
Approximating Shortest Paths in Large Networks

David Randolph Lorek

A Thesis Submitted to the
University of North Carolina Wilmington in Partial Fulfillment

Of the Requirements for the Degree of
Master of Science

Department of Mathematics and Statistics

University of North Carolina Wilmington

2005

Approved by

Advisory Committee

Chair

Accepted by

Dean, Graduate School

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149230082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This thesis has been prepared in the style and format

Consistent with the journal

American Mathematical Monthly.

ii

TABLE OF CONTENTS

ABSTRACT . iv

ACKNOWLEDGMENTS . v

DEDICATION . vi

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 INTRODUCTION . 1

2 IMPLEMENTING DIJKSTRA . 7

2.1 Modeling the Real World . 10

2.2 Improving the Base Algorithm . 12

3 DUAL-BRANCH APPROACH . 15

3.1 Overview . 15

3.2 Expectation . 17

3.3 Dual-Branch Algorithm . 18

3.4 Simulation Results . 18

4 COVERING (WEIGHT-ADJUSTMENT) .21

4.1 Overview . 21

4.2 Weight-Adjustment Algorithm . 21

4.3 Simulation Results . 22

5 COMPARING HEURISTICS . 25

6 FUTURE RESEARCH . 27

REFERENCES .28

APPENDIX . 29

iii

ABSTRACT

In the classroom students are introduced to shortest route calculation using small

datasets (those that can be hand-drawn.) For demonstrating the application of an

algorithm a small dataset is typically sufficient. However, real-world applications

of shortest path calculations seem to be useful only when applied to large datasets.

This paper presents research on a computer based implementation of a modified

Dijkstra algorithm as applied to large datasets including tens of thousands of arcs.

In an attempt to improve the performance of calculating paths two heuristics are

also examined. The intuition behind the heuristics is to remove the arcs that will

likely not be traversed by the optimal path from the set of arcs that can possibly

be traversed by the optimal path. By reducing this number less labeling is required,

resulting in fewer CPU cycles being used to generate a route. This paper compares

the results of the optimal against those of the two heuristics.

iv

ACKNOWLEDGMENTS

I would like to thank the faculty of UNCW’s Mathematics and Statistics department

that assisted in my research and studies. I would also like to thank Dr. Gene A.

Tagliarini of UNCW’s Computer Science department for his instruction. A special

thank you goes to my thesis defense committee members: Dr. John K. Karlof, Dr.

David A. Rolls, and especially to my advisor Dr. Yaw O. Chang, whose instruction

inspired, and whose guidance enabled, the creation of this thesis.

The data used by this study was compiled by the United States Census Bureau

and downloaded from http://www.ESRI.com.

v

DEDICATION

This paper would not have been possible without the encouragement and support

of my wife Kirsten.

vi

LIST OF TABLES

Table Page

1 Greedy algorithm sample data . 5

2 Distance Calculations - 1 . 30

3 Distance Calculations - 2 . 31

4 Distance Calculations - 3 . 32

5 Distance Calculations - 4 . 33

6 Labeling Calculations - 1 . 34

7 Labeling Calculations - 2 . 35

8 Labeling Calculations - 3 . 36

9 Labeling Calculations - 4 . 37

vii

LIST OF FIGURES

Figure Page

1 Four node network with three arcs. 2

2 Network with four nodes and four arcs. .8

3 No arcs included in solution. 8

4 Arcs (1,2) and (1,3) are candidates. 9

5 Arcs (1,2) and (3,4) are candidates. 9

6 Arc (2,4) is a candidate. .9

7 Solution tree. 10

8 Path identified. 10

9 Dataset representation of road segments. 11

10 Merged dataset that mimics the mathematical model. 12

11 Clipped region from a real world dataset. .13

12 Approximation of coverage difference. 15

13 Node density difference illustration. 17

14 Distance comparison of Dijkstra and dual-tree heuristic trials. 19

15 Labeling comparison of Dijkstra and dual tree heuristic trials. 20

16 Illustration of a coverage region. 21

17 Distance comparison of optimal and weighting heuristic trials. 23

18 Labeling comparison of optimal and weighting heuristic trials. 24

19 Distance comparison of all trials. 25

20 Labeling comparison of all trials. 26

viii

1 INTRODUCTION

Mathematical programming focuses on problems where an objective function is to be

optimized relative to one or more constraints. [2, p.1] One subset of these problems

known as linear programming problems can be represented by the following standard

form:

Minimize cT x = z

subject to Ax = b, A : m× n,

x ≥ 0.

The vector x represents what are known as the decision variables of the objective

function. The vector c represents the coefficients associated with the decision vari-

ables. The matrix A represents a system of coefficients applied to the x that form a

set of constraints for the system.

When one of the constraints on a linear program is that the decision variables

assume discrete or non-fractional values the problem is classified as an integer pro-

gramming problem. Network flow problems represent an important class of integer

programming problems. This subset of problems can be used to address many real

world issues involving transportation, resource allocation, IP (Internet Protocol)

routing and more. [4, p.1] In this paper, we are interested in a specific network flow

problem known as the shortest path or shortest route problem. We will introduce the

formulation of the problem and discuss the difficulties associated with its solution

using the famous Dijkstra algorithm with real world data.

