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ABSTRACT 

 

 The functional value of oyster reefs is recognized in many estuarine systems, with 

increasing interest in oyster reef restoration for ecological function rather than for fishery 

production.  Reefs provide structure and refuge for juvenile fish and crustaceans, and may be a 

locus for predator foraging.  However, reef morphology influences the relative value of refuge 

and forage functions, and reef utilization by benthic, epibenthic, and nektonic organisms.  Reef 

fragmentation will increase the edge to interior ratio, and may enhance use by organisms that 

favor edge regions, or decrease use by species requiring more interior habitat.  The influence of 

fragmentation was examined using created intertidal oyster reefs and natural reef patches in 

southeastern North Carolina.  Created reef treatments included a uniform circular reef, a small 

fragmented reef, a large fragmented reef, and reference natural reef and mudflat areas.  In 

addition, uniform and fragmented patch reefs in two nearby tidal creeks were also sampled.  All 

treatments were sampled immediately after construction in June 2002, and then quarterly over 

two years, targeting infauna, epifauna, and nekton.  Effects of fragmentation on infuana were 

variable, with a combination of positive and negative species-specific responses.   However, 

preferential use of large fragmented reefs over small fragmented reefs was observed for Lagodon 

rhomboides, Panopeus herbstii, and Geukensia demissa, suggesting that the small fragmented 

reefs were most likely below the patch size threshold at which edge effects become beneficial. 

Implications are that oyster reef fragmentation may be an important factor for restoration 

managers to consider when designing reefs in which increased habitat utilization is a primary 

goal.  Although a degree of fragmentation may be beneficial for some species, once 
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fragmentation leads to a loss of reef area below critical thresholds, degradation effects on habitat 

utilization could be great. 
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     INTRODUCTION 

 Habitat fragmentation is a process that involves the reduction of continuous areas of 

habitat to smaller patches; thereby resulting in loss of interior habitat and gains in edge habitat 

(Villard et al. 1999, Forman 1995).  These changes are thought to influence the survival and 

persistence of various species in both terrestrial (e.g. Karieva 1987, Robinson et al. 1995) and 

marine (e.g. Irlandi 1994, Bell et al. 2001, Hovel 2003) environments.  The responses of fauna to 

fragmentation will depend on whether species preferentially utilize the ecotone along patch 

edges, if they have fidelity to the interior sections of the habitat (Bender et al. 1998), or whether 

the interior areas present unique habitat attributes.  The evaluation of edge as a distinct habitat 

type (depending on the species and the habitat) has become an important issue in conservation 

biology (e.g. Saunders et al. 1991), especially since fragmentation often results from or is 

allocated by anthropogenic activities.  At the center of this controversial issue is the SLOSS 

(Single Large Or Several Small) debate.  In terrestrial systems, the equilibrium theory of island 

biogeography (MacArthur and Wilson 1967) and the species-area relationship have been used 

extensively in reserve design.  Both favor a single large patch over several small patches, other 

factors being equal.  However, with the recent shift towards metapopulation theory and 

recognition of edge effects, the idea that a single large reserve is more advantageous to species’ 

preservation has been questioned for certain species types and ecosystems.  The generality of this 

edge effect, however, is hotly debated because results vary tremendously among different 

systems (Donovan et al. 1997).  For example, Tscharntke et al. (2002) found that the percentage 

and abundance of polyphagous butterfly species were higher in smaller grassland fragments than 

in larger ones.  Some species of songbirds, however, presented a negative correlation between 

the degree of fragmentation and bird density or fecundity (Donovan and Flather 2002).     



  Metapopulation concepts may be particularly applicable in marine systems, where 

dispersal mechanisms connect otherwise segregated populations or subpopulations (Eggleston 

1999).  The vast majority of fragmentation studies in the marine realm have focused on seagrass 

beds (e.g. McNeill and Fairweather 1993, Eggleston et al. 1998, Irlandi et al. 1999, Bell et al. 

2001, Hovel and Lipcius 2002, Hovel 2003) and salt marshes (Peterson and Turner 1994, 

Zimmerman et al. 1984).  Submerged aquatic vegetation (SAV) has long been recognized as a 

nursery habitat for many species, forming structural habitats in otherwise unstructured soft 

bottoms (Hovel 2003).  Recent studies suggest that many small seagrass patches may increase 

the overall probability of encounter by larvae (e.g. blue crabs and grass shrimp) thereby 

increasing overall recruitment per unit area of habitat when compared to larger, uniform patches 

(Eggleston et al. 1998).  There may be minimum area requirements but some degree of 

fragmentation may increase aspects of habitat function, suggesting a need to incorporate species-

specific responses to habitat structure at multiple scales (Hovel 2003).   

 Another potentially important structural habitat in intertidal and subtidal temperate 

coastal systems is oyster reefs.  Throughout its geographic range, the American oyster, 

Crassostrea virginica, provides subtidal and intertidal reef structure that supports a number of 

other organisms generally not found in surrounding soft-bottom habitats (Dame 1979, 

Zimmerman et al. 1989, Coen et al. 1999, Posey et al. 1999).  Although C. virginica has long 

been recognized as an important economic estuarine species due to its direct fisheries value, the 

ecological value of the habitat oysters create and the influence of oysters on estuarine function is 

often overlooked (Lenihan and Peterson 1998, Meyer and Townsend 2000), and only recently 

have resource managers begun to look at oyster reefs as critical estuarine habitat.  Oysters 

provide several critical ecosystem functions:  reduced water turbidity through active filtration 
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(Newell 1988, Cressman et al. 2003, Nelson et al. 2004) and decreased water flow (Dame et al. 

1984), stabilization of substrate, erosion reduction (Meyer et al. 1997), and provision of habitat 

for many other marine organisms (Coen et al. 1999).    

 Oysters provide three-dimensional structure and hard substrate in an otherwise 2-

dimensional soft substrate environment.  The shell matrix provides refuge for epifauna and a 

number of fish, crabs, shrimps, and other small crustaceans (Larsen 1985, Meyer 1994, Coen et 

al. 1999).  Enhanced densities of grass shrimp, xanthid crabs, blue crabs, and benthic fishes have 

been associated with oyster reefs (Meyer and Townsend 2000) compared to open sand areas.  

Many commercially important species such as blue crabs, penaeid shrimp, striped bass, 

sheepshead, and flounder utilize intertidal oyster reefs as transients, coming and going with the 

tide (Posey et al. 1999, Coen et al. 1999).  The presence of oyster reefs may also have significant 

impacts on adjacent soft substrate habitats, related to both concentration of epifauna and nekton 

and physical effects, though infaunal response to reefs have been variable (Larsen 1985, Powell 

1994).  Ecosystem functions of oyster reefs also vary with location, e.g. subtidal vs. intertidal 

reefs, or geographic location.  Subtidal reefs can be inhabited during all periods of the tidal 

cycle, thus supporting more resident species such as blennies and gobies, which may be absent 

from intertidal reefs.  However, oyster reefs are predominantly intertidal structures from 

southeastern North Carolina to Florida.  Fishes inhabiting intertidal reefs must come and go with 

the tides, and resident epifauna inhabiting these reefs must be able to handle frequent exposure to 

air.  In addition, edge effects may be more pronounced in intertidal reefs because of interactions 

between reef structure and flow. 

 However, over the past century fishery landings of Crassostrea virginica have declined 

by up to 90% in most of the Atlantic coastal states (MacKenzie 1996), especially the mid 
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Atlantic (Hargis and Haven 1988) and Pamlico Sound (Frankenberg 1995).  The existence of 

multiple causes for the oyster’s decline (disease, over-fishing, pollution, etc.) has complicated 

the management of this keystone species (Lenihan and Peterson 1998) and led to reduction of 

extensive reef systems in favor of smaller, fragmented reefs.  Substantial state and federal 

resources have been allocated in attempts to restore the oyster fishery to pre-existing levels, 

including the creation of both subtidal and intertidal oyster reefs in many of the Atlantic coast’s 

estuaries (Ortega and Sutherland 1992, Luckenbach et al. 1996, Coen et al. 1997).   

 The consequences of increasing the edge to interior ratio in oyster reef systems may be 

particularly important since the increased degradation of reefs has caused a shift towards smaller, 

fragmented reef patches, rather than the large, extensive reef systems of earlier times.  

Considering the habitat value that oyster reefs provide, surprisingly little effort has been made 

towards investigating the potential effects of habitat fragmentation, with the exception of recent 

work by Eggleston et al. (1998) and Eggleston (1999) showing that macrofauna were more 

sensitive to patchiness in oyster shell than in seagrass or mixed habitats.  The effects of reef 

fragmentation on adjacent soft substrate fauna have not been investigated.  Fragmentation may 

alter between-habitat connections through changes in the proportion of critical edge and 

transitional habitat.  Increased oyster patchiness would increase connectedness with adjacent soft 

sediment habitats, with possible increases in infauna related to organic enhancement or decreases 

related to off reef predation by reef associated fish and crabs (Posey and Ambrose 1994, Posey 

and Hines 1991).   

 Eggleston (1999) suggested that there is a parabolic relationship between habitat 

fragmentation and biodiversity, with the highest biodiversity occurring at intermediate levels of 

habitat fragmentation.  If this is true, then oyster density and species diversity per unit area may 
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be higher in smaller patches above some minimum critical size.  This may be similar to the “edge 

effect” seen in salt marshes, where transient fish and decapod species utilize only the first 3 m of 

marsh surface and do not penetrate into the flooded interior marsh surface (Peterson and Turner 

1994).    

 In this study, a comparison of intertidal fragmented reefs of varying patch size and 

uniform reefs will be made, using both natural and created reefs, to assess the degree of habitat 

utilization by various species of benthic, epi-benthic, and nektonic organisms.  The hypothesis 

that habitat fragmentation, but not habitat loss, will result in increased utilization of the oyster 

reef patches by other marine organisms will be tested.      

 

METHODOLOGY 

 A combination of created reefs with defined edge to interior characteristics and natural 

reefs of varying edge morphology (patch size and proximity) were used to evaluate the habitat 

functions of intertidal oyster reefs.  Whereas created reefs provide a controlled assessment of the 

local effects of fragmentation, natural reefs present a broader understanding of reef utilization as 

they incorporate other potential landscape factors, such as surrounding habitats and sediment 

variability. 

 As part of a larger study examining landscape relations for oyster reef function, 

construction of experimental oyster reefs was begun in March 2002 on an open mud flat located 

near the mouth of Hewletts Creek (Masonboro Sound) in southeastern North Carolina (Fig. 1).  

This area is over 75% intertidal and lacks any submerged aquatic vegetation.  Naturally 

occurring reefs located near the area are intertidal, and consist of either patches or fringing reefs, 

many with a 3-5m patch diameter.  The specific sites did not support reefs at the time of 
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construction, but have been shown to support them when suitable substrate is made available 

(Alphin and Posey, unpublished data). 

 Four sites within the study area were chosen, all with similar topography, tidal range, 

salinity, and sediment characteristics.  At each site, three reef treatments were constructed for 

this study of fragmentation effects using clean cultch purchased from a nearby oyster shucking 

facility, placing shell to form a 6” base.  Live, single seed oysters obtained from a commercial 

aquaculture operation were then added in equal numbers to each reef.  To add additional vertical 

complexity, which has been shown to be important for utilization by various organisms (Posey 

and Alphin, unpublished data 2004), culms (clusters of oysters growing in the vertical direction) 

were transferred from natural reefs located within nearby Hewletts Creek.  All culms were 

defaunated prior to placing them on the created reefs so as to avoid the transfer of any resident 

organisms.  Defaunation was accomplished by removing the culms from existing reefs and 

placing them on a nearby marsh, well above mean high tide level.  After two weeks of exposure 

and following inspection for live organisms, the culms were then arranged on the created reefs.    

