mean(u2(N-2-N/50:N-2));

94

% Update u0 and u1 for next run and add u2 to

% running sum uu totruns keeps track of

% acceptable runs at a given time

u0=u1;

u1=u2;

it0i=it0+i;

if mod(it0i-1,Tinc)==0 & max(abs(u2))<10

uu(ceil(it0i/Tinc),:)=uu(ceil(it0i/Tinc),:)+u2’;

totruns(ceil(it0i/Tinc))=...

totruns(ceil(it0i/Tinc))+1;

end

end;

u0old(count,:)=u0;

u1old(count,:)=u1;

end;

diff=etime(clock,t0);

time(chunk)=diff;

waitbar(chunk/NChunks,h,[’Chunk = ’ num2str(chunk)])

end close(h) disp(’Finishing up ...’) uu=uu/runs;

%plot(tchunk2,J*dx,’r’);

BROWNIAN MOTION CHECK CODE

N=1000; mean=zeros(N,1); var=zeros(N,1); for j=1:N

r=randn(N,1);

w=zeros(N,1);

w(1)=w0;

95

for i=2:N

w(i)=w(i-1)+sqrt(dt)*r(i);

end

mean=mean+w;

var=var+w.*w;

end mean=mean/N; var=var/N;

plot(t,mean,’.’,t,var,’- ’);

title([’Mean and Variance of

’num2str(N) ’ samples of standard Wiener Process’]) xlabel(’time t’)

ylabel(’Mean and Variance’) legend(’Mean’,’Variance’,0)

CORRELATION CONFIRMATION CODE

N=1000; eps=0.1; mu=sqrt(2*eps); mean=0; for k=1:20

s(k)=0;

for j=1:N

r=randn(N,1);

w=zeros(N,1);

w(1)=w0;

for i=2:N

w(i)=w(i-1)+mu*sqrt(dt)*r(i);

end

% Note that t=5 corresponds to i=6

s(k)=s(k)+w(6)*w(9);

end

s(k)=s(k)/N;

mean=mean+s(k);

96

end mean=mean/20

CHECK W(t) AVERAGE RELATIONSHIP CODE

N=200; M=1000; eps=0.1; mu=sqrt(2*eps); c=1.0; s=0; w0=0; dt=0.1;

meanw2=zeros(N,1); meanew=zeros(N,1); for i=1:M

w2=zeros(N,1);

ew=zeros(N,1);

for j=1:N

t=(j-1)*dt;

r=randn(N,1);

w=zeros(N,1);

w(1)=w0;

for i=2:N

w(i)=w(i-1)+mu*sqrt(dt)*r(i);

end

w2=w.*w;

ew=exp(c*w);

end

meanw2=meanw2+w2;

meanew=meanew+ew;

end meanw2=meanw2/M; meanew=meanew/M; plot(meanw2,meanew,’-

’,meanw2,exp(c^2/2*meanw2),’.’)

PLOT SAVED DAMPING DATA CODE

%

clear

97

% Parameter Runs

G=[0.01 0.1 0.3 0.5]; E=[0.01 0.1 0.3 0.5];

fn2=[’p01’ ’p10’’p30’’p50’];

fn1=’C:/Documents and Settings/Andrew Rose/My

Documents/ThesisData/skdv’;

runs=[100 250 500 1000 1500];

uex=zeros(7,7,5,3200); uint=zeros(7,7,3200);

for i=1:length(runs)

for g1=1:length(G)

for e1=1:length(E)

fn=[fn1, ’_’, fn2(3*(e1-1)+1:3*e1),’_’,...

fn2(3*(g1-1)+1:3*g1),’_’,num2str(runs(i)),’.mat’];

display([fn]);

load(fn)

uint(g1,e1,:)=u;

uex(g1,e1,i,:)=u2;

end

end

end

% All integrals

figure(1) i1=0; for g1=1:length(G)

for e1=1:length(E)

i1=i1+1;

U(1,:)=uint(g1,e1,:);

98

subplot(4,4,i1); plot(t,U)

title([’\gamma = ’ num2str(G(g1)) ’ \

epsilon = ’ num2str(E(e1))])

axis([0,8,0,2])

end

end

% All runs

figure(2) i1=0; for g1=1:length(G)

for e1=1:length(E)

i1=i1+1;

U(1:5,:)=uex(g1,e1, 1:5,:);

subplot(4,4,i1); plot(t,U)

title([’\gamma = ’ num2str(G(g1)) ’ \

epsilon = ’ num2str(E(e1))])

axis([0,8,0,2])

end

end legend({’100’,’250’,’500’,’1000’,’1500’},...

