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ABSTRACT  
CHAPTER 1 

 

The thermal properties of cetacean blubber are influenced by its lipid content and 

thickness.   In Atlantic bottlenose dolphins (Tursiops truncatus), both these features vary 

across ontogeny and with reproductive and nutritional status and, thus, may result in 

ontogenetic differences in blubber’s insulative quality.  Lipid and water contents, and 

thermal conductivity and thermal insulation values of Atlantic bottlenose dolphin blubber 

were measured across fetal through adult life history categories (n = 36), and in pregnant 

females (n=4) and emaciated animals (n = 5).  The thermal conductivities of deep and 

superficial blubber layers were also measured. 

Thermal conductivity varied significantly across ontogeny.  Fetal through sub-

adult life history categories had significantly lower mean thermal conductivity values 

(0.11 to 0.13 ± 0.01 W/m°C) than adults (0.18 ± 0.02 W/m°C).  The conductivity of 

blubber from pregnant females was similar to non-adult categories, while that of 

emaciated animals was significantly higher than all other categories. The conductivity of 

superficial blubber was 37% higher than that of deep blubber.  Across life history 

categories, the conductivity of superficial blubber was similar, while that of deep blubber 

was significantly greater in emaciated animals.    

Thermal insulation varied significantly across life history categories.  Sub-adults 

and pregnant females had the highest insulation while fetuses and emaciated animals had 

the lowest insulation across life history categories.  The insulation of neonates and 

juveniles was similar to that of adult dolphins.  

 v



Heat flux measurements at the deep blubber surface were significantly higher than 

that at the superficial surface and this difference in heat flux was significantly correlated 

with blubber thickness.  This pattern was not observed in control materials, polystyrene 

foam and white pine wood. 

In nutritionally dependant life history categories, changes in blubber’s thermal 

insulation resulted from changes in blubber thickness (i.e. quantity) and not thermal 

conductivity (i.e. quality).  Conversely, in nutritionally independent animals, blubber 

quantity remained stable while blubber quality varied.  Differences in conductivity 

through the blubber depth support the characterization of deep blubber as more insulative 

and metabolically active layer of lipid deposition and mobilization.  Finally, blubber’s 

composition and its ability to absorb heat suggest that it likely is a phase change material.   
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ABSTRACT 
CHAPTER 2 

 

Blubber is the hypertrophied hypodermis of cetaceans composed primarily of 

adipocytes and structural fibers.  Because the density of lipid is less than that of seawater, 

blubber has the potential to contribute to positive buoyancy.  The blubber of Atlantic 

bottlenose dolphins (Tursiops truncatus) varies both in thickness and lipid content across 

ontogeny and with reproductive and nutritional status.  This variation in blubber’s 

quantity and quality may significantly influence its contribution to buoyancy.  To 

measure blubber’s buoyant force, its density was measured volumetrically and its volume 

was calculated at two body sites (trunk and tailstock), across an ontogenetic series of 

bottlenose dolphins and in pregnant females and emaciated animals. Lipid and water 

content were measured to correlate compositional changes with differences in blubber’s 

buoyant force. 

The density of blubber from the trunk region (mean ± standard error = 1043.1 ± 

13.18 kg/m3) was similar to that of the tailstock (mean = 1077.1 ± 24.17 kg/m3) and these 

were not significantly different than the density of seawater (1026 kg/m3).  Density in 

these regions was also similar between life history categories.  Blubber volume in the 

trunk and tailstock regions increased over two orders of magnitude between fetuses and 

adults.  The buoyant force of trunk blubber was similar across categories (mean = –0.91 ± 

8.85N) and was not significantly different from neutral buoyancy (0N).  Trunk blubber of 

emaciated animals was twelve times more negatively buoyant than that of adults.  The 

buoyant force of tailstock blubber was similar between life history categories (mean = –

0.30 ± 1.83 N).  For groups with a sufficient sample size for statistical analyses (fetus, 

 vii



neonate, and juvenile), mean total buoyant force of blubber was 0.61 ± 7.45 N and was 

not significantly different between these groups.   

Despite significant differences in lipid content and volume across life history 

categories, blubber’s contribution to buoyancy remained neutral.  Because this body 

compartment is nearly 25% of total body mass, it may be essential for this tissue to be 

neutrally buoyant.  Pregnancy and emaciation can significantly influence blubber’s 

contribution to buoyancy and may impose additional locomotor costs associated with 

overcoming a positive or negative vertical force.  
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CHAPTER 1.  ONTOGENETIC CHANGES IN THE THERMAL ROPERTIES OF 
ATLANTIC BOTTLENOSE DOLPHIN (TURSIOPS TRUNCATUS) BLUBBER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

INTRODUCTION 

Blubber is the specialized hypodermis of cetaceans that streamlines the body, acts 

as a metabolic energy storage site, contributes to positive buoyancy, and provides 

insulation for the body core (e.g. Kipps et al., 2002; Koopman, 1998; Ling, 1974; 

McLellan et al., 2002; Pabst, 2000; Pabst et al., 1999b; Parry, 1949; Ryg, 1988; Worthy 

and Edwards, 1990).  This multifunctional tissue is formed by adipocytes bound within a 

highly organized, three-dimensional weave of structural fibers  (Hamilton et al., in press; 

Koopman, 1998; Pabst et al., 1999a; Parry, 1949).  Several features of blubber, including 

adipocyte size, thickness, and lipid content, vary significantly across ontogeny in Atlantic 

bottlenose dolphins (Tursiops truncatus) (Struntz et al., 2004).  These morphological and 

compositional changes may result in differences in the insulative quality of blubber 

throughout development. 

Insulation may be particularly important to neonatal bottlenose dolphins that are 

born into a fluid medium that conducts heat away from a body 25 times faster than air at 

the same temperature (Schmidt-Nielsen, 1997).  Because a neonatal dolphin has a larger 

surface area to volume ratio than an adult, heat loss to the environment may be high 

(McLellan et al., 2002; Worthy and Edwards, 1990).  Struntz et al. (2004) suggested that 

the blubber of neonatal dolphins may be specialized to provide enhanced insulation.  To 

date, however, no study has measured changes in the thermal properties of blubber across 

an ontogenetic series.   

 Blubber’s thermal conductivity, k (W/m°C), and thermal conductance, C 

(W/m2°C), have been measured across a phylogenetically diverse sample of cetaceans 

(Table 1).  Thermal conductivity, a constant material property, is a quantitive measure of 
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how well heat moves through a material (McNab, 2002; Schmidt-Nielsen, 1997) and is, 

thus, useful for comparing the insulative quality of blubber across species (Worthy and 

Edwards, 1990). Thermal conductance, which is dependent upon the material thickness, 

or quantity of blubber, provides an absolute value of heat transfer across this thermal 

barrier.   Conductivity can be calculated using the Fourier equation: 

(I)                                                      
)TT(A

Qdk
12 −

=  

where d is the thickness of the blubber (m), Q is the rate of heat transfer in Watts (W), A 

is the surface area across which heat flows (m2), and (T2 – T1) is the temperature 

difference (°C) across the thickness of the blubber (Kvadshiem et al., 1994; Schmidt-

Nielsen, 1997).  Conductance can be calculated as:   

(II)     ( )12 T-T
H  C =  

where H is heat flux (W/m2) (Kvadshiem et al., 1994; Worthy and Edwards, 1990).  

Another often reported value is thermal insulation, R (m2°C/W), a measure of thermal 

resistance to heat flow, which is simply the inverse of thermal conductance.   

Across cetacean species, blubber’s thermal conductivity can vary by more than 

four-fold, from 0.06 W/m°C in harbor porpoises (Phocoena phocoena) to as high as 0.28 

W/m°C in minke whales (Balaenoptera acutorostrata) (Table 1).  These differences in 

blubber’s quality as a conductive material are likely the result of differences in lipid and 

water content, which are highly variable among species.  The lipid content of harbor 

porpoise blubber can range between 76 and 88% (Worthy and Edwards, 1990), while that 

of minke whales can range between 42 and 96% lipid (Kvadshiem et al., 1996).  In minke 

whale blubber, there is a significant inverse relationship between lipid content and  
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le 1:  Thermal conductivity values for blubber from a variety of marine mammals and other substances. 
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Species 
k (W/moC) 

(Reported Mean) Source Method 
   

ra acutorostrata 0.20-0.28* 

 
    

 
 

   

  

Kvadshiem et al., 1996 Standard material method 
ra acutorostrata 0.18 Folkow and Blix, 1992 Heat flux disc method  
ra physalus 0.21 Parry, 1949 Hot plate method 
erus leucas (blubber) 0.102 Doige, 1990 Heat flux plate method 
erus leucas (epidermis) 0.249 Doige, 1990 Heat flux plate method 
hocoena 0.06 Yasui and Gaskin, 1986  Heat flux disc method 
hocoena 0.1 Worthy and Edwards, 1990 Heat flux disc method 
enuata 0.2 Worthy and Edwards, 1990 

  
Heat flux disc method 

eonina 0.07 Bryden, 1964 Unknown
nlandica 0.18 Worthy, 1985  Heat flux disc method 
nlandica 0.19 Kvadshiem et al., 1994 Standard material method 
ida 0.2 Scholander et al., 1950  Hot plate method 
lina 0.18 Worthy, 1985 Heat flux disc method 
s grypus 0.18 Worthy, 1985  Heat flux disc method 
 
 (C18:0) 0.16 CRC 1967 in Doige, 1990 Unknown 
id (C16:0) 0.17 CRC 1967 in Doige, 1990 Unknown 
C18:1) 0.23 CRC 1967 in Doige, 1990 

 
Unknown 

us Materials 
0.024 Schmidt-Nielson, 1997 Unknown 

wood 0.104 Marks Standard Handbook Unknown 
0.21 Hensel et al., 1973 in Doige, 1990 Unknown 
80 Schmidt-Nielson, 1997 Unknown 

f values is mean thermal conductivity across four body sites. 



 

conductivity as well as a strong positive relationship between conductivity and water 

content (Kvadshiem et al., 1996).   

Blubber’s thermal conductance, which is reliant upon both its conductive quality 

and quantity (i.e. thickness), also varies widely across species.  For example harbor 

porpoise blubber has a lower conductivity than that of a pan-tropical spotted dolphin 

(Stenella attenuata), and is twice as thick (Table 1) (Worthy and Edwards, 1990).  

