
QUANTIZATION USING PERMUTATON CODES WITH A UNIFORM
SOURCE

C. Wayne Martin

A Thesis Submitted to the
University of North Carolina at Wilmington in Partial Fulfillment

Of the Requirements for the Degree of
Master of Science

Department of Mathematics and Statistics

University of North Carolina at Wilmington

2003

Approved by

Advisory Committee

Dr. Matthew TenHuisen Dr. Mark Lammers

Dr. John Karlof
Chair

Accepted by

Dean, Graduate School

This thesis has been prepared in the style and format

consistent with the journal

IEEE Transactions on Information Theory.

TABLE OF CONTENTS

ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 Introduction . 1

1.1 Motivation . 1

1.2 Literature Overview . 3

1.3 Thesis Contribution and Overview 4

2 Quantization And Coding . 5

2.1 Source Signals . 5

2.2 Quantization . 5

2.3 Binary Codes . 10

2.4 Binary Coding . 11

3 Encoding With Permutation Codes . 16

3.1 Code Structures . 18

3.2 Nearest Neighbor Encoding . 18

3.3 Optimal Code Design . 21

3.4 Code Design Algorithm . 23

3.5 An Algorithm For Generating Good Permutation Codes 24

4 Permutation Codes For The Uniform Source 25

4.1 Algorithm . 26

4.2 Results . 32

4.3 Numerical Simulation . 32

4.4 Conclusions . 33

iii

ABSTRACT

Permutation coding is a block coding/quantization scheme where the codebook is comprised

entirely of permutations of a single starting vector. Permutation codes for the uniform

source are developed using a simple algorithm. The performance of these codes is com-

pared against scalar codes and permutation codes developed by different methodologies. It

is shown that the algorithm produces codes as good as other more complex methods. Theo-

retical predictions of code design parameters and code performance is verified by numerical

simulations.

iv

ACKNOWLEDGMENTS

We would like to thank Dr. Karlof, Dr. Lammers, and Dr. TenHuisen for their help with

this thesis.

v

LIST OF TABLES

1 Results from Example ?? . 14

2 Results from Example 5 . 28

3 Results from Example 6 Step 4 . 34

4 Results from Example 6 step 6 . 35

5 Results from Example 6 step 8 . 36

6 Results from Example 6 step 4a . 37

7 Results from Example 6 step 6a . 38

8 Sequence of ni sets from Example 6. 39

9 Permutation Code parameters for n = 20 . 42

10 Numerical Simulation using the Uniform Source. n = 20, k = 3, n1 =

6, n2 = 8, n3 = 6, u1 = .333, u2 = 0.0, u3 = −.333 43

vi

LIST OF FIGURES

1 A Simple Model for Source Encoding . 2

2 Detailed Communication Model . 6

3 A Uniform Quantizer . 9

4 A Code Tree for {00, 01, 10, 110, 111} . 12

5 Performance of Permutation Codes with n = 20 Compared to ECSQ 40

6 Performance of Permutation Codes with n = 20 Compared to Goyal codes . 41

vii

1 Introduction

Permutation coding is a block coding/quantization scheme where the codebook is comprised

entirely of permutations of a single starting vector. The structure of the codebook allows

optimal(nearest neighbor) encoding based on an ordering relationship between n output

samples of a source.

1.1 Motivation

The process of converting a stream of analog or high-rate discrete data into a data stream

with lower rate for transmission is called data compression or source coding. A simple

communication model using source coding is shown in figure 1. Here, a source generates

a data sequence Xi that is compressed by the source encoder and then this compresssed

data E(Xi) is sent through the channel. Here we will assume a noiseless channel. Finally,

the transmitted data is decoded by the source decoder D and the recovered data X∗ =

D(E(Xi)) is passed to the receiver. One channel property is that there is an upper bound

to the number of bits per second that can be correctly transmitted. This bound is called

the channel capacity. The source-coding block reduces the number of bits per second with

which the input signal is represented, to a number low enough for transmission. The reduced

rate signal is called the source-coded signal. Generally, however, source-coding changes the

signal, which results in signal distortion.

There are two main types of source coding. The first is called lossless coding where the

reconstructed data has to match the original. Many applications, however, do not require

a perfect match but rather a match within some constraints. Telephone communication

would be such an application. This second case is called lossy data compression. Our

studies will only consider lossy data compression

Scalar quantization is the simplest method for the lossy coding of an information source

with real-valued outputs. A scalar quantizer maps each output of the source(usually an

infinite number) to one of finitely many quantizer output values. Quantizer outputs can

Figure 1: A Simple Model for Source Encoding

2

be futher encoded using variable length(entropy coding) to improve performance where

implementation complexity is important. For this reason, entropy coded scalar quantization

is used in moble communication, where simplicity is important.

The negative aspect to scalar quantization is that a variable-length code must be used

to achieve a bit rate that only slightly exceeds the quantizer entropy. Additionally, very

accurate reproduction requires the quantizer to have many different levels, some of which

are more probable than others. This requires that certain words in the variable-length

code have to be much longer than others which creates difficult instrumentation problems.

Vector quantizers, having a fixed block length provide an alternative to these variable length

scalar codes.

The two main performance characteristics of a quantizer Q are its distortion and rate.

The distortion D(Q) is the average difference between the source and the quantizer output.

For fixed-rate quantization, the rate is defined to be the log2 of the number of possible

outouts. For entropy coding the rate is defined as the entropy H(Q) of the output of Q

and is described as entropy-constrained quantization. The coding design probem becomes

the minimization of both H(Q) and D(Q), realizing that they are inversely related.

