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ABSTRACT 
 

 Frequent harmful algal blooms in coastal waters have been linked to 

increasing nitrogen (N) and phosphorous (P) loadings. Recent studies, however, have 

shown that dissolved silica (DSi) depletion in natural waters can be an important if not 

the most important factor that triggers these events. Long term hydrologic and water 

quality data give signs of significant human impact on the silicon cycle.  More 

specifically, by altering the hydrology of the land, humans may have reduced the 

amount of DSi that reaches the oceans through freshwater streams. This study 

examined the hypothesis that a watershed with more impervious cover discharges less 

DSi per unit watershed than a more undisturbed watershed.  

DSi discharge data were collected from 2 different freshwater streams with 

watersheds of different % impervious cover during 5 non-rain and 4 rain events. The 

stream with higher impervious cover discharged higher DSi per unit watershed during 

non-rain events. During intense rain events the more impervious watershed rapidly 

released stormwater as low-DSi runoff while the less impervious watershed released 

less runoff and more DSi per unit watershed. During low intensity rain events the less 

impervious watershed released no runoff while DSi discharge increased. The more 

impervious watershed released runoff even during the lightest event. Using the CN 

method developed by the Soil Conservation Service, it was found that a more 

impervious watershed not only produced more runoff than a less impervious watershed, 

but it also produced runoff more often. Higher volume of runoff can cause short term 

DSi dilution during rain events as well as long-term reduction of DSi inputs to coastal 
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waters. According to the CN method a long-term reduction of DSi loads is taking place 

in response to increasing impervious cover. 

Since diatom primary production is possibly the most important link of the marine 

food chain, and since diatom growth is DSi limited, reduction of the coastal oceans’ 

silica budget may have negative impacts on all levels of the food chain. 
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INTRODUCTION 

Background 

Increases in frequency and intensity of harmful algal blooms have been observed 

worldwide during the last few decades (Smayda, 1990; Anderson, 1997). Relatively new 

phenomena to the northeastern United States, including paralytic shellfish poisoning 

caused by toxic dinoflagellates of the genus Alexandrium, are now recurrent and 

widespread (Anderson, 1997).  Altered environmental parameters (i.e. nutrient cycles, 

climate changes, etc) may have created, in many cases, conditions that can specifically 

promote blooms of noxious algal species (Bricelj and Lonsdale, 1997). Toxic algal 

outbreaks, including the well known noxious dinoflagellate Pfiesteria piscicida, are 

commonly associated with high nitrogen and phosphorus inputs that follow intense 

rainfall events (Burkholder and Glasgow, 1997).  Even though a cause and effect 

relationship may seem to exist between N/P inputs and harmful algal bloom 

occurrences, the actual cause of these events may be a different one.  High nutrient 

inputs may not always lead to these types of events.  

Harmful algal blooms are primarily flagellate events (Sournia, 1995).  Diatom 

blooms, in contrast, are usually very beneficial and valuable to the ecosystem because 

they enrich the base of the food web. Diatoms are abundant planktonic and benthic 

photoautotrophs (Officer and Ryther, 1980; Sundbäck and Jonsson, 1988; Nilsson et 

al., 1991) that unlike most other algal species need dissolved silica (DSi) to synthesize 

their solid silica frustules (Busby and Lewin, 1967; Davis, 1976). In terms of 

contributions to global primary productivity, diatoms are among the most important 

aquatic photosynthesizers, dominating the phytoplankton of cold, nutrient-rich waters, 
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such as upwelling areas of the oceans, shallow coastal waters and newly circulated 

lakes (Graham and Wilcox, 2000).  

In areas of stratification, phytoplankton assemblages show a regular 

successional pattern from diatom- to dinoflagellate-dominated (Garrison, 1979; 

Schrader 1981). This shift from diatom to dinoflagellate plankton species can be 

explained by the silica depletion hypothesis advanced in the 1970s (Schelske and 

Stoermer, 1971, 1972).  According to this hypothesis, increased loads of nitrogen and 

phosphorous increase primary production as well as DSi utilization by diatoms. The 

increased utilization of DSi can then cause DSi depletion to the surface layers leading to 

DSi-limited diatom growth (Schelske, 1999). Brzezinski (1985) determined that marine 

diatoms average a nitrogen to silicon molar ratio (N:Si) of approximately 1. In addition, 

studies have shown that unlike the diatoms’ ability to store nitrogen, accumulation of 

DSi immediately prior to cell division is necessary, leaving diatoms more susceptible to 

DSi than N limitation (Busby and Lewin, 1967, Davis 1976, Doering et al., 1989).  Since 

size-based diatom growth rates exceed dinoflagellate rates by ~3-fold (Banse, 1982; 

Smayda, 1997), during high nutrient inputs diatoms will outcompete dinoflagellate 

blooms as long as DSi does not become limited. Havskum et al. (2003) demonstrated 

that in mesocosms enriched with N, P, glucose as well as DSi, bacterial and flagellate 

growth was inhibited because mineral nutrients were channeled into fast growing 

diatoms.   Declining Si:N and  Si:P ratios have been observed in many locations 

including the North Sea (Paerl, 1997), and the Mississippi plume (Rabalais et al., 1996). 