’Position’,[0.2582 0.001209 0.5215 0.05706],...

’Orientation’,’horizontal’);

% Integral for fixed gamma

figure(3) for g1=1:length(G)

U(1:7,:)=uint(g1,1:7,:);

subplot(2,2,g1); plot(t,U)

title([’\gamma = ’ num2str(G(g1))])

axis([0,8,0,2])

99

%legend(num2str(E(1)),num2str(E(2)),...

num2str(E(3)),num2str(E(4))...

,num2str(E(5)),num2str(E(6)),num2str(E(7)))

end

legend({num2str(E(1)),num2str(E(2)),num2str(E(3)),num2str(E(4))},...

’Position’,[0.2582 0.001209 0.5215 0.05706],...

’Orientation’,’horizontal’);

% Integral for fixed epsilon

figure(4) for e1=1:length(E)

U(1:7,:)=uint(1:7,e1,:);

subplot(2,2,e1); plot(t,U)

title([’\epsilon = ’ num2str(E(e1))])

axis([0,8,0,2])

%legend(num2str(G(1)),num2str(G(2)),num2str(G(3)),...

num2str(G(4)),num2str(G(5)),num2str(G(6)),num2str(G(7)))

end

legend({num2str(G(1)),num2str(G(2)),num2str(G(3)),num2str(G(4))},...

’Position’,[0.2582 0.001209 0.5215 0.05706],...

’Orientation’,’horizontal’);

%figure(1)

%plot(t, uex(1,:),t, uex(2,:),t, uex(3,:),...

t, uex(4,:),t, uex(5,:),t ,uint(1,:))

%title(’Stochastic KdV epsilon=0.1, gamma=0.1’)

%xlabel(’Time t’)

100

%ylabel(’Amplitude <u>’)

%legend(’250’, ’500’, ’1000’,’1500’, ’2000’, ’Exact’)

%figure(2)

%plot(t,uex(5,:),t,uint(1,:))

%title(’Stochastic KdV epsilon=0.1, gamma=0.1’)

%xlabel(’Time t’)

%ylabel(’Amplitude <u>’)

%Data=[t’ uex’ uint(1,:)’];

%dlmwrite(’ExactAves_p10_p01’,Data);

TWO SOLITON SOLUTION CODE

function z=twosol(x,t) p=2; q=1.5;

theta=p*x-4*p^3*(t-0.5); % 0.5 introduced in...

line 4 and 5 to set t=0

chi=q*x-4*q^3*(t-0.5); % before the collision

z=2*(p^2-q^2)*((p^2+q^2*(sech(chi)).^2.*(sinh(theta)).^2)./ ...

((p*cosh(theta)-q*tanh(chi).*sinh(theta)).^2));

% Numerateo and denominator we multiplied by sinh(theta) to avoid

% computing csch(0) and coth(0)

TWO SOLITON ZK SCHEME CODE

% This code uses the Zabusky-Kruskal scheme and Brownian motion to

% simulate the Stochastic KdV equation with white noise for a

% 2-soliton solution.

clear

101

% sKdV Parameters

% eta and x0 are soliton parameters

% Space interval is [a,b]

% Noise strength is given by epsilon and mu

% epsilon is in noise correlator

% mu is in the Gaussian white noise term

a=-10; b=20; epsilon = 0.1; gamma = 0.01; mu=sqrt(2*epsilon);

% Run Parameters

%

% runs = Number of realizations over the noise

% Tsteps = Number of time steps per chunk

% NChunks = Number of time interval intervals of length Tsteps

% TTotal = Total number of time steps

% N = Number of spatial subintervals

% Tinc = Increment used for saving averages

% TSave = Number of time steps used for saving averages

runs=500; Tsteps=2000; NChunks = 4; TTotal = Tsteps*NChunks; N=400;

Tinc=10; TSave = TTotal/Tinc;

% Time and space increments

dx=(b-a)/N; dt=dx^3/4; t=(0:TTotal-1)*dt; x=linspace(a,b,N+1);

gamk=gamma/dx^2;

102

% Array Initializations - Grouped roughly largest to smallest

disp(’Inititializing arrays ...’)

uu=zeros(TSave,N+1);

%uexave = zeros(TSave,N+1);

%uex = zeros(Tsteps,N+1);

