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ABSTRACT

Wilson Bay is a shallow estuarine embayment found within the New River 

Estuary.  Previous work sponsored by NC WRRI examined phytoplankton bloom species 

composition, rainfall and nutrient levels within the New River Estuary.  This study 

focused on the influence of nutrients in forming blooms using a bioassay format 

measuring phytoplankton growth over a 7 day incubation period.  Growth rates were 

measured by fluorometric readings and visual eye counts performed on natural 

populations that were incubated and treated with nutrient addition and exclusions.  

Additions consisted of sodium nitrate (NaNO3), ammonium chloride (NHCl), urea

(CO(NH2)2) and a complete control, including phosphate, silicate, vitamins and trace 

metals.  Exclusions minus nitrogen, minus phosphate, minus silicate and an unenriched 

control were also measured.  Ambient nutrient levels were measured in sample water 

before nutrients were added.  Previous work done on Wilson Bay showed to often be 

nitrogen limiting.  The unexpected amounts of rainfall during the study period provided 

data that showed that Wilson Bay was nitrogen limited with nitrogen additions giving the 

greatest stimulation.  The study period (March – September 2003) had abundant amounts 

of rainfall compared to the previous (2002) which was a drought years.  Wilson Bay 

blooms are strongly affected by local weather and the rate and types of nutrient delivery. 
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INTRODUCTION

Blooms of single-celled algae, known as phytoplankton were observed throughout 

history.  Increases in toxic or noxious phytoplankton populations were often referred to as 

red tides and more recently as harmful algal blooms (HABs).  The HAB phenomenon is

increasing in frequency and duration in coastal areas throughout the world (Smayda, 

1997a).  Approximately 7% of the total phytoplankton species are considered harmful 

and while some harmful blooms are transient (i.e. occurs once and disappears), a bloom 

species can become persistent in a particular area by virtue of resting stages or cysts.  The 

presence of these cells or their toxin can reduce competition by predators, inhibit the 

growth of non-harmful species (Smayda, 1997b), produce toxic aerosols and through 

accumulation of toxins in shellfish and fishes serve as a threat to human health.

Coastal regions of the world have become increasingly stressed in recent years 

often due to increases in pollution imposed by proximity of highly populated and 

industrialized areas near the oceans (Smayda, 1997b).  For the past few decades bloom 

events also appear to be increasing which is directly correlated to the fact that 

approximately 60% of the world’s population now lives within a 100 miles of the coast.  

This demographic drives the increased pollution associated with coastal eutrophication 

and presumably the rise in the frequency and intensity of phytoplankton blooms.  One of 

the best examples demonstrating this linkage is that of Tolo Harbor, Hong Kong (Lam 

and Ho, 1989) where increased occurrences of “red tides” accompanied marked increases 

in population.  In addition to stressors posed by increased population densities, numerous 

factors such as the degree of stratification, tidal dispersal and predation can affect the 



intensity of algal blooms.  One obvious factor influencing phytoplankton blooms is the 

availability of nutrients (Ault et al, 2000).  

  The decline in water quality and rise in primary productivity and HAB events 

are a result of increased organic loading to marine environments contributed by point and 

non-point sources including waste from livestock and domestic sources through discharge 

from major treatment plants.  For example, nutrient loading in Hong Kong from sewage 

doubled from 1976 to 1985 (Lam and Ho, 1989).  This semi-enclosed bay whose nutrient 

enrichment is poorly flushed has become a concern over the past two decades (Lee and 

Arega, 1999).  

A bloom is defined as a considerable increase in biomass over what is considered 

a baseline level.  The abundance of a bloom and its fluctuations are generally viewed in 

terms of community abundance often expressed as chlorophyll a levels, a surrogate for 

algal biomass.  A “harmful” algal bloom (HAB) is also defined as one having negative 

impacts caused by the presence of a toxic or noxious species within the bloom 

community.  The descriptors “toxic,”  “noxious,” and “nuisance” for HAB species 

convey the degree of impact as defined by Smayda (1997a).  

The mere presence of a toxic species does not necessarily lead to a damaging 

impact; such effects require threshold populations and toxin levels to influence the 

ecosystem. Certain harmful algal species are more potent than others requiring modest 

population levels (not “red tide” levels) in order to cause a significant impact.  Mortality 

modes and impact mechanisms of harmful blooms include anoxia, mechanical 

impairment of the gills, phycotoxicity, and allelopathy (Smayda, 1997b).  The effects of a 

HAB event on humans are many and widespread.  Regional mariculture crop can become 
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tainted by the presence of a HAB and massive fish kills can also occur due to toxins and 

low oxygen levels (Anonymous, 1999).  Shellfish-vectored poisonings can have 

devastating effects on human health.  Florida, Texas and California have recently 

experienced catastrophic losses of populations of marine mammals, pelicans and 

cormorants due to a HAB occurrence (Anonymous, 1999).  Economic losses due to a 

HAB event can reach into the hundreds of millions of dollars (Smayda, 1997a).  

Nutrients are a major factor involved in the development of HAB's.  In studies on nutrient 

limitation in marine systems, nitrogen is thought to be the nutrient that most commonly 

limits growth of phytoplankton in coastal and oceanic waters as opposed to phosphorus 

that is considered limiting in freshwater systems (Bernhard and Peele, 1997).  

Estuarine systems differ from the open ocean partially due to the constant changes 

and varying mixtures of fresh and saline waters.  Tides, winds, sediment mixing, and run-

off from urban areas all have an influence on estuarine systems.  Semi-enclosed waters 

thus become threatened by deterioration of water quality exacerbated by urbanization and 

a lack of sufficient exchange with the open ocean (Okay et al, 1996).  If human induced 

alterations of the natural world (such as increased pollution levels) continue to occur, the 

nutrient ratios established by Redfield (1958) may change drastically.  