Spotted dolphin blubber, thus, has a conductance value four times greater than, or an 

insulative value one quarter of, harbor porpoise blubber.   

In Atlantic bottlenose dolphins, blubber thickness and lipid content vary 

significantly throughout ontogeny.  Blubber lipid content doubles between fetal (37%) 

and adult animals (68%) and mean blubber thickness increases over three fold between 

these life history categories (Struntz et al., 2004).  These significant changes in quality 

and quantity suggest that changes in blubber’s thermal properties across ontogeny may be 

equal to or greater than differences reported among species. 

Multiple methods have been used to measure blubber’s thermal conductivity and 

thermal conductance.  Parry (1949) and Scholander et al. (1950) measured thermal 

conductivity by placing two pieces of blubber on either side of a hot plate and measuring 

the rate of energy (W) used to maintain the plate at a constant temperature.  The surface 

area and thickness of the blubber sample, and the temperature differential between the 

hotplate and environment were used to calculate thermal conductivity (Equation I).  A 

more recent method of measuring thermal conductivity relies upon the use of heat flux 

discs.  A heat flux disc is placed in series with, and usually between, a constant heat 

source and the blubber sample.  Once steady state is achieved, Equation I can be used to 
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calculate conductivity (Doidge, 1990; Worthy and Edwards, 1990; Yasui and Gaskin, 

1986).  Kvadshiem et al. (1994) introduced a method to calculate conductivity that does 

not rely upon a direct measure of heat flux.  Instead, this method uses a standard material, 

with a known thermal conductivity, aligned in series with a heat source and blubber 

sample.  Once the system reaches steady state, the heat flow rate through each material is 

equal (Kreith, 1958; Kvadshiem et al., 1994).  Equation I can then be used to calculate 

the thermal conductivity of blubber by setting equal the heat flow through the standard 

material and blubber sample. 

 Each of these more recent methods has advantages and disadvantages.  Heat flux 

discs are relatively affordable, convenient to use, and the results are directly comparable 

to many previous measurements of blubber’s thermal properties (see Table 1).  However, 

Ducharme et al. (1990) identified a potential source of error associated with heat flux disc 

measurements.  The placement of the disc on the surface of interest will cause a local 

increase in insulation, which may result in measured heat flux values that are lower than 

actual values.  This “reactive error” varies with both the insulative quality of the material 

relative to that of the heat flux disc, and the insulative quality of the media overlying the 

disc (usually air or water) (Ducharme et al., 1990; Frim and Ducharme, 1993).  Reactive 

errors are minimized when the disc’s insulation is equal to or lower than that of the 

material being tested and when the experiments are conducted in air (Frim and 

Ducharme, 1993; Willis, 2003).  The standard material method avoids these potential 

heat flux disc errors and, as reported by Kvadshiem et al. (1994), is accurate to within ± 

4.0%.  Because it is a relatively new technique however, there are fewer studies that have 

measured blubber’s thermal properties using this method.  In the present study, both the 
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heat flux disc and standard material methods were used simultaneously, permitting cross-

calibration of these methods as well as an enhanced ability to compare results from 

previous studies.    

The goals of this study were to (1) to measure the thermal conductivity and 

thermal conductance of Atlantic bottlenose dolphin blubber across an ontogenetic series, 

(2) correlate these thermal conductivity and conductance values with measures of lipid 

and water content of blubber, and (3) compare the results of the heat flux disc and 

standard material methods to permit comparison with previous studies.  Measurements 

were made across life history categories from fetus through adult.  Pregnant females and 

emaciated adults were also included to investigate how blubber’s thermal properties vary 

with the reproductive and nutritional status of the dolphin. 

 

METHODS 

Specimens  

Blubber samples were acquired from 40 robust and 3 emaciated Atlantic 

bottlenose dolphins (Tursiops truncatus) that either stranded or were incidentally killed in 

fisheries in North Carolina and Virginia (Table 2).  The sample set also included one 

emaciated adult from Florida and one from New Jersey.  Body condition was scored 

based upon a suite of characters defined in Cox et al. (1998).  Twenty-four of the 

individuals used in this study were also investigated by Struntz et al. (2004) (Table 2).  

Only animals with a Smithsonian Institution Code of 1 (live stranded and died naturally 

or by euthanasia) or 2 (fresh dead) (Geraci and Lounsbury, 1993) were used in this study.  

Seven life history categories were defined based upon a suite of morphological characters 
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Table 2: T. truncatus specimens grouped by life history category and length. 

Animal Life History Category Sex Body Length (cm) 
PTM 109f* fetus F 58 
WAM560f* fetus F 63.5 
PTM114f fetus F 82 
ASF 033f* fetus M 82 
WJW007f* fetus M 86.5 

WAM 545f*y fetus F 92 
WAM 535f* fetus M 96.5 
EMM 010* neonate M 106 

VMSM2000 1020* neonate M 106.5 
CALO99-13* neonate F 109.5 

VMSM2001 1080* neonate M 110.3 
VMSM2002 1042 neonate M 111 

MMB 003x neonate M 113 
WAM 550* neonate M 114.5 
WAM 584 neonate F 117 

VMSM2000 1031* juvenile M 127 
DJS 001* juvenile F 129.5 

VMSM2001 1087* juvenile M 129.7 
VMSM 2003 1082 juvenile M 142 
VMSM2002 1089 juvenile F 142.5 

ASF 042 juvenile F 143.5 
WAM 569* juvenile F 150 
DAP 034 sub-adult M 171 
SAE 003 sub-adult M 173 
PTM 117 sub-adult M 189 
WAM 585 sub-adult F 192 
EMM 006 sub-adult M 197 
KMT 013 sub-adult F 204 

VMSM2000 1049*y sub-adult M 207 
WAM 553* sub-adult M 232 
WAM 574*‡ adult F 223 
MMB 002 adult M 235 
WAM 579 adult M 237 
WAM 559* adult F 237 
SDZ 005 adult M 262 
REL 014 adult M 265 

WAM 545* pregnant female F 246 
ASF 041* pregnant female F 260 
ASF 038* pregnant female F 263 
WJW 007* pregnant female F 273 
WAM 591 emaciated  M 222.8 
WAM 533* emaciated F 261 
NJ00-111* emaciated F 262 
MMB 004x emaciated M 275 

MMSN FB 192 emaciated M 278 
* Animals investigated in Struntz et al. (2004). ‡WAM 574 was a fisheries-take animal and was missing her 
flukes, resulting in a reduced total length.  (x) Animals excluded from lipid analysis.  (y) Animals excluded from 
thermal measurements because of superficial damage.    
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described in Struntz et al. (2004) (Table 3).  These categories include fetus (n=7), neonate 

(n=8), juvenile (n=7), sub-adult (n=8), adult (n=6), pregnant female (n=4), and emaciated 

animals (n=5).   

Each animal was first weighed to the nearest kilogram (Dillon, 2000kg capacity 

scale, Brooklyn, NY, USA) and measured using a standard set of morphometrics.  The 

carcass was then systematically dissected to yield masses of the complete integument, 

individual muscle groups, internal organs, and skeletal elements (McLellan et al., 2002).   

Full depth integumental samples, including epidermis, dermis, and hypodermis 

(subsequently referred to as blubber samples), were taken from a dorsal, mid-thoracic 

site, just caudal to the pectoral flipper (Figure 1).  After removal, the blubber samples 

were notched at the dorso-cranial margin to maintain orientation and were then either 

vacuum sealed (Koch, 1700, Kansas City, MO, USA) or wrapped in Saran wrap® and 

sealed in freezer bags to prevent desiccation.  Samples were stored at -20°C until 

analyzed.  

Lipid and Water Content 

 Lipid content was determined using procedures similar to those of Struntz et al. 

(2004).  Briefly, an approximately 1g full-depth blubber sample (excluding the 

epidermis) was weighed to the nearest 0.001g , macerated, and dried with approximately 

30g of sodium sulfate (Na2SO4).  The lipid was then extracted using an accelerated 

solvent extractor (Dionex, Salt Lake City, UT, USA).  The excess solvent was evaporated 

(Turbo Vap II, Zymark, Hopkinton, MA) and the extracted lipid was then reweighed to 

the nearest 0.001g.   
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Table 3: Definitions of life history categories based on Struntz et al. (2004). 

Life History Category Code Defining Characters 

Fetus 1 Position en utero. 

Neonate 2 

Possessed four of the following six characters: presence 
of rostral hairs, floppy or folded dorsal fin, unhealed 
umbilicus, prominent fetal folds, floppy or folded dorsal 
fin, floppy or folded dorsal keel. 

Juvenile 3 Absence of neonatal characters and estimated to be less 
than 1 year of age based on total length (≤150 cm). 

Sub-adult 4 Absence of milk in the stomach, immature reproductive 
tissues, and total length (>150 cm). 

Adult 5 
Mature reproductive tissues as indicated by obvious 
ovarian scars in females and the size of the testis and/or 
presence of sperm in males. 

Pregnant female 6 Presence of a fetus. 

Emaciated animal 7 

Skeletal elements such as ribs, scapula, vertebral 
transverse processes, and/or skull prominently visible 
under blubber layer; atrophy of epaxial musculature 
and/or the nuchal fat pad. 

 
 

 

 

 

 

 

 

 

 

10 10



 

 

A 

 

Figure 1 - A is the blubber sample site used for thermal measurements on an  

ontogenetic series of Atlantic bottlenose dolphins (Tursiops truncatus). 
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Water content was determined by excising an approximately 1x1cm square 

through the depth of the sample and weighing it prior to and after freeze-drying 

(Labconco 4.5, Kansas City, MO, USA).  Samples were weighed each day until the mass 

of the sample was stable (± 0.005g) for two consecutive days (total time = 5 days).   

Measurement of Thermal Properties 

 Blubber’s thermal properties were measured using an experimental set-up that 

integrated both the standard material (Kvadshiem et al., 1994) and heat flux disc (e.g. 

Worthy and Edwards, 1990) methods.  Tests were conducted in a dual compartment heat 

flux chamber (68 quart, Coleman Cooler, Albany, NY, USA) with a lower, highly 

insulated compartment, and an upper, chilled compartment, which were separated by a 

wood platform (Figure 2).  The heat source consisted of a two-part aluminum box.  The 

lower portion was a sealed, hollow box into which heated water (35°C) from a water bath 

(RE-120 Lauda Ecoline, Brinkmann Instruments, Inc., Toronto, Ontario, Canada) was 

circulated to provide a constant heat source. The upper portion was an open platform 

upon which the standard material and blubber sample were placed.  The insulated lower 

chamber ensured a constant water temperature and unidirectional heat flow through the 

standard material.  The upper chamber was cooled to a constant 15°C with ice packs 

stacked upon the wood platform.   