Definition Let N be a finite, nonempty set of nodes and let A be a set of

unordered pairs (or arcs) of distinct nodes in N . A graph G = (N, A) is a

convention used to represent the node set N associated with the arcs that connect

its nodes to each other. [4, p.73]

Definition Let G = (N, A) be a graph and let n, m ∈ N . A path exists between n

and m if a sequence of arcs in A can be found that connects n to m either directly

or through a number of intermediate arcs in N and no node is repeated. [4, p.74]

Example Figure 1 depicts a graph with four nodes: 1, 2, 3, and 4. The graph

contains three arcs: (1,2), (2,3), and (3,4). While there are obviously no arcs

connecting node 1 directly to node 4, the sequence of these three arcs does

generate a path from node 1 to node 4.

Figure 1: Four node network with three arcs.

The shortest route problem is concerned with finding the best, or minimum-cost,

path between two nodes in a graph. Cost can describe the distance or time required

to traverse a path. We are concerned with finding the path between two nodes

that traverses the minimum distance possible. Additional constraints are required

to ensure success in determining a solution. One such constraint is that the graph

be connected.

Definition A graph G = (N, A) is connected if for any two nodes n,m ∈ N at

least one path can be found from n to m using the arcs in A. [4, p.75]

To determine the best path between two nodes we need a way of representing

what it means for one path to be better than another. The idea of a network provides

this ability.

Definition A network is a graph associated with one or more functions that map

the arcs or nodes in the graph to some quantifiable values. These function

mappings enable the defining of constraints on the system. [4, p.75]

2

In the case of the shortest route problem, a function exists that associates each

arc with the cost associated with traversing that arc. If i and j are nodes connected

by an arc (i, j), the cost of traversing the arc might be represented as c(i, j). In the

path example above, the cost of the path from node 1 to node 4 is equal to the sum

of the costs of its component arcs, or

c(path) = c(1, 2) + c(2, 3) + c(3, 4).

With the ability to associate costs to arcs we can define the optimal path as

follows.

Definition Let Pi be a path between two nodes a and b in a network and suppose

n distinct paths can be found. Po is the optimal path if c(Po) ≤ c(Pi), i = 1, . . . , n.

In some network applications, upper and lower bounds are associated with arcs

to restrict the flows through the arcs. For instance, in a network flow problem related

to city streets, the maximum flow over a road segment is proportional to the speed

limit associated with the segment as well as the number of distinct lanes contained

in the segment. It is easy to imagine how adding lanes can increase the maximum

flow through a segment.

For the shortest route problem, we consider a network in which the flows associ-

ated with each arc have lower bounds of 0 and upper bounds of 1. If a particular arc

is being traversed by the solution its flow is 1 and if the arc is not being traversed

then its flow is 0. Because of the special structure of the shortest route problem, the

optimal solutions produced by the simplex method will automatically satisfy this

integrality requirement.

However, some difficulties are associated with the simplex method when solving

the shortest route problem. One difficulty, common to most integer programming

problems, is a high degree of degeneracy.

3

Definition A solution to an objective function is said to be degenerate when at

least one of its decision variables is at one of its bounds.

The Simplex method can enter a phenomenon known as cycling when solutions

become degenerate.

Definition An algorithm is cycling when it repeats the same sequence of iterations

indefinitely.

Cycling can occur in these situations because a pivot involving a degenerate

variable (one at one of its bounds) tends to not improve the solution. When a pivot

operation does not improve the solution it is possible that the reverse operation

will seem desirable to the algorithm, re-introducing the degenerate variable into the

solution. At this point the operations may repeat or cycle.

Fortunately, the difficulties associated with the shortest route problem have al-

ready been solved by Dijkstra, who introduced his solution in a paper entitled A

Note on Two Problems in Connexion with Graphs in 1959[1, p.269-271]. Dijkstra’s

algorithm is considered to be a greedy algorithm[5].

Definition An algorithm that always takes the best immediate, or local, solution

while finding an answer is called a greedy algorithm[6].

Algorithms of this class are typically characterized as efficient but faulty. This is

detailed in the following example demonstrating a typical greedy algorithm.

Example Let us consider the data in Table 1. Our objective is to maximize the

values that we record for each observation, where we can only record one value per

observation and each variable must be recorded once and only once. Consider the

following possibilities for greedy algorithms.

Option 1 - Iterate through the observations

4

• For Observation1, record the value of Variable1.

• For Observation2, record the value of Variable2, since Variable1 has already

been used.

• For Observation3, record the value of Variable3.

The objective value would be 9 + 2 + 3 = 14.

Table 1: Greedy algorithm sample data

Variable1 Variable2 Variable3
Observation1 9 7 2
Observation2 8 2 1
Observation3 1 3 3

Option 2 - Iterate through the variables

• For Variable1, record the value of Observation 1.

• For Variable2, record the value of Observation 3, since Observation1 has

already been used.

• For Variable3, record the value of Observation 2, since Observation1 and

Observation3 have already been used.

The objective value would be 9 + 3 + 1 = 13.

Since these two greedy algorithms offer two different objective values, it is obvious

that greedy algorithms can provide faulty results. The best solution is the following

combination:

Observation1.Variable2 + Observation2.Variable1 + Observation3.Variable3

= 7 + 8 + 3 = 18.

5

The source of the error identified here is that the typical scope of a greedy

algorithm is limited to the current iteration and to prior iterations. They usually

have no knowledge or concern as to how a decision will affect future decisions.

How then can Dijkstra’s algorithm, a greedy algorithm, reliably produce the desired

objective? The proof of Dijkstra’s algorithm is beyond the scope of this paper.

However, the process that ensures optimality, as well as the intuition behind the

process, will both be discussed.