It is important for management purposes to know the nutrient that is limiting in a 

particular system.   For inshore waters where the input of various nutrients can be 

variable, the nutrients limiting phytoplankton growth may change with time and nitrogen 

in particular is difficult to manage due to the fact that it can enter a system in many 

different forms and from many different sources including sewage, agricultural run-off, 

nitrogen fixing organisms and lightning (not usually considered to be a significant 
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source).  Understanding how a system responds to nutrient levels is important in 

forecasting trends and beginning to test limitations withing a system. 

An effective method used to assess a system response to nutrients is the use of 

algal bioassays to make predictions concerning species selection and standing crop 

(Parker, 1997).  It is of utmost importance to have indicators of nutrient limitation and 

identification of the limiting nutrient in order to manage aquatic systems (Holmboe et al, 

1999).  These concerns make it necessary to develop experimental procedures as tools for 

monitoring levels of eutrophication and algal bioassays are but one of many tools used 

for the evaluation of water quality (Parker, 1997).  To expect this outcome, other outside 

factors, such as light and temperature, must be optimal for growth of phytoplankton in a 

bioassay (Ryther and Dunstan, 1971).

Within the various formats, the use of native populations in algal bioassays can 

give more realistic responses than a single test organism alone. This is most likely due to 

the fact that manipulations of nutrient additions will not only cause changes in algal 

biomass but also shifts in species dominance (Lopez and Davalos-Lind, 1998).  In order 

to examine algal growth potential and species composition, it is essential to compare 

bioassays between a test organism and native algal population.   For this study, natural 

algal populations were employed.  The use of natural phytoplankton populations in these 

bioassays allowed more realistic responses to nutrient additions and exclusions as well as 

to discern the cause of changes in algal biomass along with shifts in species composition.   

Nitrogen makes up approximately one-half the mass in urea (CO(NH2)2).  Urea is 

best metabolized by the enzyme, urease.  If a particular species does not contain urease, 

then they still grow well on a urea substrate due to the fact that they may contain a urea 
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carboxylase and also allophanate hydrolase (Syrett, 1980).  Nitrate is the most difficult 

nutrient for phytoplankton to assimilate.  Once uptake of nitrate has occurred within a 

phytoplankton cell, it undergoes a two-step reduction process involving nitrate and nitrite 

reductase.  Nitrate must be reduced to nitrite and then to ammonium before an algal cell 

can use it.  Once it is in the form of ammonium, it is assimilated in the same manner as 

any ammonium that might be taken up.

Wilson Bay (34° 45’ N, 77° 24’ W) is a shallow estuarine embayment found 

within the New River Estuary (Figure 1).  This bay is located at the head of the New 

River estuary and is adjacent to the city of Jacksonville, North Carolina.  The New River 

is considered a blackwater system with tidal influences found predominately below 

Wilson Bay (Mallin et al, 2000).  Blackwater system is used here to define streams, lakes 

and rivers that are stained a dark, tea-like color due to humic acids that leach from swamp 

vegetation, but is harmless to humans and animals (Mallin et al, 2001).

A residential community, a recreational park and the United States Marine Corps 

Base Camp Lejeune also surround the bay. This site once was the recipient of treated 

sewage from the Wilson Bay Wastewater Treatment Plant in of the city of Jacksonville.  

The treatment plant is no longer in operation and was converted into an aquaculture 

facility for Sturgeon in 1998.  Oysters are currently being placed throughout Wilson Bay 

as a means of a biological control for phytoplankton blooms.  These bivalves are being 

used in the bay to increase natural biological filtration system by their filtering out 

phytoplankton through their gills. (Dr. Jay Levine, personal correspondence).  Periodic 

algal blooms were recorded in the northern half of the New River, Wilson Bay (Tomas, 
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Figure 1.  Study site, Wilson Bay, New River in North Carolina.
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2003) with more than eighteen HAB species identified.  Due to the elevated levels of 

phytoplankton and organic loads within the water column, low levels of oxygen were at 

times recorded throughout the bay (Dr. Jay Levine, personal correspondence). The New 

River is monitored for water quality on a monthly basis by the North Carolina 

Department of Natural Resources Division of Water Quality.  

Historical nutrient data collected for Wilson Bay showed abundant levels of 

nitrate-nitrite and ammonium before the closure of Wilson Bay Wastewater Treatment 

Plant (Mallin et al, 2005).   Only ammonium showed a clear decrease in abundance 

within Wilson Bay following 1998.  Looking at maximum bloom events based on 

historical data and the highest levels of nutrients available, most major events occurred 

during late spring through early fall.  High levels of nitrogen sources point to phosphorus 

being limiting within Wilson Bay.  Historical temperature and precipitation data for 2002 

indicated highest temperatures and lowest amounts of rainfall during the months falling 

in the late spring through early fall (Figure 2).  These conditions were accompanied by 

extreme blooms.

My objectives for this thesis project included the following:

• To ascertain the role of nitrogen in limiting growth and bloom 

development in Wilson Bay, New River, North Carolina.

• To determine if the form of nitrogen supplied made any difference to 

natural populations by stimulating growth and species composition.

• To determine how nitrogen species influenced harmful algal species 

composition in Wilson Bay.

7



• To determine the effect of each of the nitrogen sources tested to produce a 

change in biomass from natural algal populations from Wilson Bay.

METHODS AND MATERIALS

Study Site

Based on previous studies on species composition of phytoplankton blooms in the 

New River, North Carolina (Tomas, 2003), Wilson Bay was selected as the study site.  

Natural algal populations were collected and used throughout these experiments from 

Wilson Bay, located at 34° 45’ N, 77° 24’ W, is found at the head of the New River 

Estuary (Figure 1).  This bay is a shallow estuarine embayment located at the head of the 

New River and is adjacent to the city of Jacksonville, North Carolina.  Up until 1998, this 

embayment was the site of a municipal sewage treatment discharge for the city.