 Three treatments were constructed at each site:  one uniform, circular reef (diameter of 

3.6 m, area 10.18 m2), one small fragmented reef, and one large fragmented reef (Fig. 2A).  This 

allowed for the examination of the importance of patch size to faunal utilization.  Both 

fragmented treatments were constructed of four circular patches of equal area.  This created open 

channels between patches and increased the amount of edge within the encompassed treatment 

area.  The small fragmented reefs have an overall area (both shell and open space) equal to the 

shell coverage of the uniform treatments (encompassing circle around patches with a diameter of 

3.6 m, area of 10.18 m2; each patch has a diameter of 1.28 m, area of 1.28 m2), while the larger 

fragmented reefs have an area of actual shell consistent with the uniform treatments 
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Figure 2.  An illustration of reef parameters for the three treatments used in this study (A) and a 
schematic of locations of high and low relief areas within treatments (B).  H indicates areas of 
high vertical relief consisting of culms.  Those areas not containing an H do not contain culms, 
and are thus categorized as low vertical relief.   
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 (encompassing circle around patches with a diameter of 5.1 m, area of 20.4 m2; each patch has a 

diameter of 1.8 m, area of 2.6 m2).  This tested the relative importance of habitat loss in addition 

to increasing the edge to interior ratio.  All treatments had vertical culms (high relief) on half of 

the patch area, and single oysters (low relief) on the other half, to increase surface heterogeneity 

of the reefs which may maximize faunal use (Figure 2B).  All treatments were placed at least 10 

m apart so as to reduce potential interactions among reef treatments. 

 For all sampling, each treatment (uniform, small fragmented, large fragmented) was 

sampled for all four sites (all treatments within a site being sampled on the same day), along with 

the open sand reference area at each site.  Four nearby uniform natural reefs (referred to 

throughout this study as reference reefs) of similar size also were sampled.  Beginning in spring 

2003, natural uniform and fragmented reefs within Hewletts Creek and Pages Creek were 

sampled to evaluate the effects of natural reef fragmentation and whether the created reefs 

functioned similarly to natural reefs.  The natural uniform and fragmented reefs were of similar 

size to the experimental reefs.  To assess usage by different organisms (including nektonic, 

epibenthic, benthic, and infaunal species), several sampling methods were employed, including 

Breder traps, shell excavations, gill nets, and sediment cores.   

 Breder traps (Breder 1960) were used in order to asses the abundances of mobile epi-

benthic fauna, targeting juvenile fish and crustaceans.  Traps were constructed of clear acrylic 

(31 cm X 15 cm X 16 cm), with wings of clear acrylic that guide the organisms into the trap.  

Three traps were placed within the low relief sections, abutting the high relief, securing the traps 

with tent stakes driven into the substrate. The orientation of the trap opening was varied with 

respect to tidal flow so as to maximize possible catches.  For fragmented reefs, one trap was 

placed within the channel between the patches with the wing opening away from the marsh 
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towards the open mudflat.  The remaining two traps were placed on two different patches of the 

fragmented reefs, opposite one another and parallel to the marsh (Figure 3).  Traps placed on the 

uniform treatments mimicked this arrangement, with one trap placed along the edge rather than 

in a channel area (which does not exist for uniform reefs).  Traps placed on the mudflat 

sites and natural reefs (both uniform and fragmented) had similar 90o orientation placements.  

Traps were placed on the treatments at low tide and left in place for two hours after flood tide 

submergence, a time period based on prior Breder trap studies (Innes 1992, Townsend 1991).  

Upon retrieval, organisms were identified and measured.  Breder trap sampling for experimental 

reefs began in late June 2002 after the reefs had time to establish themselves following 

completion of construction in early May.  Repeated sampling occurred in September-October 

2002, March-April 2003, June-July 2003, and September-October 2003, for a total of 5 seasons 

of data collection.  The natural reefs located in Hewletts and Pages Creeks were sampled 

beginning March-April of 2003, with seasonal sampling through September-October 2004.  

Natural reefs were chosen based on similar site characteristics and reef configurations to those of 

the experimental reefs.  Breder trap sampling was not conducted in mid winter because of low 

nekton abundances at that time.  

 As a companion method to Breder traps, gill nets were used in order to assess use of the 

reefs by larger transient, nektonic species.  Gill nets (5.5 m X 1.2 m) were placed across the reefs  

(parallel to shore), using graded mesh size panels of 1.27 cm, 2.54 cm, and 5.08 cm stretch 

mesh, similar in size to those used in previous studies (Harding and Mann 2001, Lenihan et al. 

2001).  One net was placed across each treatment at low tide and allowed to fish for two hours 

after flood tide submergence.  Organisms caught were identified, measured, and released.   
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Sampling was conducted in June-July 2002, September-October 2002, March-April 2003, June-

July 2003, and September-October 2003, resulting in 5 seasons of data collection.  Natural reefs 

within the tidal creeks were not sampled due to time constraints.  Due to low catches, gill net 

data was not statistically analyzed, and will only be discussed in a qualitative manner.  

 Excavations of all reefs were performed while reefs were exposed at low tide at each 

treatment using 20 cm X 20 cm quadrats in order to target benthic and epi-benthic invertebrates, 

such as crabs and errant polychaetes. Three excavations were performed for each treatment: one 

quadrat was placed in high relief, one in low relief, and a third placed half in high relief and half 

in low.  After randomly establishing the location of the quadrat within each of the relief types, all 

shell located within the quadrat (including live oysters) was placed on a 2 mm sieve screen and 

washed clean of mud and debris.  All retained organisms were identified and measured.  

Excavation sampling began in June-July 2002, and was repeated quarterly through spring 2004, 

resulting in 8 seasons of data collection.  Sampling of the natural reefs within the tidal creeks 

began in January 2003 and continued quarterly through January 2004, resulting in 5 seasons of 

data collection.  Beginning January 2003, biomass of all organisms recovered during excavations 

was determined through standard ash-free-dry-weight techniques.  With the exceptions of 

polychaetes and amphipods, which were identified to family, all organisms brought back were 

identified to species for biomass determination. Total biomass was determined for each 

species/family per treatment.   

 Infaunal cores (15 cm deep) were taken adjacent to all created reefs in July 2002 after 

reef establishment.  For uniform treatments, three cores were taken at each reef’s edge, and 2 m 

out from the reef (Figure 3).  For fragmented treatments, similar locations were sampled with 2 

additional cores taken within the channels between the patches.  Three cores were also taken on 
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the mudflat reference area at each site. Sampling was repeated in July 2003, with three additional 

cores taken 5m out from each reef’s edge in order to better assess potential distance from reef 

effects on infaunal abundances.  Each core was preserved in 10% buffered formalin with 0.009 

g/L rose bengal dye for at least 48 hours and then transferred to 50% isopropyl.  Following 

identifications to the genus or species level, the biomass of each sample was obtained as 

described earlier and recorded for analysis. 

 Analysis of Variance (ANOVA) was used to compare the abundances and mean sizes of 

dominant species caught among different treatments for both Breder trap and excavation data, as 

well as for total biomass of dominant species caught in excavations.  Species comprising >1% of 

total catches were considered dominant.  Abundance data were log transformed to meet 

assumptions of homogeneity of variance (F-max test); mean size data did not need to be 

transferred to meet assumptions.  Because of expected non-independence in sizes of fish within a 

trap, mean size was averaged per trap before analysis.  A 3-way ANOVA was run using the SAS 

PROC GLM procedure with season, treatment, and site (blocked variable) as main effects, along 

with interactions for season and treatment.  For natural reefs located in Hewletts and Pages 

Creeks, separate 2-way ANOVAs were run for each creek with treatment and season as main 

effects because of differences in reef topography and creek community structure.  The Student-

Newman-Keul (SNK) test was used to conduct pair-wise comparisons among treatments when 

ANOVA indicated a significant effect.  Diversity of epifauna and nekton was calculated using 

the Shannon-Weiner Index.  Both diversity and species richness were calculated on a per reef/per 

time basis. 

 For infaunal abundances and total infaunal biomass, a 4-way ANOVA (log-transformed) 

was run for reef treatments (uniform, small fragmented, large fragmented) using the SAS PROC 
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GLM procedures with year, treatment, distance from reef, and site (blocked variable) as main 

effects, including interactive effects among year, treatment, and distance.  Because distance was 

not a factor for mudflat sites, a separate 3-way ANOVA with year, treatment, and site was run 

for reef and mudflat data regardless of distance.  The Student-Newman-Keul (SNK) test was 

used to conduct comparisons among treatments when ANOVA indicated a significant effect.  

Diversity was calculated using the Shannon-Weiner Index.  Both diversity and species richness 

were calculated on a per reef/per time basis. 

     

 

RESULTS 

Breder Trap Abundances 

 Abundances were grouped by season:  spring, summer, and fall.  Both summer and fall 

included two years of data, whereas spring data were collected in 2003 only.  Overall dominant 

species (those comprising >1% of total catches) were Clibanarius vittatus (striped hermit crab), 

Eucinostomus lefroyi (mottled mojarra), Fundulus heteroclitus (mummichog), Ilyanassa obsoleta 

(mud snail), Lagodon rhomboides (pinfish), Leiostomus xanthurus (spot), Micropogonias 

undulatus (croaker), Mugil cephalus (striped mullet), Palaemonetes vulgaris (grass shrimp), 

Paralichthys dentatus (summer flounder), Penaeus aztecus (brown shrimp), and an unidentified 

larval fish.  Of these, pinfish (Lagodon rhomboides) mummichogs (Fundulus heteroclitus), and 

spot (Leiostomus xanthurus) were by far the most common species caught, comprising 98% of 

total catches during summer sampling periods. 

 Mean total abundances on created reefs (Table 1) differed by season, with highest 
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catches in spring and lowest in fall (F=30.82, p=0.001).  Although there was a small season-

treatment interaction (F=2.65, p=0.02), treatment alone was not significant  (F=0.29, p=0.83), nor 

did analysis of treatment by season indicate a significant effect.  There were also no differences 

in mean total abundances between sites (F=1.14, p=0.34).   

 Lagodon rhomboides dominated catches during all seasons, with higher abundances in 

spring and lowest in fall (F=30.92, p=0.0001).  An interaction occurred between treatment and 

season (F=2.60, p=0.026), and a season by season comparison of treatments (Table 2) revealed a 

marginally significant difference between treatments during spring (F=3.36, p=0.06), as well as a 

treatment effect for summer (F=3.62, p=0.027).  There was no significant difference among 

treatments in fall, reflecting low numbers at this time.  During spring, pinfish were most common 

on the open mud flat and least on the large fragmented and natural reef treatments (Figure 4).  

Summer patterns contrasted with spring, with significantly higher abundances on the large 

fragmented and uniform treatments.   

 The only other significant treatment effect occurred with the mud snail Ilyanassa 

obsoleta, which was more common on the uniform reef treatment during spring (F=2.85, 

p=0.044).  There was also a treatment-season interaction (F=2.28, p=0.047). 