These ratios may reflect decreasing availabilities of DSi relative to N and P as well as 

increases in N and P loadings. Where as some workers suggest that the reduction of 
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these ratios is a result of increasing N and P inputs, other evidence suggests that a 

long-term reduction of bioavailable silica inputs into coastal waters is also taking place 

(Rabalais et al., 1996; Treguer et al., 1995). The total annual riverine load of DSi into 

the Gulf of Riga was estimated by Laznik et al. (1999) to be 65,000 tons, about half as 

much as it was estimated by Auninsh (1968) about 29 years earlier and about 7,500 

tons less than was estimated by Laznik et al. (1988) twelve years earlier.  Rabalais et 

al. (1996) also observed long-term changes in nutrient proportions in the surface waters 

of the northern Gulf of Mexico adjacent to the Mississippi River delta.  It appeared that P 

and N deficiency have decreased over time while Si deficiency has increased.  A shift in 

phytoplankton species composition was also observed. Data suggested that a shift in 

dominant diatom composition, toward more lightly silicified species, occurred between 

1955 and 1973. On the Louisiana shelf, noxious non-diatom species are now present 

but were either absent before or have over the years increased in relative abundance 

(Rabalais et al., 1996). 

 

Dissolved Silica cycle  

Most of the dissolved silica available in coastal waters is carried from uplands by 

freshwater after being released mostly by chemical weathering of rocks and soils. Very 

little is derived from the weathering of seashore sands (Iler, 1979). Chemical weathering 

in nature occurs when water and other natural solvents react with rock material 

releasing elements available for uptake by the biota. The process consists of a series of 

chemical reactions with rates strongly influenced by the local climate. Warmer and 

wetter climates significantly enhance the weathering process (Peltier, 1950). The 
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dominant form of chemical weathering is driven by the formation of carbonic acid in the 

soil solution:  

−+ +⇔⇔+ 33222 HCOHCOHCOOH  
 

The partial pressure of CO2 in the soil depends on the amount of decomposing organic 

mater in the soil and the amount of CO2 released by plant roots. Organic acids released 

by plant roots, bacteria or fungi are also known to enhance weathering rates (Garrels 

and MacKenzie, 1971).  

Silicate minerals are divided into two classes, the ferromagnesian series and the 

felsic series, based on the presence of Mg or Al in the crystal structure, respectively. 

The rates of chemical weathering of primary silicate minerals tend to follow a reverse 

sequence of their formation during the original cooling and crystallization of rock. 

Minerals that condensed first (i.e. olivine) are the most susceptible to weathering 

reactions. These minerals are formed through rapid and early crystallization at high 

temperatures and contain few bonds that link the units of their crystalline structure. 

Primary minerals of this sort are those in which various cationic elements or trace 

metals are substituted in the silicate crystal structure (i.e. FeMgSiO4). In comparison, 

quartz is a very simple silicate mineral consisting only of silicon and oxygen atoms. 

Because of its crystalline properties, quartz is very resistant to weathering.  

During the process of weathering of silicate minerals, primary minerals are 

transformed to secondary minerals by the removal of DSi and other ions. In the case of  

albite (NaAlSi3O8), carbonic acid attacks the mineral removing the sodium cation and 

soluble silica: 
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452244323283 )(422922 OHOSiAlSiOHHCONaOHCOHONaAlSi +++→++ −+          
primary mineral                                                                                          secondary mineral 

     Albite           Kaolinite 
 
 
The secondary mineral obtained, Kaolinite, can undergo further weathering releasing 

more silicic acid into the water medium (Schlesinger, 1991): 

 
OHOAlSiOHOHOHOSiAl 2324424522 325)( ⋅+→+  

                           kaolinite                                  silicic acid 
 
 

Rainwater that infiltrates through the ground becomes the weathering agent as 

well as the medium in which silicic acid travels through the ground to eventually feed 

streams and rivers.  The dissolution of amorphous silica in fresh water varies depending 

on the nature of the silicate mineral.  Different solubility values experimentally obtained 

by several workers have led to confusion in the scientific community. As Iler (1979) 

explained, however, the solubility of a particular sample of silicate mineral depends on 

the average grain size of the sample, on the traces of impurities inside the mineral or 

adsorbed on its surface during dissolution, as well as on the state of the mineral’s 

internal hydration.  Even though a single figure for the solubility of amorphous silica 

does not exist, experimental solubility values for freshwater vary between 1600 to 2000 

µM (Iler, 1979).  Over 2000 µM, polymerization of silicic acid may take place forming 

polysilicic acids that are mostly unavailable to diatoms. Levels exceeding 2000 µM, 

however, are rarely found in natural waters. The process of silica dissolution is a very 

slow process, so only water that spends considerable amounts of time percolating 

through the soil can be enriched with silicic acid. Dissolved silica concentrations in river 

waters vary over the length of the channel. Runoff water associated with rain events can 
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cause dilution of the silica solution in stream waters where as groundwater inputs, 

usually rich in DSi, tend to enhance DSi concentrations. Runoff is usually poor in DSi 

since it is mostly rainwater, known to contain no significant amounts (<1 µM) of DSi 

(Cahoon et al., 2003).  