An elastomer (Plastisol vinyl, Carolina Biological Supply, Burlington, NC, USA) 

(k = 0.109 ± 0.01W/m°C) was used as the standard material and was placed flush against 

the heated surface of the aluminum box.  Depending upon the size of the available 

blubber sample, an approximately 4x4 to 15x15cm blubber sample was used.  The 

thickness of the blubber sample including epidermis, dermis, and hypodermis was  
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measured on each of its four sides (Absolute Digimatic calipers, Mitutoyo, Tylertown, 

MS, USA) and the mean of these values was used in thermal calculations.  The blubber 

sample was placed in series, with the deep hypodermis in contact, with the elastomer. 

The standard material and blubber were surrounded by insulating foam plates to ensure 

unidirectional heat flow through these materials (Figure 2).  

Temperatures were measured using copper-constantan (T-Type) thermocouples 

(Omega, Stamford, CT, USA) placed on the superficial surface of the epidermis (probes 

1-3), between blubber and the standard material (probes 4-6), and between the standard 

material and the surface of the heat source (probes 7-9) (Figure 2).  The mean 

temperature of the three probes at each surface was used in the thermal calculations.  

Additionally, two thermocouples (probes 10 and 11) were placed in the superficial 1/3 

and deep 1/3 of the blubber sample, respectively.  Blubber is non-uniform in composition 

through its depth, and other studies have characterized the superficial 1/3 of the blubber 

as primarily structural and the deep 1/3 as more metabolically active (Koopman, 1998; 

Struntz et al., 2004).  Placing probes in these positions allowed for measurement of 

possible differences in thermal conductivity in these two regions.  The fetal samples were 

too thin (usually less than 0.2 cm) to permit measuring temperatures within the blubber. 

 Heat flux was directly measured using two heat flux discs [(HA 13-18-19-P (C), 

Thermonetics Corp., San Diego, CA, USA].  One disc was placed on the superficial 

surface of the epidermis and the other was placed between the standard material and 

hypodermis (Figure 2).  The discs will be identified as the superficial and deep discs, 

respectively.  To ensure complete contact between the superficial heat flux disc and the 

sample, thin strips of medical adhesive tape (Nexcare Advanced Holding Power, 3M, St. 

14 14



 

Paul, MN, USA) were used to secure the disc.  The tape was only in contact with the 

outer silicone edge of the disc and did not touch the thermopile surface.   

All eleven thermocouples and the two heat flux discs were wired to a Fluke Hydra 

data logger (model 2625A, Fluke Inc., Everett, WA, USA) and the outputs in °C and 

millivolts, respectively, were recorded at 1 minute intervals.  These data were 

downloaded to a laptop computer for later analysis.  The experiment was concluded once 

the heat flux values at the superficial and deep surfaces were stable (± 5 W/m2) for 30 

minutes.  Heat flux readings were converted into W/m2 using the calibration coefficient 

provided by the manufacturer. 

The experimental set-up was calibrated using control materials [white pine wood, 

polystyrene foam (Dow Chemical, Midland, MI, USA)] with known thermal 

conductivities.  Additionally, experiments with the control materials were performed to 

determine if sample depth or surface area influenced thermal measurements.    

Statistics 

 For thermal conductivity, conductance, and insulation values, an ANCOVA (SAS 

Inc., Cary, NC, USA) (alpha = 0.05) was used with life history category and sample area 

as factors.  Sample area was included to account for variation in the measurements that 

was a result of differences in the dimensions of the blubber sample.  A one-way ANOVA 

(JMP 5.1, SAS Inc., Cary, NC, USA) (alpha = 0.05) was performed to determine if there 

were significant differences between life history categories in blubber thickness, lipid 

content, and water content.  If significant differences were present, a Tukey-Kramer 

Honestly Significant Difference Test or Ryan’s Q Test was performed to determine 

which groups were different from one another.   
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RESULTS 

Morphology and Composition 

 Blubber thickness steadily increased between fetal and adult life history 

categories with maximal thickness reached in adult animals (Table 4).  Fetal animals had 

significantly thinner blubber than all other life history categories (F=22.09; p<0.001) and 

within the fetal life history category, blubber thickness linearly increased with body 

length (r2=0.74; p=0.027) (Figure 3a).  Blubber thicknesses of juveniles, sub-adults, 

adults, pregnant females, and emaciated adults were not significantly different (Table 4).  

Mean blubber thickness of emaciated dolphins decreased by 26% compared to adults and 

was similar to the mean blubber thickness of neonatal and juvenile animals.   

Blubber lipid content increased linearly in fetuses and increased steadily from 

fetal through juvenile life history categories (r2=0.65; p=0.028) (Figure 3b, Table 4).  

Although not a significant trend, lipid content declined between juvenile, sub-adult, and 

adult life history categories.  The blubber of pregnant females had a lipid content similar 

to that of juvenile animals, which represented an increase of 27% compared to adults.  

The blubber of emaciated adults contained significantly less lipid than all life history 

categories except fetuses (Table 4).   

 Across life history categories, blubber thickness was not a good predictor of lipid 

content (Figure 4).  Rather, the relationship between lipid content and blubber thickness 

displayed life history category-specific trends.  In fetal and adult animals, lipid content 

increased linearly with blubber thickness (r2=0.91; p=0.0034 and r2=0.96; p=0.0008, 

respectively).  Although not a significant trend, blubber lipid content of sub-adults tended 

16 16



 

Table 4:  Thermal data for blubber from each life history category in Atlantic bottlenose dolphins reported as mean ± standard error. 
 

For all measurements, life history categories with the same letter are not significantly different (p>0.05).  
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Fetus     Neonate Juvenile Sub-Adult Adult Pregnant 

Female 
Emaciated 

Adult 

        n=6 n=8 n=7 n=7 n=6 n=4 n=5
Blubber thickness 

d (cm) 
0.49 ± 0.001 

c 
1.23 ± 0.002 

b 
1.61 ± 0.001 

a, b 
2.0 ± 0.003 

a 
2.13 ± 0.004 

a 
2.05 ± 0.004 

a 
1.57 ± 0.003 

a, b 

Lipid weight/wet 
weight (%) 

35.06 ± 6.09 
b, c 

55.82 ± 2.86 
a, b 

69.72 ± 4.08 
a 

62.59 ± 2.31 
a 

54.31 ± 4.88 
a, b 

69.20 ± 5.73 
a 

28.22 ± 9.14 
c 

Water weight/wet 
weight (%) 

50.3 ± 3.52 
a 

33.06 ± 1.97 
b 

29.9 ±  0.96 
b 

30.16 ± 2.35 
b 

32.78 ± 1.08 
b 

31.66 ± 1.57 
b 

59.34 ± 6.63 
a 

Conductivity 
k (W/m°C) 

Whole blubber 

0.12 ± 0.01 
c 

0.13 ± 0.01 
c 

0.12 ± 0.01 
c 

0.11 ± 0.01 
c 

0.18 ± 0.02 
 b 

0.12 ± 0.01 
c 

0.24 ± 0.04 
a 

Conductivity 
k (W/m°C) 

Deep blubber 
NE 0.12 ± 0.03 

b 
0.10 ± 0.02 

b 
0.09 ± 0.01 

b 
0.12 ± 0.01 

b 
0.09 ± 0.01 

b 
0.23 ± 0.02 

a 

Conductivity 
k (W/m°C) 

Superficial blubber 
NE 0.13 ± 0.02 

a 
0.17 ± 0.03 

a 
0.14 ± 0.02 

a 
0.17 ± 0.003 

a 
0.11 ± 0.01 

a 
0.22 ± 0.03 

a 

Conductance 
C (W/m2°C) 

25.69 ± 6.04 
a 

10.44 ± 0.69 
b, c 

7.30 ± 0.61 
c, d 

5.74 ± 0.44 
d 

8.44 ± 1.03 
c, d 

5.73 ± 0.82 
d 

14.79 ± 2.64 
b 

Insulation 
R (m2°C/W) 

0.05 ±  0.01 
d 

0.10 ± 0.005 
b, c, d 

0.14 ± 0.01 
a, b 

0.18 ± 0.012 
a 

0.12 ± 0.016 
 b, c 

0.18 ± 0.03 
a 

0.07 ± 0.015 
c, d 
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     Figure 4: Percent lipid content as a function of blubber depth in T. truncatus. 
     Broken trend lines indicate life history categories where there was a significant  
     linear relationship between lipid content and blubber thickness (fetus and adult).  
     Solid trend lines indicate categories in which there was not a significant  
     relationship between lipid content and blubber thickness.   
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to increase with blubber thickness (r2=0.54; p=0.097).  Blubber thickness and lipid 

content were not correlated in neonatal, juvenile, or pregnant animals.  There was no 

clear relationship between lipid content and blubber thickness in emaciated adults, 

however, both of these measures were highly reduced from adult values (Figure 4, Table 

4). 

Water content was less variable across life history categories (Table 4).  The 

blubber of fetuses and emaciated adults, which had significantly lower lipid contents, 

contained significantly more water than all other life history categories (F=14.84; 

p<0.001). 

Comparison of Standard Material and Heat Flux Methods 

Both the standard material method and the heat flux method (using outputs of 

either the superficial or deep disc) yielded thermal conductivity values for the control 

materials that were similar to their commercially reported values.  For polystyrene foam 

and white pine wood, thermal conductivity values, reported as mean ± standard error, 

were determined to be 0.033 ± 0.0014 W/m°C (reported value 0.03 W/m°C; Dow 

Chemical Company) and 0.11 ± 0.0025 W/m°C (reported value 0.104 W/m°C; Liley, 

1996) respectively.  These values indicate a maximum error of 10% for conductivity 

values in the range of polystyrene foam, but error was minimized to 6% for materials 

with conductivity values similar to wood.   