 Seasonal differences in abundance (Table 1) were also observed for Fundulus 

heteroclitus (F=8.84, p=0.0004), Leiostomus xanthurus (F=23.7, p=0.0001), and Micropogonias 

undulatus (F=0.73, p=0.0001).  Fundulus heteroclitus was more common during spring and 

summer than in fall (see Figure 4).  Leiostomus xanthurus abundances were highest during 

spring, while croaker (Micropogonias undulatus), were only caught during spring. Although not 

significant, there was a general trend among treatments for Fundulus heteroclitus, Leiostomus 

xanthurus, and Micropogonias undulatus during spring and fall, and for pinfish during summer, 
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Table 1.  3-way ANOVA results for the fish community sampled with Breder traps from the 
experimental and reference reefs.  Shown are F-values and (p-values). Values with asterisks 
indicate a significant relationship (p<0.05).  Where significant effects are present, SNK rankings 
are shown in decreasing order, with treatments differing indicated with different superscript 
letters.  UN=uniform, FS=small fragmented, FL= large fragmented, MD=mudflat, SPR=spring, 
SUM=summer, and FAL=fall. 
Species                 Treatment       Season       Treatment*Season       Site 
Clibanarius vittatus          0.83      2.45          1.00          1.35 
          (0.481)         (0.094)       (0.434)       (0.272)     
Eucinostomus lefroyi          0.13              1.50                     0.51          2.00 
          (0.733)         (0.270)                (0.796)            (0.122) 
Fundulus heteroclitus          0.25              8.84*                   0.71                 3.93* 
                                                      (0.865)        (0.0004)*             (0.646)            (0.012)* 
        SUMa, SPRb, FALb     
Ilyanassa obsoleta          2.85*            2.28                     2.28*               1.14 
          (0.044)*        (0.110)               (0.047)*          (0.340) 
                UNa, FLa, FSa, MDa

Lagodon rhomboides          0.42     30.92*                  2.60*               2.21 
          (0.743)        (0.0001)*             (0.026)*          (0.095) 
                           SUMa, SPRa, FALb

Leiostomus xanthurus                     0.89             23.70*                 0.84                 1.09 
                                                      (0.449)        (0.0001)*             (0.545)            (0.359) 
           SPRa, SUMb, FALb  
Micropogonias undulatus               0.73             19.23*                  0.59                4.16* 
                                                      (0.449)        (0.0001)*             (0.740)            (0.009)* 
          SPRa, FALb, SUMb

Mugil cephalus                               0.61               0.73                    0.73                 0.97 
                                                      (0.613)          (0.487)               (0.629)            (0.412)  
Palaeomonets vulgaris                   0.61               0.73                    0.73                 0.97 
          (0.613)          (0.487)               (0.629)            (0.412)         
Paralichthys dentatus                     1.05               0.55                    1.85                 1.03 
          (0.378)          (0.579)               (0.102)            (0.385) 
Penaeus aztecus          1.07               0.58                    0.45                 0.20 
          (0.368)          (0.562)               (0.846)             (0.896) 
U/I larval fish           0.53               1.86                    0.75                 0.51 
                                                      (0.661)          (0.165)               (0.614)             (0.676) 
Mean total abundance                    0.29              30.82*                  2.65*               1.14 
                                                      (0.831)         (0.0001)*            (0.023)*           (0.340) 
                    SUMa, SPRa, FALb
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Table 2.  By-season treatment effects for pinfish (Lagodon rhomboides). Shown are F-values and 
(p-values). Values with asterisks indicate a significant relationship (p<0.05).  When significant 
effects are present, SNK rankings are shown in decreasing order, with treatments differing 
indicated with different superscript letters.  UN=uniform, FS=small fragmented, FL= large 
fragmented, and MD=mudflat. 
Season    Treatment    Site   
Spring        3.37     26.86* 
      (0.068)            (0.0001)* 
Summer       3.62*     0.52 
       (0.027)*             (0.674) 
                 FLa, UNa, MDa, FSb

Fall        1.23                                                  0.29 
       (0.320)             (0.833) 
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Figure 4.  Mean abundances (+ SE) of organisms caught in Breder traps during spring, summer, 
and fall sampling.  Each number represents the mean number of organisms per trap for all four 
sites. 
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in which abundances were higher on the large fragmented treatments relative to the small 

fragmented treatments, with intermediate abundances on uniform reefs. Differences among sites 

were present for Fundulus heteroclitus (Table 1, F=3.93, p=0.012) and Micropogonias undulatus 

(F=4.16, p=0.009).   

 Abundances of nekton caught in Breder traps for natural reefs in Hewletts and Pages 

Creeks were much lower than those of the created and reference reefs.  Dominant species were 

Fundulus heteroclitus, Lagodon rhomboides, Leiostomus xanthurus, and Penaeus aztecus.  There 

were no significant treatment effects in either creek (Table 3), although seasonal differences for 

Lagodon rhomboides (F=5.65, p= 0.030) and mean total abundance (F=17.28, p=0.001) were 

observed in Hewletts Creek.  Seasonal patterns for pinfish within Hewletts Creek were similar to 

those of the created reefs, with highest abundances observed in spring (Figure 5).  There were no 

significant seasonal differences for natural reefs in Pages Creek, as catches were extremely low. 

 

Total Length of Fish Caught in Breder Traps 

 The mean total length of Fundulus heteroclitus caught in Breder traps among created 

reefs showed significant effects for treatment (Table 4), with larger fish caught in small 

fragmented treatments compared to mud flat or large fragmented treatments (Figure 6, F=4.21, 

p=0.023).  Mummichogs also exhibited effects of season (F=12.05, p=0.0006), with larger fish 

caught in summer than fall.  There was a slight treatment-season interaction (F=3.04, p=0.041).   

Site differences were not significant for Fundulus heteroclitus size.  The total length of Lagodon 

rhomboides caught in Breder traps differed only with season, with largest fish caught in fall and 

smallest fish caught in spring (F=85.09, p=0.0001, Figure 7).  Season was also highly significant 

for the total length of Leiostomus xanthurus (F=141.46, p=0.0001), with mean length during 
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Table 3.  2-way ANOVA results for the fish community on natural reefs in Hewletts and Pages 
Creeks collected using Breder traps.  Shown are F-values and (p-values) with significant 
differences indicated by an asterisk.  When significant effects are present, SNK rankings are 
shown in decreasing order.  SPR=spring, SUM=summer, and FAL=fall.  
Species     Treatment   Season 
 
Hewletts Creek 
   Fundulus heteroclitus                 0.43     2.34 
       (0.533)                                 (0.159) 
   Lagodon rhomboides      0.08     5.65* 
                                                              (0.788)                        (0.030)* 
         SPRa, FALb, SUMb

   Leiostomus xanthurus      0.25                                      2.25 
       (0.631)             (0.168) 
   Penaeus aztecus                                   1.00                                      1.00 
       (0.347)                                  (0.410) 
   Mean total abundance                          0.67                                      17.28* 

(0.272) (0.001)* 
         SPRa, FALb, SUMb

Pages Creek 
   Fundulus heteroclitus      0.34                 1.76 
       (0.574)                                  (0.232) 
   Lagodon rhomboides      2.74                                       3.54 
                                                              (0.136)   (0.079) 
   Mean total abundance                          1.39                                       2.97 
       (0.272)                                  (0.109) 
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Figure 5.  Mean abundances (+ SE) of organisms caught in Breder traps for uniform and 
fragmented natural reefs in Hewletts and Pages Creeks during spring, summer, and fall sampling.  
HC= Hewletts Creek, PC=Pages Creek. 
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Table 4.  ANOVA results for mean total length of dominant species caught in Breder traps.  
Natural reefs in Hewletts and Pages Creeks were run separately by creek using 2-way ANOVAs.  
Shown are F-values and (p-values) with significant differences indicated by an asterisk.  When 
significant effects are present, SNK rankings are shown in decreasing order, with treatments 
differing indicated with different superscript letters.    UN=uniform, FS=small fragmented, FL= 
large fragmented, MD=mudflat, NA= natural, SPR=spring, SUM=summer, and FAL=fall.  
Species                 Treatment       Season       Treatment*Season       Site 
Experimental Set 
   Fundulus heteroclitus                4.21*           12.05*                  3.04*                 0.75 
                   (0.023)*      (0.0006)*             (0.041)*            (0.620) 
                FSa, NAa, UNa, FLa, MDa   SUMa, SPRa, FALb

   Lagodon rhomboides                 1.83             85.09*                  1.56                   0.83 
        (0.157)        (0.0001)*     (0.175)              (0.551) 
      FALa, SUMb, SPRc

   Leiostomus xanthurus       2.24            141.46*                 0.92                   2.88* 
                   (0.133)        (0.0001)*            (0.460)              (0.052)* 
                                                                        SUMa, SPRb, FALc

Hewletts Creek 
   Lagodon rhomboides                 2.50              9.38*                   N/A                   N/A 
        (0.212)         (0.051)* 
                    FALa, SUMa, SPRa

Pages Creek 
   Lagodon rhomboides                 0.01            104.23*                 N/A                   N/A 
                                                    (0.916)         (0.010)* 
       FALa, SPRb, SUMc
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Figure 6.  Mean total lengths (+ SE) for Fundulus heteroclitus caught in Breder traps during all 
sampling periods for experimental reefs.  The numbers over the bars indicate the number of traps 
from which mean total lengths were calculated.  
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Figure 7.  Mean total lengths (+ SE) for Lagodon rhomboides caught in Breder traps during all 
sampling periods.  The numbers over the bars indicate the number of traps from which mean 
total lengths were calculated.   
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spring less than that of summer (Figure 8).  Spot also showed a marginal site effect (F=2.88, 

P=0.052). 

 Within the tidal creeks, catches were sufficient to evaluate size differences only for 

Lagodon rhomboides (Figure 7).  Treatment had no effect on TL in either creek, but season 

differences occurred in both creeks (Hewletts Creek:  F=9.38, p=0.051, Pages Creek F=104.23, 

p=0.010).  Largest fish were caught during fall and smallest during spring. 

 

Diversity and Species Richness from Breder Traps 

 Diversity, as calculated by the Shannon-Weiner Index, for the experimental reefs (all 

created reef treatments, the mud flat, and reference reefs) was highest during spring (Figure 9).  

During spring and summer, highest diversity was seen on reference reefs and small fragmented 

reefs, while fall showed higher diversity on created reefs than on natural reefs.  For natural reefs 

within the tidal creeks, diversity was highest during spring for Hewletts Creek and fall for Pages 

Creek.  For both, diversity was lowest during summer. 

 Species richness was also generally highest during spring (Figure 10), with lowest 

species richness in fall.  During spring and fall, highest species richness was found on small 

fragmented treatments, whereas the large fragmented treatments exhibited higher values during 

summer. 

 

Gill Net Abundances 

 Abundances of nekton caught in gill nets were extremely low throughout the study, thus 

results will only be discussed qualitatively.  Summer 2002 catches were near 0.  In the following 

fall, catches were dominated by Leiostomus xanthurus, Lagodon rhomboides, and Eucinostomus 
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Figure 8.  Mean total lengths (+ SE) for Leiostomus xanthurus caught in Breder traps during all 
sampling periods for experimental reefs.  The numbers over the bars indicate the number of traps 
from which mean total lengths were calculated.     
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Figure 9.  Diversity (Shannon-Weiner Index) of organisms caught in Breder traps for all 
treatments for all sampling periods.  HC = Hewletts Creek natural reefs, PC = Pages Creek 
natural reefs.  
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Figure 10.  Species richness of organisms caught in Breder traps on all treatments during all 
sampling periods.  HC = Hewletts Creek natural reefs, PC = Pages Creek natural reefs.  
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lefroyi (Figure 11).  Pinfish were most abundant on both small and large fragmented treatments.  

Eucinostomus lefroyi abundances were also highest on the large fragmented treatments, followed 

by the mud flat and channel.   

 Spring 2003 sampling produced near 0 catches, although fish were caught the following 

summer.  Dominant species for summer 2003 were mendhaden, Brevoortia tyrannus, pinfish, 

Lagodon rhomboides, and striped mullet, Mugil cephalus.  Abundances of menhaden were 

highest in the channel, with catches also occurring on the uniform and mudflat treatments.  

Pinfish were caught in the channel and in the large fragmented reefs.  Striped mullet were most 

common on reference reefs, but were absent on small fragmented reefs.  Only one fish was 

caught during fall 2003, a pinfish (on a large fragmented reef). 