  Increased uptake of DSi by the biota, including diatoms and numerous aquatic 

plants, has been a popular explanation for the observed decrease of riverine dissolved 

silica discharge to coastal waters (Rabalais et al., 1996, Krauskoph, 1956; Kennedy, 

1971). Drever and Zobrist (1992), however, contend that uptake by biota does not 

significantly affect DSi concentrations in streams and rivers. Uptake by biota can be 

significant only in areas with low flow rates (lentic environments) where diatoms and 

aquatic plants can sufficiently reproduce. In estuaries, for example, biological uptake 

can be highly significant with removals ranging from 4% in tropical rivers up to 50% in 

temperate rivers (Drever and Zobrist, 1992). 

Most of the dissolved silica lost as biogenic matter eventually redissolves with 

only 3% average preservation ratio (burial/gross production). Since this ratio is relatively 

small, the reduction observed by many in silicic acid inputs into the ocean may also be a 

result of anthropogenic perturbations of the riverine source (Treguer, 1995). The 

construction of reservoirs in rivers in conjunction with increasing N and P inputs can 

significantly decrease DSi transports. Storage lakes, especially those with high nutrient 

inputs, can become major sinks of dissolved silica (Wahdy, 1982).  

 Even though the focus of the scientific community concerned with the issue of 

DSi limitation has been towards biological uptake, in this study the focus is oriented 
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towards an earlier step of the silica cycle: the interaction of the hydrological cycle with 

silica flux into surface waters. 

 

Hydrology  

Groundwater movement is usually very slow. During a natural water cycle, water 

spends most of its time in the soil. Although it spends a few days in the atmosphere and 

a few days or weeks in surface water bodies, it may spend weeks and months moving 

through the soil. This slow movement through the soil allows the water to recharge with 

DSi as the slow weathering reactions take place (Manning, 1997). The movement of 

water into and through the soil depends on the physical and hydraulic properties of the 

soil. Physical properties include soil bulk density, organic matter content, clay type and 

particle size where hydraulic properties include water content, water retention 

characteristics, hydraulic conductivity and hysteresis. These properties can be 

estimated for each particular type of soil using soil infiltration parameter charts (Rawis 

and Brakensiek, 1983) or they can also be determined experimentally. As soil becomes 

saturated with water its capacity to absorb more water steadily declines, producing 

more storm runoff.   

 

Impervious Cover 

Storm runoff results from short duration, high intensity rainfall or long duration, 

low intensity rainfall. In urbanized paved areas however, any amount of rainfall can 

create surface runoff. The potential of an area to produce storm runoff as well as the 

fraction of rainfall that will become runoff depend on the runoff coefficient determined by 
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the soil properties mentioned earlier as well as the topography of the area. In urbanized 

areas, on the other hand, the major factor that determines the magnitude of the runoff 

coefficient is the percent impervious cover. The US Nationwide Urban Runoff Program 

(NURP) reported in 1983 after a 2-year data collection effort that the observed runoff 

coefficient increases as the percent impervious surface increases in a watershed 

(USEPA, 1983). Impervious cover has also been recognized as a major factor affecting 

stream hydrology and water quality. The Center for Watershed Protection developed a 

model based on more than forty scientific studies that relates the percent impervious 

cover of a watershed to the degree of stream degradation (CWP, 1998). According to 

this model, watersheds with impervious cover as low as 10% may have negative 

impacts on the stream’s quality. Impervious cover and urban land use alterations, 

including soil compaction and storm drain construction, alter infiltration rates and 

increase runoff velocities and the efficiency with which water is delivered to streams 

resulting in an increase of runoff volumes.  Schueler (1987) demonstrated that runoff 

coefficients were found to be strongly correlated with impervious cover at 44 sites 

nationwide. In Australia, Neller (1988) also observed that an urban watershed produced 

more than seven times as much runoff as a similar rural watershed. Increased peak 

discharge rate is another sign of a stream impacted by impervious cover.  Doll et al. 

(2000) compared 18 urban streams with 11 rural streams in the North Carolina 

Piedmont and found that unit area peak discharge was always greater in urban streams. 