Blubber thermal conductivity values calculated with the standard material method 

and with the output of the superficial heat flux disc were similar (F=0.05; p=0.81) and 

yielded overall mean conductivity values that were within 2.0% of each other (Figure 

5a,b).  The results of both of these methods though, were significantly different from the  
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Figure 5 – Blubber thermal conductivity values for T. truncatus calculated with (A) 
standard material method, (B) heat flux values from the superficial disc, and (C) heat flux 
values from the deep disc.  Life history categories are (1) fetus, (2) neonate, (3) juvenile, 
(4) sub-adult, (5) adult, (6) pregnant female, and (7) emaciated animals.  Box  plots 
represent the upper and lower quartiles for each life history category. 
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values obtained with the deep heat flux disc measurements (F=31.8; p<0.001) (Figure 

5c).  On average, conductivity values of whole blubber calculated with the deep disc were 

57% higher than those obtained with the other two methods.  The differences between the 

deep and superficial heat flux measurements are described in more detail below.   

For all subsequent analyses, the conductivity values obtained by the standard 

material method were used.  The standard material method was chosen because recent 

studies (Kvadshiem et al., 1994; Kvadshiem et al., 1996) have extensively calibrated a 

similar system and because it was the only method by which the conductivity of the deep 

and superficial blubber could be separately calculated.    

Thermal Properties of Blubber 

 Thermal conductivity of blubber remained similar in fetal through sub-adult life 

history categories but increased significantly in adult animals (F=4.39; p=0.0067) (Table 

4; Figure 5a).  The conductivity of blubber from pregnant females was significantly less 

than that of adults while that of emaciated adults was significantly greater than all other 

life history categories (F=6.93; p<0.001) (Table 4, Figure 5a).   

 There was a significant difference in thermal conductivity between deep and 

superficial blubber (F=10.06; p=0.0026).  The mean thermal conductivity of superficial 

blubber was 32% higher than that of the deep blubber layer (Figure 6a).  Deep blubber 

conductivity values were similar across all life history categories except in emaciated 

adults, which had significantly higher values (F= 5.13; p=0.002) (Figure 6b).  Across life 

history categories, superficial blubber conductivity values were similar (F= 2.23; p=0.08) 

(Figure 6c).    
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 The mean thermal insulation (inverse of conductance) between life history 

categories varied significantly (F=12.66; p<0.001).  Insulation increased from fetal 

through sub-adult categories but declined in adult animals.  Pregnant females had a 

significantly higher mean insulation value compared to fetuses, neonates, adults, and 

emaciated adults.  Emaciated animals had significantly less insulation than juveniles, sub-

adults, and pregnant females (Table 4).  

Differences in Heat Flux Values Across Blubber Thickness   

For blubber samples, there was a substantial difference between heat flux values 

recorded by the deep and superficial heat flux discs.  The deep disc consistently recorded 

higher values (mean of difference = 46.8 W/m2; range = 9.9 to 87.2 W/m2) than the 

superficial disc, and, thus, yielded thermal conductivity values that were higher than 

those reported for the other two methods (Figure 4).  This result is in contrast to that for 

the control materials, polystyrene foam and white pine wood, where deep and superficial 

heat flux values were similar to each other.  For the foam, the mean difference between 

the superficial and deep discs was 3.45 W/m2 (range = 3.5 to 6.2 W/m2) and for the 

wood, the mean was 10.25 W/m2 (range = 5.3 to 14.7 W/m2).   

In blubber, sample thickness was significantly correlated with the difference in 

heat flux between the deep and superficial discs (F=11.91; p=0.0014) (Figure 7).  To 

determine if this difference was due simply to heat loss to the sides of the blubber 

sample, experiments with increasing layers of polystyrene foam and wood were 

performed.  For these control materials, there was no pattern of increased heat loss with 

increased material depth (foam: F=0.85; p=0.42; wood: F=4.26; p=0.28) (Figure 7).   

24 24



 

 

 

 

 

 

 

 

 

 

 

 

 
             
             

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Material Thickness (m)

D
iff

er
en

ce
 in

 H
ea

t F
lu

x 
(W

/m
2 )

Blubber Foam Wood

 Figure 7 – The difference between the deep and superficial heat flux disc 
 measurements plotted against the material thickness for T. truncatus blubber, 
 foam, and wood.   
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There was a weak, non-significant relationship between the surface area of the blubber 

sample and the heat flux difference (F=3.54; p=0.067).  There was no relationship 

between the surface area of the foam sample and the difference in heat flux (F=5.8; 

p=0.137).  Thus, in blubber, there existed a substantial difference between the energy 

entering the deep surface of the blubber and that leaving the sample at its superficial 

surface.  There was no relationship between the magnitude of this difference in heat flux 

and life history category (F=1.74; p=0.14), lipid content (F=1.49; p=0.23), or water 

content (F=0.06; p=0.81).   

 

DISCUSSION 

The goals of this study were to measure the thermal properties of blubber across 

an ontogenetic series of bottlenose dolphins and to correlate these properties with 

changes in blubber morphology and composition that vary across development.  

Specifically, it was hypothesized that neonatal dolphins may have blubber that is 

specialized to provide enhanced insulation compared to other life history categories.   To 

permit comparison of these results with previously reported values, two distinct methods 

were used to measure blubber’s thermal properties.   

Blubber’s Quality, Quantity, and Thermal Properties  

Fetal blubber underwent continuous growth throughout gestation, with both 

thickness and lipid content increasing rapidly.  This growth pattern, similar to that 

observed by Struntz et al.(2004), prepares the animal for birth into a highly conductive 

fluid medium.  In contrast with pinnipeds, which are born on land, cetaceans must be 

fully capable of maintaining thermal homeostasis in water at the time of birth.  Thus,  
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blubber, their primary thermal barrier, must be of an appropriate thickness and quality to 

minimize heat loss.   

Figure 8 illustrates how blubber’s thickness, lipid content, conductivity, and 

insulation values varied across life history categories.  Between fetal and juvenile life 

history categories, both lipid content and blubber thickness increased.  Blubber’s thermal 

conductivity, which is independent of thickness, remained stable between these life 

history categories.  In contrast, thermal insulation, a measure of both blubber quality and 

quantity, increased three-fold.  It was hypothesized that thickness and/or lipid content 

would be relatively greater in neonates compared with other life history categories.  The 

results of this study indicate that instead, fetal, neonatal, and juvenile life history 

categories represented a period of continual blubber growth - blubber’s thermal 

conductivity remains static but its thermal insulation increases as a result of increased 

blubber quantity. 

The juvenile life history category represented a transitional period in blubber’s 

development in which lipid content peaked and blubber thickness values were similar to 

those of adults.  Between juvenile and adult life history categories, blubber lipid content 

decreased steadily and adult blubber had a significantly higher conductivity than all non-

emaciated categories.  The insulation of adult blubber was also significantly less than that 

of sub-adults, due to a decrease in blubber quality, rather than quantity.  Thus, two 

distinct patterns describe ontogenetic changes in the thermal properties of blubber.  

Nutritionally dependent animals increased blubber quantity but maintained similar 

blubber quality.  Nutritionally independent animals maintained relatively stable blubber 

quantity, and rather, varied the quality of the blubber layer.   
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Figure 8 - Blubber thickness, lipid content, thermal conductivity, and insulation values 
for T. truncatus plotted against life history category.  Thickness is in decimeters; all other 
values are in units shown with Table 4. 
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Interestingly, the blubber of neonatal and juvenile animals had the same insulation 

value as that of adult dolphins.  This result suggests that the mass specific metabolic rates 

of these young animals must be higher than that of adult dolphins to compensate for the 

relatively higher rates of heat loss resulting from their larger surface area to volume 

ratios.  Mass specific metabolic rates scale to body mass raised to the –0.25 (Kleiber, 

1961) and young animals are known to have relatively higher mass specific metabolic 

rates compared to adult animals of the same species (reviewed in Lavigne et al., 1986).  

 To estimate the relative metabolic rates of neonatal and adult dolphins in this 

study, the heat flux value (from the superficial disc) for each dolphin was multiplied by 

the surface area of the dolphin (see Table 5 for methods of estimating surface area).  The 

resulting metabolic rate was then divided by the mass of the animal to obtain a mass 

specific metabolic rate.  The results of these calculations indicate that the mass specific 

metabolic rate of neonatal bottlenose dolphins is approximately three times higher than 

that of adult dolphins.  This result is consistent with experimentally derived values for 

newborn harbor seals (Phoca vitulina) (Miller and Irving, 1975), and pups of California 

sea lions (Thompson et al., 1987), northern fur seals (Callorhinus ursinus) (Donohue et 

al., 2000), and northern elephant seals (Mirounga angustriostris) (Noren, 2002), which 

had mass specific metabolic rates that ranged between 1.4 and 4 times higher than that of 

adults.  Additionally, the estimated mass specific metabolic rate for neonates in this study 

was 5 % lower, and the adult value 38% lower, than those values predicted by Kleiber 

(1961).  The calculated adult metabolic rate is also considerably lower than the resting 

metabolic rate for this species measured by Williams et al. (2001) (0.392 ± 0.01 

LO2/hr·kg).   
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Table 5:  Calculated mass specific metabolic rates for neonatal and adult bottlenose 
dolphins.  Values are presented as the mean for each life history category ± standard 
error. 

* Surface area and volume were estimated by modeling the trunk (nuchal crest to anus) as 
a cylinder and the tailstock (anus to fluke insertion) as a truncated cone.  The head and 
appendages were excluded from these calculations. 

 Neonates Adults 

Body Mass (kg) 18.23 ± 11.4 194.35 ± 13.92 

Insulation (R) 
(m2°C/W) 0.10 ± 0.01 0.12 ± 0.01 

Surface Area (m2)* 0.308 ± 0.13 1.759 ± 0.16 

Surface Area/ Volume 27.48 ± 1.27 12.48 ± 1.92 

Mass Specific Metabolic 
Rate 
(LO2/hr·kg) 

0.301 ± 0.017 0.111± 0.02 

Predicted Kleiber Mass 
Specific Metabolic Rate 
(LO2/hr·kg) 

0.331 ± 0.01 0.182 ± 0.005 
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 There are multiple reasons why the mass specific metabolic rates measured in this 

study may be low.  First, only the post-cranial body surface area was calculated - the 

appendages and head were excluded.  Second, the calculated metabolic rates in this study 

used heat flux values that were measured in air and on inert tissue in the absence of blood 

flow.  They do, however, illustrate the relative differences in the cost of endothermy in 

animals of varying body size as well as represent an estimated minimum metabolic rate 

for bottlenose dolphins. 

The thermal properties of blubber were also influenced by morphological and 

compositional differences associated with changing reproductive and nutritional status.  

