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ABSTRACT 
 

An important feature in the current understanding of membrane structure is the existence 

of lipid domains.  Lipid domain formation was observed in an experimental lipid bilayer system 

containing an equilibrium mixture of glycerophospholipids and raft lipids.  Protein-lipid 

interactions in the equilibrium mixtures were observed when a peripheral membrane peptide was 

added.  These interactions were measured using fluorescence energy transfer.  Domain formation 

as a function of time was also investigated after the protein was added to the equilibrium mixture 

using stopped-flow fluorescence.  Domain formation in vesicles containing 40% anionic lipid 

occurred in less than 1 s.   

Domain dissipation was observed with stopped flow fluorescence spectroscopy in 

glycerophospholipid vesicles as well as in a mixture of glycerophospholipids and raft lipids by 

removing the peptide. Domain dissipation in vesicles containing glycerophospholipids with 20% 

anionic lipid occurred in approximately 5 s. Domain dissipation in vesicles containing rafts and 

40% anionic lipid occurred in approximately 900 s and domain dissipation in vesicles containing 

rafts and 10% anionic lipid occurred in approximately 160 s.  These timescales were compared to 

the off-rate of the peptide from the vesicles. 
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INTRODUCTION 

An important aspect of the current understanding of membrane structure is the existence 

of lipid domains.  If proteins show preferential lipid interactions, these lipid domains can be 

induced through the binding of a protein to the membrane.  The binding of peripheral proteins to 

membranes is crucial for biological processes such as signal transduction and vesicle trafficking 

(1). It has been suggested that the function of lipid diversity in the cell membrane is to regulate 

the formation of protein signal transduction complexes (2).   It may also be that the role of lipids 

within the membrane is signal amplification through interactions between nearest neighbors (3).   

Previous studies investigating the influence of lipid chemical structure on protein binding 

using a fluid, binary lipid system indicated that lipid and protein clustering are correlated (3). 

Small, cooperative interactions between lipids can be coupled to protein binding, leading to 

domain formation. If these interactions are concentrated in the same domain, these events will be 

enhanced in magnitude and specificity. Lipid and protein interactions cause reorganization of the 

membrane, and can lead to large changes in domain formation when a protein binds 

preferentially to one of the lipids. 

Hinderliter et al (2) investigated the effect of altering lipid chemical structures on the net 

interaction free energy and how it influenced lipid and protein domain formation.  This was done 

to explore the reason for lipid diversity in eukaryotic membranes, especially slight variations in 

the acyl chains.  They suggested that the role of lipid diversity is to provide an on-off switch for 

a signaling event at the membrane level. 

The membranes of eukaryotic cells contain three main classes of lipids: 

glycerophospholipids, sphingolipids, and cholesterol (4).  Glycerophospholipids, also called 

phosphoacylglycerols, are phosphate esters of the three-carbon alcohol, glycerol.  The fatty acyl 

chains usually have an even number of carbon atoms, with 16- and 18-carbon acids being the 
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most common.  The chains may also contain cis unsaturation (Fig. 1A, B). Sphingolipids (Fig. 

1C), a second group of polar lipids, have the parent structure of the amino alcohol sphingosine. 

Finally, cholesterol is an isoprenoid compound with four fused rings, a short aliphatic chain, and 

a single hydroxyl group (Fig 1D).   

Domains rich in cholesterol and the sphingolipid sphingomyelin, called ‘rafts’, have 

recently received a significant amount of attention (4-9). It is thought that these large protein-

lipid complexes could be important in signal transduction at the level of the cell membrane by 

functioning as platforms for the attachment of proteins (10).  The involvement of rafts has been 

implied in several kinds of physiological and pathological processes (10).    

Cell membranes are two-dimensional liquids, and hydrated bilayers undergo phase 

transitions as a function of temperature.  The main transition has been described as an ordered-

to-disordered phase transition. The two phases are labeled solid ordered (so), below the transition 

temperature, and liquid disordered (ld), above that temperature (11). Cholesterol and 

phospholipids can form a liquid-ordered (lo) phase that could coexist with a cholesterol-poor, 

liquid-disordered (ld) phase, which permits phase coexistence in wholly liquid phase membranes 

(12, 13). 

The dynamics of domain formation and dissipation have received little attention.  Collado et al. 

(14) investigated domain formation in sphingomyelin/cholesterol membranes using spin-label 

electron spin resonance spectroscopy. They found that the rate at which the lipids exchange 

between the two fluid phases, liquid ordered and liquid disordered, must be considerably slower 

than the translational diffusion rates in the liquid disordered phase (14).  Thus, it is possible that 

domain dissipation would be a slower process than diffusion, and its kinetics could be measured 

by stopped-flow fluorescence. 
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FIGURE 1.  Examples of structures of common lipids found in the cell membrane:  
glycerophospholipids POPS (A) and POPC (B), sphingolipids (C), and cholesterol (D).  
Structures are from avantilipids.com. 
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The peripheral membrane protein, myristoylated alanine-rich C kinase substrate 

(MARCKS), is the major protein kinase C (PKC) substrate in many cell types (15). The basic 

effector region of MARCKS (residues 151-175) comprises the binding site for membranes, and 

has the amino acid sequence KKKKKRFSFKKSFKLSGFSFKKNKK.  The peptide carries 13 

positive charges, one for each lysine, which is electrostatically attracted to anionic lipids. 

Domains were observed using fluorescence resonance energy transfer (FRET).  FRET is 

a distance-dependent interaction between the excited states of fluorescent molecules in which 

excitation is transferred from a donor molecule to an acceptor molecule without emission of a 

photon (16). Because this technique is useful for measuring changes in molecular proximity, 

changes in domain sizes can be measured. 

Experimentally, domain formation was observed in vesicles containing sphingomyelin, 

cholesterol, and a glycerophospholipid such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine 

(POPS) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) (see Fig. 1).  These 

vesicle mixtures consist of a lo phase containing sphingomyelin and cholesterol coexisting with 

the POPS or POPC ld phase, causing a phase separation within the vesicles. The two 

fluorophores were attached to lipids containing the same acyl chains as POPS and POPC.  This 

ensured that the probes would mimic the behavior of the glycerophospholipids. Because the 

fluorophores and the glycerophospholipids contained the same chains, the probes are assumed to 

partition into the same domains as POPS and POPC due to the phase separation existing in the 

vesicle mixtures.   

Domain formation was induced or enhanced using the effector region of MARCKS 

peptide.  The timescales for domain formation and dissipation were not known.  Domain 

formation and dissipation were observed using stopped-flow fluorescence when MARCKS was 
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added to or removed from the membrane.  Other vesicles containing mixtures of different lipids 

were also observed to illustrate domain formation and their time scales in systems different from 

those containing sphingomyelin/cholesterol.   
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MATERIALS AND METHODS 

Materials 

 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoserine (POPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine 

(POPE), 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (di-14:1PC), and brain (porcine) 

sphingomyelin (SM) were purchased from Avanti Polar Lipids, Inc. (Birmingham, AL).  