1.2 Literature Overview

The concept of permutation codes was first studied by Slepian[1] in 1965 as a form of channel

coding called permutation modulation. Development of permutation codes for more general

sources and distortion measures was due to Berger et al [2, 3] in 1972. He developed on

algorithm for generating good codes and applied the algorithm to a Gaussian source. He

then showed how permutation codes could be made equalivant to entropy-constrained scalar

quantizers (ECSQ) as the permutation codes approached an infinite length. A key result by

Berger was the equivalence between ECSQ and permutation codes. Here he asserts, without

proof that no permutation code can perform better than an optimal ECSQ. Townes[6] used

Bergers’ algorithm to study optimal codes for the Laplacian source in 1984. He studied

3

their performance both theoretically and by simulation. In 2000, Gyorgy[7] studied optimal

ECSQ for a wide class of distortion measures. One result was a parametric representation

of the optimal distortion-rate function for the uniform source. Permutation codes for the

uniform souce was further studied by Goyal[8] in 2001. His main result was to exhibit a

set of permutation codes for the uniform source that cannot be equaled with ECSQ. This

result contradicts the assertion by Berger[2].

1.3 Thesis Contribution and Overview

In section 2, we introduce the general concept of quantization[4, 7, 9]. A detailed communi-

cation model[7] is presented along with applicable source signals[9]. Both scalar and vector

quantization is described with performance measures[4]. Fixed length and variable length

binary codes are presented with performance measures[9]

Section 3 includes the detailed theory for optimal permutation code design[1, 2]. We

start by describing the structure of permutation codes[2]. A theorem is presented and

proved for optimum nearest neighbor encoding by use of a simple algorithm[1]. Finally, the

theory of optimal code design is developed along with an algorithm for easily generating

good permutation codes[2].

Section 4 provides the detailed results of our studies. First we expand on previous studies

by developing optimal permutation codes using the Berger algorithm[2] for the uniform

source. We compare these our results to codes generated by Goyal[8] and to the optimal

distortion-rate function for ECSQ derived by Gyorgy[7]. Using the Berger algorithm[2],

we identify codes that perform better than ECSQ, which also condradicts the Berger[2]

assertion. Finally, we study the theoretical performance of permutation codes and verify

their performance through numerical simulation.

2 Quantization And Coding

A more detailed view of our communication model is shown in figure 2. Here the source

encoder E and decoder D are futher subdivided into two parts. First E1 : S −→ {1, . . . , N}

maps the quantizer input X to a unique index value, I. Then the generated index I

is encoded by the uniquely decodable code E2 : {1, . . . , N} −→ {0, 1}∗ to a sequence

of bits {bi}, where {0, 1}∗ denotes the set of all binary sequences of finite length. Let

B = {E2(I) : I ∈ {0, . . . , N}} be the range of E2. After transmission through the channel,

D2 : B −→ {1, . . . , N} decodes the orginal index value, and finally D1 : {1, . . . , N} −→

{c1, . . . , cN} calculates the quantizer output

Q(X) = D1(D2(E2(E1(X)))).

2.1 Source Signals

Our studies consider real-valued continuous-time. Mathematically, these signal are func-

tions of time and are denoted as x(t) where t ∈ < and x(t) ∈ <. Another name for these

signals is analog signals. Sampling is then used to convert the real-valued continuous-time

signals into real-valued discrete-time signals, denoted as x[n]. Here n ∈ < and x[n] ∈ <.

The parameter n represents time and corresponds to an instant nTs where Ts represents

the sampling period.

The input signal for source-coding is generally not know in advance, however, many

times there is knowledge of the source statistics such as probability density functions and

spectral densities.

2.2 Quantization

Block E1 in figure 2 represents the quantizer. The dictionary(Random House) defines

quantization as the division of a quantity into a discrete number of small parts, often

assumed to be integral multiples of a common quantity. One of the simplest examples of

5

Figure 2: Detailed Communication Model

6

quantization is rounding off. For example, any real number x can be rounded off to the

nearest integer.

Definition 1 [7]A k-dimensional N-point quantizer Q is a mapping of a subset S of the k-

dimensional Euclidean space Rk into a finite or countably infinite set of distinct k-dimensional

real vectors {c1, . . . , cN} ⊂ <
k called the codebook of Q. The elements of the codebook, ci

are called the codepoints(codewords) of Q and the associated sets Si = {x : Q(x) = ci}, i =

1, . . . , N are called the quantization cells of Q.

The quality of a quantizer is measured by the goodness of the resulting reproduction in

comparison to the original. One way of accomplishing this is to define a distortion measure

d(x, x̂) where d(·, ·) is a nonnegative measurable function of two real variables. Thus, the

smaller average distortion means a higher quality quantizer.

Definition 2 [7]The distortion D of a quantizer is the expectation

D(Q) = E[d(X,Q(X))]

=
∫

S
d(x,Q(x))µx (dx) (1)

where µx is the probability distribution(pdf) corresponding to the random variable X.

The most common distortion measure is the square error d(x, x̂) = |x − x̂|2. This

measure will be used exclusively in our studies.

We wish to have the average distortion as small as possible. Negligible distortion can

be achieved by letting the cells become numerous and small. There is, however, a cost in

terms of the number of bits required to describe the quantizer output to an encoder. Arbi-

trarily reliable reproduction is not generally possible for digitial storage and communication

systems.

7

A simple method for quantifying this cost is to assume the quantizer ‘codes’ an input x

into a binary representation or channel codeword with an index i. If there are N possible

levels and all of the binary codewords have equal length(temporary assumption), the binary

vectors will need log N (or the next larger interger) bits.