Twenty percent impervious cover can cause, according to seven nationwide studies, the 

mean annual flood to double (Leopold 1968). Bankfull flow frequency also seems to 

increase with increasing impervious cover. Leopold (1968), using hydrologic data from a 
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nine-year period, estimated that a 50% imperviously covered watershed could create 

bankfull flows 4 times more often than normal. Not only frequency, but also duration of 

bankfull flow was observed to increase in response to urbanization. MacRae (1996) 

observed that the exceedence of bankfull flows increased by a factor of 4.2 once 

watershed impervious cover exceeded 30%.   

When porous land is converted to impervious cover, a greater fraction of annual 

rainfall is converted to surface runoff, and a smaller volume recharges the groundwater. 

The increase of surface runoff leads to higher and longer peak flows and lower base 

flows during dry conditions (Cappiella et al., 2001).  Klein (1979) reported an inverse 

relationship between impervious cover and baseflow. Spinello and Simmons (1992) 

demonstrated that baseflow in two urban Long Island streams declined seasonally as a 

response to increasing impervious cover. 

Urbanization can alter the hydrologic regime of a watershed in other ways as 

well. Simmons and Reynolds (1982) discovered that even though impervious cover can 

significantly reduce the percent base flow of a stream, a much greater reduction of the 

base flow fraction can be caused by the way wastewater of an area is managed. This 

was observed after examining a 20-year long hydrograph data set taken from several 

streams in Long Island. Their study showed that the base flow fraction of total 

streamflow of streams fed by urbanized “sewered” watersheds declined from 87% in 

1948 to 13% in 1969. In comparison the base flow fraction for two streams fed by an 

urbanized watershed without a central sewer system installed declined from 88% in 

1948 to 81% in 1969 (Simmons and Reynolds, 1982). Sewer systems collect water 

withdrawn from residential or community wells and release it directly into rivers or 
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oceans. Areas with septic tanks installed do not experience the same base flow 

reductions since the water withdrawn from the groundwater aquifer is returned to the 

same area.  Less reduction of base flow may also occur in areas where although central 

sewer system is used the water supply is not local groundwater but surface water from 

a different area or in rare cases desalinated seawater.  

Impervious cover is also known to have physical impacts on the stream’s 

morphology. Morse (2001) showed that increasing impervious cover could increase 

erosion rates in stream channels.  Whereas in rural streams channel erosion accounts 

for only 5 to 20% of the annual sediment yield (Collins et al., 1997 and Walling and 

Woodward, 1995), 60 to 75% of the sediment yield of urban watersheds is derived from 

channel erosion (Trimble, 1997 and Dartingunave et al., 1997).  According to a recent 

report by the Center of Watershed Protection [CWP] (2003), impervious cover is also 

known to cause channel incision, stream embeddedness, loss of large woody debris, 

changes in pool/riffle structure, loss of riparian cover, reduced channel sinuosity, as well 

as warming of streamwater temperatures (CWP, 2003). 

Because low order streams are the first aquatic systems to receive stormwater 

runoff, their water quality is often compromised by the numerous pollutants impervious 

surfaces collect.  Stormwater pollutants often include sediments, trace metals, 

hydrocarbons, organic carbon, pesticides, bacteria and pathogens, and nutrients (CWP, 

2003).  Even though nitrogen and phosphorous are essential nutrients for aquatic 

systems, in excess concentrations they can exert a negative impact on receiving 

waters.  Research suggests that lawns are the major source of N and P in urban 

streams. Lawn runoff concentrations can be as much as four times greater than other 
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urban sources. While the nutrient concentrations of impervious cover runoff is lower 

than lawns’ the volume of runoff is significantly higher bringing impervious cover up as 

the second most important source after lawns (Bannerman et al., 1993; Steuer et al., 

1997 and Waschbusch et al., 2000).  

Otto et al. (2002) presented the argument that the increasing percent of 

impervious cover and urban sprawl may be responsible for depleting water supplies and 

water shortages suffered in the past few decades.  Based on a model using USGS data 

and other published information Otto et al. (2002) estimated how much groundwater 

recharge may be lost due to impervious cover runoff in the top 20 sprawling 

metropolitan areas. In Atlanta, GA, for example, they estimated that between 56.9 and 

132.8 billion gallons of groundwater infiltration may have been lost in 1997 compared to 

15 years earlier (Otto et al., 2002).  

 Groundwater that feeds streams during base flow conditions accounts for about 

30-40% of the total water discharged by streams in the United States (Manning, 1997). 

This fraction of total water discharge is responsible for most of the dissolved silica that 

enriches the coastal waters; thus by increasing the percent impervious cover the 

amount of dissolved silica that flows to the ocean every year may be proportionally 

reduced. 

 

HYPOTHESIS/GOALS 

 The effects of percent impervious cover on stream hydrology are well 

documented. Because the DSi cycle depends directly on hydrology, an indirect effect on 

stream DSi discharge was therefore expected. Since the cumulative base flow, as a 
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fraction of total streamflow, decreases as impervious cover increases on a watershed, 

this study hypothesized that the net DSi discharge per unit watershed volume of a 

stream also proportionally declines with increasing impervious cover.  Furthermore, a 

watershed with higher percent impervious cover was expected, according to this 

hypothesis, to contribute less DSi per unit watershed volume or area than a watershed 

with less impervious cover.   