Cholesterol (Cho) was from ICN Biomedicals Inc. (Aurora, Ohio). Myristoylated alanine-rich C 

kinase substrate (MARCKS) (151-175) was a gift from Dr. Rodney Biltonen (University of 

Virginia).  4-Chloro-7-nitrobenz-2-oxa-1,3-diazole chloride (NBD chloride) and Marina Blue® 

succinimidyl ester (MB succinimidyl ester) were from Molecular Probes (Eugene, OR);  NBD-

MARCKS was from Sigma-Genosys.  Molecular sieves (4A, beads, 4-8 mesh), sodium 

molybdate dihydrate, and hydrazine sulfate were purchased from Aldrich Chemical Company 

(Milwaukee, WI). Dimethylformamide (DMF), potassium chloride (KCl), and potassium 

carbonate (K2CO3) were purchased from Mallinckrodt Baker, Inc. (Paris, KY).  Sulfuric acid and 

perchloric acid were from EM Science (Darmstadt, Germany).  Dichloromethane (CH2Cl2), 

chloroform (CHCl3), and methanol (MeOH) were purchased from Allied Signal Burdick & 

Jackson (Muskegon, MI). 3-(N-Morpholino)propane-sulfonic acid (MOPS) was from MERCK 

(Darmstadt, Germany).  Azide and [Ethylenebis(oxy-ethylenenitrilo)] tetra-acetic acid (EGTA) 

were from Acros (NJ). Potassium hydroxide (KOH) was from Fisher Scientific (Fairlawn, NJ).  

Thin layer chromatography (TLC) plates were purchased from Whatman Internation Ltd. 

(Maildstone, England); and Uniplate® preparatory plates were purchased from Analtech, Inc. 

(Newark, DE). 
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Buffer 

 Concentrated stock (10X) buffer contained 0.20 M MOPS, 1.0 M KCl, 0.2% azide, and 

1.0 mM EGTA, and was refrigerated.  Buffer used for experiments was diluted from the stock 

buffer 1:10.  The pH was adjusted to 7.50 using KOH. 

 

Synthesis of Fluorescent Lipid Probes 

 MB and NBD were chosen because of their large energy transfer capacity.  The probes 

were attached to a lipid moiety so that they would mimic the behaviors of the lipids.  POPE was 

chosen because it has a free amino group and has the same acyl chains as POPS and POPC, 

therefore partitioning into those lipid domains. 

 

Synthesis of MB-POPE 

Molecular sieves were dried for five hours at 80ºC.  CHCl3 and DMF were then poured 

over the molecular sieves and allowed to dry overnight. K2CO3 was dried in a dessicator under 

vacuum for about 5 hours.  Stock POPE solution in CHCl3 was evaporated in a rotoevaporator 

(Büch 3000 rotovap) to remove solvent and was then re-dissolved in dry CHCl3.  Starting with 5 

mg of MB, the mass of POPE to be reacted was determined such that it was 1.1:1 (POPE:MB 

mole ratio).  MB was dissolved in as little DMF as possible (approximately 0.3 mL of DMF).  

K2CO3(s), 1:1 ratio with POPE, was dissolved in 0.2 mL of DMF, and POPE was then added to 

this solution.  The MB/DMF solution was then added drop wise to the POPE/ K2CO3(s)/DMF 

solution.  The mixture was stirred in the dark overnight.   

The mixture was analyzed by TLC, with CH2Cl2:MeOH 2:1 (v/v) as the solvent, on a 

TLC plate.  The MB was identified with UV light, and the POPE was identified using the 
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Zinzade reagent (17).  The Zinzade reagent, which exposed the phosphorus head group of the 

probe, was prepared by dissolving sodium molybdate dihydrate  

(6.85 g) and hydrazine sulfate (0.4 g) in 100 mL of distilled water.  A volume of 250 mL of 

concentrated sulfuric acid was added, and the mixture was allowed to cool.  600 mL of distilled 

water was then added. 

Separation was carried out on a Uniplate® (20 x 20 cm, 1000 microns) using the solvent 

system CH2Cl2:MeOH (3.5:1).  The pure product band was left on the origin. The band 

corresponding to MB-POPE was scraped off with a razor blade and the fluorescent lipid was 

recovered and then separated from the silica with a sintered glass funnel using CH2Cl2:MeOH 

(2:1), (a 10 mL mini column plugged with glass wool could also be used for the separation).   

CH2Cl2 was added to the mixture before evaporating on the rotavap to help remove all the 

MeOH.  After evaporating all solvent, dry CHCl3 was added to re-dissolve the product.  The 

concentration of the product was determined using the phosphorous assay (18).  Using this 

concentration, the molar absorptivity of MB in MeOH and in CH2Cl2 was determined using a 

CARY 1E UV-Visible Spectrophotometer.  The molar absorptivity of MB was estimated to be 

15,674 at 368 nm in MeOH, and 8,535 at 341 nm in CH2Cl2. The percent yield of this reaction 

was 35%.  The product structure can be seen in Fig. 2. 
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FIGURE 2.  Structure of MB-POPE at pH 7.5. 
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Synthesis of NBD-POPE 

Molecular sieves were dried for five hours at 80ºC.  CHCl3, and MeOH, were then 

poured over the molecular sieves and allowed to dry about 5 hours.  K2CO3 was dried in a 

vacuum dessicator for about 5 hours.  Stock POPE solution in CHCl3 was evaporated in a 

rotoevaporator to remove solvent and was then re-dissolved in dry CHCl3.  Starting with 5 mg of 

NBD-Cl, the reacting volume of POPE was determined such it was 1.5:1 (POPE:NBD mole 

ratio).   NBD was dissolved in CHCl3:MeOH (50:50 (v/v)), (as little as possible, approximately 

0.3 mL). K2CO3(s), 1.1:1 mole ratio with POPE, was added to POPE, and then the NBD solution 

was added drop wise to the POPE/ K2CO3(s) solution. The mixture was stirred in the dark for 

approximately 30 minutes.   

The reaction course was analyzed by TLC using the solvent CH2Cl2:MeOH:H2O 65:25:4 

(v/v), on a TLC plate.    The NBD was identified with UV light, and the POPE was identified 

using the Zinzade reagent.  TLC showed no fluorescent product after 30 minutes.  Therefore, the 

mixture was allowed to react overnight.  Only a small amount of product was seen, so 2.5 mg 

NBD (half of original amount) was added to drive the reaction toward the product.  It was 

allowed to react for about more 5 hours.   