Sampling

Surface water samples were taken from a public dock at Wilson Bay in a two liter 

plastic bottle a total of nine times from March through September 2003 (Table 1).  This 

time period was selected as that having the majority of bloom events during HAB study 

of 2002-2003 (Tomas, 2003).  Temperature was taken at time of collection using a 

mercury thermometer and salinity was measured using a refractometer previously 

calibrated against standard seawater, upon returning to the University of North Carolina 

at Wilmington’s Center for Marine Science.  Samples were screened through a 120 µm 

mesh net to remove large phytoplankton grazers and detritus.  In small volumes of 

bioassay experiments, grazers can strongly influence the phytoplankton through the 

removal of selected species and excretion of wastes containing nitrogen.  
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9



Table 1.  Temperature and Salinity measurements for bioassay experiments performed on 
samples from Wilson Bay, New River, North Carolina, March - September 2003.

Experiment Dates Temperature (°C) Salinity
1 11-17 Mar 2003 12 10
2 28 Mar-3 Apr 19 3
3 22-28 Apr 2003 22 4
4 7-13 May 2003 26 4
5 13-19 Jun 2003 28 1
6 15-21 Jul 2003 29 0
7 29 Jul-4 Aug 2003 29 0
8 27 Aug-2 Sept 2003 31 0
9 16-22 Sept 2003 26 6
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Cultures and Growth Measurements

Aliquots of 40 mL of the net-screened sample water were placed into thirty-two 

60 mL Pyrex screw cap culture tubes to which specific nutrients were added for the 

bioassays (Table 2).  In addition 250 mL of each sample was filtered through a 45mm 

nucleopore filter, frozen at -20° C in plastic bottles and analyzed for subsequent nitrate + 

nitrite, ammonium, and urea concentration.  Sample water taken from the beginning and 

end of each experiment was filtered through a 25 mm GG/F glass filter under reduced 

light conditions and frozen for chlorophyll a analysis.  Forty mLs of net screened water 

was taken from the beginning and end of each bioassay treatment and preserved in a 2% 

Lugols solution to determine species composition and abundance.  

Two types of bioassays were performed for each of the nine experiments.  These 

included bioassays by addition and exclusion.  Bioassay tubes were incubated in a 

constant temperature water bath maintained within ± 0.5° C of the ambient water 

temperature at time of collection and with a constant 100µE/m2/s of light provided by

cool white fluorescent lamps.  Sodium nitrate, ammonium chloride and urea were added 

in replicate culture tubes (n = 4 for each treatment) using an Eppendorf repeat pipetter.  

Sodium phosphate, f/2 vitamins and trace metals (Guillard, 1973) were also added to 

each tube (Table 2).  The nitrogen levels added were selected to be ecologically realistic.  

The assays by exclusion had replicate tubes with all nutrients added minus one.  A 

complete control was used containing all additions and an unenriched control was also 

employed, which contained no nutrient additions. 

Growth in the form of fluorescence readings were recorded twice daily at six hour 

intervals over each of the 7-day experimental periods by measuring in vivo fluorescence 
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on a Turner 10 AU fluorometer.  Fluorescent based growth rates calculated are the linear 

growth phase according to Guillard (1973).  Species composition and abundance were

determined at the beginning and end of each 7-day experiment using a Nikon Diaphot 

inverted microscope and Utermöhl settling counting chambers (Sournia, 1978).  Forty-

milliliters of preserved (2% Lugols) sample from the beginning and end of each bioassay 

were gently agitated by hand and ten milliliters of each was then placed in Utermöhl 

counting chambers and allowed to settle for least twelve to twenty-four hours prior to 

examination and counting.  Each chamber was then examined for dominant species and 

counted using the methods described in Sournia (1978).   

Nutrient Analysis:

Ammonium 

            Ammonium analysis from each sample collection was filtered through a 25mm, 

GF/F Whatman glass fiber filter under vacuum.  Fifty milliliters of filtered sample was 

then placed into a sixty milliliter plastic bottle and frozen – 20° C.  Aliquots (2.5 mL) of 

the filtered sample were pipetted with an automatic Eppendorf pipette into scintillation 

vials with Teflon caps in triplicate for each of the nine experiments and analyzed using 

protocol B in Holmes et al (1999).  Protocol A is used in samples with less than 0.5 µM/L 

due to a reduced sensitivity in protocol B.  Reagents were added to each vial, vortexed 

and placed in the dark for two hours. Standards, blanks and samples were read using a 

Turner Designs TD-700 fluorometer.  

Nitrate 

Frozen samples were thawed and analyzed using a Bran + Luebbe Autoanalyzer 

III at the Center for Marine Science at UNCW which had a sensitivity of 0.104 µM/L for 
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this procedure.  An automated gas segmented continuous flow colorimetric method for 

the analysis of nitrate concentrations was used.  Nitrate in the samples was reduced to 

nitrite in a buffer solution.  A color dye produced was linearly proportional to the 

concentrations of nitrate + nitrite in the sample.  Standards and blanks were also part of 

this analysis.  There was no significant salt error in this method (EPA, 1997).

Urea 

The urea assay followed the Koreleff method (Grasshoff, 1983) and analysis of 

the samples was completed on a Spectrophotometer (Shimadzu UV-1601) at 520nm. 

Assuming a absorbance of 0.010 as the detection limit, 0.1 µM dm-3 = 1.4 µg · dm-3N can 

be observed. Twenty-five mL aliquots in triplicate of the filtered sample were poured into 

50ml Pyrex screw cap test tubes.  Reagent blanks consisted of 25 mL aliquots of reagent 

grade deionized water in triplicates.  Standards were made up in 100 mL volumetric 

flasks with appropriate dilution of primary urea stock (100/mL) in reagent grade 

deionized water and added to the test tubes in 25mL aliquots.   Measurements of 5.5 +/-

0.1 g of sodium chloride were added to each test tube and all were placed in a water bath 

for ninety minutes at a temperature of 70°C.  

Phosphate

An automated colorimetric method was used to determine ambient levels of 

orthophosphate in the samples.  Frozen samples were thawed and run on a Bran + Luebbe 

Autoanalyzer III at the Szmant lab at the Center for Marine Science at UNCW which had 

a sensitivity of 0.016 µM/L for this method.  Standards and blanks were also part of this 

analysis.  Ammonium molybdate and antimony potassium tartrate react in an acidic 
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medium to form a complex which produces an intense blue color.  The color produced 

was directly proportional to the level of phosphate in the sample (EPA, 1997).  