Pregnant female blubber had a lipid content that was similar to juveniles, and blubber 

thickness that was similar to adults, which resulted in an overall insulation value that was 

higher than that of adults.  Sub-adult and pregnant female blubber layers have the highest 

insulation values of any life history category, suggesting that these categories may 

represent a maximal insulation value for bottlenose dolphins.   

Emaciation profoundly impacted blubber’s thermal properties.  The insulation 

value of emaciated blubber was substantially lower than that of adults.  With a low 

blubber insulation value, emaciated animals likely experience relatively higher rates of 

heat loss to the environment compared to non-emaciated adults, and their metabolic rates  

may, thus, be higher.  In the emaciated state, blubber’s dual roles of providing insulation 

and storing metabolic energy are in direct opposition to one another.  As lipid is depleted 

for utilization as energy, the thermal insulation of the blubber layer is compromised and, 

therefore, the rate of heat loss to the environment is increased.  The metabolic rate of the 

animal may increase to compensate for the increased heat loss and in turn, more lipid is 
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depleted to meet the increased demand.  In this way, the potential for a positive feed-back 

loop exists and declining nutritional and health status is potentially accelerated by the 

opposing thermal and metabolic demands on the blubber. 

Across life history categories, blubber thickness was generally not a good 

predictor of lipid content.  For a given blubber thickness, lipid content could vary by 

more than 50%.  In an extreme example, emaciated individuals, WAM 533 and WAM 

591, had similar blubber thicknesses, however, their blubber lipid content was 41% and 

3.3% respectively.  The highly organized three-dimensional matrix of structural fibers in 

blubber is vital to its role as a structural and locomotor tissue (Hamilton et al., in press; 

Pabst et al., 1999a). Reducing the thickness of this tissue may be detrimental to blubber’s 

other functions such as streamlining the body or aiding in locomotion.  Interestingly, in 

the life history categories where lipid content was highly reduced (fetuses and emaciated 

animals), water content was significantly higher.   The replacement of lipid with water 

may be a potential mechanism for maintaining the structural integrity of the tissue despite 

fluctuations in lipid content.      

In addition to ontogenetic differences in blubber’s thermal properties, there were 

also differences in thermal conductivity across the depth of the blubber layer.   The 

conductivity of deep blubber was consistently lower than that of superficial blubber.  

Deep blubber is more metabolically labile (e.g. Ackman et al., 1975a; Ackman et al., 

1975b; Aguilar and Borrell, 1990; Koopman, 1998; Koopman et al., 1996; Lockyer et al., 

1984) and undergoes larger morphological changes during development and emaciation 

than does superficial blubber (Koopman et al., 1996; Struntz et al., 2004).  Superficial 

blubber contains smaller adipocytes and more densely packed structural fibers (Hamilton 
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et al., in press; Struntz et al., 2004).  Thus, these results support the observation that 

blubber is not a homogenous material throughout its depth and that the superficial and 

deep blubber may differ in their functional roles.  Deep blubber is more metabolically 

active and contributes more to insulation than does superficial blubber.  Superficial 

blubber has a more structural role and is a better thermal conductor than the deep blubber. 

Phylogenetic and Methodological Comparisons of Blubber’s Thermal Properties 

The ontogenetic changes in blubber’s thermal properties observed in this study 

are nearly as great as those observed across a broad range of cetaceans (Table 1).  For all 

non-adult bottlenose dolphins, blubber thermal conductivity values were similar to that of 

harbor porpoise and beluga whale (Delphinapterus leucus) blubber.  Thus, relatively 

small bodied, young dolphins possessed blubber of the same thermal quality as northern 

temperate to polar species.  In contrast, conductivity of adult bottlenose dolphin blubber 

was more similar to that of large baleen whales and tropical delphinids (Table 1).   

However, direct comparisons of absolute thermal conductivity values may be 

complicated by differences in experimental methods.  The thermal conductivity values 

calculated using the standard material method and the heat flux values from the 

superficial disc, yielded values that were very similar.  However, conductivity values 

calculated using heat flux values from the deep disc were more than 50% higher.  In most 

previous studies that have used the heat flux method, the disc has been placed deep to the 

blubber (Worthy, 1991; Worthy and Edwards, 1990; Yasui and Gaskin, 1986).  Thus, 

both absolute and relative comparisons between values obtained with deep heat flux 

measurements and those obtained by either the standard material method or superficial 
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heat flux, must be made with caution.  A discussion of the potential explanation for this 

pattern is presented here. 

The observed difference in the rate of energy entering and leaving the blubber 

surfaces may be attributable to several factors.  First, heat loss to the sides of the blubber 

could cause a reduction in heat flux measured at the blubber surface.  The results of 

calibrations with foam and wood, however, suggest that changing the thickness of the 

sample did not affect the difference between superficial and deep heat flux values.   

Second, the reactive error (Ducharme et al., 1990) of the superficial heat flux disc may 

reduce the heat flux value at this surface.  However, as discussed previously, this error is 

expected to be low because the ratio between the insulative quality of the tissue and disc 

is low (Rblubber/Rheat flux disc ranged between 6.02 and 21.7) (Frim and Ducharme, 1993).  

The maximum reactive error can be calculated using the correction factors provided by 

Frim and Ducharme (1993) and a maximum heat flux value (in this study maximum heat 

flux = 142.7 W/m2).  The maximum error attributable to reactive error in this study was 

calculated as 8 W/m2.  Because the difference between the deep and superficial heat flux 

measurements could be as high as 87.2 W/m2 and was usually near 50 W/m2, it is 

unlikely that the observed difference in heat flux values is the result of this source of 

experimental error.  Instead, the difference in heat flux may be indicative of a previously 

undescribed property of blubber – its capacity to absorb heat by undergoing a phase 

change. 

Phase change materials (PCM) are defined as latent thermal storage materials that 

use chemical bonds to store and release heat (Suppes et al., 2003).  These materials are 

currently being investigated for use in residential and commercial buildings as a means of 
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increasing energy efficiency (Nikolic et al., 2002; Sari, 2003; Sari and Kaygusuz, 2001; 

Sari et al., 2003; Suppes et al., 2003).  For example, solar heat may be absorbed during 

the day, by causing the material to melt or soften. When temperatures drop at night, the 

material will undergo a phase change to a solid and release the stored energy.  For a 

phase change material to efficiently store and release heat, four requirements must be met 

(Nikolic et al., 2002; Sari, 2003; Sari and Kaygusuz, 2001; Sari et al., 2003; Suppes et al., 

2003)  First, the melting point of the material must be in an appropriate temperature range 

for the desired application (e.g. near room temperature for building materials).  Second, 

the material must have a relatively large latent heat plateau (i.e. the range of temperatures 

over which a material will change phase), to maximize the amount of heat that may be 

stored.  Third, the material must not stratify in the liquid phase, which would result in an 

inability to properly harden when the environmental temperature is reduced.  Finally, an 

intermittent heat load must be present to deliver and absorb heat from the material.  

There is substantial evidence to support the classification of blubber as a phase 

change material.  First, many of the fatty acids found in blubber are classified as phase 

change materials and have melting points in the range of mammalian body temperatures 

(Sari, 2003; Sari and Kaygusuz, 2001; Sari et al., 2003; Suppes et al., 2003).  Suppes et 

al. (2003) classified palmitic (C16:0), steric (18:0), oleic (C18:1), linoleic (C18:2), 

linolenic (C18:3), and arachidic (C20:0) fatty acids as excellent phase change materials.   

All of these fatty acids have been identified in cetacean blubber (Koopman et al., 1996).  

Mixtures of these fatty acids yield phase change materials with melting points between 

29° and 38°C (Suppes et al., 2003), which include the range of mammalian body 

temperatures.  Second, these fatty acids also satisfy the requirement that the material have 
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a relatively large latent heat plateau, with latent heat values generally greater than 180 J/g 

(Suppes et al., 2003).  Third, their stratification in blubber may be prevented by their 

containment in adipocytes as well as the highly structured nature of adipocytes in the 

blubber tissue.  Finally, cetaceans are known to have fine vascular control to their 

appendages and to the periphery of their body (Elsner et al., 1974; Kvadshiem and 

Folkow, 1997; Ling, 1974; Meagher et al., 2002; Pabst et al., 1999b; Scholander and 

Schevill, 1955).  Intermittent heat loads could be applied to the blubber through shunting 

of warm blood to the blubber layer, followed by periods of vasoconstriction.  Future 

studies are needed to fully characterize blubber’s potential phase change properties as 

well as investigate the possible functions that may be associated with such a property.   

Conclusion 

Blubber’s thermal properties were influenced by morphological and 

compositional changes that occurred across ontogeny, and in individuals of differing 

reproductive and nutritional status.  In nutritionally dependant life history categories, 

changes in blubber’s thermal properties were characterized by stable blubber quality and 

increased blubber quantity.  In nutritionally independent animals, blubber quantity 

remained stable while blubber quality varied.  The ontogenetic differences in thermal 

conductivity and thermal insulation were as large as those reported across temperate to 

tropical cetacean species.  Differences in conductivity also occurred through the depth of 

the blubber. Deep blubber had a lower thermal conductivity than superficial blubber 

supporting the characterization of the deep blubber as the more insulative and 

metabolically active site of lipid deposition and mobilization.  Finally, blubber’s 

composition and its ability to absorb heat suggest that it likely is a phase change material.   
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CHAPTER 2.  ONTOGENETIC CHANGES IN THE BUOYANCY PROPERTIES OF 
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INTRODUCTION 

Atlantic bottlenose dolphins (Tursiops truncatus) possess many adaptations for a 

fully aquatic lifestyle including a streamlined body shape, axial locomotor style, 

enhanced breath-hold capabilities, and a specialized integumental layer called blubber 

(reviewed in Costa and Williams, 1999; Ling, 1974; McLellan et al., 2002; Pabst et al., 

1999b).  Blubber, the hypertrophied hypodermal layer, is composed primarily of 

adipocytes and structural fibers (Ackman et al., 1975; Hamilton et al., in press; 

Koopman, 1998; Ling, 1974; Lockyer et al., 1984; Pabst et al., 1999a; Parry, 1949).  It is 

a multifunctional tissue that acts to store metabolic energy, streamline the body, insulate 

the body core, and contribute to positive buoyancy (e.g. Hamilton et al., in press; Kipps 

et al., 2002; Koopman, 1998; Ling, 1974; Parry, 1949; Worthy and Edwards, 1990).  For 

a neonatal bottlenose dolphin these last two functions may be particularly critical.  A 

neonate has a larger surface area to volume ratio than an adult, and, thus, may experience 

high rates of heat loss to the environment (McLellan et al., 2002; Struntz et al., 2004; 

Worthy and Edwards, 1990).  Additionally, neonates have immature locomotor 

capabilities and axial locomotor muscles that are not poised for high aerobic output 

(Dearolf et al., 2000; Noren et al., 2001).  Thus, unlike an adult, a neonate may be more 

reliant on hydrostatic (i.e. positive buoyancy) rather than hydrodynamic mechanisms to 

maintain its position at the water’s surface to breath (Taylor, 1994).  
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Blubber’s contributions to insulation and positive buoyancy are reliant on its 

quantity and quality, both of which can vary significantly across ontogeny in bottlenose 

dolphins.  Struntz et al. (2004) demonstrated that blubber thickness, a measure of blubber 

quantity, more than doubled between neonatal and adult animals and that lipid content, or 



 

blubber quality, varied by as much as 37% between life history categories.  These 

changes in quantity and quality resulted in ontogenetic differences in blubber’s thermal 

properties that were as great as those reported across a phylogenetically diverse sample of 

cetaceans (Dunkin, 2004).  For example, the blubber of young bottlenose dolphins had 

thermal conductivity values that were similar to that of harbor porpoises (Phocoena 

phocoena), while the thermal conductivity of adult blubber was significantly higher, and 

similar to that of minke (Balaenoptera acutorostrata) and fin (Balaenoptera physalus) 

whales (Dunkin, 2004).   