Separation was carried out on a Uniplate® (20 x 20 cm, 1000 microns) using solvent 

system CH2Cl2:MeOH (4:1), and then separated in a sintered glass funnel using CH2Cl2:MeOH 

(4:1) followed by CH2Cl2:MeOH (3:1).  After evaporating all solvent with the rotavap, dry 

CHCl3 was added to re-dissolve the product.  The concentration of the product was determined 

using a CARY 1E UV-Visible Spectrophotometer.  NBD has a molar absorptivity of 21,000 at 

463 nm in MeOH (19).  The reaction had 18% yield. 
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FIGURE 3.  Structure of NBD-POPE at pH 7.5 
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Preparation of Large Unilamellar Vesicles (LUV) 

Mixtures of lipids were prepared by aliquotting stock solutions of lipid into a round 

bottom flask.  The chloroform solvent was evaporated from the mixture using a rotoevaporator 

and the lipid film thus obtained was then allowed to dry under vacuum for approximately 4 

hours.   All vesicle mixtures containing fluorescent probes were kept in the dark. Lipids were 

hydrated using MOPS buffer (pH 7.50) and vortexed for a few minutes. A suspension of 

multilamellar vesicles (MLV) was thus formed.  Hydration was performed above the gel-fluid 

phase transition temperature of the highest melting lipid: at room temperature for PS and PC 

vesicles and at 70°C for vesicles containing SM and Cho. LUV were prepared by extruding 2 mL 

of the MLV dispersion 10 times through two stacked Nucleopore polycarbonate filters with pore 

size 0.1 µm and Whatman Nucleopore drain disk of 2.5 mm pore size, using a water-jacketed, 

high-pressure extruder from Lipex Biomembranes Inc.  The dispersion was maintained above the 

phase transition temperature throughout the extrusion process: at room temperature for PS and 

PC vesicles and at 70°C for SM and Cho vesicles.  All hydrated lipid samples were stored in the 

dark under a nitrogen atmosphere at room temperature.  The concentration of the vesicles was 

verified using a modified version of the Bartlett phosphate assay (19). 

 

Peptide Preparation 

Solutions of the MARCKS peptide were prepared by weighing the lyophilized peptide 

and hydrated with distilled water.  The concentration was confirmed by averaging results from 

gravimetric measurements, the Bradford assay (20), and Fluorescamine assay (21).  The ratios of 

the concentrations estimated by each method were 1.00/0.652/0.480 for gravimetric 

measurements, Bradford assay and Fluorescamine assay, respectively. 
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Fluorescence Spectroscopy Measurements 

 Fluorescence measurements were recorded on a SLM Aminco 8100 Spectrofluorometer.  

The changes in domain size were monitored using fluorescence resonance energy transfer 

(FRET) from a donor to an acceptor molecule. N-(6,8-difluoro-7-hydroxy-4-methyl-2-oxo-2H-1-

benzopyran-3-yl)acetyl) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, Marina 

Blue®-POPE (MB-POPE) and N-((7-nitrobenz-2-oxa-1,3-diazole)-1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoethanolamine (NBD-POPE) were selected as the energy transfer pair, where 

MB is the donor and NBD is the acceptor. 

 

Steady State Fluorescence  

For steady state measurements, the excitation wavelength for MB was 367 nm, and 

emission spectra were recorded from 400 nm to 600 nm, encompassing both the MB and NBD 

emission peaks.  Excitation and emission monochromator band-passes were 2 nm and 8 nm, 

respectively.  A 10 mm path-length quartz cell (Genuine McCarthy Precision Cell, No.2 type 9F) 

was used for measurements.  Vesicles were used at a concentration of 100 µM.  

 

Stopped-Flow Fluorescence 

The timescales for domain dynamics were obtained using the SLM-Aminco 8100 adapted 

with a RX2000 rapid kinetics spectrometer accessory (Applied Photophysics). 

The excitation wavelength was 367 nm (MB excitation), and emission was measured as a 

function of time at 535 nm (NBD emission).  In domain formation experiments, excitation and 

emission monochromator band-passes were 4 nm and 16 nm, respectively.  In dissipation 

experiments, excitation and emission monochromator band-passes were 1 and 16 nm, 
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respectively.  Before placing the sample in the stopped-flow, the stopped-flow was flushed with 

detergent Triton-X100.  It was then rinsed with approximately 50 mL of buffer before vesicle 

mixtures were placed in the stopped-flow for measurements. 

Since the vesicles were mixed using the two syringes, they were placed in the syringe at a 

concentration of 200 μM, so that, when they were mixed and diluted by a factor of two, the 

concentration would then be 100 μM, which was the concentration used in the steady-state 

measurements.   Each measurement was repeated between five and ten times so that the results 

could be averaged to reduce the noise in the spectra. 

Domain formation experiments were performed by mixing the vesicles with MARCKS in 

the stopped-flow apparatus.  The emission was compared to a baseline. Fluorescence would 

increase with the addition of peptide if it is promoting domain formation because this should 

occur concomitantly with an increase in energy transfer. 

Domain dissipation was observed using similar conditions as the domain formation 

experiments.  In the dissipation experiments, the vesicles were pre-incubated with the MARCKS 

so that the domains would be present initially, corresponding to a high level of FRET.  These 

vesicles were then mixed with acceptor vesicles, which contained the same lipids but no probes, 

and were at a concentration ten times greater than the incubated lipids.  The acceptor vesicles 

were therefore presumed to extract the MARCKS from the donor vesicles, which would cause 

the domains to dissipate and energy transfer to decrease.  To ensure that the timescale that was 

measured readily corresponded to domain dissipation, and not just to MARCKS dissociation 

from the membrane, the dissipation timescales were compared to the timescales of MARCKS 

desorption from the membrane. 
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The timescales for MARCKS desorption were determined using vesicles containing only 

MB and MARCKS labeled with NBD (NBD-MARCKS).  In these experiments, NBD-

MARCKS was pre-incubated with vesicles containing MB, allowing for energy transfer to occur 

between the NBD on the MARCKS when it binds domains on the membrane containing MB-

POPE.  When this suspension is mixed with acceptor vesicles that contain lipids with no probe in 

ten-fold excess, the acceptors will extract the NBD-MARCKS, and the energy transfer will 

decrease.  The timescale for this event directly indicates how long it takes for the MARCKS to 

come off the membrane. 
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RESULTS AND DISCUSSION 

Monitoring Lipid Domain Formation in Steady State Fluorescence 

Lipid domain formation was observed using fluorescence resonance energy transfer.  

Transfer of energy from an excited state fluorophore to an acceptor can occur if there is spectral 

overlap between the fluorescence emission spectrum of the donor and the absorption spectrum of 

the acceptor (16). MB is the donor and NBD is the acceptor. This provides a nice pair because 

the emission spectrum of MB has significant overlap with the excitation spectrum of NBD (Fig. 

4).  The MB is excited at 367 nm where there is no absorption of NBD, and the emission of both 

MB and NBD are observed. 