In order to test this hypothesis this study examined weather the DSi released by 

a unit of watershed into a stream over a period of time was a function of the fraction of 

its area that was imperviously covered.  A watershed with less impervious cover was 

expected to release more DSi per unit volume than a watershed with a higher percent of 

impervious cover during rain or non-rain events.  

 
METHODOLOGY 

 
Site description and GIS analysis  
 
 Two watersheds with different percent of impervious cover were chosen for this 

study. Both are sub-watersheds of the Bradley Creek watershed, one of the most 

heavily impacted watersheds in New Hanover County.  The Bradley Creek watershed 

(Figure 1) occupies an area of 24.48 km2.  By 2000, 77.8% of its total area was 

developed and occupied by 13,657 residents (Mallin et al., 2003). The two sub-

watersheds chosen for this study discharge into two streams that converge to form the 

upper branch of Bradley Creek, which discharges into the Atlantic Intracoastal 

Waterway. The larger of the two watersheds, watershed A (wA) has an area of 1.87 km2 

in which 49.2% is covered by impervious surfaces including houses, roads and strip 

mall parking lots in the area (Figure 2). 
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Figure 1. The sub-watersheds studied are part of the Bradley Creek watershed located 
on the coast of New Hanover County, NC. 
 

 

 

 

 

 

 

 



   
  
 14 
 

 

 
Figure 2. Map of the study area showing the two watersheds and two streams studied 
including the location of the groundwater well used for groundwater sampling. Shaded 
area represents impervious cover.  
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Watershed B (wB) has an area 4.5 times smaller than wA (0.41 km2) and only 17.1% of 

its area is imperviously covered by mostly single-family homes and roads. The rest of 

wB is occupied by a golf course and other relatively pervious surfaces. All houses in 

either watershed are on public water supply and central sewer system.  Attributes for 

the two watersheds are summarized in Table 1. In this study a watershed is defined as 

the segment of land responsible for the water supply of a stream. Since the watersheds 

for each stream have not been previously defined, GIS topographic datasets were used 

to define the corresponding watershed for each stream with the help of ArcView® GIS 

3.2 software. Digital aerial photographs taken in 2002 were used, along with USGS 

elevation data, to define the boundary of each watershed. The volume of each aquifer 

that may supply each stream with groundwater was also calculated using GIS elevation 

data. Aquifer volume in this case was defined as the volume of land within each 

watershed boundary and above the elevation of each sampling site. GIS data were 

provided by the New Hanover County’s Planning Department.  The impervious surfaces 

were calculated by direct measurement, proven to be the most accurate method for 

measuring impervious cover (Cappiella et al., 2001). According to this method, every 

segment of impervious surface (i.e. roads, driveways, houses, etc.) was measured from 

aerial photographs with the ArcView® software.  Impervious surfaces were defined for 

this study as any surfaces that are almost completely impervious to water including 

concrete or other types of pavements or water resistant material. Lawns or other grassy 

areas that may not be completely pervious are considered pervious for convenience. 

GIS soil maps were also obtained in order to detect any significant differences in soil  
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Table 1. Characteristics of each watershed estimated from GIS data. 
 
 Watershed A Watershed B wA/wB 

Area 
(km2) 1.87 0.41 4.6 

Impervious Cover 
(km2) 0.92 0.07 13.14 

% Impervious 
Cover 49.2 17.1  

Watershed 
Volume (km3) 0.046 0.0058 7.93 
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types between the two watersheds. The different types of soils present in each 

watershed and their characteristics are summarized in Table 2. In general the soils in 

both watersheds were poorly drained, contained low organic matter, and were highly 

acidic. Their sandy nature is responsible for their relatively high permeability and low 

available water capacity where their acidic nature may enhance weathering of silicate 

minerals. The low available water capacity associated with the high permeability of the 

soils may reduce the ability of the watersheds to retain water.  

Whereas the amount of surface runoff produced in a watershed depends on the 

surface area of the basin and its runoff coefficient, the amount of groundwater 

responsible for baseflow is governed by the specific yield of the aquifer, which depends 

on the volume of the aquifer that can retain water. Even though wA has an area 4.6 

times larger than wB its volume is 7.93 times bigger. Since wA is larger, the flow of 

stream A (sA) is higher during rainfall or baseflow conditions than stream B (sB).  

Stream A exhibits characteristics of a stream seriously impacted by impervious cover. 

The channel is enlarged from extensive erosion and the substrate is fine, loose sand. 

Stream B is in better health with more variable substrate, more woody debris in the 

stream channel and a more defined pool/riffle structure. 