Reproductive and health status also influence blubber’s quality and quantity and, 

thus, influence blubber’s thermal properties. For example, the blubber of pregnant 

bottlenose dolphins contained 27% more lipid, and had a significantly lower thermal 

conductivity than blubber of other adults (Dunkin, 2004).  In contrast, the blubber of 

emaciated dolphins contained 48% less lipid, and its conductivity was significantly 

greater than adults.  Variation in blubber’s quality and quantity may also significantly 

influence it’s buoyant properties, however, to date, no study has investigated blubber’s 

contribution to buoyancy across an ontogenetic series or between individuals of different 

reproductive and nutritional status.   

 Buoyancy, a force exerted on an object by the fluid surrounding it, can be 

calculated with the following equation: 

 (I) B = (ρf – ρ0)V0g 

where B is the buoyant force (N), ρf  is the density of the fluid (kg/m3), ρ0 is the density of 

the object, V0 is the volume of the object (m3), and g is acceleration due to gravity (m/s2) 

(reviewed in Denny, 1993).  Whether an object will be negatively, neutrally, or positively 
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buoyant is, thus, directly related to its density relative to that of the surrounding fluid.  A 

dolphin’s overall density is dependant upon its body composition.  While many tissues 

(e.g. muscle and bone) are more dense than seawater (1,026 kg/m3), air (1.3 kg/m3) in the 

lungs, and lipid (~900 kg/m3) in blubber, are less dense (reviewed in Kipps et al., 2002).   

 Taylor (1994) identified two alternative buoyancy control strategies for marine 

tetrapods.  A tetrapod can control its position in the water column hydrostatically, by 

adjusting the relative volume of low and high density body compartments.  Alternatively, 

it can hydrodynamically adjust its depth by using locomotor energy (Taylor, 1994).  

Although an individual can use both strategies, one may dominate over another 

depending on habitat preference, locomotor style, or preferred diving depth.  An animal 

that is a fast swimmer or deep diver is more likely to adjust its position in the water 

column hydrodynamically, while an animal that is a bottom dwelling or shallow diver is 

more likely to use hydrostatic control (e.g. Kipps et al., 2002; Taylor, 1994; Williams, 

1999; Williams et al., 2000; Williams et al., 1999).  

 An adult bottlenose dolphin is a fast swimmer and a fairly deep diver and would, 

thus, be expected to control its buoyancy hydrodynamically (Ridgway, 1971; Skrovan et 

al., 1999; Taylor, 1994; Wells and Scott, 1999; Williams et al., 1999).  A neonatal 

dolphin however, has both immature locomotor capabilities and decreased aerobic 

stamina (Dearolf et al., 2000; Noren et al., 2001) but like adults, must be able to reach the 

surface to breath.  Thus, neonatal dolphins may be more reliant than adults on hydrostatic 

buoyancy control.  Specifically, neonates may need to be positively buoyant to remain at 

the water’s surface, without expending locomotor energy.  To achieve positive buoyancy, 
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the overall body density of neonatal dolphins must be relatively less than that of adult 

animals. 

Cockcroft and Ross (1990) qualitatively described changes in buoyancy in a 

captive bottlenose dolphin calf in its first two years of life.  The calf was observed to be 

positively buoyant at birth and unable to fully control its position in the water column 

until approximately six months of age.  These authors attributed these apparent changes 

in buoyancy to changes in body composition.  Until bottlenose dolphins reached a mass 

of 22kg, at approximately four to five weeks of age, blubber mass was greater than 

muscle mass (Cockroft and Ross, 1990).  Although no direct measure of buoyancy was 

made, and no discussion of the role of the developing lung was presented, these 

observations suggested that in these young animals, blubber was contributing relatively 

more to overall positive buoyancy than in adult animals (Cockroft and Ross, 1990).  In 

contrast, Struntz et al. (2004) found no significant difference in the percent of total body 

mass invested in blubber across life history categories in Atlantic bottlenose dolphins. 

The goal of this study was to measure blubber’s buoyant force across an 

ontogenetic series of bottlenose dolphins.  Specifically, the hypothesis that neonatal 

blubber contributes relatively more to positive buoyancy than in other life history 

categories was tested.  To calculate blubber’s buoyant force, its density was measured 

and its volume was calculated for fetal, neonatal, juvenile, sub-adult, and adult bottlenose 

dolphins.  In addition, pregnant females and emaciated adults were investigated to 

determine how blubber’s contribution to buoyancy may change with reproductive and 

nutritional status.  The lipid and water content of blubber (Dunkin, 2004), were also 
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measured across these life history categories to correlate measures of blubber quality with 

buoyant force.  

METHODS 

Specimens  
Blubber samples were acquired from 40 robust Atlantic bottlenose dolphins 

(Tursiops truncatus) and three emaciated dolphins that either stranded or were 

incidentally killed in fishing operations in North Carolina and Virginia (Table 1).  The 

data set also included one emaciated adult from Florida and one from New Jersey.  The 

thermal properties of the blubber of these individuals was examined by Dunkin (2004).  

Only animals with a Smithsonian Institution Code of 1 (live stranded and died naturally 

or by euthanasia) or 2 (fresh dead) (Geraci and Lounsbury, 1993) were used in this study.  

Seven life history categories were defined based upon a suite of morphological characters 

described in Struntz et al. (2004) (Table 2).  These categories include fetus (n=7), neonate 

(n=8), juvenile (n=7), sub-adult (n=8), adult (n=6), pregnant female (n=4), and emaciated 

animal (n=5).   

Each animal was first weighed to the nearest kilogram (Dillon, 2000kg capacity 

scale, Brooklyn, NY, USA) and measured using a standard set of morphometrics.  The 

animal was divided into two post-cranial regions, the trunk (defined here from the leading 

edge of the pectoral flippers to the anus) and tailstock (from the anus to the fluke 

insertion), and the length of each of these regions was measured (Figure 1a).  Previous 

studies have suggested that the blubber in these two regions is functionally specialized.  

Trunk blubber is more metabolically labile and tailstock blubber is more structural in 

function (Hamilton et al., in press; Koopman, 1998; Koopman et al., 1996; Pabst, 1990; 

Pabst et al., 1999a; Pabst et al., 1999b).  At each body region, the integument was  
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Table 1: T. truncatus specimens grouped by life history category and length. 
Animal Life History Category Sex Body Length (cm) 

PTM 109f* fetus F 58 
WAM560f* fetus F 63.5 
PTM114f fetus F 82 
ASF 033f* fetus M 82 
WJW007f* fetus M 86.5 
WAM 545f* fetus F 92 
WAM 535f* fetus M 96.5 
EMM 010* neonate M 106 

VMSM2000 1020* neonate M 106.5 
CALO99-13* neonate F 109.5 

VMSM2001 1080* neonate M 110.3 
VMSM2002 1042y neonate M 111 

MMB 003xy neonate M 113 
WAM 550* neonate M 114.5 
WAM 584y neonate F 117 

VMSM2000 1031* juvenile M 127 
DJS 001* juvenile F 129.5 

VMSM2001 1087* juvenile M 129.7 
VMSM 2003 1082 juvenile M 142 
VMSM2002 1089 juvenile F 142.5 

ASF 042 juvenile F 143.5 
WAM 569* juvenile F 150 
DAP 034 sub-adult M 171 
SAE 003 sub-adult M 173 
PTM 117 sub-adult M 189 
WAM 585 sub-adult F 192 
EMM 006 sub-adult M 197 
KMT 013 sub-adult F 204 

VMSM2000 1049* sub-adult M 207 
WAM 553* sub-adult M 232 
WAM 574*‡ adult F 223 
MMB 002 adult M 235 
WAM 579 adult M 237 
WAM 559* adult F 237 
SDZ 005 adult M 262 
REL 014 adult M 265 

WAM 545* pregnant female F 246 
ASF 041* pregnant female F 260 
ASF 038* pregnant female F 263 
WJW 007* pregnant female F 273 
WAM 591 emaciated  M 222.8 
WAM 533* emaciated F 261 
NJ00-111* emaciated F 262 
MMB 004x emaciated M 275 

MMSN FB 192 emaciated M 278 
* Animals investigated in Struntz et al. (2004). ‡WAM 574 was a fisheries-take animal and was missing her 
flukes, resulting in a reduced total length.  (x) Animals excluded from lipid analysis.  (y) Animals sub-sampled for 
regional density analysis. 
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Table 2: Defining life history characters based on Struntz et al. (2004). 

Life History Category Code Defining Characters 

Fetus 1 Position en utero. 

Neonate 2 

Possessed four of the following six characters:  presence 
of rostral hairs, floppy or folded dorsal fin, unhealed 
umbilicus, prominent fetal folds, floppy or folded dorsal 
fin or floppy or folded dorsal keel. 

Juvenile 3 Absence of neonatal characters and estimated to be less 
than 1 year of age based on total length (≤150 cm). 

Sub-adult 4 Absence of milk in the stomach, immature reproductive 
tissues, and total length (>150 cm). 