 The overlap integral J(λ) expresses the degree of spectral overlap between the donor 

emission and acceptor excitation (22), 

∫
∞

=
0

4)()()( λλλελλ dFJ AD , 

where FD(λ) is the corrected fluorescence intensity of the donor in the wavelength range λ + Δλ, 

with the total intensity (area under the curve) normalized to unity and εA(λ) is the extinction 

coefficient of the acceptor at λ.  The distance at which FRET is 50% efficient, called the Förster 

distance (R0), is typically in the range of 20-60 Å (22).  When the donor-to-acceptor distance is 

equal to R0 then the transfer efficiency is 50%. 

The overlap integral was calculated for the energy transfer pair by first plotting the 

spectral overlap and determining the area under that curve with the integral function using the 

commercially available Prostat program.  It was determined to be 49 Å. This is a large value, 

which is indicative of a large amount of energy transfer that can occur with this pair.  The 

efficiency of energy transfer is high for distances less than 49 Å.  Thus, the  
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FIGURE 4.  Excitation (solid) and emission (dotted) spectra of MB (blue) and NBD (orange) 
showing the overlap of the MB emission and NBD absorption.  
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probes do not need to be in contact to sense each other; they can transfer energy at a distance of 

about 6 lipids since the diameter of a lipid is about 8 Å. Energy transfer drops quickly for 

distances longer than 49 Å, with a R0
6 dependence on distance between fluorophores (22). 

 
Vesicles of SM:Cho:POPS 

Domain formation was observed using steady state fluorescence in vesicles containing 

SM, Cho, POPS, and the fluorescent energy transfer pair MB-POPE and NBD-POPE.  These 

vesicles contain two types of domains (or phases), one rich in POPS and the other rich in 

SM/Cho.  MB was excited at 367 nm and the emission was scanned from 400 nm to 600 nm.  

The probe concentrations present in all vesicles were determined experimentally such that there 

would not be much energy transfer in the absence of peptide, but present a significant amount of 

energy transfer, representing the increase in domain formation, once a final peptide concentration 

had been reached.     Various vesicle mixtures were prepared and fluorescence emission scans 

were recorded, where the percentages of both MB-POPE and NBD-POPE were varied.  The 

percentage of probe that resulted in the highest sensitivity to peptide addition was determined to 

be 1 mole % MB and 1 mole % NBD.  The fluorescence intensity was observed as a function of 

MARCKS concentration in 100 μM vesicles containing equimolar amounts of SM and Cho and 

20, 40, 60, and 80 mole % POPS (Fig. 5).  MARCKS peptide was then titrated onto the vesicles 

to obtain the maximum amount of energy transfer that could occur within these vesicles. As the 

peptide concentration increased, energy transfer increased until the peptide concentration 

reached about 2.5 μM, at which point the amount of energy transfer leveled off.  This is 

interpreted to mean that the domain sizes had stopped increasing; the anionic lipid becomes 

saturated with peptide at this concentration.  Thus, when the concentration is further increased to 

5 μM, there is no more change in domain size. 
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FIGURE 5. Comparison of the experimental fluorescence intensity as a function of MARCKS 
peptide concentration for various mole percent of 100 μM SM:Cho:POPS, MB-POPE and 1% 
NBD-POPE vesicles:  (A) 40:40:18, (B) 30:30:38, (C) 20:20:58, (D) 10:10:78. 
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The relative amount of energy transfer was estimated by dividing the NBD emission peak 

(528 nm) by the MB emission peak (459 nm) for each of the SM/Cho/POPS vesicle systems 

(Fig. 6). The greatest increase in energy transfer was observed in vesicles containing 40% POPS.  

This is interpreted to mean that this system provides the greatest increase in domain formation.  

The 60% POPS and 80% POPS show an increase in energy transfer, but not as much as the 40% 

POPS.  The 20% POPS has no increase in energy transfer; it shows an initial decrease before 

leveling off.  This is possibly a result of having so much more MARCKS compared to the 

amount of POPS present that MARCKS competes for the POPS.  MARCKS could be binding to 

the POPS or probes and separating them, which would cause a decrease in domain size. 

With increasing MARCKS concentration, there is an initial decrease in the overall 

fluorescence intensity, which can be seen in Fig. 5.  When MARCKS was added, the solution 

became visibly cloudy in the cuvette.  The cause of this drop is thought to be the result of light 

scattering.  When the MARCKS is added, it probably agglutinates vesicles or causes their 

morphology to change, leading to an increase in light scatter.  To investigate this problem in 

more detail, the scatter at 90° was measured for 100 μM vesicles containing SM:Cho:POPS 

(40:40:19) 1% MB-POPE and SM:Cho:POPS (40:40:19) 1% NBD-POPE.  The excitation and 

emission wavelength were set to 300 nm, and the drop in fluorescence intensity reflects an 

increase in light scatter (Fig. 7).  This wavelength was chosen because neither probe absorbs at 

300 nm, and because scattering varies as λ4 (22), so a smaller wavelength is more sensitive to 

scatter. 

As seen in Fig. 7, the fluorescence decreases in both the MB and NBD vesicles.   

This probably means there is no influence of MARCKS on the MB fluorescence signal itself.   
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FIGURE 6.  Energy transfer as a function of MARCKS concentration in 100 μM vesicles 
containing equal mole ratios of SM/Cho and 20% POPS, 40% POPS, 60% POPS, or 80% POPS.  
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FIGURE 7.  90° light scatter at 300 nm for 100 μM vesicles containing SM:Cho:POPS 
(40:40:19) 1% MB-POPE (A) and SM:Cho:POPS (40:40:19) 1% NBD-POPE (B). 
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Rather, the fluorescence intensity drop is probably caused by light scattering in both cases 

because it occurs in both types of vesicles.  The light scatter levels off at  

0.5 μM.  In comparison, energy transfer increases until 2.5 μM (Fig. 6).  This shows that the 

increase in energy transfer is not dependent on the increase in scatter. 

 Because the light scatter may be a result of vesicle agglutination, it was necessary to 

determine if the energy transfer that was measured was taking place within domains in the 

individual vesicles or between vesicles.  100 μM vesicles were prepared containing a mixture of 

vesicles consisting of one probe each: 50 μM  SM:Cho:POPS (40:40:19) 1% MB, and 50 μM 

SM:Cho:POPS (40:40:19) 1% NBD (Fig. 8).  The vesicles were in equimolar amounts in the 

cuvette for fluorescence measurements, so that half of the vesicles would contain one probe and 

half would contain the other probe to the same final vesicle concentration as in the previous 

experiments.  When MARCKS was added, energy transfer would only occur if it were being 

transferred from one vesicle to another. 

As seen in Fig. 8, the NBD emission peak at 535 nm is extremely small, almost 

nonexistent, which indicates that any energy transfer occurring between vesicles is negligible.  

This shows that energy transfer is taking place in domains containing POPS, and the contribution 

from inter-vesicle energy transfer is insignificant. 