Chlorophyll a

Chlorophyll a analyses was conducted on sample prescreened, filtered onto a 25 

mm Whatman GF/F glass fiber filters under reduced light conditions.  Each filter was 

folded and placed in individual 1.8 mL cryogenic vials and frozen in liquid nitrogen.  The 

frozen samples were stored in a freezer at -80° C until analysis could be performed.  

Upon analysis, frozen filters were individually placed into 15 mL Corning centrifuge 

tubes along with ten mLs of 90% acetone.  Samples were cooled by ice and sonicated for 

three 20 second bursts and placed in a darkened freezer at -4°C for one hour.  The tubes 

were then centrifuged for 10 minutes at 3000 rpm.  The supernatant from each vial was 

then read in a Turner Design 10 AU Fluorometer previously calibrated using chlorophyll 

a standard following the protocol as described by Jeffrey (1997).

RESULTS

Historical Data

Monthly data for salinity and temperature for Wilson Bay during the years 2002-

2003 (Table 3) show subtle but evident differences.  During the year prior to this study, 

temperatures varied from 6.0 to 26.9 ºC while precipitation of 3.1 to 32.8 cm was 

recorded.  For the following year (2003), slightly lower temperatures were found from 

3.3 ºC and a similar maximum to that of 2002 of 26.5 ºC was recorded.  The patterns for 

both variables (Figure 2), had similar patterns for temperature with the maxima for both 

years found in July - August of each year.  Temperatures steadily increased from January 

15



Table 3. Monthly average water temperature (ºC) and precipitation (cm), Wilson Bay, 
North Carolina for 2002 and 2003.

Date Temperature (ºC) Precipitation (cm)
1/1/2002 8.2 10.2
2/1/2002 7.5 3.1
3/1/2002 12.7 22.1
4/1/2002 18.3 17.8
5/1/2002 19.7 13.6
6/1/2002 24.1 23.4
7/1/2002 26.9 23.1
8/1/2002 25.5 11.4
9/1/2002 23.6 8.3

10/1/2002 18.6 10.6
11/1/2002 10.3 32.8
12/1/2002 6.0 6.5
1/1/2003 3.3 5.8
2/1/2003 6.9 8.7
3/1/2003 12.9 13.1
4/1/2003 15.4 13.8
5/1/2003 20.0 11.5
6/1/2003 23.9 16.6
7/1/2003 26.3 40.6
8/1/2003 26.5 3.0
9/1/2003 21.8 13.3

10/1/2003 16.3 41.1
11/1/2003 14.2 1.9
12/1/2003 5.7 11.2
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to the maxima in mid summer and then declined slowly to the annual minima in 

December.  Precipitation varied more between the two years.  Spring rainfall (March) had 

elevated precipitation values exceeding 20 cm that were found again in July and August 

and again in November (Figure 3).  High spring rainfall levels were not seen in the study 

year (2003) and peak values exceeding 30 cm were recorded in July and October with the 

remainder at or below 10 cm.  

Experimental Data

Ambient temperatures of surface waters of Wilson Bay, measured at the time of 

collection (Table 1), varied from 12 – 31 ºC.  From March through June 2003, 

temperatures increased to a peak values of 29 – 31 ºC found in July and August.  

September declined slightly to 26 ºC.  Salinity showed an inverse pattern with 

temperature and measured at the time of sample collection for the bioassays varied from 

10 to 0 with the majority of values at 4 or less for the experimental period (Table 1).

Ambient nutrients measured for each experiments date are listed in Table 4 and 

Figure 4 and 5.  The most inorganic nitrogen source was nitrate + nitrite with values 

varying from 4.28 to 50.26 µM/L.  For 7 of the 9 sampling dates, this nutrient exceeded 

20 µM/L (Figure 5A).  Ammonium had values from 6.0 to 19.8 µM/L with values above 

8 µM/L for 7 of the 9 samples (Table 4 and Figure 5A).  Urea, reported for the first time 

for this region, varied between 0.72 and 3.32 µM/L with standing stock exceeding 1.0 

µM/L for all but one of the samples (Figure 5B).  Dissolved orthophosphate varied from 

a low of 0.13 to a high of 2.41 µM/L and exceeded 1.0 µM/L for all but three of the 

sample dates (Figure 5B).  Using the sum of nitrate + nitrite and ammonium for dissolved 

inorganic nitrogen (DIN) and the N: P ratio (atoms) calculated by dividing DIN by

17
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Figure 3.  Variations in temperature (oC) and salinity for the samples used for the 
bioassay experiments 1-9.
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phosphate concentrations (Figure 5C), DIN values consistently exceeded 20 µM/L for all 

but the last sampling date.  The lowest N: P ratio was 15.4 while all others exceeded 20.  

The highest N: P occurred in September during a bloom event with a value of 79.1 

(Figure 5C).  

The chlorophyll a biomass (Figure 6) suggests the eutrophic nature of the station 

for each sample date by having never less than 7.0 µg/L.  The highest value of 67.8 µg/L 

occurred during the final sampling date when a dinoflagellate bloom occurred.  Initial 

chlorophyll a values were greater than all bioassay values for experiment 9 which was a 

bloom event (Figure 6).  All nitrogen additions produced values at or below 90 µg/L for 

all experiments excluding experiment 2.  That yielded values greater than 100 µg/L for 

nitrate and urea and 80.6 µg/L for the ammonium addition.  The complete control only 

produced significantly higher values in comparison with nitrogen additions in experiment 

8.  For exclusions, experiment 2 continued to produce high values which exceeded 90 

µg/L for the three exclusions and greater than 70 µg/L for the unenriched control (Figure 

7).  Experiment 1 also yielded high chlorophyll a values which exceeded 60 µg/L.  The 

remainder of the experimental exclusions produced values lower than 50 µg/L with the 

exception of the minus silicate exclusion in experiment 8 which had a high value of 96.4 

µg/L (Figure 7).