In the following sections we will implement the Dijkstra algorithm and evaluate

its performance against two heuristics. The large datasets that are typical in the real

world are the motivation behind applying heuristics to reduce the period required to

generate a path. We will first implement lessons learned from computer science to

make the algorithm more efficient while not affecting its optimality condition. Next,

we will apply heuristics to limit the number of nodes and arcs that are considered

by the algorithm. The heuristics are expected to generate a nearly optimal path in

a reduced amount of time.

6

2 IMPLEMENTING DIJKSTRA

Before the algorithm can be applied to find a shortest-path we need several things.

First, we need a network including a connected graph G = (N, A) and a function

mapping costs to the arcs in A. Next, we need to identify a starting node and an

ending node. If the desire is to know the best paths from a starting node to every

other node in the network then the ending node does not need to be specified (we

are not concerned with this case.) Finally, an additional constraint must exist, that

the arcs in A all have non-negative costs.

Let us discuss how Dijkstra’s algorithm works. We begin the algorithm by defin-

ing two sets of nodes: let I represent the set of nodes that have been included in

the solution and let S represent the set of nodes that are still available for inclusion.

Initially, I = {} and S = N . The steps of the algorithm are as follows[3, 4]:

Step 1: Remove the starting node a from S and place it into I.

Step 2: Generate a list of candidates for entry into I. ∀ arcs (i, j) ∈ A, if

i ∈ I and j ∈ S then j is a candidate node.

Step 3: Choose the best candidate nbest and move it out of S and into I.

Choose nbest | c(a, nbest) = argmin(c(a, j)) ∀ j ∈ S.

Step 4: If nbest is the ending node or S = {} exit the algorithm.

Step 5: If nbest is not the ending node then repeat from step 2.

When the algorithm completes, a tree exists that spans a sub-network of the

original network. If no ending node was specified then the sub-network contains all

the nodes in the original network. Tracing the tree from the starting node to any

node n in the tree reveals the shortest path from the starting node to n. In practice,

the trace from the starting node to the ending node is traced in reverse. The nodes

passed during this tracing are known as the ending node’s predecessors.

Step 2 is the critical step that ensures optimality. However, evaluating the quality

of the candidates on each iteration of the algorithm can be very costly. The idea

of candidates is future-thinking, proposing choices to move into the solution but

realizing that future steps may find better alternatives. When a node is included in

I it can introduce new candidate nodes. Additionally, it can introduce new paths to

previously identified candidates. The costs of these new paths are evaluated against

the costs of the previously identified paths and the candidate system is updated if its

quality can be improved by the new paths. Consider the following simple example.

Example Figure 2 depicts a network with four nodes (N = {1, 2, 3, 4}) and four

arcs (A = {(1,2), (1,3), (2,4), (3,4)}). Our objective is to find the best way to get

from node 1 to node 4.

Figure 2: Network with four nodes and four arcs.

Executing the algorithm we have the following states:

I. I = {} and S = {1, 2, 3, 4}(Figure 3)

Figure 3: No arcs included in solution.

II. Move node 1 into I → I={1} and S={2,3,4}(Figure 4)

a. Node 2 is a candidate with cost 3

8

b. Node 3 is a candidate with cost 2

Figure 4: Arcs (1,2) and (1,3) are candidates.

III. Move node 3 into I → I={1,3} and S = {2,4}(Figure 5)

a. Node 2 is a candidate with cost 3

b. Node 4 is a candidate with cost 5 + 2 = 7

Figure 5: Arcs (1,2) and (3,4) are candidates.

IV. Move node 2 into I → I={1,2,3} and S = {4}(Figure 6)

a. Node 4’s candidate status is updated to reflect the lower cost (3 + 2 = 5)

made available by the inclusion of node 2

Figure 6: Arc (2,4) is a candidate.

V. Move node 4 into I → I={1,2,3,4}(Figure 7)

VI. Trace the path from the ending node back to the starting node(Figure 8)

9

Figure 7: Solution tree.

Figure 8: Path identified.

We conclude that the best path from node 1 to node 4 contains two arcs (1,2),

(2,4). The cost of the path is equal to the sum of the costs of its arcs, which is

equal to 5. Note that even though arc (3,4) was considered for inclusion early, it was

later refuted with a better possibility. This step of reviewing and excluding older

candidates ensures the optimality condition is satisfied.

2.1 Modeling the Real World

We will generate shortest paths in a system of roads, which we claim is analogous to

a connected network. Our goal is to be able to dynamically generate shortest paths

in very large networks in very little time. There are three important aspects about

this last statement:

• Dynamic Generation,

• Large Networks,

• Very Little Time.

An explanation of each of these notions follows.

Several factors can affect the availability of road segments. For example, a traffic

accident could be congesting a roadway causing several nearby road segments to

10

be virtually impassable. Construction or repair work on roads can also make then

impassable. These factors impose the need to dynamically generate the routes in

real time (as opposed to storing and retrieving previously generated routes.)

One of the datasets used to test our implementation is the system of roads in

Cook County, IL (including Chicago and its suburbs.) This dataset includes over

one hundred fifty thousand distinct road segments. Although this may not be a

typical size for a dataset, our goal is to provide a system that can accommodate any

dataset.

Emergency responders use the term Golden Hour when referring to the hour

immediately following a traffic accident [7]. The chance for a victim’s survival dra-

matically decreases as time progresses. The goal for these emergency care providers

is to deliver medical attention to victims in as little time as possible.

Figure 9: Dataset representation of road segments.