NBD-POPE was analyzed separately (Fig.9).  The MB peak was observed in 100 μM 

vesicles that were excited at 367 nm, and the emission was scanned from 400 to 600 nm  

 (Fig. 9A).  The NBD peak was obtained using 100 μM vesicles that were excited at 490 nm and 

the emission was scanned from 500 to 600 nm (Fig. 9B).   
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FIGURE 8.  100 μM SM:Cho:POPS (40:40:19) 1% MB-POPE and 100 μM SM:Cho:POPS 
(40:40:19) 1% NBD-POPE mixed 50:50 (v:v), as a function of MARCKS peptide. 
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FIGURE 9.  The emission spectra of SM:Cho:POPS (40:40:19) 1% MB-POPE (A), and 
SM:Cho:POPS (40:40:19) 1% NBD-POPE (B), as a function of MARCKS peptide. 
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As seen in Fig. 9, there is a drop in fluorescence intensity, but the drop is much less in the 

NBD peak than in the MB peak.  Scattering is inversely proportional to λ4 (23) therefore shorter 

wavelengths are scattered much more than longer wavelengths.  This is more evident when the 

probes were analyzed separately because the excitation wavelength was 490 nm for NBD, but it 

was 367 nm for MB and the vesicles containing both probes (see Fig. 5).  The decrease in 

fluorescence intensity seen in the NBD peak with the addition of MARCKS also illustrates that 

there is not some artifact resulting from a direct effect of MARCKS on the NBD peak that would 

cause the intensity increase in the emission scans seen in Fig. 5.   This confirms that the increase 

in fluorescence intensity for the NBD peak seen in Fig. 5 is from energy transfer. 

The efficiency of energy transfer was calculated using information from the plot with 

20% POPS, 1%MB and 1%NBD in Fig. 5A, and the plot with 20% POPS and 1% MB in Fig. 

9A.  These two sets of spectra were obtained using the same spectrofluorometer settings and the 

efficiency of energy transfer was calculated at  

459 nm (MB emission peak) using the formula (22), 

D

AD

E
E

Eff /1−=  

where ADE /  is the emission of the donor (MB) in the presence of the acceptor (NBD), and DE  is 

the emission of the donor (MB) in the absence of acceptor.  Efficiency of energy transfer in 100 

μM vesicles containing SM:Cho:POPS (40:40:20) as a function of MARCKS concentration can 

be seen in Fig. 10. 

As seen in Fig. 10, there is a significant amount of energy transfer (78%) present before 

the addition of MARCKS.  With the first addition of MARCKS, the efficiency drops, and then 

rises to about 84% at 1 μM MARCKS. 
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FIGURE 10.  The percent of energy transfer in 100 μM vesicles containing SM:Cho:POPS 
(40:40:20)  as a function of MARCKS concentration. 
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This experiment was repeated with vesicles containing 40% POPS and also with vesicles 

containing 20% POPS.  A curve was constructed using the peak ratios calculated by dividing the 

NBD emission peak (528 nm) by the MB emission peak (459 nm) for both the 20% POPS and 

40% POPS, as well as the efficiency of energy transfer for both 20% POPS and 40% POPS (Fig. 

11).   

A binding curve was fit to the data using a non-linear least squares analysis, 

( )
( ) ,

1
100

0

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
=

xxk
xxky  

where the values obtained from the fit were k = 10, and x0 = 0.5.  A binding curve was chosen 

for this data set because the data was expected to level off at 100% energy transfer.  This curve, 

which has no physical significance, provides an easy way to estimate the efficiency of energy 

transfer without having to measure it using the MB peak in vesicles containing both probes, and 

the MB peak in vesicles containing only MB-POPE.  This result indicates that the peak ratio is 

proportional to energy transfer and provides a simple, internal method of estimating energy 

transfer. 

 
 

Vesicles of SM:Cho:POPC 

Vesicles containing POPC were analyzed to compare with results from the POPS 

experiments.  Similar to the POPS vesicles, these vesicles contain two types of domains, one rich 

in POPC, the other in SM/Cho. POPC was chosen because it carries no net charge as compared 

to the negatively charged POPS.  It was hypothesized that the MARCKS would not bind well 

enough to the POPC to induce domain formation, so it was used to ensure that MARCKS was 

agglutinating POPS, and not only the probes.    



 29

 

FIGURE 11.  Efficiency of energy transfer versus peak ratio of vesicles containing 20% POPS 
and 40% POPS. 
 



 30

Steady state fluorescence was used to observe vesicles containing SM, Cho, POPC, and 

the fluorescent energy transfer pair MB-POPE and NBD-POPE.  The same mole ratios were 

used as in the POPS experiments with POPS-containing vesicles, now using POPC instead of 

POPS as the unsaturated lipid in the vesicle system.  The same probe concentrations were used in 

the POPC vesicles as in the POPS vesicles: 1 mole % MB-POPE and 1 mole % NBD-POPE.  

The fluorescence intensity was observed as a function of MARCKS concentration in 100 μM 

vesicles containing equimolar amounts of SM and Cho, and 20, 40, 60, and 80 mole % POPC 

(Fig. 12).    

Energy transfer was estimated by dividing the NBD emission peak (528 nm) by the MB 

emission peak (459 nm).  No energy transfer increase upon MARCKS addition was seen in any 

of the POPC vesicles; a decrease was seen in 20% POPC vesicles (Fig. 13).  This is interpreted 

to mean that MARCKS does not cause an increase in domain formation in POPC vesicles.  

MARCKS probably does not bind well to these vesicles.  This also shows that the energy 

transfer occurring in POPS vesicles results from MARCKS agglutinating the POPS and the 

probes with it, but not just the probes.  If MARCKS were to cluster the probes, energy transfer 

would be present in the POPC vesicles.  Unlike with POPS-containing vesicles, little or no light 

scatter was observed when MARCKS was added to POPC vesicles, but only a slight drop in 

fluorescence with the addition of MARCKS.  MARCKS probably does not bind to POPC well 

enough to cause the vesicles to agglutinate or change morphology, which is probably the reason 

for scattered light in experiments using SM/Cho/POPS vesicles. 
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FIGURE 12. Comparison of the experimental fluorescence intensity as a function of MARCKS 
peptide concentration for various mole percent of the 100 μM SM:Cho:POPC vesicles:  (A) 
40:40:18, (B) 30:30:38, (C) 20:20:58, (D) 10:10:78, where all vesicles contain 1%MB-POPE and 
1%NBD-POPE. 
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FIGURE 13.  Energy transfer as a function of MARCKS concentration in 100 μM vesicles 
containing equal mole ratios of SM/Cho and 20% POPC, 40% POPC, 60% POPC, or 80% 
POPC. 
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Timescales for Domain Formation and Dissipation in SM:Cho:POPS 

The timescales of domain formation and dissipation were investigated in SM:Cho:POPS 

vesicles using stopped-flow fluorescence spectroscopy.  Using the information obtained from the 

steady state fluorescence, the vesicles containing 40 mole % POPS were of the greatest interest 

since they display the largest increase in energy transfer upon MARCKS addition (Fig. 6).   