The case of k = 1 is called scalar quantization and we assume that S = (σ, τ) is an

interval of the real line <. The codepoints ci and the associated cells Si = {x : Q(x) =

ci}, i = 1, . . . , N completely characterize Q since {Si} forms a partition of S and

Q(x) = ci ←→ x ∈ Si.

Thus the cells are disjoint and
⋃

Si = S. The cells might take the form Si = (ai−1, ai)

where the ai’s are called the thresholds and form an increasing sequence. The width of

the cell Si is its length, ai − ai−1. A quantizer is called uniform[4], if all the levels ci, are

equispaced apart(say ∆) and the thresholds ai, are midway between the adjacent cell walls.

An example of a uniform scalar quantizer with cell width ∆ and N = 4 levels is given in

figure 3.

The centroid is defined as the average value of all the inputs which fall within the cell.

If the walls of the cells and the probability distribution of the input values are known,

the centroid can be determined exactly. For the special case of a uniform probability

distribution, the centroid will be located at the Euclidean center of the cell. Ideally, the

output codeword associated with a given cell is optimal for that cell. A cell’s optimal value

is its centroid.

Scalar quantization is simply the mapping of an infinite number of input values x into

a finite number of output values, y:

Q : x −→ y

8

Figure 3: A Uniform Quantizer

9

Scalar quantization is often referred to simply as quantization, even though it is in fact a

special case of quantization.

Vector quantization is simply a quantizer with k > 1. Vector quantization is just

like scalar quantization except all the components of a vector, of say k successive source

samples, are quantized simultaneously. They are thus characterized by a k-dimensional

partition containing codevectors(codewords).

Vector quantization is a generalization of scalar quantization to higher dimensions. This

generalization opens up a wide range of possibilities and techniques not present in the scalar

case. Unlike scalar quantization, vector quantization is usually applied to signal that have

already been digitized.

2.3 Binary Codes

A list of codewords A1, . . . , AN , consisting of vectors of the the binary symbols 0 and 1 is

called a binary code with N codewords.

The number of zeros and ones in a codeword is the codeword length. A concatenation

of codewords is called a message. Useful transmission systems require that every message

can be uniquely decoded. Binary codes may be either fixed or variable length. Fixed length

codes are always uniquely decodable, while variable length codes may or may not be. For

a uniquely decodable code, there cannot exist a binary sequence that can be written as the

concatenation of two different sequences of codewords.

Example 1 The list 1111, 1110, 110, 10, 00, 010, 0110 is a binary code with alphabet {0, 1}.

Example 2 Consider the code {A1, A2, A3} = {0, 01, 10}. The message 010 can be decoded

as A1A3 or as A2A1. Thus the code {A1, A2, A3} is not uniquely decodable.

Uniquely decodable variable length codes correspond to the terminal nodes of a binary

tree. Figure 4 shows this for the code {00, 01, 10, 110, 111}. To begin decoding we first

start with the root Λ of the tree. If the first symbol is a zero we follow the upper branch

10

to the node 0, otherwise we follow the lower branch to node 1. If, for example, the first

symbol was a one and next the symbol is a zero, we proceed from node 1 to node 10 and

so on. Finally we arrive at a terminal node which represents the received codeword. The

procedure for the next codeword begins again at the root.

2.4 Binary Coding

The purpose of the coding block(E2 in figure 2) is to map the quantizer-output symbols

on to binary codewords and to reduce the bit rate to one below [log2(N)] bits per symbol.

Here, N is the number of distinct quantizer-output symbols.

If the output of the quantizer is encoded with fixed length codewords, the resulting

mapping is called a fixed rate quantizer. Coding of the N different samples then requires at

least log2 N binary bits. These symbols represent k random variables and the rate is given

by

Rf =
1

k
log2 N. (2)

An N -point fixed-rate quantizer is called optimal if it has the lowest possible distortion

amoung all N -point quantizers.

Definition 3 [7]A fixed-rate quantizer Q* is an optimal N-point quantizer if Q* has N

codepoints and

D(Q∗) = inf{D(Q) : Q is an N-point quantizer}.

Quantizers using variable length encoding(entropy coding) can achieve futher compres-

sion. Assigning equal numbers of bits to all quantization cells is wasteful if the cells have

unequal probabilities. The number of bits produced by entropy coding will, on the average,

be smaller if shorter binary codewords are assigned to higher probability cells. Assume that

the codeword Ai with length si is assigned to ai. The probability of ai is pi and the average

11

Figure 4: A Code Tree for {00, 01, 10, 110, 111}

12

codeword length is given by

s̄ =
N
∑

i=1

pisi. (3)

The lowest average bit rate is achieved with the code that gives the smallest s̄ for the given

source. The following example compares the performance of the variable length code from

figure 4 and a comparable fixed length code.

Example 3 Consider a source producing symbols {a1, a2, a3, a4, a5}, with corresponding

probabilities of {0.30, 0.25, 0.25, 0.10, 0.10}. The probabilities and codes are shown in table

1. Here we see that the average codeword length of 2.2 for the variable length code is a

significant improvement over the fixed length code of 3.0.

Variable rate coding requires a new definition of rate. For variable-rate coding, the rate

is no longer defined as the logarithm of the codebook size. Rather, the instantaneous rate

for a given input is the number of binary symbols in the binary codeword(the length of the

binary codeword). Then the rate is the average length of the binary codewords, where the

average is taken over the probability distributation of the source samples.