Adult 5 
Mature reproductive tissues as indicated by obvious 
ovarian scars in females and the size of the testis and 
presence of sperm in males. 

Pregnant female 6 Presence of a fetus in the uterus. 

Emaciated animal 7 

Skeletal elements such as ribs, scapula, transverse 
processes, or skull were prominent under the blubber 
layer or there was atrophy of the epaxial musculature 
and/or the nuchal fat pad. 
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Figure 1 – (A) The sample locations for the trunk (1) and the tailstock (2) blubber from T. 
truncatus.  (B) The sites for the intra-regional density measurements. 
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dissected cleanly from the underlying subdermal connective sheath (Pabst, 1990) and 

weighed separately to the nearest 0.1g (Ohaus I10, Bradford, MA, USA).  Integument 

mass, as a percentage of total body mass, was calculated from these measurements and 

recorded.  The integument of the head and appendages was excluded from this analysis. 

Trunk blubber (n = 45) was sampled at a dorso-lateral position, just caudal to the 

pectoral flipper, and tailstock blubber (n = 20) was sampled at a lateral position just 

caudal to the anus (Figure 1a).  Samples were between 5x5cm and 15x15cm and included 

the entire integumental layer (subsequently referred to as blubber).  Blubber samples 

were then either vacuum sealed (Koch, 1700, Kansas City, MO, USA) or wrapped in 

Saran wrap® and sealed in freezer bags to prevent desiccation.  Samples were stored at -

20°C until analyzed.   

Blubber Lipid and Water Content  

Lipid content of trunk blubber was determined using procedures similar to those 

of Struntz et al. (2004).  Briefly, an approximately 1g full depth blubber sample 

(excluding the epidermis) was weighed to the nearest 0.001g , macerated, and dried with 

approximately 30g of sodium sulfate (Na2SO4).  The lipid was then extracted using an 

accelerated solvent extractor (Dionex, Salt Lake City, UT, USA).  The excess solvent 

was evaporated (Turbo Vap II, Zymark, Hopkinton, MA) and the extracted lipid was then 

reweighed to the nearest 0.001g.   

For both trunk and tailstock blubber samples, water content was determined by 

excising an approximately 1x1cm square sample and weighing it prior to and after freeze-

drying (Labconco 4.5, Kansas City, MO, USA).  Samples were weighed each day until 
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the mass of the sample was stable (within 0.001g) for two consecutive days (total time = 

5 days). 

Blubber Density and Volume Measurements 

 To calculate blubber’s buoyant force, it was necessary to determine both its 

density and volume.  Density was measured volumetrically using the methods of Kipps et 

al. (2002).  Briefly, three approximately 1x1cm full depth subsamples were taken from 

each of the trunk and tailstock blubber samples.  Each subsample was weighed to the 

nearest 0.001g (Satorius, PT-6, Bradford, MA, USA) and then placed in room 

temperature distilled water, in a 25mL graduated cylinder.  Its volume (to the nearest 

0.1ml) was measured by displacement.  The density of each subsample was calculated by 

dividing its mass by its volume, and the mean of the three measurements was reported as 

the density for that blubber sample (standard error of measurements was ± 5.8%).  

 To ensure that the density measurements of the subsamples were representative of 

the entire trunk or tailstock blubber, additional density measurements were performed. 

On a subset of animals (total n = 3, see Table 1) across several life history categories, 

blubber density was measured at nine additional positions within the trunk and tailstock 

regions (Figure 1b).  

 Total blubber volume was calculated by dividing the blubber mass from each 

region (trunk and tailstock) by the mean blubber density at each region.  For non-

pregnant, non-emaciated animals, trunk blubber mass (n = 16) or tailstock blubber mass 

(n = 1) was unavailable.  For these animals an interpolated blubber mass was determined 

based on a linear regression of total body length and blubber mass of all animals for 

which mass was available (trunk n=19, r2=0.972; p<0.0001; tailstock n=20, r2=0.969; 
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p<0.0001).  Pregnant and emaciated animals were not included in this analysis because 

the sample size in these groups was not large enough to permit interpolation of blubber 

mass.  The buoyant force of the trunk and tailstock blubber was calculated separately 

using Equation I, and these values then summed to obtain the total blubber buoyant force.   

Statistics 

 For comparisons across life history category, a one-way ANOVA (JMP 5.1, SAS 

Inc., Cary, NC, USA) (alpha = 0.05) was performed to determine if there were significant 

differences in blubber mass, volume, density, or buoyant force.  The same analysis was 

used to evaluate these factors between body sites.  When a significant result was present, 

a Tukey-Kramer Honestly Significant Difference test or a Ryan’s Q test was performed 

to determine which groups were significantly different from one another.  For each body 

region, t-tests were used to determine if the mean blubber density values for each life 

history category were significantly different than the density of seawater or if the buoyant 

force of blubber was significantly different from neutral buoyancy.  Life history 

categories with less than three samples for a particular analysis were excluded from the 

statistical tests. 

 

RESULTS 

Lipid and Water Content 

The results of the lipid content analysis of trunk blubber from Dunkin (2004) and 

Struntz et al. (2004) are briefly summarized below.  Blubber lipid content increased 

consistently from fetal through juvenile life history categories (Table 3).  Although not a 

significant trend, across juvenile, sub-adult, and adult life history categories, lipid content  
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Table 3 – Summary of blubber’s density, buoyancy, composition, and contribution to total body mass across life history categories in Atlantic 
bottlenose dolphins reported as the mean ± standard error 

 
 Fetus     Neonate Juvenile Sub-adult Adult Pregnant 

Female 
Emaciated 

Adult 

Trunk Blubber Density 
(kg/m3) 

1037.5 ± 23.4 
a 

1084.8 ± 47.0 
a 

1003.6 ± 20.7 
a 

1033.3 ± 13.4 
     a 

1038.9 ± 24.6 
a 

977.9 ± 9.1 
a 

1112.1 ± 49.2 
a 

Tailstock Blubber 
Density (kg/m3) 

1068.3 ± 42.1 
a 

1083.4 ± 73.6 
a 

1076.7 ± 57.3 
a 

1077.1 ± 9.3 
NE 

1087.1 ± 98.2 
NE 

1026.9 
NE 

1094.2 ± 27.6 
a 

Trunk Blubber 
Volume (dm3) 

0.852 ± 0.37 
d 

3.516 ± 0.31 
c, d 

9.338 ± 1.3 
c 

19.536 ± 1.7 
b 

34.158 ± 2.7 
a 

36.136  
NE 

20.4 ± 4.1 
NE 

Tailstock Blubber 
Volume (dm3) 

0.084 ± 0.02 
a 

0.617 ± 0.04 
b 

1.113 ± 0.08 
c 

1.29 ± 0.09 
NE 

4.69 ± 1.1 
NE NE 3.395 ± 0.8 

NE 

Trunk Blubber 
Buoyant Force (N) 

-0.397 ± 0.17 
a 

-1.54 ± 1.44 
a 

2.56 ± 2.36 
a 

-2.62 ± 3.00 
a 

-2.34 ± 7.07 
a 

8.79 
NE 

-25.89 ± 19.6 
NE 

Tailstock Blubber 
Buoyant Force (N) 

-0.0371 ± 0.05 
a 

-0.351 ± 0.44 
a 

-0.581 ± 0.58 
a 

-0.669 ± 0.16 
NE 

-1.769 ± 3.82 
NE NE -2.642 ± 2.13 

NE 

Total Blubber Buoyant 
Force (N) 

-0.268 ± 0.19 
a 

0.612 ± 2.46 
a 

1.79 ± 6.54 
a 

0.925 ± 1.57 
NE 

14.08 ± 10.50 
NE NE -28.54 ± 21.73 

NE 

% Lipid/ Wet Weight 
(Trunk) 

35.06 ± 6.09 
b, c 

55.82 ± 2.86 
a, b 

69.72 ± 4.08 
a 

62.59 ± 2.31 
a 

54.31 ± 4.88 
a, b 

69.20 ± 5.73 
a 

28.22 ± 9.14 
c 

% Water/ Wet Weight 
(Trunk) 

50.3 ± 3.52 
a 

33.06 ± 1.97 
b 

29.9 ±  0.96 
b 

30.16 ± 2.35 
b 

32.78 ± 1.08 
b 

31.66 ± 1.57 
b 

59.34 ± 6.63 
a 

% Water/ Wet Weight  
(Tailstock) 

60.3 ± 3.10 
a      

41.73 ± 2.24 
b 

37.84 ± 2.37 
b 

38.73 
NE 

50.39 ± 6.74 
a, b 

39.29 ± 0.39 
NE 

68.24 ± 4.5 
a 

% Blubber mass/Total 
Body Mass 

16.42 ± 1.91 
b 

23.05 ± 1.41 
a, b 

25. 47 ± 1.18 
a 

22.08  
NE 

21.36 ± 2.69 
a, b 

14.5 
NE 

16.20 ± 1.40 
NE 

* Only categories with a sample size of 3 or more were tested for statistical differences.  Categories not included in the statistical analyses are 
denoted by an NE (not examined).  In categories where n = 2, the mean ± standard error is given.  If n = 1, the value for that animal is given. 
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declined.  Blubber lipid content of pregnant females increased 27% compared with adult 

animals and was similar to that of juveniles.  Emaciated animals had significantly less 

lipid than all other life history categories except fetuses (F = 9.33; p<0.0001) (Table 3, 

Figure 2a).  

In fetuses and emaciated animals, water content of trunk blubber was significantly 

higher compared to that of other life history categories (F = 13.76; p<0.0001) (Table 3, 

Figure 2b).  The water content of tailstock blubber of fetuses and emaciated adults was 

significantly higher than that of neonates and juveniles (F = 14.02; p<0.0001) (Figure 

2c).  Overall, tailstock blubber had a significantly greater percentage of water (mean = 

45.53 ± 2.53%) than that of the trunk blubber (mean = 34.83 ± 1.47%) (F =15.31; p = 

0.0003) (Figure 2b,c).   

Mass, Density, Volume, and Buoyant Force 

Blubber mass as a percentage of total body mass was significantly different 

between fetuses and juveniles but was similar between all other life history categories (F 

= 4.28; p = 0.0128).  Blubber contributed between 14.5 and 25.47% of total body mass 

across life history categories and reached maximal values in juvenile animals (Table 3). 