 

Domain Formation in SM:Cho:POPS (30:30:40)  

Because the addition of MARCKS to vesicles caused a significant increase in light 

scatter, the fluorescence intensity would appear to decrease with increasing concentration of 

MARCKS.  Thus, MARCKS needed to be present initially at a concentration such that light 

scatter would have reached a plateau, but not induce the maximum amount of energy transfer.  

More MARCKS could then be added to observe the increase in domain formation.  In Fig. 6 it 

can be seen that the scattering increased until MARCKS concentration reached 1 μM, where the 

amount of scattering leveled off.  In Fig. 5 it can be seen that energy transfer is still increasing at 

1 μM MARCKS, and does not level off until 2.5 μM.  The experiments were thus designed 

taking these considerations into account.  

The 200 μM SM:Cho:POPS (30:30:38) 1% MB-POPE, 1% NBD-POPE vesicles were 

first mixed with buffer to obtain the baseline for energy transfer with 1 μM MARCKS present 

(concentration after mixing).  When the vesicles were mixed with the contents of the other 

syringe, the final vesicle concentration was 100 μM.  A MARCKS concentration of 2.5 μM 

provided the maximum amount of energy transfer in steady state, therefore the MARCKS 

concentration used to observe domain formation in stopped flow experiments was 2.5 μM 

(concentration after mixing).  This final MARCKS concentration of 2.5 μM in 100 μM vesicles 
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was obtained by mixing 4.0 μM MARCKS with the contents in the other syringe (200 μM 

vesicles and 1.0 μM MARCKS). 

Fig. 14 shows the result of an experiment where the vesicles were first mixed with buffer 

(green), or with MARCKS added to obtain a final concentration of 2.5 μM (blue).   

The vesicles were excited at 367 nm (MB excitation) and the emission was observed with time at 

535 nm (NBD emission). As seen in Fig. 14, the fluorescence intensity of emission in the 

vesicles containing 2.5 μM MARCKS was greater than the 1 μM MARCKS baseline.  This is the 

result of increased domain formation after the amount of light scattering had leveled off.  In the 

initial part of the curve corresponding to 2.5 μM MARCKS, there is an initial increase followed 

by a slower decrease.  The initial increase in energy transfer occurred in about 1 s.  Because a 

slow process follows this jump, the domains could have overshot in size.  This slower process 

could be domains relaxing to their equilibrium size, or the vesicle morphology could be 

changing.  (A change in vesicle morphology could cause the light scatter seen with the 

MARCKS additions.) 

 

Domain Dissipation in SM:Cho:POPS 30:30:40 

The timescales for domain dissipation were hypothesized to be much slower than 

formation, thus dissipation experiments were performed.  Using SM:Cho:POPS (30:30:38) 

vesicles, dissipation could be observed by measuring the emission from vesicles pre-incubated 

with MARCKS when mixed with vesicles that functioned as acceptors for MARCKS peptide.  

The pre-incubated vesicles contained 200 μM SM:Cho:POPS (30:30:38), 1% MB-POPE and 1% 
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FIGURE 14.  Domain formation in 100μM SM:Cho:POPS (30:30:38), 1%MB-POPE and 1% 
NBD-POPE.  The green line is the baseline where vesicles (100 μM) containing  
1 μM MARCKS (concentrations after mixing) were mixed with buffer.  The blue line is domain 
formation with a total, final concentration of 2.5 μM MARCKS.  The excitation and emission 
wavelengths were 367 nm and 535 nm, respectively. 
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NBD-POPE.  The MARCKS concentration present in these vesicles was 2.5 μM (concentration 

after mixing).  This allowed domain formation and the corresponding energy transfer to be 

present before the disruption of the domains occurred.  The acceptor vesicles contained 2 mM 

SM:Cho:POPS (30:30:40), a ten-fold excess of the pre-incubated vesicles, and no probes.  

Therefore, when the two were mixed in the stopped-flow, the acceptor vesicles bind MARCKS, 

and the energy transfer decreased as MARCKS left the pre-incubated vesicles and the domains 

dissipated.  The fluorescence intensity was measured at 535 nm (NBD emission) for one hour, 

with time resolutions of 3, 4, and 10 s.   

A baseline was obtained for the 10 s resolution by mixing the 200 μM SM:Cho:POPS 

(30:30:38), 1% MB-POPE and 1% NBD-POPE having no MARCKS present with the 2 mM 

SM:Cho:POPS (30:30:40).  This revealed that a slower process, probably bleaching, was 

occurring.  The last 2500 s of the dissipation curve provided a good reference for that process.  

The last 2500 s of each dissipation curve were fit with a straight-line equation, and this equation 

was subtracted from the curve in order to subtract the slower process that was occurring.  The 

plots were then fitted with a single exponential equation, 

BeAy
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+=
⎟
⎠
⎞

⎜
⎝
⎛ −
τ  

where A is the amplitude of the curve, t is time, τ is the apparent relaxation time, and B is the y-

intercept. These plots can be seen in Fig. 15 A, B, and C.  The timescales for the plots are given 

by τ: approximately 620 s, 597 s, and 1330 s for the resolution of 3 s, 4 s, and 10 s, respectively.   

The average is 900 ± 400 s.   

 These timescales include not only the time it takes for domains to dissipate, but also the 

time it takes for MARCKS to dissociate from the membrane.  In order to determine the time for 

the dissipation event only, the time required for MARCKS dissociation needed to be determined.   
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FIGURE 15.  Domain dissipation in 100μM SM:Cho:POPS (30:30:38), 1% MB-POPE and 1% 
NBD-POPE for one hour with resolution of 3 s (A), 4 s (B), and 10 s (C) (concentration after 
mixing). 
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This was achieved using MARCKS labeled with NBD at its N-terminus and vesicles 

containing MB-POPE.  When the NBD-MARCKS is bound to the membrane, energy transfer 

will occur between the MB in domains in the vesicles and the NBD on MARCKS.  When 

MARCKS is removed with acceptor vesicles, the MARCKS binds to the acceptor vesicles and is 

no longer in close proximity to the MB in the donor vesicles.  This causes energy transfer to 

decrease, which could be seen as a decrease in fluorescence intensity at the NBD emission 

wavelength (535 nm).  The timescale for this process represents the timescale for MARCKS to 

dissociate from the membrane.   

The timescale for MARCKS removal in SM:Cho:POPS 30:30:40 vesicles was 

determined using the same conditions as the domain dissipation experiments.  The pre-incubated 

vesicles (200 μM) contained SM:Cho:POPS (30:30:39) and 1% MB-POPE and 2.5 μM NBD-

MARCKS.  The acceptor vesicles (2 mM) contained (SM:Cho:POPS (30:30:40).  The two were 

mixed and the emission of NBD was measured for approximately one half hour. The plot for the 

off-rate of MARCKS was fitted with a single exponential equation, and the timescale was 

determined (Fig. 16). 