Now consider a source producing symbols a1, · · · aM with probabilities p1, · · · pM . For

example, these symbols could be the output of a quantizer Q. Next consider a sequence

of N symbols q[i], i = 0, · · · , N − 1, with N >> 1 where each q[i] equals an aj. In this

sequence a symbol aj occurs approximately Npj times. If it is assumed that each symbol

aj occurs precisely Npj times, then the number of possible sequences is given by

K =
N !

(Np1)! . . . (NpM)!
. (4)

If all K possible sequences are coded with binary codewords, the codewords must consist

13

Table 1: Results from Example 3

ai pi variable code fixed code

a1 .30 00 000
a2 .25 01 001
a3 .25 10 010
a4 .10 110 011
a5 .10 111 100

s̄ = 2.2 s̄ = 3.0

14

of B bits such that

2B =
N !

(Np1)! . . . (NpM)!
(5)

or

B = log2

(

N !

(Np1)! . . . (NpM)!

)

. (6)

By applying Stirling’s approximation

log(n!) ' n log(n), (7)

B '
log(N !)

log(2)
−

(

log((Np1)!)

log(2)
+ . . . +

log((NpM)!)

log(2)

)

(8)

log(2)B ' log(N !)− [(log((Np1)!) + . . . + log((NpM)!)] (9)

log(2)B ' N log(N)− [(Np1 log(Np1)) + . . . + (NpM log(NpM))] (10)

log(2)B

N
' log(N)− (p1 log(Np1)) + . . . + (pM log(NpM)) (11)

log(2)B

N
' log(N)− (p1 log(N))− (p1 log(p1))− . . .

−(pM log(N)− (pM log(pM)). (12)

Noting that
M
∑

j=1

pM = 1,
M
∑

j=1

pM log(N) = log(N),

15

we conclude with the following definition.

Definition 4 [9]The expression

B

N
' −

M
∑

j=1

pj log2(pj) ≡ H(Q[i]) (13)

defines the entropy per symbol H(Q[i]) of the source producing the sequence Q[i], i =

0 . . . N − 1.

Entropy is a useful measure that quantifies the amount of information a signal contains.

The entropy is the lower bound for the number of bits per second needed to code a discrete

souce. A quantizer designed to provide the smallest average distortion subject to an entropy

constraint is called an entropy-constrained scalar quantizer(ECSQ).

One problem with variable rate quantization is the necessity of dealing with the variable

numbers of bits that it produces. This means that when communicating over a fixed rate

channel, buffer overflows and underflows will have to be addressed by additional instrumen-

tation.

In summary, the goal is to quantize and code the source data with a specific probablity

distribution function, into a few binary bits as possible with the least distortion.

3 Encoding With Permutation Codes

Permutation coding is a vector block coding/quantization technique based on the ordering

relationship between n output samples of the source. The structure of the codebook allows

efficient optimal(nearest neighbor) encoding. Our studies consider real-valued continuous-

time signals.

Consider a discrete time information source emitting a sequence of real random vari-

ables Xk, k = 1, 2, · · ·. These source outputs do not have to be identically distributed or

independent. We are concerned with block coding(block quantizing) of an n dimensional

random vector from this sequence. That is

zi = (X(i−1)n+1 · · ·Xin) = (x(i−1)n+1 · · · xin) (14)

where

Xj = xi. (15)

A fixed-rate vector quantizer assigns the random vector z = (x1, x2, · · · xn) in <n with an

element of the codebook y = (y1, y2, · · · yn), from the set of M n-vectors in our codebook

B.

Thus, the infinite set of n-vectors produced by the source is mapped into the finite set

B. When vector z is emmited by the source, the codeword y ∈ B, which minimizes some

distortion measure d(z,y) is chosen to represent z. The per-letter average distortion of the

code B is

D = n−1E
[

min
y∈B

d(z, y)
]

(16)

where the expected value(E) is taken with respect to to the distribution of z.

There are many different distortion measures possible. The one most common the one

used here is the mean square error(MSE) measure. The per-output MSE distortion measure

is then

d(z,y) = n−1
n
∑

i=1

(zi − yi)
2. (17)

The complexity of optimal encoding can grow very quickly with the dimension n. This

encoding is generally implemented with an exhaustive search for the nearest neighbor code-

word.

17

3.1 Code Structures

With permutation codes, the codebook is either all unique permutations of the initial vector

y1 (Variant I) or the unique permutations combined with all unique sign choices(Variant II).

Here, we will only consider Variant I codes. The first codeword in a Variant I permutation

code is an n-vector of the form

← n1 → ← n2 → ← nk →

y1 = (u1 , u1 · · · , u1 , u2 , u2 , · · · , u2 , uk , · · · , uk) (18)

where the ui and k are real numbers with u1 < u2 · · · < uk and the ni are positive integers

such that

n1 + n2 + · · · , nk = n. (19)

The remaining M − 1 codewords in B are all of the unique words obtained by permuting

the components of y1. Thus there are a total of

M =
n!

n1! n2! · · ·nk!
(20)

codewords. The rate of the code(in bits/sample) is then given by

R = n−1 log2 M. (21)

3.2 Nearest Neighbor Encoding

Suppose we wish to encode a vector Z with a codebook B = {Yj, j = 1, 2, · · · ,M}. The

ideal(nearest neighbor) encoder asserts that Yj is the optimal codeword that minimizes

d2
j = |Z−Yj|

2 = |Z|2 + |Yj|
2 − 2Z ·Yj.

18

The encoder seeks to find the vector Y of the codebook, B, which maximizes the quantity

Z ·Y =
n
∑

l=1

zlyl. (22)

Theorem 1 [1]Consider a block distortion measure with the form

d(x ,y) =
n
∑

t=1

(xt − yt)
2

where x = (x1, · · · , xn),y = (y1, · · · , yn). Then optimum encoding of Variant I permutation

codes with respect to d(x ,y) is accomplished by the simple algorithm as follows.