A typical dataset representing a system of roads contains information about

road segments only, where each segment has two endpoints (Figure 9.) In this

figure the node groupings {1,7}, {2,3,5}, {6,14}, {8,9}, {10,11}, and {12,13} each

represent a single geographic point. Human intuition allows us to know that the end

of one segment is the beginning of another, or possibly many others. However, a

computer can only know what it has been told. To implement Dijkstra in this type

of environment code must be written, not only to perform the algorithm, but also

11

to adapt the map datasets so that they more closely mimic the node and arc format

of the theoretical system (Figure 10.) A reliable dataset is of utmost importance to

the accuracy of the results produced by the algorithm.

Figure 10: Merged dataset that mimics the mathematical model.

The merging of the nodes in the dataset is made possible by the two dimensional

nature of the data. When loading a road segment into the required data structure

the coordinates of its endpoints are compared to endpoints that have already been

recorded. If the coordinates are identical to a previously recorded node then a

reference is created between the new segment and the old node. This process creates

the node and arc structure in memory that is necessary for the proper execution of

the algorithm.

2.2 Improving the Base Algorithm

Having the dataset adapted to the in-memory data structure, it is now possible

to develop the code for the algorithm. The pseudocode described earlier (page 7)

indicates five distinct steps. Step 2, which seems simple enough, is the source for

most of the time consumed by the algorithm. Before we apply heuristics, we should

attempt to identify coding practices that could aid in the algorithm’s performance

while maintaining optimality.

In earlier comments about step 2 the updating of a candidate system is proposed.

12

In code, the candidate system is an intermediate storage list for the set of nodes that

are candidates for inclusion in the solution. This list is not purged between iterations

of the algorithms. Instead, it is updated to reflect new candidate inclusions as well as

modifications to any appropriate existing candidates. This collection of candidates

is maintained as an ordered list, reducing the time required to insert new candidates.

Figure 11: Clipped region from a real world dataset.

Maintaining this list between iterations also reduces the number of nodes that

must be considered for candidate status. As a worst case scenario, it is possible to

imagine that every node in S (the available nodes) would have to be evaluated as

to whether or not it is adjacent to one of the nodes in I (nodes in the solution.)

Additionally, any node in S adjacent to more than one node in I would have to be

evaluated for each arc from that node into I to calculate its quality. In our system,

only the nodes adjacent to the entering node need to be evaluated. The number of

nodes evaluated in this manner is typically fewer than 5 due to the natural structure

13

of road systems. A natural consequence of maintaining and updating the ordered

list is that the first node in the list after the updates is the best candidate for the

next iteration of the algorithm.

With the algorithm implemented and the real world modeled, it is possible to

calculate paths. Figure 11 depicts a sample spanning tree generated by the algorithm

starting at node a and ending at node b. The thicker lines define the spanning tree

while the nearly straight line from a to b identifies the shortest path from a to b.

Notice how the tree expands radially from a until b is encountered and the algorithm

exits.

The heuristics presented in the following sections rely on the natural topography

of the dataset. The two-dimensional nature of the data causes a very specific pattern

of progression by Dijkstra’s algorithm. Our claim is that the time required to cal-

culate a path can be abbreviated if this radial expansion pattern can be restrained

to a smaller region.

14

3 DUAL-BRANCH APPROACH

3.1 Overview

For our first heuristic, let us consider a property of the shortest path between two

nodes in a network. All road segments in our network are considered to be two-way

roads. That is, a vehicle can traverse an arc (a, b) by starting at a and ending at b or

by starting at b and ending at a. Our paths are intended for emergency vehicles in

emergency situations. These vehicles have the ability to traverse the “wrong-way”

on one-way roads in times of crisis. To apply this research to a wider array of drivers,

one-way roads should be considered as such in a directed graph. However, assuming

that all road segments can be traversed either way we know that for a given path

Pab, the distance(cost) of the path d(Pab) is equal to the distance of the reverse of

the path d(Pba). This means that calculating the shortest path from one node a

in a network to another node b would generate the same result as if the path were

generated from b to a.

Figure 12: Approximation of coverage difference.

Figure 12 depicts three partially overlapping circular regions. The large circle

has radius r while the two smaller circles have radius r
2
. We hope to generate two

small spanning trees, represented by the two small circles, that intersect close to the

midpoint of the optimal path that would connect their centers.

It is important to realize that the intersections in a system of roads are not

evenly distributed over the entire system. Typically, urban areas have many more

intersections per square mile than would be found in rural areas. We use the symbol

ρ to represent the number of nodes per unit of area in a network and refer to ρ as

the network’s node density.

Proposition Let Po be an optimal path generated between two nodes a and b in a

network where ρ is uniform over the entire network. Next, let c be a node on Po

that bisects Po such that d(c, a) = d(c, b). If two spanning trees about a and b are

generated until they intersect each other, they will intersect at c. The number of

nodes encountered by the two small spanning trees will be half the number of

nodes encountered by the spanning tree generated when calculating Po.

Proof Assume the straight-line distance from a to b is r and that the straight-line

distance from a to c and from b to c is r
2
. Given a constant node density ρ we know

that the number of nodes encountered when generating Po is

No ≈ ρπr2.

We also know that the number of nodes encountered when generating the smaller

trees can be represented as

Nh1 = Nh2 ≈ ρπ(r
2
)2

or

Nh = Nh1 + Nh2

≈ 2 ∗ ρπ(r
2
)2

≈ 2 ∗ ρπ(r2

4
)

≈ ρπ(r2

2
)

= 1
2
No �

16

In practice it is common that the node c does not exactly bisect the path Po.