 

Sample collection and analysis  

Streamflow was measured using a constant dye tracer release method 

throughout each sampling event. Sampling station and dye injection site 

locations are shown in Figure 3. Low concentrations (~1,920,000 ppb) of fluorescent red  
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Table 2. Soil types present in each watershed and their characteristics (USDA, 1986). 
 

% Watershed 
area Soil type 

wA wB 
Soil characteristics 

Baymeade fine sand 32.56 28.50 Well drained, low organic matter, moderate 
permeability, slightly to strongly acidic 

Kureb sand 5.43 30.68 
Excessively drained, very low organic matter, 
rapid permeability, low available water 
capacity, neutral to acidic 

Leon sand 19.88 0 
Poorly drained, very low organic matter, rapid 
permeability, low available water capacity, 
strongly acidic 

Kureb urban land 
Complex 0 4.68 

Impacted soil beyond classification mixed with  
Kureb sand, very low available water capacity, 
rapid permiability  

Lynn Haven fine 
sand 3.60 5.25 

Poorly drained, low organic matter, rapid 
permeability, low available water capacity, 
strongly acidic 

Murville fine sand 26.72 0.02 
Very poorly drained, low organic matter, rapid 
permeability, low available water capacity, 
strongly acidic  

Onslow loamy fine 
sand 0 3.50 

Moderately well drained, low organic matter, 
moderate permeability, medium available 
water capacity, strongly acidic 

Rimini sand 0.46 0 
Excessively drained soil, very low organic 
matter, moderate permeability, very low 
available water capacity, strongly acidic.  

Seagate fine sand 8.92 27.35 
Poorly drained soil, low organic matter, low 
available water capacity, medium to very 
strongly acidic 

Urban land 2.39 0 Unrecognizable soil series due to urbanization 
impact 
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Figure 3.  Map showing the sampling and dye injection sites close to the convergence 
point of the two streams between stations 1 and 2. 
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rhodamine WT dye tracer were released into sA, about 400m upstream from station 1 

with the help of a field peristaltic pump throughout the sampling event at a rate of about 

10-14 mL/min. The dye tracer method was chosen because it allowed, without constant 

attention, continuous measurements of streamflow over a desirable time period. At each 

sampling station an ISCO 2900 automated sampler was programmed to collect a total 

of 24 discrete 100mL water samples from the stream at 45-minute intervals.  The 45-

minute interval was short enough to capture the rapid changes of streamflow during a 

rain event, but adequately long for the total sampling time (17.25 hours) to bracket a 

potential storm event. The samples collected were kept cool until they were transferred 

to the laboratory and analyzed for dissolved silica using the blue molybdate colorimetric 

method described by Parsons et al. (1984). The same samples were also analyzed for 

rhodamine WT concentration using a Turner Designs laboratory fluorometer that can 

measure rhodamine concentrations as low as 1 ppt. In order to ensure accuracy and 

confidence in the fluorescence measurements the rhodamine concentration released 

was adjusted so that the concentrations in the stream were within 5-50 ppb range. The 

concentration of rhodamine in the various samples was inversely proportional to stream 

flow, which was calculated using the following equation:  

c
qCQ =  

where Q is the streamflow being measured, q is the dye injection rate, C is the 

concentration of the injected dye and c is the concentration of dye measured in 

each water sample collected. Since the dye injection rate was expected to decrease as 

the hydrostatic pressure in the dye reservoir decreased, the injection rate was 

measured at the beginning and at the end of the experiment using a 10 mL graduated 
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cylinder. Using the regression line plotted from the two injection rates measured, the 

actual injection rate at the time of each sample collection was calculated.  

In order to simultaneously monitor both streams during the same rain event using 

only one dye release mechanism, the following sampling scheme was initially used. The 

dye release took place at a point 400m upstream from the site where the two streams 

meet on stream A (Figure 3). The distance was long enough to allow adequate mixing 

of the dye with the water column. Station 1 was located about 20 meters upstream from 

the meeting point of the two streams on sA while station 2 was about 100 meters 

downstream from the meeting point allowing enough distance for the two water bodies 

to mix. Adequate mixing of the two water bodies as well as dye mixing at each station 

were tested by collecting water samples along the cross-section of the stream at station 

2 and analyzing them for rhodamine WT. Concentrations were uniform along the cross 

section of the channel.  Each sampling site was equipped with a Solinist levelloger LT 

capable of measuring water level and temperature at a programmed frequency.  The 

water level data collected provided useful information on how each stream behaved 

during a rain event. The loggers measured relative water level as well as water 

temperature at a 5-minute frequency.  