 

Excavation Abundances 

 Abundances were grouped by season:  spring, summer, fall, and winter, with 2 years of 

data per season.  Dominant species of epifauna (those comprising >1% of total composition) 

were Amphipoda, an unidentified anemone, Eurypanopeus depressus (flat mud crab), Geukensia 

demissa (Atlantic ribbed mussel), Menippe mercenaria (stone crab), Palaemonetes pugio (grass 

shrimp), Panopeus herbstii (common mud crab), polychaetes, Rhithropanopeus harrisii (white-

fingered mud crab) Urosalpinx cinerea (oyster drill) and Uca pugnax (mud fiddler crab).  Of 

these, Eurypanopeus depressus, Guekensia demissa, Panopeus herbstii, polychaetes, and 

Urosalpinx cinerea were by far the most common, comprising 80% of total catches during 

summer sampling periods.  

 Mean total abundances of all organisms in the experimental and reference reefs showed 

both season and treatment effects (Table 5).  Abundances were higher in created reefs than in 
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Figure 11.  Mean abundances of fish caught in gill nets during fall 2002 and summer 2003.  
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Table 5.  3-way ANOVA results for the epibenthic community collected from excavations of 
experimental treatments.  Shown are F-values and (p-values) with significant effects (p<0.05) 
indicated by an asterisk.  When significant effects are present, SNK rankings are shown in 
decreasing order, with different superscripts indicating statistically different values.  
UN=uniform, FS=small fragmented, FL= large fragmented, MD=mudflat, NT= natural, 
SPR=spring, SUM=summer, FAL=fall, and WIN=winter.   
Species   Treatment          Season             Site         Season*Treatment 
Amphipoda                                10.59*             17.19*             1.50                       1.52 
    (0.0001)*         (0.0001)*        (0.182)                  (0.124) 
                  NTa, FSa, UNa, FLa, MDb     SPRa, WINb, SUMb, FALc

anemone                 0.55                  1.91                0.68                       0.62 
     (0.651)             (0.131)           (0.669)       (0.824) 
Eurypanopeus depressus    7.24*                1.41                2.12*                     0.70 
               (0.0002)*          (0.242)           (0.055)*                (0.746) 
                                     UNa, NTa, FLa, FSa, MDb

Geukensia demissa     8.13*                1.81                0.17                       0.69 
    (0.0001)*          (0.149)           (0.985)                  (0.759) 
    UNa, FLa, FSa, NTb, MDb

Menippe mercenaria                  1.55                 2.82*               1.71                      1.00 
                (0.205)            (0.042)*           (0.123)                 (0.453) 
      SUMa, FALa, SPRa, WINa

Palaemonetes pugio     2.96*               1.58                 0.72                      1.08 
                (0.035)*          (0.197)             (0.631)                 (0.384) 
   FSa, NTa, UNa, FLa, MDa

Panopeus herbstii    33.15*              3.81*               0.18                      1.12 
    (0.0001)*         (0.012)*           (0.982)                 (0.353) 
   UNa, FLab, FSb, NTb, MDc   FALa, SUMa, SPRab, WINb       
polychaete     14.46*              5.51*               1.74                      1.86* 
    (0.0001)*         (0.001)*           (0.116)                 (0.046)* 
   UNa, FSa, FLa, NTa, MDb    SPRa, WINa, SUMa, FALb

Urosalpinx cinerea     6.78*              11.49*              0.23                      1.41 
    (0.0003)*        (0.0001)*          (0.965)                 (0.170) 
   FSa, UNa, FLa, NTa, MDb     SPRa, WINb, FALb, SUMc

Mean total abundance    63.68*   13.86*              0.39                      1.03 
    (0.0001)*        (0.0001)*          (0.884)                 (0.422) 
            FSa, UNa, FLab, NTb, MDc       SPRa, WINb, SUMb, FALb
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reference reefs, with all reef treatments showing higher abundances than on the mud flat 

(F=63.68, p=0.0001). 

 Treatment effects were seen for Amphipoda (F=10.59, p=0.0001), Eurypanopeus  

depressus (F=7.24, p=0.0002), Geukensia demissa (F=8.13, p=0.0001), Palaemonetes pugio 

(F=2.96, p=0.035), Panopeus herbstii (F=33.15, p=0.0001), polychaetes (F=14.46, p=0.0001), 

and Urosalpinx cinerea (F=6.78, p=0.0003).  For these species, the mean abundance per 400 cm2 

was lower for the mudflat than for all other treatments. Geukensia demissa were also 

significantly more abundant on created reefs than on the natural reefs.  Panopeus herbstii was 

significantly more abundant on the uniform and large fragmented reefs than on any other 

treatment.    

 Seasonal differences in abundance occurred for Amphipoda (F=17.19, p=0.0001), 

Menippe mercenaria (F=2.28, p=0.042), Panopeus herbstii (F=3.81, p=0.012), polychaetes 

(F=5.51, p=0.001), and Urosalpinx cinerea (F=11.49, p=0.0001).  Mean abundances of 

amphipods were higher for spring and winter than summer or fall (Figure 12).  Menippe 

mercenaria was only present during summer and fall seasons. Abundances of Panopeus herbstii 

were significantly lower in winter than in any other seasons and highest during summer (Figure 

12). Polychaetes found during excavations showed significantly lower abundances in fall when 

compared to all other seasons.  There was also a slight season-treatment interaction for 

polychaetes (F=1.86, p=0.046).  Oyster drills (Urosalpinx cinerea) exhibited lower abundances 

in summer than for any other season.  

 Amphipod abundances on natural reefs in Hewletts Creek also showed a seasonal effect, 

as well as a treatment effect (Table 6).  They were far more abundant during spring sampling 

(Figure 13).  No other treatment effects were observed within the natural reefs in tidal creeks, 
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Figure 12.  Mean abundances (+ SE) of organisms caught in excavations during all seasons for 
experimental reefs.   
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Table 6.  2-way ANOVA results for the epibenthic community collected from excavations on 
natural reefs in Hewletts and Pages Creeks.  Shown are F-values and (p-values) with significant 
(p<0.05) comparisons indicated by an asterisk.  When significant effects are present, SNK 
rankings are shown in decreasing order, with different superscripts indicate statistically different 
values.  UN=uniform, FR=fragmented, SPR=spring, SUM=summer, and FAL=fall.   
Species    Treatment           Season                   Site 
Hewletts Creek 
   Amphipoda        5.16*            21.21*                    1.66 
       (0.057)*                   (0.001)*               (0.238) 
        UNa, FRa  SPRa, FALb, SUMb  
   Eurypanopeus depressus      0.74                          0.19                      0.74 
                                                              (0.419)                     (0.830)                 (0.419) 
   Geukensia demissa       0.62                          3.07                      3.14 
                                                              (0.457)                     (0.110)                 (0.119) 
   Panopeus herbstii       0.14                          0.49                      0.71 
                                                              (0.720)                     (0.630)                 (0.427) 
   polychaete        0.37                         14.23*                   0.17 
       (0.560)                     (0.003)*               (0.691) 
        SPRa, SUMb, FALb

   Rhithropanopeus harrisii      0.00                          0.50                      2.00 
       (1.000)                     (0.627)                 (0.200) 
   Uca pugnax        0.04                          0.67                      0.58 
                                                              (0.851)                     (0.543)                 (0.472) 
   Urosalpinx cinerea       0.11                          2.18                      0.11 
                                                              (0.748)                     (0.183)                 (0.748) 
   Total abundance                                  0.06                          5.31*                     3.13 
                                                              (0.819)                     (0.040)*               (0.120) 
        SPRa, FALab, SUMb

Pages Creek 
   Amphipoda        1.04                         0.20                       0.16 
       (0.342)           (0.824)     (0.704) 
   Eurypanopeus depressus                     0.67                          0.43                      2.55 
                                                              (0.441)                    (0.667)                  (0.155) 
   Geukensia demissa                              0.64                          0.98                      3.11 
       (0.451)                    (0.422)                  (0.121) 
   Menippe mercenaria                            1.97                          0.52                      0.03 
                                                              (0.203)                    (0.618)                  (0.338) 
   Palaemonetes pugio       1.00   1.00       1.00 
       (0.351)                     (0.415)                 (0.351) 
   Panopeus herbstii                                0.14                          0.72                     1.48 
       (0.722)                     (0.521)                 (0.264) 
   polychaete                   0.71              0.72                      0.35 
       (0.428)                     (0.519)                 (0.571) 
   Uca pugnax        1.00   1.00       1.00 
       (0.351)           (0.415)                  (0.351) 
   Urosalpinx cinerea       0.40                          1.80                     1.06 
                                                              (0.546)           (0.234)                 (0.338) 
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   Total abundance       0.11              1.70                      2.39 
       (0.756)           (0.251)      (0.166) 
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Figure 13.  Mean abundances of organisms (+ SE) caught during excavations on uniform and 
fragmented natural reefs in Hewletts and Pages Creeks during spring, summer, and fall sampling.   
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and the only other seasonal difference in abundance occurred for polychaetes in Hewletts Creek 

(more abundant in during spring).  There were no significant differences in any other species 

found in Hewletts Creek for season or treatment. 

  

Mean Carapace Widths of Crabs from Excavations 

 For the experimental treatments (all created treatments, the mud flat, and natural reefs at 

the mouth of Hewletts Creek), crabs Eurypanopeus depressus, Menippe mercenaria, and 

Panopeus herbstii were found with enough frequency during excavations to analyze differences 

in carapace width among treatments, seasons, and sites (Table 7).  The only significant 

difference occurred for Eurypanopeus depressus, which was smaller during spring than in any 

other season (F=4.49, p=0.010).  

 On natural reefs within the tidal creeks, only Panopeus herbstii was abundant enough to 

be analyzed for differences in carapace width.  Crabs caught on reefs in Hewletts Creek showed 

no differences in size related to treatment, season, or site.  In Pages Creek, however, there was a 

seasonal effect observed, with larger crabs collected in spring compared to summer or fall  

(F=12.47, p=0.005). 

 

Diversity and Species Richness of Epifauna 

 Diversity among the experimental treatments and reference reefs (Figure 14) was lowest 

overall during fall.  Diversity was also highest on uniform treatments during spring, compared to 

other treatments that season.  Summer sampling showed highest diversity on the reference reefs, 

whereas winter values were similar across uniform, large fragmented, and natural treatments.  

  Overall diversity within tidal creek natural reefs was similar to experimental treatments.   
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Table 7.  2-way and 3-way ANOVA results for the carapace widths of crabs found in 
excavations for all treatments.  Natural reefs within Hewletts and Pages Creeks were tested 
separately by creek. Shown are F-values and (p-values) with significant (p<0.05) comparisons 
indicated by an asterisk.  When significant effects are present, SNK rankings are shown in 
decreasing order, with different superscripts indicating statistically different values.  
SPR=spring, SUM=summer, FAL=fall, and WIN=winter.   
Species   Treatment     Season     Site        Treatment*Season 
Experimental Set 
   Eurypanopeus depressus     2.33                   4.49*             2.28                 1.85 
      (0.115)              (0.010)*        (0.072)             (0.100) 
          SUMa, FALa, WINab, SPRb

   Menippe mercenaria     5.24                   4.25               1.71                 8.73 
      (0.295)              (0.288)          (0.416)             (0.208)  
   Panopeus herbstii                    1.15                   0.49               0.88                 0.38 
                                                  (0.320)              (0.691)          (0.512)             (0.940) 
Hewletts Creek 
   Panopeus herbstii      0.09                   1.58               1.90                  N/A 
      (0.776)              (0.272)          (0.211)                N/A 
Pages Creek 
   Panopeus herbstii      2.29                  12.47*            2.59                  N/A 
                                                  (0.174)              (0.005)*        (0.151)                N/A 
           SPRa, FALb, SUMb
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Figure 14.  Diversity of species (Shannon-Weiner Diversity Index) found in excavations.  HC = 
Hewletts Creek natural reefs, PC = Pages Creek natural reefs.   
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Spring showed highest diversity for most treatments, while summer diversity was lower in both 

creeks.  With the exception of fragmented reefs in Pages Creek, fall values were also lower than 

spring.  