1. Replace the n1 largest componets of x by u1

2. Replace the next n2 largest componets of x by u2

...

3. Replace the nk smallest componets of x by uk

Use the permutation of y1 that results from these replacements to represent x.

Proof Let x1, · · · , xn, z1, · · · , zn be 2n-given real numbers. We wish to show that the sum

(xi)1z1 + (xi)2z2 + · · ·+ (xi)nzn (23)

is maximized under all permutations of i1, · · · , in of the integers 1, 2, · · · , n by pairing the

largest x with the largest z, the second largest x with the second largest z, etc.

We proceed by induction. The statement is trivially true for n = 1. For arbitrary

integral n > 1, let x̄ and z̄ denote respectively a largest xi and zi. If x̄ is not paired with z̄

in the sum (23), then the sum contains the two terms x̄z ′ +x′z̄ with x′ ≤ x̄ and z′ ≤ z̄. If x′

19

and x̄ are interchanged, the new sum will not be less than the old sum since the difference

(x̄z̄ + x′z′)− (x̄z′ + x′z̄) = (x̄− x′)(z̄ − z′) ≥ 0.

There is, therefore, a pairing of the x’s and z’s for which (23) achieves its maximum value

and x̄ is paired with z̄. Delete x̄z̄ from this sum. By the induction hypothesis, the remaining

(n− 1) x’s and (n− 1) z’s can be paired according to size without decreasing the (n− 1)

term sum. QED

Example 4 Consider the permutation code based on the codeword

y1 = (−1, −1, 0, 0, 0, 1, 1).

We then have n = 7, k = 3, n1 = 2, n2 = 3, n3 = 2, u1 = −1, u2 = 0, u3 = −1. There

are

M =
7!

(2!)(2!)(3!)
= 210

codewords. The rate is

R =
log2(210)

7
= 1.10

bits per sample. Then, if a source vector were x = (2.1, −1.2, 0.8, 0.2, 0.0, 0.2, 0.9), the

subsequent codeword to represent x would be cj = (1, −1, 0, 0, −1, 0, 1) since the two

smallest values of x were mapped into −1’s, the three middle values were mapped to 0’s,

20

and the two largest values were mapped to 1’s The resulting distortion from (17) would be

D = [(2.1− 1)2 + (−1.2− (−1))2 + (0.8− 0)2 + (0.2− 0)2

+(0.0− (−1))2 + (0.2− 0)2 + (0.9− 1)2]/7

= 0.4257.

3.3 Optimal Code Design

The permutation code design parameters are the block length n, the number of unique code-

word components k, the number of repetitions {ni}
k

i=1, and the codebook entries themselves

{ui}
k

i=1. We will determine optimal ui’s in terms of order statistics means assuming the

other parameters are fixed. The distortion can then be expressed as a function of the other

parameters. Our design goal is to find permutation codes that minimize distortion for a

given n and a rate of at most R.

Definition 5 [5]If the random variables X1, X2, . . . , Xn are arranged in assending order of

magnitude and then written as

X(1) ≤ X(2) ≤ . . . ≤ X(n),

we call X(i) the ith order statistic (i = 1, 2, . . . n).

Let π be a permutation that puts the random vector z(from (14,15)) in decreasing order

and let (ξ1, ξ2, · · · , ξn) = π(z). The ξ’s are then the order statistics. using the notation

S0 = 0, Si =
i
∑

j=1

nj, i ∈ {1, 2, . . . , k} (24)

the optimal encoder from theorem 1, replaces ξj with ui for j = Si−1 + 1, Si−1 + 2, . . . , Si.

Thus the distortion(from (17)) incurred by the optimal encoder is

D = n−1E





k
∑

i=1

si
∑

j=si−1+1

(ξj − ui)
2



 . (25)

21

Expanding (25) and noting that

n
∑

k=1

ξ2
k =

n
∑

k=1

X2
k (26)

results in

nD = E





k
∑

i=1

Si
∑

j=Si−1+1

(ξj)
2



−
k
∑

i=1

Si
∑

j=Si−1+1

2uiE[ξj] +
k
∑

i=1

Si
∑

j=Si−1+1

(ui)
2

= E

[

n
∑

i=1

(Xi)
2

]

− 2
k
∑

i=1

ui

Si
∑

j=Si−1+1

E[ξj] +
k
∑

i=1

niu
2
i . (27)

Next we differentate D with respect to ui set the result equal to zero and solve for ui.

d(nD)

d(ui)
= −2

Si
∑

j=Si−1+1

E[ξj] + 2niui = 0

ui = n−1
i

si
∑

j=si−1+1

E(ξj). (28)

Substiting uini =
∑Si

j=Si−1+1 E[ξj] into (27) yields

nD = E

[

n
∑

i=1

X2
i

]

− 2
k
∑

i=1

ui(uini) +
k
∑

i=1

niu
2
i

D = n−1



E





n
∑

j=1

X2
j



−
k
∑

i=1

niu
2
i



 . (29)

The derivation of (28) and (29) did not assume the Xk to be statistically independent

or identically distributed. However, when the components of z are highly dependent, per-

22

mutation codes perform relatively poorly even when optimum ui are used. It is easy to

encode permutation codes optimumally, even with large n. Therefore, it is desireable to

have a method for generating optimum codes of a specified rate with n � 1. When n is

large, however, there are many ways in which K and the group sizes(ni) can be chosen so

that the code rate R closely approximates a specified value.