The DSi discharge at the time a sample was taken by the automated sampler 

was the product of DSi concentration of the sample times the water flow determined 

from the dye concentration:  

(DSi discharge) = ([DSi] x streamflow) 

Using the following equation the DSi discharge of sB was then calculated after DSi 

discharge was measured at station 1 and 2:  
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(DSi discharge Stream B) = 

(DSi discharge at station 2) – (DSi discharge at station 1) 

This relationship is based on the assumption that any groundwater or runoff inputs 

between the meeting point of the two streams and station 2 are insignificant. If inputs 

were indeed significant, the flow calculated for stream B would be overestimated. This 

assumption was tested with in-situ flow measurements. Streamflow was estimated 

using a current meter to measure water velocity and by measuring the cross-sectional 

area of the stream at the point of interest.  Streamflow just downstream from the point of 

convergence of the two streams was measured as well at station 2. The streamflow 

difference between the two points was 0.06 m3/min.   

 After a number of experiments, it became apparent that releasing the dye tracer 

only in sA and estimating the streamflow of sB by subtraction as described above, even 

though it gave representative DSi discharge estimates for both streams, could not 

estimate with confidence the actual DSi concentration in sB. If sB discharged higher DSi 

concentration water than sA, because the streamflow of sB is so much smaller than sA, 

the DSi concentration increase at station 2 may not have been detectable. Similar 

concentration of DSi at the two stations should not suggest that both streams 

discharged the same DSi concentration waters.  Since accurate DSi concentration 

values for both streams were believed to be important for this project, a different 

sampling scheme was designed.   

 Instead of the peristaltic pump for the dye injection, a medical I.V. tube was 

attached to the 20 L reservoir that was elevated above the stream with a line attached 

to a tree. The I.V. tube was equipped with a flow regulator and a drip chamber allowing 
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precise and accurate injection rates. Because of the low cost of the new dye injection 

unit compared to the peristaltic pump unit used earlier, an additional unit was 

constructed and deployed at sB in order to obtain independent flow measurements in 

both streams. Under this new deployment scheme, station 2 was abandoned and a new 

sampling site was created on sB, about 20 m upstream from where the two streams 

meet.  Since the range of flow in sB was considerably lower than sA, the concentration 

of the injected dye was reduced to 800,000 ppb.  The dye was injected 80 meters above 

the sampling site on sB. Even though the distance allowed for mixing was considerably 

shorter than the one in sA, it was sufficient since mixing was enhanced by the pool/rifle 

structure of the stream channel as well as the woody debris and rocks present.  

 Well samples were collected from a shallow well (~4m) located in wA (Figure 2) 

and a deeper well (~23m) to determine the groundwater DSi concentration of the 

shallow and deep aquifers. The wells were purged prior to sample collection.  Samples 

were kept cool (~4o C) but never allowed to freeze since freezing was found to 

polymerize DSi, a form undetectable by the analytical method used.  

 The greatest advantage of the close proximity of the watersheds was the ability 

to observe the two streams during the same rain event.  Since the sub-watersheds were 

adjacent to each other it was reasonably safe to assume that rainfall patterns (intensity, 

duration and volume) were relatively uniform over the entire study area. A digital rain 

gage installed between the two sampling sites monitored the rainfall intensity and total 

height throughout each sampling event. 

 Seventeen experiments were performed, however, only nine successfully 

produced useful data. Since sampling often took place during adverse weather 
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conditions, instrument malfunction was not a rare phenomenon.  Five events were 

sampled during baseflow conditions and 4 during rain events.  DSi concentrations 

during baseflow events allowed the establishment of a baseline for each stream. These 

baseline concentrations were statistically compared between the streams using a one-

way ANOVA.  All ANOVA analyses were performed using SAS v. 8.01 software. 

Streamflow during non-rain events was also compared between streams. Since 

streamflow during non-rain events was a function of the amount of water available in the 

aquifer at the time of the event, it was expected to vary significantly between events. 

The same variability was expected for the rest of the parameters that were functions of 

streamflow including DSi discharge. In order to statistically compare variability between 

streams while ignoring any variability between events, the events were used as a 

blocking factor in a 2-way ANOVA. The DSi discharge/km3 and streamflow/ km3 of 

watershed were calculated by dividing DSi discharge and streamflow respectively by the 

watershed volume.  Streamflow/km2 and DSi discharge/km2   were calculated in the 

same manner by dividing streamflow and DSi discharge by watershed area. DSi 

discharge/km3, streamflow/km3, DSi discharge/km2 and Streamflow/km2 were 

statistically compared between streams using a two-way ANOVA.  During rain events, 

the response of DSi concentration and discharge to the varying streamflow was 

observed.  Total DSi and water discharged from each stream over the 17.25-hour 

events were calculated. A regression analysis was performed to test correlation 

between rainfall and total DSi as well as total water discharged. Regression lines were 

compared between streams using analysis of covariance.  
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In order to reduce variations between watersheds that could not be controlled 