 Species richness was highest during spring for all reefs.  For the experimental treatments 

(Figure 15), lowest values were seen during fall, with intermediate values in summer and winter.  

In the tidal creeks, oyster reefs supported more species per 400 cm2 during fall than summer.  In 

all cases, both diversity and species richness on the mud flat was dramatically less than seen on 

oyster reefs, either created or natural. 

 

Biomass of Epifauna 

 Sixteen species in excavations comprised >1% of the total biomass, however only a few 

occurred with enough frequency to be analyzed for differences in biomass over treatments, 

seasons, and sites.  For the experimental and reference treatments, those species were 

Eurypanopeus depressus, Geukensia demissa, Panopeus herbstii, and Urosalpinx cinerea.  The 

only treatment effects seen were for Geukensia demissa (F=5.57, p=0.008) and Urosalpinx 

cinerea (F=64.72, p=0.0001).  Geukensia demissa taken from large fragmented treatments had 

significantly greater biomass than those from the small fragmented and uniform treatments, all of 

which were greater biomass than mussels from the reference reefs (Table 8).  Urosalpinx 

cinerea, on the other hand, exhibited higher biomass on small fragmented treatments than on any 

other.  Treatment did not significantly affect the biomass of organisms caught in excavations 

from natural reefs in either tidal creek. 

 Seasonal differences in biomass were also present for ribbed mussels (marginal 

significance:  F=2.72, p=0.059) and oyster drills (F=43.46, p=0.0001) within the experimental  
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Figure 15.  Species richness for organisms caught during excavations.  HC = Hewletts Creek 
natural reefs, PC = Pages Creek natural reefs.   
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Table 8.  2-way and 3-way ANOVA results for the biomass of epifauna found during 
excavations.  Natural reefs in Hewletts and Pages Creeks are analyzed separately by creek.  
Shown are F-values and (p-values) with significant (p<0.05) comparisons indicated by an 
asterisk.  When significant effects are present, SNK rankings are shown in decreasing order, with 
different superscripts indicating statistically different values.  
UN=uniform, FS=small fragmented, FL= large fragmented, MD=mudflat, NT= natural, 
SPR=spring, SUM=summer, FAL=fall, and WIN=winter.   
 Species   Treatment     Season    Site         Season*Treatment 
Experimental Set 
   Eurypanopeus depressus     2.62                   0.28             0.44                  0.16 
                                                 (0.093)               (0.841)         (0.815)             (0.995) 
   Geukensia demissa                  5.57*                 2.72*           0.54                  1.20 
                                                  (0.008)*            (0.059)*       (0.775)             (0.329) 
               FLa, FSb, UNb, NTc   WINa, FALa, SPRa, SUMa

   Panopeus herbstii      0.42                   1.32             1.07                  0.38 
                                                 (0.661)               (0.281)         (0.393)             (0.937) 
   Urosalpinx cinerea    64.72*                43.46*          1.41                36.22* 
                                                (0.0001)*           (0.0001)*      (0.248)            (0.0001)* 
              FSa, NTb, FLb, UNb   SUMa, SPRb, FALb, WINb

Hewletts Creek 
   Geukensia demissa     0.23                    0.76             0.03                  N/A 
                                                 (0.655)               (0.525)         (0.873)               N/A 
   Panopeus herbstii     0.59                    0.81             1.23                  N/A 
                          (0.468)               (0.485)         (0.305)               N/A 
Pages Creek 
   Geukensia demissa                11.40                  12.01            1.92                  N/A 
                (0.078)               (0.077)         (0.300)               N/A      
   Panopeus herbstii     0.01                    7.90*           4.33                  N/A 
                                                 (0.922)               (0.016)*       (0.076)               N/A 
           SPRa, SUMb, FALb

   Urosalpinx cinerea                 4.77                    2.02             5.54                  N/A 
                                                 (0.273)               (0.390)         (0.256)               N/A 
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treatments, as well as for Panopeus herbstii (F=7.90, p=0.016) from reefs in Pages Creek.  

Biomass of ribbed mussels was higher during winter and spring than in summer and fall (Figure 

16).  There was significant treatment-site interaction for this species, in which higher abundances 

were seen for the small fragmented treatments during summer.  Panopeus herbstii found on reefs 

in Pages Creek had higher mean biomass during spring (Figure 17).   

 

Infaunal Abundances 

 The average number of organisms found in sediment cores (Figure 18) was significantly 

higher in July 2002 than in July 2003 (F=9.49, p=0.003, Table 9).   Although there were 

differences in total abundance among sites, there were no significant treatment or distance effects 

for total infaunal abundance.  Gemma (F=13.51, p=0.0005) and Tharyx (F=5.81, p=0.019) were 

also more prevalent in 2002 than 2003, whereas Leitoscoloplos (F=6.65, p=0.012) and 

Mediomastus (F=10.65, p=0.002) abundances increased as the reefs developed, with 

significantly higher numbers found during the second year of sampling.  Gemma (Figure 19) 

exhibited differences among treatments, with higher densities in the mud flat than near reefs.   

There were also higher abundances found near large fragmented reefs than near their small 

fragmented counterparts (F=6.03, p=0.004).  When years were analyzed separately (Tables 10-

11), this difference in abundance can be seen during 2003 (F=4.27, p=0.023), after the reefs have 

fully developed, but is not present in 2002.   Abundance of Gemma did not vary with distance 

away from a reef, with similar numbers found at 5 cm, 200 cm, and 500 cm away from the reef.  

These abundances were also similar to those found within the channels between patches of the 

fragmented treatments.   

 The only other treatment effect observed was for Tharyx in 2003 (F=4.09, p=0.027), 
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Figure 16.  Average biomass of organisms (+ SE) found during excavations on the experimental 
treatments during spring, summer, fall, and winter sampling.  The numbers over the bars indicate 
the number of treatments from which mean total biomass was calculated. 
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Figure 17.  Average biomass (+ SE) of Panopeus herbstii caught during excavations of natural 
reefs in Pages Creek.  The numbers over the bars indicate the number of treatments from which 
mean total biomass was calculated. 
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Figure 18.  Mean total abundances (+ SE) of all infaunal organisms found in cores during July 
2002 and July 2003.  UNIF= uniform, FRSM=small fragmented, FRLG=large fragmented, 
MUDF=mudflat, 5=distance of 5 cm, 200=distance of 200 cm, 500=distance of 500 cm, 
CHAN=in channel between reef patches. 

0

50

100

150

200

250

300

UNIF 5

UNIF 20
0

UNIF 50
0

FRSM 5

FRSM 20
0

FRSM 50
0

FRSM C
HAN

FRLG
 5

FRLG
 20

0

FRLG
 50

0

FRLG
 C

HAN
MUDF

M
ea

n 
ab

un
da

nc
e 

pe
r 0

.0
1 

m
2

2002

2003

 
 

46 



Table 9.  Results from the 4-way ANOVA for the effects of treatment, distance from reef, year, 
and possible interactions on infaunal abundances on all created reef treatments.  Shown are F-
values and (p-values) with significant (p<0.05) comparisons indicated by an asterisk.  When 
significant effects are present, SNK rankings are shown in decreasing order, with different 
superscripts indicating statistically different values.  UN=uniform, FS=small fragmented, FL= 
large fragmented, CH= in channel between reef patches.   
Species Treatment        Distance         Year         Yr*Treat        Site        Treat*Dis  
Aricidea     1.41                 0.67             0.05             1.07          18.61*            0.15 
                          (0.253)            (0.573)        (0.831)        (0.348)      (0.0001)*        (0.979) 
Driloneris     1.38                 0.21             0.66             0.76           2.55               0.73 
                          (0.261)            (0.892)        (0.421)        (0.471)       (0.064)           (0.604) 
Gemma                6.03*              1.99            13.51*          0.26          662.47*           0.75 
                          (0.004)*          (0.125)       (0.0005)*     (0.772)       (0.0001)*       (0.587) 
  FLa, UNab, FSb             2002a, 2003b

Leitoscoloplos     1.77                3.60*            6.65*          0.18           19.95*            2.66* 
                          (0.180)            (0.019)*      (0.012)*      (0.838)       (0.0001)*       (0.031)* 
           CHa, 5a, 200a, 500a  2003a, 2002b

Mediomastus       0.92                2.41            10.65*          0.04            10.31*           0.59 
                          (0.404)            (0.076)        (0.002)*      (0.956)       (0.0001)*       (0.704) 
                2003a, 2002b

Nereis falsa         0.71                5.89*            3.48            0.97             6.07*             0.50 
                          (0.494)            (0.001)*      (0.067)        (0.387)        (0.001)*        (0.777) 
           CHa, 5b, 500b, 200b

Oligochaete         1.58                0.24              2.50            0.99             6.41*             0.85 
                          (0.214)            (0.869)        (0.119)        (0.379)       (0.0008)*       (0.518) 
Streblospio          2.55                1.33              2.10            0.18             5.88*             1.22 
    (0.087)            (0.273)        (0.153)        (0.835)        (0.001)*        (0.309) 
Syllid      0.45                2.46              2.53            0.47             6.57*             0.87 
                          (0.640)            (0.071)        (0.117)        (0.629)       (0.0007)*       (0.508) 
Tharyx      2.16                0.11              5.81*          0.55             0.47               0.82 
                          (0.124)            (0.952)        (0.019)*      (0.578)        (0.702)          (0.537) 
      2002a, 2003b

Total                    0.99                0.17              9.41*          0.93           13.78*            1.09 
    (0.378)            (0.914)        (0.003)*      (0.400)       (0.0001)*       (0.376) 
      2002a, 2003b
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Figure 19.  Mean abundances (+ SE) of dominant taxa found in sediment cores in July 2002 and 
July 2003 across treatments and varying distance.  Cores taken in 2002 are indicated by black 
bars, and white bars indicate cores taken in 2003.  UNIF= uniform, FRSM=small fragmented, 
FRLG=large fragmented, MUDF=mudflat, 5=distance of 5 cm, 200=distance of 200 cm, 
500=distance of 500 cm, CHAN=in channel between reef patches. 
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Table 10.  Results from a 3-way ANOVA for the effects of treatment, distance from reef, site, 
and possible interactions on infaunal abundances on all created reef treatments during July 2002.  
Shown are F-values and (p-values) with significant (p<0.05) comparisons indicated by an 
asterisk.  When significant effects are present, SNK rankings are shown in decreasing order, with 
different superscripts indicating statistically different values.  UN=uniform, FS=small 
fragmented, FL= large fragmented, CH= in channel between reef patches.   
Species  Treatment      Distance       Treatment*Distance         Site 
 Aricidea       2.15                    0.33                             0.02                   10.41* 
       (0.142)               (0.721)                        (0.997)               (0.0002)* 
Driloneris       0.79                    0.03                             0.74                     1.42 
      (0.468)               (0.971)                        (0.540)                (0.265) 
Gemma       2.79                    1.97                             1.89                  433.57* 
      (0.084)               (0.164)                        (0.162)               (0.0001)* 
Leitoscoloplos       0.58                    1.25                             4.31*                  10.61* 
      (0.567)               (0.308)                        (0.016)*             (0.0002)* 
Mediomastus       0.19                    0.47                             0.38                    10.15* 
      (0.828)               (0.632)                        (0.768)               (0.0002)* 
Nereis falsa       1.19         2.70                             0.57                     1.50 
      (0.324)               (0.091)                        (0.643)                (0.244) 
oligochaete                       0.29                    0.16                            0.31                    13.46* 
      (0.750)       (0.850)                        (0.820)              (0.0001)*  
Streblospio       0.51                    1.42                            0.26                      1.18 
      (0.610)               (0.263)                        (0.850)                (0.342) 
Syllid        0.03                    0.20                            0.21                      4.08* 
       (0.970)               (0.817)                        (0.889)                (0.020)*     
Tharyx        0.77                    0.23                            0.37                      1.43 
      (0.477)               (0.799)                        (0.779)                (0.263) 
Total        0.42                    0.65                            0.74                    10.44*     
      (0.659)               (0.533)                        (0.539)               (0.0002)* 
________________________________________________________________________ 
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Table 11.  Results from a 3-way ANOVA for the effects of treatment, distance from reef, site, 
and possible interactions on infaunal abundances on all created reef treatments during July 2003.  
Shown are F-values and (p-values) with significant (p<0.05) comparisons indicated by an 
asterisk.  When significant effects are present, SNK rankings are shown in decreasing order, with 
different superscripts indicating statistically different values.  UN=uniform, FS=small 
fragmented, FL= large fragmented, CH=in channel between reef patches.   
Species  Treatment      Distance       Treatment*Distance         Site 
Aricidea      0.23                     0.53                            0.23                     7.02* 
     (0.799)                (0.668)                       (0.945)                 (0.001)* 
Driloneris      0.16                     0.21                            0.36                     1.74 
                                      (0.851)                (0.890)                       (0.872)                 (0.180) 
Gemma                  4.27*                   1.16                            0.22                    341.37* 
                                      (0.023)*              (0.341)                       (0.951)                (0.0001)* 
   FLa, UNab, FSb