Therefore, it is more appropriate to state that Nh ≈ 1
2
No.

3.2 Expectation

Let Po be the optimal path generated between two nodes in a network. Let Ph be a

different path between the same two nodes in the network. As a consequence of the

definition of the optimal path we can expect the following regarding the distances

of the paths:

d(Po) ≤ d(Ph).

In real-world datasets it is rare that ρ is uniform. The use of a function ρ(x, y),

where x and y represent coordinates for a geographical location in the map, is more

appropriate. When ρ(x, y) varies greatly over the range of the dataset the heuristic

can encounter problems.

Figure 13: Node density difference illustration.

In figure 13, the shaded area represents a region of the network that exhibits

a higher node density than the rest of the network. If both the optimal and dual-

branch algorithms are applied to find a path from a to b arcs in the shaded region

would be considered by the heuristic and not the optimal. This scenario would cause

17

the heuristic to label even more nodes than the optimal algorithm. This case will

be illustrated when the simulation results are presented in section 3.4.

3.3 Dual-Branch Algorithm

As with Dijkstra, we begin the algorithm by defining two sets of nodes: I to represent

the set of nodes that has been included in the solution and S to represent the set

of nodes that are still available for inclusion. Initially, I = {} and S = N . We refer

to the spanning tree rooted at a as Ta and the spanning tree rooted at b as Tb. The

steps of the dual-branch algorithm are as follows:

Step 1: Remove the starting node a and the ending node b from S

and place them into I.

Step 2: Generate a list of candidates for entry into I.

∀ arcs (i, j) ∈ A, if i ∈ I and j ∈ S then j is a candidate node.

Step 3: Choose the best candidate nbest, the one with the minimum total

cost, and remove it from S and place it into I.

Step 3.1: Choose k | c(a, k) = argmin(c(a, j)) ∀j ∈ S.

Step 3.2: Choose l | c(b, l) = argmin(c(b, j)) ∀j ∈ S.

Step 3.3: If c(a, k) < c(b, l) then nbest = k else nbest = l.

Step 4: Determine if the Ta intersects the Tb.

Step 4.1: If yes then go to Step 5.

Step 4.2: If no then go to Step 2.

Step 5: Combine the sub-paths a → c and b → c. This is the

approximated path from a → b.

3.4 Simulation Results

To compare the Dijkstra algorithm with the dual-branch heuristic we will generate

paths with both methods. The dataset being considered contains over 12,000 arcs

18

with over 10,000 distinct nodes. To begin, 154 node pairs representing the starting

and ending nodes of a path were randomly selected from the dataset. Next, both

methods were used to calculate paths for each node pair and the number of nodes

labeled, as well as the total distance traversed by the calculated path, were recorded.

Figure 14: Distance comparison of Dijkstra and dual-tree heuristic trials.

Consider the graph in figure 14. The similarity of the Dijkstra and dual-branch

curves indicate a high degree of similarity between the paths calculated by the

Dijkstra and dual branch algorithms, which was the prediction. The high occurrence

rate of heuristic paths equal in distance to the optimal path was unexpected. Most

trials generated a relative difference less than 10%. In fact, out of the 154 trials

performed, 132 of the paths generated by the dual-branch algorithm produced a path

with a distance equal to that of the optimal. The percentage of average difference in

distance for all 154 trials is 0.0062. The average distance calculated by the optimal

algorithm is approximately 0.07 decimal degrees, which is approximately 3.5 miles

in New Hanover County - the locale represented by the dataset. This suggests that

there is a small relative difference between the dual-branch heuristic paths and the

19

Figure 15: Labeling comparison of Dijkstra and dual tree heuristic trials.

Dijkstra paths.

Considering the chart in figure 15, it is easy to see that on several of the trials,

the dual branch algorithm was able to find a path by labeling far fewer nodes than

the optimal. In fact, the average number of nodes labeled for all of the trials by the

optimal algorithm is approximately 1892. The average number of nodes labeled by

the dual branch algorithm is approximately 937. This indicates the percentage of

nodes labeled by the dual branch algorithm compared to the optimal algorithm is

0.495, which is very close to the 1
2

value claimed earlier.

In section 3.1 the idea of node density was introduced. Three of the samples

in figure 15 spike above the optimal curve. This phenomenon, where the heuristic

labels more nodes than the Dijkstra algorithm, was predicted. It is probable that

the ending node exists in a region of high node density like the area depicted by the

shaded region in figure 13.

20

4 COVERING (WEIGHT-ADJUSTMENT)

4.1 Overview

The first heuristic presented identified a limitation of the system whereby all road

segments were considered to be traversable in both directions. This constraint was

required because we needed the path generated from a to b to be equal in distance

to a path generated from b to a. The heuristic presented in this section does not

require this property. In fact, depending on the parameters specified, this heuristic

can be made to act just like the Dijkstra algorithm.

Consider the drawing in figure 16. Let P be a path from a node a and another

node b in the network. Let d represent the straight-line distance between a and b.

We will adjust the weight of the arcs that lie outside this region to influence the

path propagation to remain inside the region.

Figure 16: Illustration of a coverage region.

4.2 Weight-Adjustment Algorithm

This algorithm is essentially the same as Dijkstra except for some preprocessing of

the data before the execution of the algorithm. We begin with a graph G = (N, A)

of nodes and arcs.

Step 1 - Choose a starting node a and an ending node b.

Step 2 - Calculate R as the region in space within αd units of the straight line

connecting a and b.

Step 3 - Define a set of arcs X = {(i, j)|i ∈ R or j ∈ R}.