Terminal chlorophyll a values expressed as a percent of the initial values for 

nutrient addition bioassays showed values less than 200% for all but the first two.  

Experiment 1 nitrogen additions yielded values greater than 150% while the complete

had a value distinctly lower at around 90%.  Experiment 2 had values greater than 400%
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for nitrogen additions with the value for the complete similar to that of experiment 1 

(Figure 8).

Nitrogen additions as a percent of the complete control were calculated and can 

be seen on Figure 9.  Lowest values were seen in experiment 9 which had a bloom.  

Experiment 8 had the lowest values with all three nitrogen additions with values less than 

75% of the complete control.  Percentage of the three exclusions as a percent of the 

unenriched control can be seen in Figure 10.  All experiments with the exception of the 

last three had percentages that exceeded 100% for all exclusions.  Experiment 7 was the 

lowest with values less than 80%.  Experiment 8 had a lone high percentage with the 

minus silicate exclusion that had a value over 200%.

Summarizing this information, Figure 4 clearly shows that nitrate + nitrite 

exceeded all other nitrogen sources for all but one time with ammonium, the next 

abundant nitrogen source rarely exceeded one half that of nitrate + nitrite and that urea 

and phosphorus were present at all samplings.

With the exception of experiments 4, 5 and 7, nutrient additions resulted in 

greater growth as terminal chlorophyll a with nitrogen additions.  Experiment 9, a period 

of bloom formation, had declining populations throughout the nutrient experiments.  For 

all others, nitrate and urea gave the best growth consistently .  Ammonium additions gave 

the next greatest stimulation to growth.  Only one experiment, number 8, did the 

complete control overwhelm the nitrogen treatments (Figure 6).

For the nutrient exclusion experiments, those done in 1, 2 and 4 showed the 

exclusion of nitrogen did not impede the assay for producing a higher chlorophyll a
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biomass that other exclusions (Figure 7).  Phosphorus appeared to be abundant 

throughout the experimental period giving terminal chlorophyll a values at or above the 

complete control.  For all but experiment 9, the lack of silica did not impede the growth 

of the populations.  Experiment 9 again showed a diminished response in relation to the 

others.

When terminal chlorophyll a was expressed as percent change from the initial, the 

greatest percent change was observed in experiment 1 and 2 where all additions exceeded 

400% of the initial (Figure 8).  Experiments 3, 6 and 8 were observed with uneven 

increases between 100% and 200%.  Experiment 9 was the least responsive of them all.  

When comparing the terminal  chlorophyll a density of each treatment to the complete 

control, five of the nine experiments (1, 2, 6, 7, and 9) showed increases greater than 

100% of the complete control.  Only experiment 8 had less than 50% of the control.  

Seven of the nine experiments showed values greater than 100% of the complete control 

for at least one nitrogen addition (Figure 8, 9).  

In all exclusion experiments except 7 and 8 did the lack of nitrogen result in less 

than 100% chlorophyll a terminal densities.  The minus phosphate treatments nearly 

always equaled or exceeded the terminal chlorophyll a values of those treated as minus 

nitrogen.  Experiments 3, 6 and 8 had higher chlorophyll a densities when silica was not 

added (Figure 10).  

Growth bioassay treatments of single nutrient additions and exclusions and 

appropriate control of nutrient complete and unenriched treatments were measured as in 

vivo fluorescence.  Chlorophyll a based growth rates were calculated from each treatment 
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and the mean (n = 4) of each treatment is found in Table 5.  A mean growth rate (K) 

exceeded 1.0 divisions/day was found with each of the nitrogen sources tested.  For the 

20 March 2003 sample, K rates values exceeding 1.0 divisions/day occurred in all 

treatments except the unenriched control indicating a population poised to exploit the

nutrient additions equally well.  Nitrate gave the best growth during experiments in 

March through May and again in early July with values of >0.7 divisions/day.  Lowest 

growth measured with nitrate was in September during a bloom event.  In contrast, 

ammonium consistently gave mean growth of 1.12 divisions/day, matching those of 1.08 

for nitrate and 1.12 for urea.  The lowest growth rate recorded with ammonium additions 

occurred on the last sampling date with a rate of 0.03 divisions/day.  

Urea addition showed growth often similar to that of ammonium.  This substrate 

was quickly assimilated by the natural population.  The nutrient exclusion bioassays 

indicated low or negative growth for nitrogen and silica on the last two sampling dates 

(Table 5).  These results mirrored the nutrient additions and unenriched control 

suggesting other factors beyond nutrients in regulating growth at that time.  The mean 

growth rates measured from the unenriched control were less than the nitrogen additions.

The K values and r2 regression values were calculated from in vivo growth curves 

for all bioassays in each of the nine experiments and are listed in Table 6.  Maximum 

growth rates for all nitrogen additions were found in experiment 2.  The K values of 1.08, 

1.12 and 1.12 divisions/day. for nitrate, ammonium and urea respectively and had r2

regression values greater than 0.9542.  Community doubling densities greater than 1 

division/day represent a strong response to nitrogen additions (Figure 11).  Intermediate 
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Figure 11.  Growth curves for experiment 2 having nitrogen additions exhibiting rapid 
growth:  A) Nitrate  B) Ammonium  C) Urea.
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growth rates were observed in experiment 3.  The K values of 0.77, 0.83 and 0.79 

divisions/day for nitrate, ammonium and urea respectively had r2 regression values 

greater than 0.9776.  The K values seen in experiment 3 are intermediate in comparison 

to experiment 2which had the highest values (Figure 12).  The lowest growth rates were 

seen in experiment 9 which has K values of 0.23, 0.30 and 0.15 divisions/day for nitrate, 

ammonium and urea respectively and had r2 regression values greater than 0.8237.  The 

lowest growth rates seen in experiment 9 are in comparison to experiment 2 which had 

the highest growth rates (Figure 13).  