Leitoscoloplos      0.84                     2.30                            1.08                    10.50* 
                                      (0.443)                (0.097)                       (0.393)                (0.0001)* 
Mediomastus      0.73                     1.88                            0.57                     2.82* 
     (0.493)                (0.153)                       (0.723)                 (0.056)* 
Nereis falsa      0.62                     3.69*                          0.35                     4.60* 
                                      (0.544)                (0.023)*                     (0.877)                 (0.009)* 
           CHa, 5b, 200b, 500b

Oligochaete      2.95                     0.64                            0.96                     2.24 
                                      (0.068)                (0.594)                       (0.458)                 (0.104) 
Streblospio      2.36                     0.40                            1.25                     5.03* 
                                      (0.112)                (0.754)                       (0.311)                 (0.006)* 
Syllid       0.81                     3.91*                          1.27                     4.60* 
                                      (0.456)                (0.018)*                     (0.303)                 (0.009)* 
          200a, 500a, 5ab, CHb

Tharyx                  4.09*                   0.52                            2.41                     3.86* 
                                      (0.027)*              (0.672)                       (0.060)                 (0.019)* 
   UNa, FSb, FLb

Total       1.92                     0.56                            1.37                     6.08* 
                                      (0.164)                (0.647)                       (0.265)                 (0.002)* 
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which was more abundant near uniform reefs than near fragmented ones.  This difference was 

driven by a dramatic decrease in abundance from 2002 to 2003 found in cores taken within the 

channel between reef patches (Figure 19). 

 Leitoscoloplos and Nereis falsa both showed effects of distance on abundance, as did 

syllids (in 2003 only).  Although not distinguished in the SNK test, there were significantly 

higher abundances of Leitoscoloplos found in channels of the fragmented treatments and at the 5 

cm distance from the reef than at 200 and 500 cm distances from the reefs (F= 6=3.60, p=0.019, 

Table 11).  There was also a treatment-distance interaction detected for this species (F=2.66, 

p=0.031).  Cores taken inside the channels created by the fragmented patches also had 

significantly higher abundances of the polychaete Nereis falsa than for any other distance 

(F=3.69, 0.023).  This difference can only be seen in 2003.  In contrast, syllids were actually less 

abundant in channel cores than in cores taken at all other locations in 2003 (F=3.91, p=0.018), 

even with their general increase in abundance through this study.  

 

Diversity and Species Richness of Infauna 

 Overall diversity of infauna was higher in 2002 than in 2003.  Cores taken near small 

fragmented reefs had the highest diversity overall during both years. Diversity of infauna near 

large fragmented reefs was highest during the first year, and then dropped dramatically the 

following year.  A similar pattern was seen for the mud flat, with higher values in 2002.  Overall, 

the mud flat exhibited the lowest diversity of all treatments. 

 The diversity of infauna found in cores at specific distances away from the reefs varied 

slightly (Figure 20).  In 2002, diversity was higher at 200 cm from the uniform and small 

fragmented reefs than at 5cm from the reefs’ edges.  The large fragmented treatments exhibited a 
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different pattern, with highest diversity within the channels.  In 2003, diversity was relatively 

similar across all distances for the uniform and small fragmented reefs.  Large fragmented reefs, 

however, exhibited far lower values than their counterparts, with the exception of cores taken 

within channels. Diversity was particularly low in cores taken 500 cm from large fragmented 

treatments.   

 Overall species richness was remarkably similar between all treatments, during 2002.  In 

2003, species richness was lower overall, but especially low for infauna found near large 

fragmented reefs compared to other treatments, with the highest number of species found on the 

mudflat, away from the reefs.  Species richness varied somewhat with distance.  In 2002, 

richness was lower within channels of fragmented treatments than at 5 and 200 cm distances 

(Figure 21).  This difference is also present in 2003, although not as pronounced for the small 

fragmented reefs as for large. 

 

Infaunal Biomass 

 Biomass averages of infauna from 2002 samples did not differ significantly from that of 

2003 (Table 12).  There were no overall effects seen for treatment or distance.  However, when 

years were analyzed separately, there were significant differences in infaunal biomass during 

2003.  Uniform and small fragmented reefs had average infaunal biomasses that were twice that 

of the large fragmented reefs (F=4.06, p=0.020, Figure 22).  In addition, infaunal biomass found 

in cores from channels were greater than the biomass of infauna at any other distance (F=2.68, 

p=0.051).    
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Figure 20.  Diversity of infauna found in cores for all treatments and distances.  UNIF= uniform, 
FRSM=small fragmented, FRLG=large fragmented, MUDF=mudflat, 5=distance of 5 cm, 
200=distance of 200 cm, 500=distance of 500 cm, CHAN=in channel between reef patches. 
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Figure 21.  Species richness of infauna found in cores for all treatments and distances.  UNIF= 
uniform, FRSM=small fragmented, FRLG=large fragmented, MUDF=mudflat, 5=distance of 5 
cm, 200=distance of 200 cm, 500=distance of 500 cm, and CHAN=in channel between reef 
patches. 
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Table 12.  4-way ANOVA results for the effects of treatment, distance, year, site, and all 
possible interactions on the overall biomass of infauna for created reef treatments. Shown are F-
values and (p-values) with significant (p<0.05) comparisons indicated by an asterisk. 
Treatment            Distance      Year   Year*Treat       Site        Treat*Distance 
     1.30                     2.14              0.14                   2.02               5.43*              1.60 
  (0.274)                 (0.097)         (0.705)              (0.135)          (0.001)*          (0.163) 
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Figure 22.  Overall infaunal biomass from July 2002 and July 2003.  UNIF= uniform, 
FRSM=small fragmented, FRLG=large fragmented, MUDF=mudflat, 5=distance of 5 cm, 
200=distance of 200 cm, 500=distance of 500 cm, CHAN=in channel between reef patches. 
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DISCUSSION 

 As predicted by results of previous studies (Coen et al. 1999, Posey et al. 1999), greater 

utilization of oyster reefs compared to open mudflat was observed for many species of epifauna, 

including amphipods, Eurypanopeus depressus, Geukensia demissa,  

Palaemonetes pugio, Panopeus herbstii, and Urosalpinx cinerea, as well as the total overall 

abundances of organisms collected from oyster shell excavations.  In addition, diversity and 

species richness of organisms collected using Breder trap and excavation methods was similar 

for created and natural reefs, indicating that artificial reefs provide a similar ecological function 

as their natural counterparts.  Although abundances of fishes caught in Breder traps and gill nets 

were similar between created and natural reefs, they did not exhibit significantly higher 

abundances over oyster reefs compared to open mudflat, possibly reflecting the necessity of 

passing over mudflat areas as the tide floods intertidal regions and variable catches, spatially and 

temporally.  However, utilization of oyster reefs themselves was affected by reef fragmentation. 

   This can be seen for Lagodon rhomboides, which was by far the most common species 

caught in Breder traps.  During both summer sampling periods, utilization of large fragmented 

reefs was significantly higher than that of uniform reefs.  This suggests that reef fragmentation 

(at least at the larger scale) is providing some benefit to the fish during this time.  For example, 

the increased edge to interior ratio could be providing the fish more access to invertebrates 

inhabiting the reefs, thus increasing access to food sources.  Juvenile pinfish feed on encrusting 

algae (frequently seen on oyster reefs) and invertebrates found in and around oyster reefs 

 (Lehnert and Allen 2002).  Gut content analysis has also revealed grass shrimp, amphipods, and 

mud crabs Panopeus herbstii and Eurypanopeus depressus, in the stomachs of pinfish < 150 mm 

in length (Lenihan et al. 2001).  All of the aforementioned species were abundant in the reefs 
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sampled in this study.   Fragmentation might also be providing pinfish with some relief from 

predation pressures, in that channels created by reef patches could provide possible escape routes 

or hiding places.  Indeed, it has been suggested that habitat heterogeneity may modify the 

outcomes of biological interactions such as competition and predation (Coen et al. 1981).  Hettler 

(1989) found higher abundances of pinfish in a marsh bordered by deep channels with shell 

debris than in marshes bordered by bare sand.  The channels created by fragmented reefs in this 

study may have a similar function. 

 Although spring sampling did not produce any significant differences in pinfish 

abundances, this is when pinfish were at their smallest (average size was 27.1 mm TL).  It may 

be that the reef structure itself was overwhelmingly large relative to their size, thus they may not 

have perceived any differences in reef morphology.  The scales over which habitat structure 

occur influence how organisms respond to the environment (Irlandi and Crawford 1997).  For 

small juveniles, the scale of fragmentation may have been too large to have an affect on pinfish 

utilization.  The pattern of preferential use of large fragmented treatments by pinfish again 

disappears in fall.  However, catches were lower during fall than any other season, reflecting 

movement of larger pinfish out of the estuary. 

     Gill nets were used during this study in hopes of further evaluating reef utilization by 

larger nektonic individuals, as Breder traps generally target juveniles and are species-selective 

(Rozas and Minello 1997).  However, gill nets exhibited much lower catches relative to Breder 

traps.  Catches were highest in fall of 2002, when there was again a slight trend for pinfish to 

have higher abundances on fragmented reefs than on uniform reefs.  Leistomus xanthurus also 

exhibits this same trend during fall gill net sampling.  Although gill nets of similar length and 

mesh sizes were useful in previous studies to catch larger individuals ( > 100 mm) of species 
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such as croaker, menhaden, bluefish, spot, striped bass, flounder, and weakfish (Harding and 

Mann 2001, Lenihan et al. 2001), catches in the present study were too low to be conclusive.    

The study sites used by Harding and Mann (2001) had a maximum tidal current of 0.12 m/s 

(Chen et al. 1977), and saw significantly higher catches from dusk to dawn.  The study sites 

located in Masonboro Sound, on the other hand, had average flow rates of 0.02 m/s, and nets 

were put out only during the daytime in the present study. 