W = zeros(Tsteps,N+1);

u0old=zeros(runs,N+1);

u1old=zeros(runs,N+1);

totruns=zeros(size(1:TSave));

u0=zeros(size(1:N+1));

u1=zeros(size(u0));

u2=zeros(size(u0));

ichunk=zeros(size(1:Tsteps));

tchunk=zeros(size(ichunk));

w=zeros(size(ichunk));

dW=zeros(size(ichunk));

IW=zeros(size(ichunk));

dWold=zeros(size(1:runs));

wold=zeros(size(1:runs));

Iwold=zeros(size(1:runs));

ichunk2=zeros(size(1:Tsteps/Tinc));

tchunk2=zeros(size(ichunk2));

m=zeros(NChunks,1);

time=zeros(size(1:NChunks));

% uxxx and ux matrix factors using sparse matrix function spdiag

%

103

% A B C are for Zabusky Kruskal Scheme

% D is for noise term

N1=N+1;

A=(spdiags(-2*ones(N1),1,N1,N1)+spdiags(ones(N1),2,N1,N1)

...+spdiags(2*ones(N1),-1,N1,N1)...

+spdiags(-ones(N1),-2,N1,N1))*dt/dx^3;

B=(spdiags(ones(N1),1,N1,N1)+spdiags(-ones(N1),-1,N1,N1))*dt/dx;

C=(spdiags(ones(N1),1,N1,N1)+spdiags(ones(N1),0,N1,N1)...

+spdiags(ones(N1),-1,N1,N1))*2;

D=spdiags(ones(Tsteps),0,Tsteps,Tsteps)+...

spdiags(ones(Tsteps),-1,Tsteps,Tsteps);

% Loop through time chunks

disp(’Computing ...’) h = waitbar(0,’Please wait...

’,’Name’,’Zabucheck’); for chunk=1:NChunks

chunk;

t0=clock;

% The computation is broken into chunks to conserve on memory

% allocation to large matrices. Each chunk consists of Tsteps

% time steps. The interval goes from it01 to it1. All indices are

% grouped as ichunk = it01:it1 and the corresponding times are

% given as tchunk. ichunk2 is the set of indices used to saving

% the averages in steps of Tinc. tchunk2 saves the correponding

% times.

104

it0=(chunk-1)*Tsteps;

it1=chunk*Tsteps;

it01=it0+1;

ichunk=it01:it1;

ichunk2=(it0/Tinc+1):(it1/Tinc);

tchunk = t(ichunk);

tchunk2(ichunk2) = t(it01:Tinc:it1);

% Loop through several ensembles

for count=1:runs

waitbar((chunk-1+count/runs)/NChunks ,h ,...

[’Chunk = ’ num2str(chunk) ’ Run = ’ num2str(count)])

% Generate Gaussian noise

%

% dW gives the Brownian noise increments

% w is the Brownian noise and needs the total over increments

% over all chinks. Thus wold saves the previous value for a

% given run. Iw is the integral of w from t=0 and is needed

% for the exact solution. Iwold saves integral over previous

% chunks for each run. ddW is the numerical discretization of

% the Gaussian white needed in the sKdV. It is an average of

% two values of neighboring increments where the 2 is

% suppressed due to the 2dt in the forward difference

% approximation of ut.

105

dW=mu*sqrt(dt)*randn(1,Tsteps);

w=wold(count)+cumsum(dW);

wold(count)=w(Tsteps);

Iw=Iwold(count)+(cumsum(w)-w/2-w(1)/2)*dt;

Iwold(count)=Iw(Tsteps);

ddW = D*dW’;

if chunk>1

ddW(1)=dW(1)+dWold(count);

end

dWold(count)=dW(Tsteps);

% Generate Numerical Solution of PDE

%

% Initialize

% u0 = u at first time step in time block for each chunk.

% u1 = u at second time step in time block for each chunk.

% u2 = new value of u based on ZK scheme.

% uu = running sum over each run

%

% If chunk=1, then the scheme is just starting and we use the

% exact solution to obtain the first two time steps.