Cellular eye counts varied from each experiment due to the different algal species 

represented in each collection. Experiment 1 (Table 7) had three different algal species 

represented and one ciliate species, tintinnid.  Selenastrum and Cyclotella both had high

cell counts which were observed in the nitrate addition. Chlorococcum also had a high in 

the nitrate addition.  The zooplankton, tintinnid, had a small population represented in 

most bioassays.  It had the highest number in the complete addition.  The following 

(Experiment 2, Table 7) had five different species in the sample, which were 

Selenastrum, flagellate species, Euglena, Heterocapsa and Chloroccum.  Heterocapsa

and Chloroccum were only found in the initial sample and had disappeared from the 

bioassays for final counts.  Selenastrum was represented in every bioassay.

The next experiment conducted, number 3 (Table 7), had six species represented.  

These included Pseudo-nitzschia, tintinnid, Selenastrum, Scenedesmus, Chloroccum and

Rhizosolenia.  Pseudo-nitzschia and tintinnid were only found in the initial counts and 

had vanished by the final counts.  Alternately Selenastrum, Scenedesmus, Chloroccum

and Rhizosolenia were not found in the initial count.  Scenedesmus did not appear in the
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minus phosphate exclusion, but was highest in the complete addition and lowest in the 

unenriched exclusion.  Chloroccum was not present in the minus nitrogen nor was it in 

the unenriched.  It had the most cells in the ammonium and the fewest in the complete 

control.  Rhizosolenia was not found in the final count of the minus phosphate exclusion.

Four species were found in experiment 4 (Table 7).  Pseudo-nitzschia, 

Scenedesmus, Chloroccum and stellate ameba.  Pseudo-nitzschia appeared in all except 

the minus phosphate exclusion.  Scenedesmus did not appear in the initial, nitrate 

addition, minus silicate exclusion and the unenriched treatment.  Chloroccum appeared in 

all except the unenriched treatment.  The stellate appeared in all but the initial which 

indicates that nutrient additions may have stimulated growth.

The next sample (experiment 5) contained seven different species (Table 7).  

Tintinnid did not appear in the initial sample or in the ammonium, urea and complete 

additions.  Its highest value was in the unenriched exclusion and its lowest in the minus 

silicate.  Pseudo-nitzschia was not found in the ammonium and complete additions.  Its 

highest numbers was in the urea addition and its lowest in the minus phosphate exclusion.  

Scenedesmus was not in the initial sample or in the nitrate addition, minus nitrogen and 

minus silicate exclusions.   Selenastrum was not present in the initial sample nor in the 

urea and complete additions and in the minus nitrogen exclusion.  Flagellate was not 

found in the initial sample nor in the nitrate and complete additions and minus nitrate 

exclusion.  Stellate ameba was not in the initial sample nor in the nitrate and ammonium 

additions nor in the minus phosphate exclusion.  Rhizosolenia was only found in the 

minus nitrogen.  
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Figure 12.  Growth curves for experiment 3 having nitrogen additions exhibiting 
intermediate growth as compared to experiment 2:  A) Nitrate  B) Ammonium  C) Urea.
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Figure 13.  Growth curves for experiment 9 having nitrogen additions exhibiting lowest 
growth as compared to experiment 2:  A) Nitrate  B) Ammonium  C) Urea.
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Table 7.  Dominant taxa observed during the nutrient bioassay experiments of natural 
populations taken from Wilson Bay, New River, North Carolina during the period from 
11 March through 16 September 2003.

Experiment #
Major Taxa 1 2 3 4 5 6 7 8 9

Algae
Selenastrum* + + + +

Chlorococcum* + + + + +
Cyclotella +

Flagellate sp. + +
Euglena* + +

Cryptomonas +
Heterocapsa +

Pseudo-nitzschia           + + +
Scenedesmus* + + + + +
Rhizosolenia + + +

Kirchneriella* + +
Synedra + + + +

Protoperidinium + +
Gyrodinium + +

Protozoa
tintinnids + + + + + + +

stellate ameba + + + + +
lobate ameba + +

* = denotes freshwater species, all others are brackish or marine
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With the sample collected on 29 July (experiment 6, Table 7), it had eight species 

represented.  Euglena was the only species in experiment 6 that was found in the initial 

sample.  Tintinnid was not found in the initial sample and had the highest numbers in the

unenriched exclusion. Scenedesmus was not in the urea addition or in the minus silicate 

exclusion.  Chloroccum was not initial, urea addition or in the minus nitrogen, minus 

phosphate and unenriched exclusions.  It had the greatest numbers in the minus silicate 

exclusion.  Rhizosolenia was only found in the nitrate addition and the ammonium 

addition with.  Stellate ameba was only found in three bioassays which were the urea 

addition, complete addition and the minus silicate exclusion.  Kirchneriella was not 

found in the initial, nitrate and urea additions nor in the minus nitrogen exclusion.

Synedra was not found in any of the addition bioassays and was only found in the 

exclusions.  

For experiment 7 (Table 7) five species were represented.  Synedra was found in 

the initial and all bioassays.  It had the highest values in the nitrate addition.  Tintinnid 

was not found in the nitrate addition nor in the minus nitrogen exclusion.  Scenedesmus

was not found in the initial sample.  Chloroccum was not found in the initial, urea 

addition, silicate and unenriched exclusions.  Kirchneriella was not found in the initial, 

minus phosphate and unenriched exclusions.  Tintinnid was not found in the nitrate 

addition and the minus nitrogen exclusion.

Next followed experiment 8 (Table 7) which had five species.  Synedra was found 

in the initial and all bioassays.  It had the highest values in the minus phosphate 

exclusion.  Tintinnid was not found in the nitrate addition nor in the minus nitrogen 

exclusion.  Scenedesmus was not found in the initial sample.  Chloroccum was not found 
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in the urea addition and unenriched exclusions.  Kirchneriella was not found in the initial 

sample and the unenriched treatment.