  Small fragmented treatments did not have similar faunal distribution patterns as the large 

fragmented treatments.  Lower abundances on smaller fragmented reefs were common for many 

species, including Lagodon rhomboides (Breder traps and gill nets), Fundulus heteroclitus 

(Breder traps), Leiostomus xanthurus (gill nets), Panopeus herbstii (excavations), and Geukensia 

demissa (biomass from excavations) which all had lower numbers on small fragmented 

treatments compared to either larger fragmented or uniform treatments.  Fragmentation is 

believed to be advantageous to species that prefer edge to interior habitat, but only after a 

minimum, or threshold, patch size is reached.  I propose that the small fragmented reefs used in 

this study are an example of patch sizes below this threshold.  The small fragmented treatments 

represent a situation of habitat degradation in addition to habitat fragmentation, in that the 

overall area of shell cover was half that of the uniform or large fragmented treatments.  Some 

models for terrestrial systems predict that changes in habitat configuration should begin to 

influence faunal abundance at a threshold level of 30-50% habitat loss (Andrén 1994, Fahrig 

1998).  An analogous minimum patch requirement may explain lower abundances of fishes and 

certain eipfauna on small fragmented treatments compared to fragmented reefs with larger patch 

sizes.  Highest biodiversity has been predicted to occur at intermediate levels of habitat 

fragmentation (Eggleston 1999), analogous to the intermediate disturbance hypothesis (Connell 
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1978).   Although not significant, Fundulus heteroclitus caught in Breder traps during fall 

showed a similar pattern to that of Lagodon rhomboides, in which there was a general trend of 

higher abundances on large fragmented reefs than on small fragmented treatments, with 

intermediate abundances on uniform reefs.  It is curious that this trend was not seen during 

summer sampling periods, when pinfish showed preference for large fragmented treatments.  

However, mummichogs were significantly larger during summer (F=12.05, p=0.0006) than in 

any other season.  As seen for pinfish, during the season in which largest fish are caught, there 

was no trend towards preferential use of the large fragmented treatments.  The larger Fundulus 

heteroclitus preferred the small fragmented treatments to the large (F=4.21, p=0.023). It is 

possible that the benefits of fragmentation may be a function of size/age.  The responses of larger 

pinfish and mummichogs might also be indicative of a change in the definition of refuge habitat 

for these species as they get larger. 

 Effects of fragmentation on epifauna in this study varied. Although amphipods, 

Eurypanopeus depressus, Geukensia demissa, Palaemonetes pugio, Panopeus herbstii, 

polychaetes, and Urosalpinx cinerea were all more common on oyster reefs than on nearby mud 

flats, only abundances of Geukensia demissa, Palaemonetes pugio, Panopeus herbstii, and 

Urosalpinx cinerea seemed to be affected by habitat fragmentation and habitat loss.  

Significantly higher abundances of Panopeus herbstii were found on large fragmented and 

uniform reefs than on small fragmented reefs, once again suggesting that the small fragmented 

reefs are below the threshold for which fragmentation is advantageous.   The common mud 

crab’s distribution may reflect indirect effects of food availability.  The Atlantic ribbed mussel 

Geukensia demissa, a common food source for Panopeus herbstii (Seed 1980), had a greater 

total biomass on large fragmented reefs than on small fragmented reefs.  Presence of prey may 
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also have affected blue crabs, Callinectes sapidus, which, when encountered, occurred only on 

large fragmented treatments.  Blue crabs, like mud crabs, are known to feed extensively on 

Geukensia demissa (Seed 1980).  Both mud crabs and blue crabs also prey upon juvenile oysters 

(Grabowski 2004), which may have been more abundant on large fragmented treatments, given 

the larger area of shell cover to that of small fragmented reefs.   

 In contrast to Panopeus herbstii, abundances of the flat mud crab Eurypanopeus 

depressus were not affected by oyster reef fragmentation.  However, the diet of the flat mud crab 

is very different from that of the common mud crab.  Eurypanopeus are smaller on average than 

Panopeus, and have a less restrictive, more omnivorous diet, consuming primarily algae, 

detritus, and - to a lesser degree - polychaetes, and amphipods (McDonald 1982).  Neither 

polychaetes nor amphipods found during excavations differed among fragmentation treatments, 

and algal mats seen during spring and winter sampling covered more area on average (personal 

observation) on uniform reefs.  In addition, E. depressus primarily occupy habitats created by 

oyster clusters, and are often absent from reefs that have little or no cluster material (Meyer 

1994).   Thus, continuous reefs of high vertical complexity (i.e. the uniform treatments) may be 

more beneficial for this particular species.   

 Urosalpinx cinerea and Palaemonetes pugio were the only species of epifauna found to 

have a positive correlation with the small fragmented treatments.  There were significantly 

greater values for both abundance and biomass of oyster drills on small fragmented reefs.  

Decreased utilization of small fragmented reefs by predators (pinfish and common mud crabs) 

may have released the oyster drills from predation pressure, allowing for the increase in biomass.  

In addition, the oyster drills, responding to reduced predation levels, may further contribute to 

the degradation of the reef by consuming higher numbers of juvenile oysters.     
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  Predation effects also may be important to understanding infaunal abundances among 

treatments and distances from reefs.  Some reef-associated predators on offshore hard-bottom 

reefs use the reef primarily as refuge, and depend on the surrounding mud flat for food, causing 

abundance halos around the reef (Posey and Ambrose 1994).  The same may be true for oyster 

reefs.  Total abundances of infauna observed in this study were significantly higher in 2002 than 

in 2003 (F=9.49, p=0.003), suggesting that predators (e.g. decapod crustaceans and epibenthic 

fishes) drawn to the oyster reefs may have decreased the numbers of infauna.  This may have 

been particularly true for the bivalve Gemma gemma and the polychaete Tharyx.   Both species 

showed lower abundances during the second year of sampling compared to the first.  During first 

year sampling, the abundances of Gemma and Tharyx were consistent across all treatments and 

distances from the reefs.  However, during the second year, significantly more gem clams were 

found on the open mud flat than in cores taken near reefs.  In addition, higher abundances of 

Tharyx were found near uniform reefs than near fragmented reefs, consistent with observations 

of greater predator abundances near fragmented reefs (pinfish and common mud crabs).  Total 

infaunal biomass in 2003 was much lower in cores near large fragmented reefs than near uniform 

or small fragmented reefs.  Although higher abundances of Gemma were found near large 

fragmented reefs than near small, this may have been due to increased predation near small 

fragmented reefs by the grass shrimp, Palaemonetes pugio, which showed a slight preference for 

the small fragmented treatments. 

 Although no halo was observed (i.e. infaunal abundances at 5 cm were not less than 

abundances at 500 cm), this may be due to the intertidal nature of the study sites.  Key nektonic 

predators such as pinfish are transient species, forced to leave the reefs at low tide.  Thus, 

predation on infauna surrounding the reefs is not constant, and may be less than that observed 
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near subtidal reef structures.  In addition, larger nekton may have perceived an entire site as one 

large reef assemblage, thus 500 cm may not have been a sufficient distance to see a decrease in 

infaunal abundances at these locations.   

 On the other hand, reef morphology may also affect microphytobenthos biomass and 

nutrient levels, which may in turn impact infaunal communities.  The presence of several smaller 

reef patches may have an overall enhancement effect on adjacent microphytobenthos 

communities compared to one large reef of similar area.  Molesky (2003) observed an increase in 

organic content in convolutions of created oyster reefs.  A similar effect may occur within the 

channels created by fragmented reefs.  This increase may then enhance the local infaunal 

community.  In this study, the polychaetes Leitoscoloplos and Nereis falsa both showed effects 

of distance from reef on abundance.  Cores taken inside fragmented channels had higher 

abundances than cores taken at 5 cm, 200 cm, and 500 cm from the reef’s edge.  This pattern 

may be an indirect effect of fragmentation, in that fragmentation may affect the organic content 

and grain size of sediment, as well as increase nutrients and microphytobenthos biomass within 

the channels, due to current flow effects, which in turn might have increased the numbers of 

polychaetes in the area.   

 This study provides additional evidence for the utilization of oyster reefs as habitat by 

many different marine organisms.  Although fragmentation of oyster reefs did not affect nekton, 

epifauna, and infauna uniformly, this study does present evidence that it influences the 

abundance and biomass of several species.  Both direct and indirect effects of fragmentation 

were seen.  More importantly, there is evidence for a patch-size threshold, beneath which 

negative effects on abundances are seen.  Impacts of patch-size may only be detected in large 

patches where different core and edge micro-habitats can be established (Bell et al. 2001).  A 
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review by Andrén (1994) of studies on birds and mammals states that when <30% of the original 

habitat remains in the landscape, species richness declines dramatically, but the exact percentage 

would depend on original landscape characteristics.  This study presents evidence of a similar 

threshold, in that a 50% reduction in habitat caused a decline in abundances of many species.  

This loss of habitat also caused an increase in abundance and biomass of the oyster drill 

Urosalpinx cinerea, which may then further contribute to reef degradation through predation of 

the oysters themselves.   

 As oyster reef degradation caused by overfishing, pollution, and disease continues, 

naturally occurring reefs grow closer and closer to this threshold.  With the decline in natural 

oyster reefs, there has been increasing efforts made to improve the success rate of artificial oyster 

reef restoration.  Past efforts have focused on the construction of large, expansive reefs with 

rather low edge to interior ratios.  However, in recent years restoration of subtidal oyster reefs 

within the Chesapeake Bay has been guided towards multiple small reef patches within close 

proximity of one another (Luckenbach, personal communication), as this landscape may be 

advantageous over the large, expansive reefs favored in the past.  The results of this study 

support this idea, and suggest that reef fragmentation is also beneficial when restoring intertidal 

oyster reefs.  Fragmentation may be particularly useful if increasing faunal abundances of 

organisms which utilize reefs as habitat is a desired goal of the restoration.  Similar to designing 

a salt marsh with many small channels through it to provide more access to edge habitat, 

fragmentation of intertidal oyster reefs (with patch sizes above a certain threshold) may be a 

beneficial option for restoration managers to consider.  

  

 

64 



LITERATURE CITED 

Andrén, H.  1994.  Effect of habitat fragmentation on birds and mammals in landscapes with 

 different proportions of suitable habitat:  a review.  Oikos 71:  355-366. 

Bell, S.S., Brooks, R.A., Robbins, B.D., Fonseca, M.S., and M.O. Hall.  2001.  Faunal response 

 to fragmentation in seagrass habitats:  implications for seagrass conservation.  Biological 

 Conservation 100:  115-123.   

Bender, D.J., Contresas, T.A., and L. Fahrig.  1998.  Habitat loss and population decline:  a meta 

 analysis of the patch size effect.  Ecology 79:  517-533.  

Breder, C.M.  1960.  Design for a fry trap.  Zoologia 45:  155-160. 

Chen, H., P. Hyer, A. Kuo, and C. Fang.  1977.  Hydrography and hydrodynamics of Virginia 

 estuaries XI.  Mathematical model studies of water quality of the Piankatank estuary.  

 Special report No. 124 in Applied Science and Ocean Engineering.  Gloucester Point, 

 Virginia:  Virginia Institute of Marine Science.  80 pp. 

Coen, L., K.L. Heck Jr., and L.G. Abel.  1981.  Experiments on competition and predation 

 among shrimps of seagrass meadows.  Ecology 62:  1484-1493. 

Coen, L.D., E.L. Wenner, D.M. Knott, M.Y. Bobo, N.H. Hadley, D.L. Richardson, B. Stender, 

 and R. Giotta.  1997.  Intertidal oyster reef habitat use and function:  what have we 

 learned after two years? Journal of Shellfish Research 16:  336.  Abstract. 

Coen, L.D., M.W. Luckenbach, and D.L. Breitburg.  1999.  The role of oyster reefs as essential 

 fish habitat:  a review of current knowledge and some new perspectives.  American 

 Fisheries Society Symposium 22:  438-454. 

Connell, J.H.  1978.  Diversity in tropical rain forests and coral reefs.  Science 199:  1302-1310. 

65 



Cressman, K.A., M.H. Posey, M.A. Mallin, L.A. Leonard, and T.D. Alphin.  2003.  Effects of 

 oyster reefs on water quality in a tidal creek estuary.  Journal of Shellfish Research 22(3):  

 753-762. 