3.4 Code Design Algorithm

Berger [2] developed an algorithm that searches for the values of k and n1, n2, · · · , nk that

minimizes D given in (29) for a specified rate and block length. This algorithm is derived

as follows. Define

pi =
ni

n
, i = 1, 2, · · · , k. (30)

Then, if each ni is large, we can use Stirling’s formula(log(n!) ' n log(n)) to approximate

the rate R by

R ≈ R̂ ≡ −
k
∑

i=1

pi log2 pi. (31)

Futhermore, the MSE for the optimum ui of (28) is given exactly by

D = n−1E

[

n
∑

i=1

(Xi)
2

]

−
k
∑

i=1

piu
2
i . (32)

Treating (31) as an equality, we can minimize D with respect to p1, p2, · · · , pK , subject

to the rate constraint. The resulting pi are

pi =
2−βu2

i

∑k
j=1 2−βu2

j

(33)

where β is chosen so that R̂ of (31) equals some specified rate value R∗.

23

We do not have an analytic solution for the best ni for three reasons. First, although

ni = npi according to (30), npi usually is not an integer. Second, each pi depends on all the

ui each of which is a complex function of all the ni per (19) and (28). Finally, the above

procedure assumes that k is known. The procedure temporarily holds k fixed. Then we

iterate (28), (33), and(30) in that order until the same {ni} set appears on two successive

iterations. A detailed description of this algorithm is contained in appendix I.

3.5 An Algorithm For Generating Good Permutation Codes

1. Input n, R∗, and Eξj for j = 1, · · · , n

2. Set k equal to the smallest odd integer whose base 2 log exceeds R∗

3. Set β = 1 and make the integers ni i = 1, · · · , k, approximately equal

4. compute u1, u2, · · · , uk from (28)

5. Evaluate the pi by (33). Adjust β until (31) is satisfied for R̂ = R∗

6. Compute the new ni as the closest integers to npi such that
∑k

i=1 ni = n

7. If ni = 0 for any i, proceed to step 11

8. If the new and old ni agree for all i, proceed to step 9, otherwise return to step 4

9. Store n1, · · ·, nk, D and the exact value of R calulated from (20) and (21)

10. Replace k with k+2, reduce the largest ni by 2. Relabel ni as ni+1 for i = 1, · · · , k−2,

and put n1 = nk = 1. Return to step 4.

11. Print {ni}, R and D stored in step 9. Go to step 13 unless k is odd

12. Set k equal to the smallest even integer whose base 2 log exceeds R∗ and return to

step 3

13. Stop

4 Permutation Codes For The Uniform Source

The purpose of our studies is first to apply the Berger[2] algorithm to generate permutation

codes for a source with a uniform density and compare the results to other similar studies.

Berger applied his algorithm to sources with the Gaussian distribution while Townes[6]

applied the algorithm to sources with a Laplacian density. Goyal[8] studied permutation

codes for the uniform source, but he used other methodologies for code generation. To

our knowledge, no one has used the Berger algorithm to generate permutation codes with

a uniform density source. We use Maple code to perform our alorithm calculations. Our

second purpose is to provide additional counterexamples that contradict the Berger asser-

tion that no permutation code can perform better than an optimal ECSQ. Goyal[8] was

the first to identify such a counterexample, however, we produce similar results using the

Berger algorithm to generate the codes. Our final purpose is to compare the theoretical

performance of permutation codes with numerical simulations.

Definition 6 [10]The uniform density on [a, b] is defined by

f(x) =















1/(b− a) if a ≤ x ≤ b,

0 otherwise.

The uniform density was chosen because of the simplicity of its order statistics which

allows application of the theoretical models while still providing reasonable results with

comparable data.

To begin our analysis, consider an information source emitting a sequence of randon vari-

ables {xk, k = 1, 2, . . .}, each uniformly distributed over the interval [− 1
2
, 1

2
] The expected

value of the jth order statistic for a sample block length of n is given by Goyal[8]

E[ξj] =
n + 1− 2j

2(n + 1)
, j = 1, 2, . . . , n. (34)

25

Order statistics are usually sorted smallest-to-largest, but we use the reverse order for

consistency with other studies of permutation codes.

Example 5 Consider a sample of block length 6 from our uniform source. The expected

value of the order statistics are shown in table 2.

4.1 Algorithm

The theoretical performance of the permutation code for this source is given by its rate

from (21) and distortion from (25). The rate(R) is a function of the block sample length

n and the nis while the distortion(D) is a function of the nis and the order statistics.

The goal then, is to find the set {k, n1 . . . , nk} such that the distortion is minimized for a

specified rate. One can find the best code for a specific rate by an exhaustive search of all

possibilities, but as the block length grows, the practically of this method decreases. The

method we use to search for good codes is the algorithm described in section 3 implemented

using the Maple code.

Example 6 Implementation of Algorithm

Step 1:

Let n(variable nt) = 20, R∗(variable rs) = 3.0 and calculate Eξj(variable E) from (34)

rs:=3: nt:=20:

for t from 1 by 1 while t<=nt do

E[t]:=(nt+1-2*t)/(2*(nt+1));

od:

Step 2:

Set k(variable k) equal to the smallest odd integer whose base 2 log exceeds R*

k:=9:

26

27

Table 2: Results from Example 5

j E[ξj]

1 .357
2 .214
3 .071
4 -.071
5 -.214
6 -.357

28

Step 3:

Set β(variable b) = 1 and n1 · · ·nk(variable n) approximately equal

b:=1:

n:=array(1..k,[2,2,2,2,3,3,2,2,2]):

step 4:

Compute u1 · · · uk(variable u) from (24,28)

for t from 1 by 1 while t<=k do

s[t]:=sum(’n[j]’,’j’=1..t);

od:

for t from 1 by 1 while t<=k do

u[t]:=(1/n[t])*sum(’E[j]’,’j’=s[t-1]+1..s[t]):

od:

Results are shown on table 3

Step 5:

Evaluate pi(variable p) by (33). Adjust β until (31) is satisfied for R̂−R∗ < 0.1 or 100

iterations.

for f from 1 by 1 while f<100 do

rdold:=rd:

b:=b+1:

for t from 1 by 1 while t<=k do

29

p[t]:=evalf((2^(-b*u[t]^2)/sum(’2^(-b*u[j]^2)’,j=1..k)));

od;

r:=-sum(’p[j]*log[2](p[j])’,j=1..k);

delta:=rs-r;

if abs(delta)<.1 then f:=100 fi;

od:

Step 6:

Compute the new ni as the closest intergers to npi. The results are shown on table 4

Step 7:

ni > 0, continue with step 8.

Step 8:

New and old ni do not agree, repeat steps 4 thru 6. The results are shown on table 5.

Step 7a:

ni > 0, continue with step 8.

Step 8a:

New and old ni agree, proceed to step 9.

Step 9:

ni. · · · , nk = [1, 2, 3, 3, 3, 3, 2, 2, 1], d = .009013605442, r = 2.386876696

Step 10:

k = 11, ni, · · · , nk = [1, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1] return to step 4.

step 4a:

Compute u1 · · · uk(variable u) from (24,28)

for t from 1 by 1 while t<=k do

s[t]:=sum(’n[j]’,’j’=1..t);

od:

30

for t from 1 by 1 while t<=k do

u[t]:=(1/n[t])*sum(’E[j]’,’j’=s[t-1]+1..s[t]):

od:

The results are shown on table 6.

Step 5a:

Evaluate pi(variable p) by (33). Adjust β until (31) is satisfied for R̂−R∗ < 0.1 or 100

iterations.

for f from 1 by 1 while f<100 do

rdold:=rd:

b:=b+1:

for t from 1 by 1 while t<=k do

p[t]:=evalf((2^(-b*u[t]^2)/sum(’2^(-b*u[j]^2)’,j=1..k)));

od;

r:=-sum(’p[j]*log[2](p[j])’,j=1..k);

delta:=rs-r;

if abs(delta)<.1 then f:=100 fi;

od:

Step 6a:

Compute the new ni as the closest intergers to npi. The results are shown on table 7.

Step 7b:

n1 = n11 = 0, stop.

Table 8 provides the sequence of ni sets for the example(n = 20, r = 3.0, k = odd) .

31

4.2 Results

The performance of permutation codes obtained from this algorithm and using a block

length of n = 20 is compared against the perfomance of ECSQ[7] and displayed on figure 5.

First we observe our counterexample to the Berger[2] assertion that no permutation code can

perform better than an optimal ECSQ. We note that the algorithm produces codes similar

to or better than ECSQ for rates less than about 1.3. Above this rate, the permutation

code performance diverges from ECSQ and approaches an asymptotic distortion of about

.01 for large rates. These same general results were obtained by Berger[2] for the Gaussian

source and Townes[6] for the Laplacian source. Figure 6 compares our codes to those found

by Goyal[8] where he performed an exhaustive search of all possible codes. Our codes are

seen to be essentially the same, while using the much simpler algorithm search technique.

Parameter values for selected codes are presented in table 9.

4.3 Numerical Simulation

We also performed a numerical simulation using the uniform source for a permutation code

with the parameters of n = 20, k = 3, n1 = 6, n2 = 8, n3 = 6, u1 = .333, u2 =

0.0, u3 = −.333. These results are shown on table 10. Here columns 1 and 2 are the initial

vector and a sorting index. The next three columns represent the encoding process. First

the initial vector is sorted in descending order. Then the uis are applied per theorem 1.

The middle three columns are then resorted on the index to give the encoded vector(last

column). This single sample distortion was calculated to be .0198 using (17). This process

was then repeated 5000 times and the average distortion form these simulations was .0142.

These simulated distortions compare favorably to the theoretical distortion prediction of

.0166 from (25)

32

4.4 Conclusions

We have applied the Berger algorithm to sources with a uniform density. The algorithm

produces codes as good as those from Goyal by using a simpler method. An additional

counterexample to the Berger assertion that no permutation code can perform better than

an optimal ECSQ was found. Theoretical predictions of code design parameters and code

performance was verified by numerical simulations.

33

Table 3: Results from Example 6 Step 4

i si ui

1 2 0.4285714286
2 4 0.3333333333
3 6 0.2380952381
4 8 0.1428571429
5 11 0.2380952381
6 14 -0.1190476190
7 16 -0.2380952381
8 18 -0.3333333333
9 20 -0.4285714286

34

Table 4: Results from Example 6 step 6

i npi new ni

1 1.188505337 1
2 1.777250755 2
3 2.403307744 3
4 2.938888918 3
5 3.280693894 3
6 3.042289516 3
7 2.403307744 2
8 1.777250755 2
9 1.188505337 1

35

Table 5: Results from Example 6 step 8

i npi new ni

1 1.250649448 1
2 1.669416727 2
3 2.42008617 3
4 3.151439132 3
5 3.366498668 3
6 2.950118086 3
7 2.27172559 2
8 1.669416727 2
9 1.250649448 1

36

Table 6: Results from Example 6 step 4a

i si ui

1 1 0.4523809524
2 2 0.4047619048
3 4 0.3333333333
4 6 0.2380952381
5 9 0.1190476190
6 12 -0.02380952381
7 14 -0.1428571429
8 16 -0.2380952381
9 18 -0.3333333333