Step 4 - Increase the cost of the arcs in A but not in X by a factor of β.

Step 5 - Perform the standard Dijkstra algorithm.

This process only approximates the best path because of the possibility that an arc

on the would-be optimal path is excluded from the solution due to its proximity.

In the algorithm we introduce the following parameters:

α - the coefficient used in determining the region R.

β - the cost multiplier applied to the arcs not in X.

For the paths generated in our trials, α was assigned a value of 1
4

and β was

assigned a value of 4. These factors can be adjusted to affect the execution of the

heuristic. By decreasing α or increasing β it is likely that the number of nodes

labeled by the algorithm would be reduced, which is the goal of the heuristic.

However, these changes could also increase the relative difference of the paths

generated by the heuristic algorithm and Dijkstra’s algorithm.

Care must be taken when considering new values for these parameters. For

instance, adjusting β ≤ 1 would reduce the cost of the arcs exterior to the region

described in figure 16, which would be counterproductive since this would cause the

spanning tree to grow more easily outside the region. Also, by assigning α a value

of 3
4

an area greater the area spanned by the Dijkstra algorithm would be generated.

Similarly, a value of 1
2

would generate an area larger than the area that would be

spanned by the dual branch heuristic. Therefore, it useful to use the range 0 < α < 1
2

when sizing this region.

4.3 Simulation Results

Consider the graph in figure 17. The similarity of the optimal and weighted curves

indicate a high degree of similarity between the paths calculated by the optimal and

22

Figure 17: Distance comparison of optimal and weighting heuristic trials.

weighting algorithms.

In fact, out of the 154 trials performed, 125 of the paths generated by the weight-

ing algorithm produced a path with a cost equal to that of the optimal. The per-

centage of average difference in cost for all 154 trials is 0.013. This indicates that

there is a small relative difference in the paths generated by the weight-adjustment

heuristic and the Dijkstra algorithm.

Considering the chart in Figure 18, it is easy to see that on several of the trials,

the weighting algorithm was able to find a path by labeling far fewer nodes than

the Dijkstra algorithm. In fact, the average number of nodes labeled for all of

the trials by the optimal algorithm is approximately 1892. The average number of

nodes labeled by the weighting algorithm is approximately 925. This indicates the

percentage of nodes labeled by the weighting algorithm compared to the optimal

algorithm is 0.489.

23

Figure 18: Labeling comparison of optimal and weighting heuristic trials.

24

5 COMPARING HEURISTICS

Both of the heuristics have been shown to generate paths very close in cost to the

one generated by the Dijkstra algorithm. Figure 19 shows a side by side view of the

results so that the dual branch heuristic can be easily compared to the weighting

heuristic.

Figure 19: Distance comparison of all trials.

It has also been shown that both heuristics label approximately half as many

nodes as required by the Dijkstra algorithm to generate a path. Figure 20 shows

this side by side comparison. The data used to generate these graphs is provided

in the appendix.

It should be noted that the dual branch method required the labeling of more

nodes than the Dijkstra algorithm for three trials. This behavior was predicted in

section 3.2 and is due to the difference in node densities in the regions surrounding

the source and destination nodes. The weighting method never encountered this

type of problem.

Interestingly, these two heuristics can be combined with very little effort. For

Figure 20: Labeling comparison of all trials.

instance, consider constructing a region as you would for the weighting heuristic.

Next, generate a path using the dual branch heuristic with the weight-adjusted

dataset. The weighting heuristic alone typically spans a region on the map that is

egg shaped, with a larger radius about the source node than the destination node.

Applying the dual branch and weighting heuristics together causes the solution set

to span a region that is very similar to the region described in Figure 16. This

further helps to reduce the number of nodes that are labeled to generate a solution.

26

6 FUTURE RESEARCH

Several open ended comments were made throughout this work indicating possi-

bilities for future research. The weighing heuristic region calculation involves two

parameters. It may be valuable to perform an examination of the benefits of adjust-

ing these parameters. The two extreme cases are as follows:

1) the region depicts a line connecting the source and destination nodes or

2) the region spans the entire dataset.

It was also noted that both of these independent methods can be combined to further

reduce the amount of labeling required to generate a solution. Only limited testing

of this combined approach was performed. When it was performed, only the labeling

was examined. It would be interesting to know if the error introduced by combining

heuristics is equal to the best (least) error, equal to the worst (greatest) error, or

equal to the sum of the individual errors.

The largest dataset examined during this research is Cook County, IL, which

includes over 150,000 road segments. The tabular data provided in the index was

generated using New Hanover County, NC road information. It would be interesting

to see how well the algorithms perform on a nationwide dataset including millions

of road segments.

REFERENCES

[1] E. W. Dijkstra, 1959. A Note on Two Problems in Connexion with Graphs.

Numerische Mathematik 1, p.269-271, 1959.

[2] George B. Dantzig and Mukund N. Thapa, Linear Programming 1: Introduc-

tion, Springer-Verlag, New York, 1997.

[3] Harvey M. Salkin, Kamlesh Mathur, (Robert Hass - contributions), Foundations

of Integer Programming, Elsevier Science Publishing Co., Inc., New York, 1989.

[4] Paul A. Jensen and J. Wesley Barnes, Network Flow Programming, John Wiley

& Sons, New York, 1980.

[5] John Morris, Data Structures and Algorithms,

http://ciips.ee.uwa.edu.au/ morris/Year2/PLDS210/dijkstra.html.