Dame, R.F.  1979.  The abundance, diversity, and biomass of macrobenthos on North Inlet, 

 South Carolina, intertidal oyster reefs.  Proccession of the National Shellfish Association 

 68:  6-10.   

Dame, R.F., R.G. Zingmark, and E. Haskin.  1984.  Oyster reefs as processors of  estuarine 

 materials.  Journal of Experimental Marine Biology and Ecology 83:   239-247. 

Donovan, T.M., and D.H. Flather.  2002.  Relationships among North American songbird trends, 

 habitat fragmentation, and landscape occupancy.  Ecological Applications  12(2):  364-

 374.  

Donovan, T.M., Jones, P.W., Annand, E.M., and F.R. Thompson III.  1997.  Variation in  local-

 scale edge effects:  mechanisms and landscape context.  Ecology 78:  2064-2075.  

Eggleston, D.B.  1999.  Application of landscape ecological principles to oyster reef restoration.  

 Pp 213-227.  In:  Luckenbach, M.W. (Ed.), Oyster Reef Habitat Restoration:   A Synopsis 

 and Synthesis of Approaches, Virginia Institute of  Marine Science Press, Glouster 

 Point, VA, USA. 

Eggleston, D.B., Etherington, L.L., and W.E. Elis.  1998.  Organism response to habitat 

 patchiness:  Species and habitat-dependent recruitment of decapod crustaceans.  Journal 

 of Experimental Marine Biology and Ecology 223:  111-132. 

Fahrig, L.  1998.  When does fragmentation of breeding habitat effect population  survival?  

 Ecological Modeling 105:  273-292. 

66 



Forman, R.T., 1995.  Land Mosaics:  The Ecology of Landscapes and Regions.  Cambridge 

 University Press, UK. 

Frankenberg, D.  1995.  Report of North Carolina Blue Ribbon Advisory Council on Oysters.  

 North Carolina Department of Environment, Health, and Natural Resources, Raleigh, 

 North Carolina, USA. 

Grabowski, J.H.  2004.  Habitat complexity disrupts predator-prey interactions but not the 

 trophic cascade on oyster reefs.  Ecology 85(4):  995-1004. 

Harding, J.M. and R. Mann.  2001.  Oyster reefs as fish habitat:  opportunistic use of restored 

 oyster reefs by transient fishes.  Journal of Shellfish Research 20(3):  951-959. 

Hargis, W.J., and D.S. Havin.  1988.  The imperiled oyster industry of Virginia.  VIMS Special 

 Report 290 in Applied Marine Science and Ocean Engineering, Virginia Institute of 

 Marine Science, Gloucester Point, Virginia.  130 pp. 

Hettler, W.F. Jr.  1989.  Nekton use of regularly-flooded saltmarsh cordgrass habitat in North 

 Carolina, USA.  Marine Ecology Progress Series 56:  111-118. 

Hovel, K.A.  2003.  Habitat fragmentation on marine landscapes:  relative effects of habitat 

 cover and configuration on juvenile crab survival in California and North Carolina 

 seagrass beds.  Biological Conservation 110:  401-412. 

Hovel, K.A. and R.N. Lipcius.  2002.  Effects of seagrass habitat fragmentation on juvenile blue 

 crab survival and abundance.  Journal of Experimental Marine Biology and Ecology 271:  

 75-98. 

Innes, A.E.  1992.  Microhabitat segregation of juvenile fishes in a shallow water marsh. 

 M.S. Thesis.  University of North Carolina at Wilmington.  48 pp.  

67 



Irlandi, E.A.  1994.  Large-and small-scale effects of habitat structure on rates of predation:  how 

 percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal 

 bivalve.  Oecologia 98:  176-183. 

Irlandi, E.A. and M.K. Crawford.  1997.  Habitat linkages:  the effect of intertidal  saltmarshes 

 and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish.  

 Oecolgia 110:  222-230. 

Irlandi, E.A., Orlando, B.A., and W.G. Ambrose Jr.  1999.  Influence of seagrass habitat patch 

 size on growth and survival of juvenile bay scallops, Argopecten irradians concenticus 

 (Say).  Journal of Experimental Marine Biology and Ecology 235:   21-43. 

Kareiva, P.  1987.  Habitat fragmentation and the stability of predator-prey interactions.  Nature 

 326:  388-390. 

Larsen, P.T.  1985.  The benthic macrofauna associated with the oyster reefs of the James River 

 Estuary, USA. Int. Rev. Gesamt. Hydrobiol. 70:  797-814. 

Lehnert, R.L. and D.M. Allen.  2002.  Nekton use of subtidal oyster shell habitat in a 

 southeastern US Estuary.  Estuaries 25:  1015-1024. 

Lenihan, H.S., and C.H. Peterson.  1998.  How habitat degradation through fishery disturbance 

 enhances impacts of hypoxia on oyster reefs.  Ecological Applications 8(1):  128-140. 

Lenihan, H.S., C.H. Peterson, J.E. Byers, J.H. Grabowski, G.W. Thayer, and D.R. Colby.  2001.  

 Cascading of habitat degradation:  oyster reefs invaded by refugee fishes escaping stress.  

 Ecological Applications 11(3):  764-782.   

Luckenbach, M.W., J.A. Nestlerode, and G.M. Coates.  1996.  Oyster reef restoration: 

 developing relationships between structure and function.   Journal of Shellfish Research 

 16:  270-271.  Abstract. 

68 



MacArthur, R.H., and E.O. Wilson.  1967.  The theory of island biogeography.  Monographs in 

 population biology.  Princeton University Press, Princeton, New Jersey. 

MacKenzie, C.L.  1996.  Management of natural populations.  Pages 707-721 in V.S. Kennedy, 

 R.I.E. Newell, and A.F. Ebele, editors.  The eastern oyster, Crassostrea virginica.  

 Maryland Sea Grant, College Park, Maryland, USA. 

McDonald, J.  1982.  Divergent life history patterns in the co-occurring interitdal crabs Panopeus 

 herbstii and Eurypanopeus depressus (Crustacea:  Brachyura:  Xanthidae).  Marine 

 Ecology Progress Series 8:  173-180.   

McNeill, S.E., and P.G. Fairweather.  1993.  Single large or several small marine reserves?  An 

 experimental approach with seagrass fauna.  Journal of Biogeography 20:  428-440.  

Meyer, D.L.  1994.  Habitat partitioning between the xanthid crabs Panopeus herbstii and 

 Eurypanopeus depressus on intertidal oyster reefs (Crassostrea virginica) in southeastern 

 North Carolina.  Estuaries 17:  674-679. 

Meyer, D.L., E.C. Townsend, and G.W. Thayer.  1997.  Stabilization and erosion control  value 

 of oyster cultch for intertidal marsh.  Restoration Ecology 5(1):  93-99. 

Meyer, D.L. and E.C. Townsend.  2000.  Faunal utilization of created intertideal eastern oyster 

 (Crassostrea virginica) reefs in the southeastern United States.  Estuaries 23:  34-45. 

Molesky, T.J.  2003.  Interactions between oyster reefs and adjacent sandflats:  effects on 

 microphytobenthos and sediment characteristics.  M.S. Thesis.  University of North 

 Carolina at Wilmington.  67 pp.  

Nelson, K.A., L.A. Leonard, M.H. Posey, T.D. Alphin, and M.A. Mallin.  2004.  Transplanted 

 oyster (Crassostrea virginica) beds as self-sustaining mechanisms for water quality 

69 



 improvement in small tidal creeks.  Journal of Experimental Marine Biology and Ecology 

 298:  347-368.    

Newell, R.I.E.  1988.  Ecological changes in Chesapeake Bay:  are they the result of 

 overharvesting of the american oyster, Crassostrea virginica?, p. 536-546. In:   M.P. 

 Lynch and E.C. Knome, editors, Understanding the Estuary:  Advances in  Chesapeake 

 Bay Research.  Chesapeake Bay Research Consortium Publication  129, Solomons, 

 Maryland. 

Ortega, S. and J.P. Sutherland.  1992.  Recruitment and growth of the eastern oyster, Crassostrea 

 virginica, in North Carolina.  Estuaries 15:  158-170. 

Peterson, C.H., J.H. Grabowski, and S.P. Powers.  2003.  Estimated enhancement of fish 

 production resulting from restoring oyster reef habitat:  quantitative valuation.  Marine 

 Ecology Progress Series 264:  249-264. 

Peterson, G.W. and R.E. Turner.  1994.  The value of salt marsh edge vs interior as a habitat for 

 fish and decapod crustaceans in a Louisiana tidal marsh.  Estuaries 17:  235-262. 

Posey, M.H. and A.H. Hines.  1991.  Complex predator-prey interactions within an estuarine 

 benthic community.  Ecology 72:  2155-2169. 

Posey, M.H. and W.G. Ambrose, Jr.  1994.  Effects of proximity to an offshore hard-bottom reef 

 on infaunal abundances.  Marine Biology 118:  745-753. 

Posey, M.H., T.D. Alphin, C.M. Powell, and E. Townsend.  1999.  Use of oyster reefs as  habitat 

 for epibenthic fish and decapods.  Pp 229-237.  In:   M.W. Luckenbach, R. Mann, and 

 J.A. Wesson (editors).  Oyster reef habitat restoration:  a synopsis and synthesis of 

 approaches.  Virginia Institute of Marine Science Press. 

70 



Powell, C.M.  1994.  Trophic linkages between intertidal oyster reefs and their adjacent sandflat 

 communities.  M.S. Thesis.  University of North Carolina at Wilmington.   46 pp. 

Robinson, S.K., Thompson III, F.R., Donovan, T.M., Whitehead, D.R., and J. Faaborg.  1995.  

 Regional forest fragmentation and the nesting success of migratory birds.   Science 267:  

 1987-1990. 

Rozas, L.P. and T.J. Minello.  1997.  Estimating densities of small fishes and decapod 

 crustaceans in shallow estuarine habitats:  a review of sampling design with focus  on gear 

 selection.  Estuaries 20:  199-213. 

Saunders, D.A., Hobbs, R.J., and C.R. Margules.  1991.  Biological consequences of ecosystem 

 fragmentation.  A review.  Conservation Biology 5:  18-32. 

Seed, R.  1980.  Predator-prey relationships between the mud crab Panopeus herbstii, the  blue 

 crab Callinectes sapidus and the Atlantic ribbed mussel Geukensia ( = Modiolus) 

 demissa.  Estuarine and Coastal Marine Science 2:  445-458. 

Townsend, E.C.  1991.  Depth distribution of the grass shrimp Palaemonetes pugio in two 

 contrasting tidal creeks in North Carolina and Maryland.  M.S. Thesis.  University of 

 North Carolina at Wilmington.  62 pp.  

Tscharntke, T., I. Steffan-Dewenter, A. Kruess, and D. Thies.  2002.  Contribution of small 

 habitat fragments to conservation of insect communities of grassland-cropland 

 landscapes.  Ecological Applications 12:  354-363. 

Villard, M., Trzcinski, M.K., and G. Merriam.  1999.  Fragmentation effects on forest birds:  

 relative influence of woodland cover and configuration on landscape occupancy.  

 Conservation Biology 13:  774-783.   

71 



Zimmerman, R, T. Minello, and G. Zamora, Jr.  1984.  Selection of vegetated habitat by brown 

 shrimp, Penaeus aztecus, in a Galveston Bay salt marsh.  Fish. Bull., U.S.  82:  325-336. 

Zimmerman, R., T. Minello, T. Baumer, and M. Castiglione.  1989.  Oyster reef as habitat for 

 estuarine macrofauna.  Technical Memorandum NMFS-SEFC-249.  National Oceanic 

 and Atmospheric Adiministration, Springfield, Virginia. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

72 



 
 
 
 
 
 

73 


	LANDSCAPE ASPECTS OF OYSTER REEFS:  FRAGMENTATION AND HABITA
	This thesis has been prepared in the style and format