10 19 -0.4047619048
11 20 -0.4523809524

37

Table 7: Results from Example 6 step 6a

i npi new ni

1 .4281929554 0
2 .6733339860 1
3 1.208260562 1
4 2.209438702 2
5 3.540497298 4
6 4.117130248 4
7 3.303920040 4
8 2.209438702 2
9 1.208260562 1

10 .6733339860 1
11 .4281929554 0

38

Table 8: Sequence of ni sets from Example 6.

k ni

k = 9 2 2 2 2 3 3 2 2 2
1 2 3 3 3 3 2 2 1
1 2 3 3 3 3 2 2 1

k = 11 1 1 2 2 3 3 2 2 2 1 1
0 1 1 2 4 4 4 2 1 1 0

n1 = n9 = 1, n2 = n7 = n8 = 2
n3 = n4 = n5 = n6 = 3

r = 2.386876696, D = 0.009013605442

39

Figure 5: Performance of Permutation Codes with n = 20 Compared to ECSQ

40

Figure 6: Performance of Permutation Codes with n = 20 Compared to Goyal codes

41

Table 9: Permutation Code parameters for n = 20

R D k i ni ui

0.42849278 0.0629 3 1 1 0.452380952
2 18 0
3 1 -0.452380952

0.874763084 0.0266 2 1 10 0.238095238
2 10 -0.238095238

1.339723485 0.0167 3 1 6 0.333333333
2 8 0
3 6 -0.333333333

2.703869196 0.00833 13 1 1 0.452380952
2 1 0.404761905
3 1 0.357142857
4 2 0.285714286
5 2 0.190476191
6 2 0.095238095
7 2 0
8 2 -0.095238095
9 2 -0.190476191
10 2 -0.285714286
11 1 -0.357142857
12 1 -0.404761905
13 1 -0.452380952

42

Table 10: Numerical Simulation using the Uniform Source. n = 20, k = 3, n1 = 6, n2 =
8, n3 = 6, u1 = .333, u2 = 0.0, u3 = −.333

Initial
vector index encoding process encoded vector

v i v i u v i code

-0.1668 1 0.4755 9 0.3333 -0.1668 1 0.0000
-0.4270 2 0.4583 18 0.3333 -0.4270 2 -0.3333
0.3693 3 0.3693 3 0.3333 0.3693 3 0.3333

-0.3072 4 0.3662 15 0.3333 -0.3072 4 0.0000
0.0541 5 0.2116 16 0.3333 0.0541 5 0.0000

-0.0657 6 0.0803 13 0.3333 -0.0657 6 0.0000
-0.0969 7 0.0541 5 0.0000 -0.0969 7 0.0000
-0.1026 8 -0.0657 6 0.0000 -0.1026 8 0.0000
0.4755 9 -0.0969 7 0.0000 0.4755 9 0.3333

-0.1823 10 -0.1026 8 0.0000 -0.1823 10 0.0000
-0.3719 11 -0.1668 1 0.0000 -0.3719 11 -0.3333
-0.2598 12 -0.1823 10 0.0000 -0.2598 12 0.0000
0.0803 13 -0.2598 12 0.0000 0.0803 13 0.3333

-0.3768 14 -0.3072 4 0.0000 -0.3768 14 -0.3333
0.3662 15 -0.3439 17 -0.3333 0.3662 15 0.3333
0.2116 16 -0.3719 11 -0.3333 0.2116 16 0.3333

-0.3439 17 -0.3768 14 -0.3333 -0.3439 17 -0.3333
0.4583 18 -0.3987 19 -0.3333 0.4583 18 0.3333

-0.3987 19 -0.4270 2 -0.3333 -0.3987 19 -0.3333
-0.4459 20 -0.4459 20 -0.3333 -0.4459 20 -0.3333

Single Sample Distortion = 0.0198
5000 Sample Average Distortion = 0.0142

Theoretical Distortion = 0.0166

43

REFERENCES

[1] D. Slepian, ”Permutation modulation,” Proc. IEEE, vol 53, pp. 228-236, March 1965.

[2] T. Berger, F. Jelinek, and J. K. Wolf, ”Permutation codes for sources,” IEEE Trans.

Inform. Theory, vol IT-18, pp. 160-169, January 1972.

[3] T. Berger, ”Optimum quantizers and permutation codes,” IEEE Trans. Inform. The-

ory, vol IT-18, pp. 759-765, November 1972.

[4] R. M. Gray, and D. L. Neuhoff, ”Quantization,” IEEE Trans. Inform. Theory, vol 44,

pp. 2325-2383, October 1998.

[5] H. A. David, Order Statistics, 2nd ed. New York: Wiley, 1982.

[6] S.A. Townes and J. B. O’Neal Jr., ”Permutation codes for the Laplacian source”, IEEE

Trans. Inform. Theory, vol IT-30, pp. 553-559, May 1984.

[7] A. Gyorgy, ”On optimal entropy-constrained scalar quantization,” Ph.D. dissertation,

Queens University, Ontario, Canada, December 2000.

[8] V. K. Goyal, S. A. Savari, and W.W. Wang, ”On optimal permutation codes”, IEEE

Trans. Inform. Theory, vol 47, pp. 2961-2971, November 2001.

[9] R. Veldhuis and M. Breeuwer, An Introduction to Source Coding, New York: Prentice

Hall 1993.

[10] Lester L Helms, Probability Theory With Contemporary Applications, New York: W.

H. Freeman and Company, 1996.