 A decrease in fluorescence intensity represents the decrease in energy transfer that occurs 

when MARCKS is removed from the vesicles.  The value of τ was determined to be 275 s for the 

removal of MARCKS, which is shorter than observed in the domain dissipation experiments.  

This means that MARCKS dissociating from the membrane was not the only timescale that was 

measured in the first experiments; there was a second, slower process occurring.  This slower 

process is interpreted to be the dissipation of lipid domains. 

 

 



 39

 
FIGURE 16.  Timescale of NBD-MARCKS removal from membrane in 100μM SM:Cho:POPS 
(30:30:39) and 1% MB-POPE mixed with 1 mM SM:Cho:POPS (30:30:40) (concentrations after 
mixing).   
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Domain Dissipation in SM:Cho:POPS 45:45:10 

 Domain dissipation was also measured in vesicles containing sphingomyelin, cholesterol 

and 10% POPS to determine the timescales in vesicles containing a small concentration of 

POPS.  Using vesicles containing SM:Cho:POPS (45:45:8), 1% NBD-POPE and 1% MB-POPE, 

dissipation could be observed by measuring the emission of vesicles pre-incubated with 

MARCKS when mixed with 10-fold excess vesicles that contain no probes and function as 

acceptors for the MARCKS.  The dissipation was observed as a function of time when the two 

were mixed for approximately ten minutes.  The dissipation experiment was performed using 

resolutions of 1 and 4 s.  The average of several runs was plotted for each, and a single 

exponential curve: 

was fit to the data (Fig. 17) and τ was determined to be 160 s in both experiments. 

Unlike the 40 mole % POPS-containing vesicles, the fluorescence intensity increases 

when the domains relax to their equilibrium size.  In the 10 mole % POPS- containing vesicles, 

there is much less POPS present, which would mean that there were fewer or smaller domains 

present.  When the MARCKS is bound to the membrane, it may separate the POPS and probes, 

competing for the few negative charges present in the vesicles.  When the MARCKS is removed, 

it may be that, when the domains relax to their equilibrium size, they form larger domains than 

when the MARCKS is present.  Thus, the increase in fluorescence probably arises from having 

larger domains in the absence of MARCKS in this case. 

,1 BeAy
t

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎟
⎠
⎞

⎜
⎝
⎛ −
τ



 41

 FIGURE 17.  Domain dissipation in 100μM SM:Cho:POPS (45:45:8), 1% MB-POPE and 1% 
NBD-POPE for one hour with resolution of 4 s (A), 1 s (B) (concentration after mixing). 

A 

B 
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 Again, the timescale for the off-rate of MARCKS in 10 mole % POPS was determined 

using NBD-MARCKS.  Vesicles with 200μM lipid of SM:Cho:POPS (45:45:8) containing 1% 

MB-POPE were pre-incubated with 2.5μM NBD-MARCKS.  The acceptor vesicles contained 2 

mM SM:Cho:POPS (45:45:8), thus a ten-fold excess.  The emission of NBD with time was 

measured for about 10 minutes and a two exponential decay was fit to the data (Fig. 18).  The 

equation for the curve is 
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where A is a global amplitude factor, (1-A2) is the amplitude of the first process, A2 is amplitude 

of the second process, τ1 is the inverse of the apparent rate constant for the fast process, τ2 is the 

inverse of the apparent rate constant for the slow process, t is time, and B is the y-intercept.   

The first τ was calculated to be about 1 s, which was interpreted to be the timescale for 

MARCKS dissociation from the membrane.  This can be seen in Fig. 18B. The second process, 

τ2, was calculated to be 100 s, and this was interpreted as a slower relaxation process that occurs 

after the MARCKS comes off the membrane. This probably corresponds to the domain 

dissipation, which was measured to occur in 160 s, above.  

 

Dynamics of Domains in Other Lipid Mixtures 

 Vesicles composed of di-14:1PC and POPS were chosen in order to study the 

dynamics of domains in vesicles containing different types of lipids.  Di-14:1PC has shorter 

chains than POPS which makes their interactions with each other less favorable than between di-

14:1PC with itself and POPS with itself.  Thus, POPS domains could be easily formed with the  
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FIGURE 18.  Removal of NBD-MARCKS from membrane in 100μM SM:Cho:POPS (45:45:8), 
1% MB-POPE and 1% NBD-POPE for 500 s (A), and the same plot for the first 25 s (B) 
(concentration after mixing). 

A

B
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introduction of MARCKS peptide.  The domain formation was monitored using the energy 

transfer pair MB-POPE and NBD-POPE, as before.  

  

Steady State Fluorescence 

Vesicles containing di-14:1PC:POPS (80:18), 1%MB-POPE and 1%NBD-POPE were 

observed with fluorescence in steady state.  The probe concentrations that resulted in the highest 

sensitivity to peptide addition were determined to be the same as the concentrations used in the 

SM/Cho vesicles.  MB-POPE was excited at 367 nm, and the emission was scanned from 400 

nm to 600 nm.  The fluorescence intensity was observed as a function of MARCKS 

concentration in 100μM vesicles containing 20 mole % POPS.  As seen in Fig. 19, there is an 

increase in energy transfer with the addition of 2.3 μM MARCKS, which was interpreted as an 

increase in domain formation.   

 

Domain Dissipation in Di-14:1PC:POPS 

Domain dissipation was observed by stopped-flow fluorescence to determine the 

timescale for this process.  Dissipation was observed by measuring the emission from vesicles 

pre-incubated with MARCKS, which were mixed with vesicles containing no probes, in ten-fold 

excess, which function as acceptors for MARCKS.  The pre-incubated vesicles contained 200 

μM di-14:1PC:POPS (80:18), 1% MB-POPE and 1% NBD-POPE.  The MARCKS concentration 

present in the pre-incubated vesicles was 2.5 μM. 

This allowed domain formation and the corresponding energy transfer to be present 

before MARCKS was removed.  The MB-POPE was excited at 367 nm, and the emission was 

observed at 535 nm for about 50 s (Fig. 20).  The curves were fit with a single exponential and  
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FIGURE 19.  Fluorescence intensity with the addition of MARCKS peptide in 100 μM vesicles 
(concentration after mixing) containing di-14:1PC:POPS (80:18), 1% MB-POPE and 1% NBD-
POPE. 
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FIGURE 20.  Domain dissipation with time in 100 μM di-14:1PC:POPS (80:18), 1% MB-POPE 
and 1% NBD-POPE with 0.5 mM acceptor vesicles (A), and 1 mM acceptor vesicles (B) and (C) 
(concentrations after mixing). 
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the values of τ were as follows:  4 s for Fig. 20A, and 6 s for both 20B and 20C.  The average 

value of τ was 5 ± 1 s. 