[6] Paul E. Black, Greedy Algorithm

http://www.nist.gov/dads/HTML/greedyalgo.html.

[7] Lt. J.A. Lorek III, 2003. Personal Communication.

APPENDIX

The data used to generate the charts presented in this paper is provided here in

tabular format. It is made available so that others may validate the statistics cal-

culated and presented in the paper and to be used to generate other types of charts

that may be more useful to the reader.

Table 2: Distance Calculations - 1

Optimal Distance Weighted Heuristic Distance Dual Heuristic Distance
0.006339748 0.006339748 0.006339748
0.012678073 0.012678073 0.012678073
0.013898518 0.013898518 0.013898518
0.013962653 0.014081535 0.013962653
0.015190375 0.015190375 0.015190375
0.016059801 0.016059801 0.016059801
0.016162025 0.018878289 0.016162025
0.016662519 0.016662519 0.016662519
0.018559151 0.018559151 0.0186148
0.020205504 0.020205504 0.020205504
0.025313811 0.025313811 0.032425117
0.026221216 0.026221216 0.026221216
0.026703671 0.026703671 0.026703671
0.026736075 0.026736075 0.026736075
0.028681308 0.037922422 0.028681308
0.029210181 0.029210181 0.029210181
0.030360208 0.030360208 0.030360208
0.030702856 0.030702856 0.030702856
0.030752731 0.033396474 0.033396474
0.031808852 0.031808852 0.031808852
0.031867613 0.031867613 0.031867613
0.032476326 0.032476326 0.032476326
0.032493641 0.032493641 0.032493641
0.032524115 0.033911419 0.032524115
0.033040803 0.033040803 0.033040803
0.034466761 0.039019416 0.034466761
0.034831936 0.034831936 0.034831936
0.035713429 0.035713429 0.036657479
0.036051933 0.036051933 0.036051933
0.036732725 0.036732725 0.036732725
0.036890143 0.036890143 0.036890143
0.037366565 0.037366565 0.037366565
0.03953572 0.03953572 0.03953572
0.039613654 0.039613654 0.039613654
0.040460171 0.040551086 0.040460171
0.042089172 0.042089172 0.042089172
0.043016745 0.043016745 0.043016745
0.043859758 0.043859758 0.045266134
0.044519253 0.044519253 0.044519253

30

Table 3: Distance Calculations - 2

Optimal Distance Weighted Heuristic Distance Dual Heuristic Distance
0.045253223 0.064140879 0.045253223
0.045359785 0.047651288 0.045359785
0.045450252 0.046224174 0.045450252
0.046808419 0.046808419 0.046808419
0.047756135 0.047756135 0.047756135
0.047776692 0.047776692 0.050308368
0.048035653 0.048035653 0.048035653
0.048160963 0.048160963 0.04834452
0.048517564 0.048517564 0.048517564
0.048985578 0.052511813 0.048985578
0.048988674 0.048988674 0.048988674
0.049479795 0.049479795 0.049479795
0.050239156 0.050239156 0.050239156
0.050244182 0.050244182 0.050244182
0.050450766 0.059872836 0.050450766
0.050709753 0.050709753 0.050709753
0.051201392 0.051201392 0.051201392
0.051626012 0.051626012 0.051626012
0.052097429 0.052097429 0.052097429
0.05215431 0.05215431 0.05215431
0.053673789 0.053673789 0.053673789
0.05384448 0.05384448 0.05384448
0.053937988 0.053937988 0.058764388
0.054883864 0.054883864 0.057450343
0.055565754 0.055565754 0.055565754
0.055777472 0.055777472 0.055777472
0.056212496 0.056212496 0.056212496
0.056342651 0.056342651 0.056342651
0.056448632 0.056448632 0.056448632
0.056776941 0.056776941 0.056776941
0.057901583 0.057901583 0.057901583
0.058218249 0.058218249 0.05839678
0.058304175 0.062102794 0.058304175
0.058770919 0.058770919 0.058770919
0.059344172 0.067053144 0.059344172
0.059458514 0.062086685 0.059458514
0.059618967 0.059618967 0.059618967
0.060132248 0.065937772 0.060132248
0.060219225 0.060219225 0.060219225

31

Table 4: Distance Calculations - 3

Optimal Distance Weighted Heuristic Distance Dual Heuristic Distance
0.060994442 0.060994442 0.060994442
0.061061809 0.061061809 0.061061809

0.061196 0.061196 0.061196
0.061487938 0.061487938 0.06353667
0.061551786 0.061551786 0.061551786
0.061820491 0.061820491 0.061820491
0.062469902 0.062469902 0.062469902
0.06256465 0.06256465 0.06256465
0.063802497 0.063802497 0.063802497
0.064113608 0.064113608 0.064113608
0.064303213 0.064303213 0.064303213
0.064831227 0.064831227 0.064831227
0.066773151 0.066773151 0.066773151
0.067559402 0.067559402 0.067559402
0.067692742 0.067692742 0.069550475
0.068028509 0.068028509 0.068028509
0.068469639 0.068469639 0.068469639
0.069497414 0.076964711 0.069497414
0.070801945 0.070801945 0.070820064
0.071437946 0.071437946 0.071437946
0.072016095 0.072016095 0.072016095
0.072609881 0.073440146 0.072609881
0.073355593 0.073355593 0.073355593
0.073778188 0.073778188 0.073778188
0.074016029 0.074016029 0.077404136
0.075961485 0.075961485 0.075961485
0.076660663 0.076660663 0.076660663
0.077042931 0.086492979 0.077042931
0.077296575 0.077296575 0.077296575
0.077392776 0.077392776 0.077392776
0.077837564 0.077837564 0.077837564
0.07833485 0.07833485 0.07833485
0.079866175 0.079866175 0.079866175
0.08198351 0.08198351 0.08198351
0.082359328 0.082359328 0.082359328
0.086754428 0.090553046 0.086754428
0.089579324 0.090203455 0.089579324
0.090032997 0.093386681 0.093386681
0.091438909 0.091438909 0.091438909