% For other chunks we need to carry over the old u0 and u1

% from the last chunk and same run.

if chunk==1

u0=twosol(x,0)’;

106

u1=u0-(A*u0)/2-((C*u0).*(B*u0))/2-gamma*u0*dt;;

uu(1,:)=uu(1,:)+u0’;

totruns(1)=totruns(1)+1;

u2=zeros(size(u0));

istart=3;

else

u0=u0old(count,:)’;

u1=u1old(count,:)’;

istart=1;

end

% Time Loop

for i=istart:Tsteps

u2 = u0 -A*u1-(C*u1).*(B*u1)+ddW(i)*ones(size(u0))-...

gamma*u1*2*dt;

% Calculate boundary conditions

u2(1)=mean(u2(3:3+N/50));

u2(2)=mean(u2(4:4+N/50));

u2(N+1)=mean(u2(N-1-N/50:N-1));

u2(N)=mean(u2(N-2-N/50:N-2));

% Update u0 and u1 for next run and add

% u2 to running sum uu

% totruns keeps track of acceptable runs at a given time

u0=u1;

107

u1=u2;

it0i=it0+i;

if mod(it0i-1,Tinc)==0 & max(abs(u2))<10

uu(ceil(it0i/Tinc),:)=...

uu(ceil(it0i/Tinc),:)+u2’;

totruns(ceil(it0i/Tinc))=...

totruns(ceil(it0i/Tinc))+1;

end

end;

u0old(count,:)=u0;

u1old(count,:)=u1;

end;

diff=etime(clock,t0);

time(chunk)=diff;

waitbar(chunk/NChunks,h,[’Chunk = ’ num2str(chunk)])

end close(h) disp(’Finishing up ...’) uu=uu/runs; mesh(x,tchunk2,uu)

view(-30,60)

for i=1:length(tchunk2)

[aa,bb]=lmax(uu(i,:),2);

[c,ic]=sort(aa,’descend’);

amp1(i)=aa(ic(1));

pos1(i)=bb(ic(1));

amp2(i)=aa(ic(2));

pos2(i)=bb(ic(2));

end

108

figure(1) [X,T]=meshgrid(x,tchunk2); U=twosol(X,T);

for i=1:length(tchunk2)

[a,b]=lmax(U(i,:),2);

if length(a)==1

a(2)=a(1);

b(2)=b(1);

end

if a(1)>a(2)

amp3(i)=a(1);

pos3(i)=b(1);

amp4(i)=a(2);

pos4(i)=b(2);

else

amp3(i)=a(2);

pos3(i)=b(2);

amp4(i)=a(1);

pos4(i)=b(1);

end

end figure(2) plot(tchunk2,x(pos1),tchunk2,x(pos2)) hold on

plot(tchunk2,x(pos3),’k’,tchunk2,x(pos4),’r’) title(’Position vs

Time’) hold off

figure(3) plot(tchunk2,amp1,tchunk2,amp2) hold on

plot(tchunk2,amp3,’k’,tchunk2,amp4,’r’) title(’Amplitude vs Time’)

hold off

109

TWO SOLITON PLOT CODE

clear x=(-10:.1:10); t=(0:.01:1); [X,T]=meshgrid(x,t);

U=twosol(X,T);

figure(1) mesh(x,t,U); title(’Two Soliton Solution of KdV’)

xlabel(’x’) ylabel(’t’) zlabel(’u(x,t)’) view(-30,60)

% view(0,90) % Shows phase shift

figure(2) for i=1:length(t)

[a,b]=lmax(U(i,:),2);

if a(1)>a(2)

amp1(i)=a(1);

pos1(i)=b(1);

amp2(i)=a(2);

pos2(i)=b(2);

else

amp1(i)=a(2);

pos1(i)=b(2);

amp2(i)=a(1);

pos2(i)=b(1);

end

end plot(t,x(pos1),t,x(pos2)) title(’Position vs Time’)

figure(3) plot(t,amp1,t,amp2) title(’Amplitude vs Time’)

SUPPLEMENTARY FUNCTIONS

%Exact solution function

110

function z=func(x,t,eta,x0)

z=2*eta^2*(sech(eta*(x-4*eta^2*t+x0))).^2;

%Plot Linear fit for log-log plot and find rho

z=max(uu’); plot(log(t),log(z))

p=polyfit(log(t(100:400)),log(z(100:400)),1)

plot(log(t),log(z),’.’,log(t),polyval(p,log(t))

,’-’,’MarkerSize’,20,’LineWidth’,2)

x=t(100:400);

y=z(100:400);

cc=corrcoef(x,y);

rho=cc(1,2)

rho^2

%Find confidence interval

(abs(p)*tan(arccos(rho^2)))/((N-2)^(1/2))

111

BIOGRAPHICAL SKETCH

This thesis is being submitted as a requirement for Andrew Rose to receive his Master of
Science in Mathematics. Prior to his course work in mathematics, he received his Bachelor
of Science in Computer Science from UNCW (December 2003). He has worked in ITSD of
UNCW for 5 years and has been a TA in the math department for 2 years. He hopes to
continue to work with computers and math in the future.