The final experiment (experiment 9, Table 7) had six species represented.  

Protoperidenium was found neither in the ammonium and complete additions nor in the 

minus nitrogen, minus phosphate and unenriched exclusions.  Gyrodinium was only 

found in the initial count and the unenriched exclusion.  Synedra was not found in the 

minus silicate exclusion.  Stellate ameba was only found in the nitrate addition and the 

minus nitrogen exclusion.  Lobate ameba was neither found in the initial sample nor in 

the minus nitrogen exclusion.  Tintinnid was found in the initial sample, ammonium 

addition and the unenriched exclusion.

DISCUSSION

Wilson Bay, located in the New River Estuary, North Carolina, was chosen as the 

study site due to its historical importance for algal blooms.  Repeated bloom events and 

fish kills were reported through water quality monitoring efforts done by the North 

Carolina Department of Environmental Natural Resources, the EPA and the Tomas Lab, 

Center for Marine Science of UNCW (Tomas, 2003).  Prior to 1999 this area was heavily 

influenced by receipt of treated sewage from the city of Jacksonville, Wilson Bay 

Wastewater Treatment Plant.  This input presumably left the bay with unknown amounts 

of nutrients which could impact the area for years to come particularly with the 

disturbance of sediments.  Before the closure, high levels of nitrate-nitrite, ammonium 

and phosphorus were measured.  Since the closure of the plant, ammonium showed the 

greatest abatement (Mallin et al, 2005).
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Comparing two years of ambient conditions and nutrient availability in Wilson 

Bay (Table 4, Mallin et al,  2005) showed that the period of this study behaved differently 

when compared to the previous year.  Rainfall during the previous year and bloom 

occurrence was markedly different.  During the previous summer (2002) a drought was 

accompanied by a high number of algal blooms within Wilson Bay (Tomas, unpublished 

data).  Bloom events typically occurred during the warm weather months of March 

through September of previous years.  The experimental year of 2003 was one of high 

amounts of rainfall and a low level of bloom occurrence with only one significant bloom 

occurring during the final week of sampling.  Another factor to be considered is the fact 

that all historical data prior to 1999 would have been heavily influenced by the discharge 

from the Jacksonville Wastewater Treatment Plant and prior to its closure (Mallin et al, 

2005).   

Wilson Bay is a partially enclosed, poorly flushed, shallow embayment that is 

susceptible to tides, wind mixing and run-off variations influencing the ratio of salt to 

fresh water which complicates the use of Redfield ratio’s in predicting bloom.  The 

validity of the ratio of 16:1 (atoms) as defined by Redfield must be used with caution 

within this system.  Fluxes in coastal regions, such as Wilson Bay, are thus a function of 

amounts of rainfall, tidal changes, disturbance of bottom sediments and influx of 

nutrients caused by various sources, such as runoff (Mallin et al , 2005).  These 

components can make a system such as Wilson Bay difficult to understand and must 

therefore be looked at as a unique system not easily defined by nutrient standing stock 

only.  While the amounts of nutrients that flow into Wilson Bay are variable depending

on any one day, the cycling of nutrients will remain a critical measurements required to 
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give insight as to how the system functions.  The purpose of using natural populations in 

bioassays as opposed to a unialgal test species was to tell us about the nutrients impact 

their growth.

Algal bioassays can be executed in different ways.  One way is to perform “bottle 

experiments” and using a culture of a single “indicator” algal species.   These assays can 

be replicated and assume that results from laboratory studies can be applied to events in 

the field.  This type of bioassay can also be performed using a phytoplankton community, 

containing a mixture of natural populations (Hecky and Kilham, 1988).  Replications and 

assumptions can also be made by using data obtained from laboratory results, but 

extrapolation from bioassays can be risky due to the fact that elements of the ecosystem, 

such as grazers or turbidity, may be missing or altered.  Mesocosm and field experiment 

(in situ) bioassays can also be performed.  These are often able to incorporate factors that 

are omitted from bottle bioassays.  Problems can also arise in these experiments such as 

founder effects.  These effects are the establishment of a new population by a few 

original founders, which carry only a small fraction of the total genetic variation of the 

parental population creating a difficulty in understanding the ecosystem (Hecky and 

Kilham, 1988).  

Algal bioassays, while informative, have limitations in that each experiment is 

normally of a short duration yet are also time consuming.  Each bioassay has numerous 

analyses that must be performed and some results cannot be determined for at least one 

week.  In dealing with natural populations as opposed to using a unialgal test species, 

taxonomic expertise is necessary as well.  Dominant species must be properly identified 

in order to determine its impact on the bioassay.  Another limitation to using natural 
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populations in bioassays is grazers.  Grazers sometimes manage to slip through the 

screening process and their impact is not known until the bioassay in complete.  Their 

presence can skew the final species composition by lowering the numbers of certain 

populations that might not otherwise be.

The idea that either nitrogen or phosphorus being the limiting nutrient was 

initially suggested by Redfield with his ratios (1958) and it was later debated by Ryther 

and Dunstan (1971) and by Hecky and Kilham (1988).  Natural water sources have many 

nutrients available to phytoplankton, but it is often nitrogen and/or phosphorus that can 

be quickly depleted, hence becoming a limiting factor on growth.   The ratio of nitrogen 

to phosphorus in marine environments is thought to be an important factor in regulating 

algal bloom events (Hodgkiss and Ho, 1997).  The levels of nitrogen and phosphorus in a 

natural coastal marine environment can fluctuate rapidly depending on numerous factors 

such as rain, runoff and bottom disturbances.  It is difficult to predict how anthropogenic 

input of nutrients would affect algal growth because the additions to a system could alter 

the N:P ratio, thereby changing the limiting factor for a particular species.  