32

Table 5: Distance Calculations - 4

Optimal Distance Weighted Heuristic Distance Dual Heuristic Distance
0.09659645 0.09659645 0.09659645
0.097368319 0.102849236 0.097368319
0.097763844 0.10645533 0.097763844
0.097902817 0.097902817 0.097902817
0.097997804 0.097997804 0.097997804
0.098153062 0.098153062 0.098153062
0.098498716 0.105669338 0.098498716
0.10049381 0.10049381 0.10049381
0.102065181 0.102065181 0.102065181
0.102905852 0.102905852 0.108759413
0.104646387 0.104646387 0.112161209
0.106093128 0.106093128 0.106093128
0.106132478 0.111613395 0.106132478
0.106279449 0.106279449 0.106279449
0.106985326 0.106985326 0.106985326
0.11002411 0.11002411 0.11002411
0.110673788 0.110673788 0.110673788
0.111343163 0.111343163 0.111343163
0.111827725 0.111827725 0.111827725
0.112001718 0.112001718 0.123558961
0.113104461 0.124101929 0.113104461
0.118776823 0.118776823 0.121183324
0.119979955 0.125563578 0.119979955
0.121756587 0.121756587 0.121756587
0.129042202 0.129042202 0.129042202
0.132020906 0.132020906 0.132020906
0.147193548 0.147193548 0.147193548
0.149272084 0.149272084 0.149272084
0.149882032 0.149882032 0.149882032
0.151046604 0.151046604 0.151046604
0.1529897 0.152992935 0.158400801

0.177725093 0.177725093 0.177725093
0.181485813 0.181485813 0.181485813
0.192744187 0.192744187 0.192744187
0.196684196 0.196684196 0.197131528
0.234356291 0.234356291 0.234356291
0.23644375 0.23644375 0.237084364

33

Table 6: Labeling Calculations - 1

Optimal Labels Weighted Heuristic Labels Dual Heuristic Labels
14 13 11
16 8 5
16 13 9
36 37 9
36 32 36
40 23 18
47 42 34
56 29 18
66 46 12
74 35 56
89 69 206
96 63 61
144 130 130
148 133 102
149 68 47
167 155 46
176 117 79
178 147 108
181 123 172
204 136 184
207 101 65
217 146 355
218 176 128
238 120 87
249 165 192
277 222 182
309 120 67
316 156 116
316 117 134
318 161 107
325 191 131
327 135 109
340 167 51
377 205 172
382 150 132
393 179 181
431 356 342
457 272 396
477 245 274

34

Table 7: Labeling Calculations - 2

Optimal Labels Weighted Heuristic Labels Dual Heuristic Labels
507 230 227
517 347 243
521 168 43
529 183 232
543 96 166
548 373 116
564 380 236
576 574 490
615 381 525
635 406 298
640 279 170
648 383 275
679 285 204
682 207 143
699 494 484
715 313 359
722 291 284
733 272 197
748 389 378
751 247 247
797 279 194
812 302 384
837 321 346
844 633 713
881 429 661
882 583 814
927 348 327
941 848 660
976 627 874
982 920 436
983 808 590
1001 544 897
1010 720 730
1074 364 583
1076 678 974
1098 639 409
1099 840 562
1120 724 987
1135 243 302

35

Table 8: Labeling Calculations - 3

Optimal Labels Weighted Heuristic Labels Dual Heuristic Labels
1188 773 981
1212 617 603
1236 944 964
1256 486 430
1266 848 909
1270 399 404
1311 456 406
1317 543 519
1358 647 506
1372 439 441
1417 587 675
1449 537 951
1472 790 1965
1475 443 491
1495 565 642
1597 731 525
1641 453 611
1651 416 1470
1671 814 737
1735 759 737
1745 735 698
1795 795 868
1813 423 774
1854 642 563
1891 650 1163
1907 499 737
1980 698 750
2101 787 650
2180 864 1346
2255 611 633
2328 607 686
2329 1094 1210
2389 636 1376
2504 907 881
2514 1154 1175
2557 660 727
2581 2090 711
2689 1316 747
2719 1062 1257

36

Table 9: Labeling Calculations - 4

Optimal Labels Weighted Heuristic Labels Dual Heuristic Labels
2746 542 896
2800 1391 1207
2821 1361 828
2961 705 1563
3012 443 808
3111 701 1070
3224 1023 752
3225 937 1013
3498 1474 1934
3549 1140 1133
3605 1387 1141
3640 1205 1072
3697 1044 1335
3771 2142 2410
3785 1056 818
3868 3486 1213
3888 1646 1518
4009 1677 1249
4050 1487 2680
4180 1659 1659
4196 1616 2139
4268 1649 1535
4552 1942 1617
4619 1263 1490
6082 2328 2480
6232 4066 3927
6370 2543 3057
6562 4566 6078
6806 5796 1776
7203 4175 4616
7223 5083 5036
7263 5666 6546
7265 4129 5087
7539 2682 2001
8120 5230 4896
8702 5764 6264
9228 6954 6248

37