 

Summary of Dynamics 

 The timescales for MARCKS desorption and domain dissipation for SM:Cho:POPS 

30:30:40, SM:Cho:POPS 45:45:10, and di-14:1PC:POPS can be seen in Table 1.   The table 

summarizes the rates measured in this work, and also includes the calculated rate for MARCKS 

desorption for di-14:1PC:POPS. 
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Lipid Mixture 
MARCKS 

Desorption (s) 
Domain 

Dissipation (s) 
SM:Cho:POPS(30:30:40) 275 900 ± 400 
SM:Cho:POPS (45:45:10) 1 160 
di-14:1PC:POPS (80:20) < 1* 5 ± 1 

*calculated τ from koff which is described in the conclusion 
 
TABLE 1.  Summary of timescales for MARCKS desorption and domain dissipation  
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CONCLUSION 

Domain formation and dissipation were observed using vesicles of various mole percents 

of sphingomyelin, cholesterol, and POPS, with several different compositions, containing the 

energy transfer pair MB-POPE and NBD-POPE.  The domains were induced using the 

MARCKS peptide.  Because MARCKS contains 13 positive charges, it agglutinates negatively 

charged lipids.  POPS, MB-POPE, and NBD-POPE are anionic overall, thus MARCKS 

agglutinated them in domains.   

In steady state, light scatter increased upon MARCKS addition to the vesicles, which was 

probably from vesicle aggregation or a change in vesicle morphology caused by MARCKS 

aggregation.  Vesicle aggregation did not cause a significant amount of energy transfer to occur 

between vesicles.  The efficiency of energy transfer was measured and determined to be 

independent of light scatter. 

The timescales for domain formation and dissipation were observed in vesicles of 

sphingomyelin, cholesterol, and POPS with the energy transfer pair MB-POPE and NBD-POPE.  

The kinetics were measured by stopped-flow fluorescence.  Domain formation in SM:Cho:POPS 

(30:30:40) 1%MB-POPE, 1%NBD-POPE was less than 1 s, which was then followed by a 

slower relaxation process.  Domain dissipation in 40 mole % POPS was approximately 900 s and 

domain dissipation in 10 mole % POPS was approximately 160 s. 

Previous studies have investigated the relaxation dynamics of vesicles in nonequilibrium 

phase separation processes. Van Osdol et al (24) found the relaxation dynamics of the gel-to-

liquid crystalline transition to be extremely rapid.  This was observed in five phosphatidylcholine 

bilayer dispersions of varying chain length, from  
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di-C14:0PC to di-C18:0PC.  The relaxation times had a pronounced maximum at a temperature 

near Tm for MLVs, which varied from approximately 50 ms to 4 s; LUVs had a relaxation time 

of about 80 ms. 

 Jørgensen et al (25) examined the nonequilibrium ordering dynamics of lipid domains in 

the gel-fluid coexistence region of an equimolar di-C16:0PC:di-C22:0PC lipid mixture.  The 

vesicles were quenched, which means they were subjected to a sudden temperature drop from the 

fluid to the gel-fluid coexistence region.  The reorganization of the lipids was observed as they 

relaxed from nonequilibrium to equilibrium domains. The relaxation times observed occurred in 

a timescale of approximately 2 × 103 s.  De Almeida et al (26) also investigated the relaxation 

times after quenching in a two-component lipid bilayer with acyl chain mismatch in a di-

C12:0PC/di-C18:0PC lipid mixture.  The times ranged from approximately 2 × 103 s to 

approximately 12 × 103 s. 

 These timescales are much slower than the ones obtained here in the SM:Cho:POPS 

experiments.  This is expected because the timescales in the PC lipid mixtures were obtained in 

the gel-fluid region, whereas the SM:Cho:POPS vesicles were in the liquid phase having both 

liquid-ordered (lo) and liquid-disordered (ld) phase. 

 The kinetics of MARCKS association and dissociation have recently been studied (1, 27).  

Arbuzova et al (27) determined the dissociation rate constant, koff, by measuring the rate at which 

MARCKS peptide moves from donor to acceptor vesicles using resonance energy transfer 

between a fluorophore on the peptide and NBD on POPC:POPS vesicles (27).  koff can be 

approximated as the inverse of τ because the acceptor vesicles were in excess (27). The 

dissociation rate constants measured using this method were 6 s-1 for 10% POPS-containing 

vesicles and 1.5 s-1 for 20% POPS-containing vesicles.  The value for τ for 20% POPS was 
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calculated to be < 1 s, which is the inverse of koff, and is shown in Table 1 for 14:1PC:POPS 

(80:20).  This calculated value was reported in the table because the off-rate of MARCKS was 

not determined experimentally for di-14:1PC:POPS (80:20).  The koff calculated from τ in 

SM:Cho:POPS (45:45:8) was approximately 1 s-1, which is close to the 6 s-1 reported in 

POPC:POPS vesicles by Arbuzova et al (27).   

The association rate constant for MARCKS, kon, was determined to be diffusion limited 

and was reported to be 1011 M-1s-1 per vesicle (27), thus kon is 106 M-1s-1 per lipid.  Rusu et al (1) 

reported the binding of MARCKS to POPC:POPS vesicles, varying the ratio of POPC and 

POPS.  The peptide bound strongly to vesicles with a high fraction of POPS and weakly to those 

with a low fraction of POPS. The binding constant increases exponentially with the mole fraction 

of POPS in the vesicles.  The binding constants were estimated to be 105 M-1 per lipid for 10% 

POPS-containing vesicles and 107 M-1 per lipid for 20% POPS-containing vesicles.   

Using the association rate of MARCKS and the value of τ from SM:Cho:POPS 

(30:30:40) MARCKS dissipation experiment, the molar partition coefficient, also known as the 

binding constant, K, for SM:Cho:POPS (30:30:40) was estimated using the equation (27): 

τ
1

on

off

on k
k
k

K == , 

yielding a value for K of approximately 3 × 109 M-1.   

 The processes of MARCKS desorption and domain dissipation can be represented using 

the following model: 

CBA kk ⎯→⎯⎯→⎯ 21  

where A represents a system where MARCKS is bound to the membrane and domains exist, k1 is 

the rate of MARCKS dissociation, B represents a system where MARCKS is not bound and the 
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lipids are in non-equilibrium, k2 is the rate of domain dissipation, and C is a state where the 

lipids are in equilibrium.   

 The off-rate of MARCKS, or k1 in the model above, had been studied in similar systems.  

However, the rates of domain dissipation, or k2 in the model, had not yet been measured.  This 

work represents a first attempt at their determination.  These timescales are of great interest and 

should be investigated further, especially in raft-containing vesicles, because they could provide 

insight for cellular processes such as signal transduction. 
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