The growth of phytoplankton measured by in vivo fluorescence in each 

experiment depended in large part on the species present and the amount of nutrients 

already available in sample water.  The N:P ratio varied greatly in each experiment as did 

the growth of algal biomass (Table 3).  The amounts of total nitrogen (both organic and 

inorganic) available in the waters of Wilson Bay were routinely high so the amounts 

added for each bioassay, although environmentally realistic,  did not seem to make much 

of a difference in terms of growth overall.  The algal populations grew rapidly in each 

bioassay due to the continuous light exposure.  Populations in each tube increased greatly 
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in number and crashed after the midpoint of each 7-day experiment.  The fact that these 

natural populations were forced to grow in an enclosed space (wall effects) with a limited 

amount of nutrients contributed to the population crash and the response will depend

greatly on the scale.  A microcosm, such as this, will produce different results compared 

to that of a meso- or macrocosom.

Species composition showed throughout the nine bioassay experiments to have a 

majority of freshwater algal species despite the fact that Wilson Bay is a brackish 

embayment.  The unusually high amounts of rainfall during the experimental period 

raised the amounts of freshwater in the system resulting in salinities of zero or close to 

zero (Table 1).  This differed markedly from the previous year when a drought occurred 

and samples taken showed more salt water algal species and higher salinities due to the 

reversal of fresh to salt water dominance.

One of the goals of this experiment was to see how various nitrogen sources 

stimulated growth over a short duration of time.  At the conclusion of the nine algal 

bioassays, nitrogen clearly stimulated growth nearly all the time.  Nitrogen, both from 

review of historical data and from bioassays, has proven to indeed be limiting in nearly 

all cases and the addition of the various forms (nitrate, ammonium and urea) caused 

significant changes.  These changes were also noted in the exclusion bioassays.  

 Nitrate and urea in particular were both highly stimulatory to growth as seen in 

the terminal chlorophyll a values (Figure 5) and nutrient exclusion treatments.  In 

particular, experiment 2 clearly shows the dramatic effect nitrogen additions have on 

growth.  The growth is so dramatic and rapid that it produced an equally dramatic 

population crash (Figure 10).  The role of urea in Wilson Bay had not been addressed in 

44



previous water quality studies or had levels been monitored.  Because its impact was 

unknown and since preliminary analysis showed it to be present, urea was used as a 

nitrogen addition.  This study clearly showed that urea had a significant impact 

particularly on growth as seen in experiments 1, 2 and 9.  It was present in significant 

amounts throughout this study (Figure 5).  This is not surprising considering that Wilson 

Bay was the former recipient of treated sewage continuously receiving inputs of nitrogen 

including urea.  

Despite the fact that numerous algal bloom events were not seen during this study 

period, it is important to note that nutrients that enter Wilson Bay regulate the dynamics 

of phytoplankton species that grow there even if high levels of rainfall may dilute the 

populations present for a period of time.  High amounts of rainfall equate to high amounts 

of run-off which can increase the amounts of nitrogen entering into Wilson Bay.  Out of 

nine experiments performed in this study period, five had salinities of one or zero which 

would influence the species represented.

The role of silica in the bioassay experiments did not appear to be significant 

based on the growth measurements recorded.  The exclusion of sodium silicate from 

natural samples did not fail to hinder growth nor did its presence stimulate growth.  On 

the contrary, the lack of silicate in the exclusion performed in each of the nine 

experiments showed that growth was not affected which can be clearly seen especially in 

experiments 1, 2, 6 and 8.  In these, the lack of silicate did not impede high terminal 

chlorophyll a.  

Phosphate as examined through these experiments indicated that it was limiting 

only on one occasion.  This may have been due to the species present at the time the 
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experiments were performed whereas a different set of species may not have been limited 

in terms of growth.  Phosphate was abundant in Wilson Bay throughout the entire study 

period.  The role of phosphorus should be addressed to see if its presence has any impact 

on the growth of species that are found in brackish waters and that might have been found 

in higher numbers in Wilson Bay had it not been for the high levels of rainfall.

While this experiment was a good starting point, it is begs for more questions to 

investigated.  Bioassays are useful but do not always offer very sensitive measurements.  

Cellular eye counts, while able to give an overview of the cells present, it cannot give 

detail of the smaller species within a sample that are unable to be identified.  Electron 

microscopy would provide that detail and would help determine if these smaller species 

are significant.  This would add to the processing time needed for the bioassays.  While 

not studied as in depth as nitrogen in this experiment, it was noted that the role of 

phosphate within Wilson Bay is important.  The abatement of nitrogen will do little 

unless problems regarding phosphate are resolved.  The role of phosphate and mitigating 

its impact should be looked at closely to determine the role it plays on algal bloom 

formation.

The bioassays despite their shortcomings are able to give an integrated biological 

response to the conditions and help put into perspective the impact of supply and 

utilization of the common N and P macronutrients.  This begs the question of looking at 

the phytoplankton populations in a dynamic way.  This might involve assays 

investigating nitrogen and phosphorus assimilative enzymes, gene expression for these 

enzymes (such as nitrate and nitrite reductase, urease, glutamine synthethase and alkaline 

phosphatases).  Using the rates measured by the enzyme measurements, knowing which 
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nitrogen assimilative genes are up regulated as well as the standing stocks of all the 

nitrogen and phosphorus sources will give a better understanding of the bloom process.  

As with the forms of nitrogen used in this experiment, both inorganic and organic sources 

of phosphorus should be studied.

Summary Conclusions

These bioassays showed the following:

1. The experimental results suggest nitrogen could limit phytoplankton biomass 

within Wilson Bay.

2. Despite abatement of ammonium, nitrate and urea are both readily assimilated 

to support blooms.

3. Urea plays an important part of the nitrogen budget.  It needs to be monitored 

along with other forms of nitrogen.

4. Phosphorus was found as particularly limiting once signifying that reduction 

in phosphate within Wilson Bay is equally important as nitrogen.

5. Silicate was not important in influencing blooms as based on these studies.

6. The year chosen for the bioassay study was different from previous years 

when blooms were much more common.

7. In addition to the static nutrient standing stock nutrient measurements, rate 

measurements of assimilation by the phytoplankton and bacterial populations 

are necessary to define the dynamics observed supporting blooms.
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