Within each body region, the density of blubber, sub-sampled at multiple body 

positions, was similar (trunk - F = 0.32; p = 0.94; tailstock - F = 1.4; p = 0.25).  The 

overall mean blubber density of the of the trunk was 1043.1 ± 13.18 kg/m3 and that of the 

tailstock was 1077.1 ± 24.17 kg/m3 and these values were not significantly different (F = 

2.2; p = 0.14) (Figure 3).       

Across life history categories, blubber density was similar in both the trunk (F = 

1.74; p = 0.14) and tailstock regions (F = 0.04; p = 0.98) (Table 3, Figure 4a, b).   

 

53 53



 

 

0
20

40
60

80
100

1 2 3 4 5 6 7
 

Tr
un

k 
 %

 W
at

er
  

 

0
20

40

60

80
100

1 2 3 4 5 6 7
B 

Tr
un

k 
%

 L
ip

id
  

0
20

40

60

80
100

1 2 3 4 5 6 7
A 

Life History Category 
C 

Ta
ils

to
ck

  %
 W

at
er

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

 
Figure 2– (A) Trunk lipid content and water content of (B) 
trunk and (C) tailstock.  Life history categories are (1) 
fetus, (2) neonate, (3) juvenile, (4) sub-adult, (5) adult, (6) 
pregnant female, and (7) emaciated animal. 
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Figure 3 – Comparison of blubber density of the trunk and 
tailstock.  Includes fetal through adult life history categories. 
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Figure 4 – (A, B) Blubber density, (C, D) volume, and (E, F) buoyant force for the 
trunk and tailstock.  Life history categories are (1) fetus, (2) neonate, (3) juvenile, (4) 
sub-adult, (5) adult, (6) pregnant female, (7) emaciated adult.  Due to sample 
availability, a single pregnant female is included in C and E; no pregnant females are 
included in D and F.  The horizontal line in A and B denotes the density of sea water.  
In E and F the horizontal line denotes 0N.  
A
 B
C



 

 

Although, not significantly different, juveniles and pregnant females had the lowest, and 

emaciated adults had the highest, blubber densities of all life history categories (Table 3).  

Mean blubber densities of each life history category for both the trunk and tailstock 

regions (pregnant females excluded from tailstock analysis) were not significantly 

different from the density of seawater (all p values > 0.05).   

Trunk blubber volume increased steadily between fetal and adult life history 

categories (F = 75.21; p<0.0001) (Table 3, Figure 4c).  The trunk blubber volume of the 

single pregnant female was similar to adult animals, while that of emaciated animals 

(n=2) was similar to sub-adults.  Tailstock blubber volume significantly increased across 

fetal, neonatal, and juvenile life history categories (F = 105.5; p<0.001) (Table 3, Figure 

4d).  Tailstock blubber volume increased markedly between sub-adult and adult life 

history categories (Figure 4d). 

The buoyant force of trunk blubber was similar for fetal through adult life history 

categories (mean = –0.91 ± 8.85) (F = 0.39; p = 0.81) (Table 3, Figure 4e).  The pregnant 

female possessed trunk blubber with the highest buoyant force.  Trunk blubber of 

emaciated animals was twelve times more negatively buoyant than of adults (Table 3, 

Figure 4e).  The buoyant force of tailstock blubber was also similar between all life 

history categories (mean = –0.30 ± 1.83) (F = 0.46; p = 0.65).  Mean total blubber 

buoyant force (i.e. trunk and tailstock combined) across fetal, neonatal, and juvenile life 

history categories was 0.61 ± 7.45N and was not significantly different between these 

groups (F = 0.08; p = 0.91) (Figure 5).  The mean buoyant force of trunk and tailstock  
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 Figure 5 – Total blubber buoyant force across life history 
categories.  Due to sample availability, pregnant females were not 
included.  Life history categories are (1) fetus, (2) neonate, (3) 
juvenile, (4) sub-adult, (5) adult, and (7) emaciated adult.  The 
horizontal line indicates neutral buoyancy.   
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blubber for fetal through adult life history categories, as well as emaciated animals, was 

not significantly different from neutral buoyancy (0N) (all p values >0.05).      

 

DISCUSSION 

Blubber’s Contribution to Buoyancy Across Ontogeny 

Based on known ontogenetic differences in blubber thickness and lipid content 

(Struntz et al., 2004) it was hypothesized that blubber’s contribution to buoyancy may 

vary across developmental stages in bottlenose dolphins.  Specifically, it was predicted 

that neonatal blubber may be specialized to contribute relatively more to positive 

buoyancy than in adult dolphins.  Instead, blubber contributed to neutral buoyancy across 

all non-emaciated life history categories.  In fetal animals, neutral buoyancy may be 

important to prevent a large influence on the mother’s overall buoyancy.  In neonatal 

animals, blubber is still growing and doesn’t achieve maximal lipid content or adult 

thickness until later developmental stages (Dunkin, 2004; Struntz et al., 2004).  Neonatal 

blubber may, thus, be neutrally buoyant simply as a result of an insufficient amount of 

time since birth to increase blubber volume and lipid.  Additionally, because a neonatal 

animal must spend a significant amount of time nursing and swimming along side its 

mother (Gubbins et al., 1999; Weihs, 2003), neutral buoyancy may reduce the energetic 

cost of maintaining this position underwater.  The observation that a young animal was 

unable to control its position in the water column until six months of age (Cockroft and 

Ross, 1990) may, thus, be the result of changes in the developing lung or the animal’s 

ability to finely control its lung volume, rather than changes in blubbers density.   
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Between the juvenile, sub-adult, and adult life history categories, there was a non-

significant decline in blubber lipid content which was correlated with a non-significant 

increase in blubber density.  Despite an over three-fold increase in blubber volume 

between juveniles and adults, blubber’s contribution to buoyancy remained neutral.  

Indeed, neutral buoyancy appeared to be tightly constrained across all non-pregnant, non-

emaciated life history categories.  Neutral buoyancy may be especially important once 

nutritional independence is achieved.  At this stage in development, bottlenose dolphins 

achieve the aerobic dive capacity of adults, and, thus, are likely to spend more time at 

depth (Noren et al., 2002).  During horizontal swimming, neutral blubber buoyancy 

avoids the locomotor cost that would otherwise be incurred overcoming a vertical 

positive or negative buoyant force (Lovvern and Jones, 1991).  During diving, dolphins 

utilize the progressive decrease in buoyant force associated with decreasing lung volume 

to periodically glide, rather than actively swim, and, thus reduce their locomotor cost 

(Skrovan et al., 1999; Williams, 2001; Williams et al., 2000).  Blubber, unlike air in the 

lungs, maintains a constant volume and, thus, its contribution to buoyancy will remain 

static regardless of depth.  If blubber, for example, contributed to positive buoyancy, the 

depth at which the animal achieved neutral buoyancy would increase and, thus, 

opportunities to glide would diminish.  In sub-adult and adult dolphins, blubber’s neutral 

buoyant force may represent an adaptation for maximizing locomotor efficiency during 

both horizontal swimming and vertical diving.   

Although blubber volume remained similar between adults and pregnant females, 

blubber lipid content was higher and density lower, in pregnant females.  The positive 

buoyant force of trunk blubber of the pregnant female was also more than four times 
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higher than that of adult animals.  In a pregnant animal, blubber’s contribution to positive 

buoyancy may incur an additional locomotor cost during both swimming and diving.   

Emaciation had the most profound effect on blubber’s lipid content, density, 

volume, and, thus, buoyant force.  The trunk blubber of emaciated animals was twelve 

times more negatively buoyant than that of adults.  A wide degree of variation was 

observed in blubber’s contribution to buoyancy, though, in emaciated animals.  For 

example, trunk blubber density varied from near normal adult values to as high as 1245 

kg/m3.  Similarly, the two animals for which trunk blubber buoyant force was calculated 

ranged from –6 to –45 N.  This last value is similar to the buoyant force recorded for the 

integument of a manatee (Trichechus manatus latirostris), which is hypothesized to rely 

on negative buoyancy to maintain its position on the sea floor at shallow depths (Kipps et 

al., 2002; Taylor, 1994).  Such a decrease from neutral buoyancy may substantially 

increase the cost of locomotion (Lovvorn and Jones, 1991) in a tetrapod that controls its 

position in the water hydrodynamically. Thus, there is the potential for a positive 

feedback loop in animals of poor nutritional status, in which increasingly more energy 

must be expended to compensate for decreased buoyancy.  This increased energy 

expenditure may deplete lipid stores, which may further decrease blubber’s buoyant 

force. 

Comparisons Across Body Sites 

 The densities of blubber from the trunk and tailstock body regions were 

statistically similar.  There were however, significant differences in the pattern of blubber 

volume growth between these body regions.  Blubber volume in the trunk region, which 

has been suggested to be a more metabolically active site of blubber deposition and 
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mobilization (Koopman, 1998; Koopman et al., 1996), increased steadily and 

significantly between fetal and adult life history categories.  The volume of tailstock 

blubber, which has been described as primarily structural and less metabolically active 

(Hamilton et al., in press; Koopman, 1998; Koopman et al., 1996; Pabst et al., 1999a), 

also increased across fetal through sub-adult animals, but the magnitude of this increase 

was small in comparison to that observed between sub-adults and adults, a phase in 

which bottlenose dolphins are known to undergo a period of rapid growth (Read et al., 

1993).  Read et al. (1993) commented that the growth spurt observed in sub-adult animals 

is primarily the result of increases in girth and body mass.  The results of this study 

indicate that these increases in girth and body mass may largely be a result of rapid 

blubber growth in the tailstock region.   

The buoyant force of blubber from the tailstock was similar across all life history 

categories, including emaciated animals.  There was also less variation within life history 

categories in the buoyant force of tailstock blubber.  The absence of a significant 

decrease in blubber density, or large changes in volume or buoyant force of tailstock 

blubber in emaciated animals, further supports the characterization of this blubber as a 

primarily structural tissue.     

Summary 

 Despite significant differences in lipid content and blubber volume, across life 

history categories of bottlenose dolphins, blubber’s contribution to buoyancy remains 

neutral.  Thus, neonatal animals do not possess blubber that is specialized to contribute to 

positive buoyancy.  Rather, these young animals appear to utilize the same strategy as 

adults, controlling their position in the water column with hydrodynamic, rather than 

62 62



 

hydrostatic mechanisms of buoyancy control.  Because this body compartment makes up 

nearly a quarter of total body mass, it may be essential for this tissue to be neutrally 

buoyant.   
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