(i.e., baseflow, background DSi concentration), a new comparison was concentrated on 

the part of the storm hydrograph representing only the stormwater, the excess water 

discharged due to rainfall (see Figure 4). If from the total water discharge, represented 

by the total area of the hydrograph, beseflow is subtracted then the remaining area 

represents the water discharged as surface runoff along with the water discharged as 

interflow, also known as subsurface stormflow (Leopold, 1978). Interflow is defined as 

the additional baseflow discharged due to the rain event since baseflow too can 

increase during rain.  In order to separate the hydrograph into the 3 sections, the 

following method was used. The baseflow volume was calculated by averaging the 

streamflow values obtained from the samples collected before rainfall began. The 

average was then multiplied by the total number of minutes (1035) of the sampling 

event. The baseflow volume was subtracted from the total volume of streamflow 

calculated through integration. In order to separate the stormwater part of the 

hydrograph into runoff and interflow the DSi concentration of the stormwater had to be 

determined first. The plot of the DSi discharge over time was also separated into 3 

sections in the same manner as the hydrograph. The amount of DSi (moles) contained 

in the stormwater part of the hydrograph divided by the volume of stormwater gave the 

total concentration of the stormwater. Assuming that the DSI concentration of the 

interflow was equal to the baseflow DSi concentration the following equation was then 

used to calculate the volume of interflow: 

                                                         
B

SS
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CV
V

×
=  
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Figure 4.  Streamflow hydrograph separated into the three sections. 
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Where VI is the volume of Interflow, VS the stormwater volume, CS is the stormwater DSi 

concentration and CB is the DSi concentration of the baseflow determined from pre-rain 

samples. The volume of runoff, assumed to contain 0 µM DSi, was calculated by 

subtracting the baseflow volume from the total stormwater volume.  The amount of 

runoff and interflow generated from each watershed during each rain event was 

calculated. Runoff and interflow per km2 and km3 were also calculated. 

Since the number of rainfall events sampled was limited, a different method was 

used to predict the response of each watershed over a larger time period encompassing 

a larger spectrum of precipitation. The Soil Conservation Service’s (SCS) curve number 

(CN) method allowed the calculation of runoff generation by each watershed (USDA, 

1986). Curve numbers were estimated based on soil hydrologic properties and land use 

data of each watershed. 

According to the CN method, runoff height is calculated using the following equation: 

)8.0(
)2.0( 2

SP
SPQ

+
−

=  

Where Q was the height of runoff (cm), P was the rainfall and S was the potential 

maximum retention after runoff begins (cm) estimated by:  

101000
−=

CN
S . 

Soil and land use GIS data were used for the determination of curve numbers for each 

watershed. Curve numbers were functions of several parameters including area of 

impervious surface, area of pervious surface, type and condition of vegetation and soil 

types in each watershed. Using daily rainfall data provided by the National Climatic Data 

Center (NCDC) for two consecutive years (2001-2002), CN curves were plotted for each 
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watershed (Figure 5). These curves represented the relationship between rainfall and 

runoff production and allowed the estimation of the x intercept, which represented the 

minimum amount of rain capable of producing runoff. The total amount of runoff and DSi 

discharge throughout the 2-year period were estimated for each watershed. The total 

DSi discharged by each watershed was calculated by subtracting the total runoff 

produced from the total volume of rainfall collected by each watershed and multiplying 

the resulting volume by the average baseflow DSi concentration to give the total amount 

of DSi discharged in moles. The results were then normalized by watershed area and 

volume. 

RESULTS 

Baseflow 

Baseflow parameter averages and standard deviations are summarized in Table 

3.  Stream A had an average DSi concentration of 72.43 µM (n=120, std dev= 4.380), 

whereas sB had an average of 67.60 µM (n=55, std dev=2.074). One-way ANOVA, 

showed a significant difference (F=60.39, p<0.0001 df=1, 173) between the baseflow 

DSi concentrations of the two streams.  

Because streamflow was expected to vary significantly between events, a 2-way 

ANOVA was chosen for the comparison of parameters dependent on streamflow. In the 

two-way ANOVA, the streams and events were the two possible sources of variation. 

Even though differences among events were not of interest, by including the event as a 

blocking factor in the ANOVA, any variations among events were corrected, giving more 

confidence to the test for the main effect.  Interaction between events and streams was 

not of interest and wasn’t included in the ANOVA test. Streamflow was higher during 
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Figure 5. CN curves for each watershed calculated using 2001-2002 daily rainfall data. 
CN curves represent the relationship between rainfall and runoff production on a 
watershed.  
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Table 3. Means and ANOVA results for the various parameters calculated from non-rain 
event data. 
 

Mean 
Std. Dev. Parameter 

sA sB 
F Value P value d.f. 

[DSi] 
(µM) 

72.43 
4.380  

67.60 
2.074 60.93 <0.0001 1 

173

Streamflow 
(m3/min) 

2.877 
0.617 

0.351 
0.246 2440.20 <0.0001 1 

234

DSi Discharge 
(moles/min) 

0.241 
0.076 

0.024 
0.019 1987.32 <0.0001 1 

234

Streamflow/Volume 
m3/min·km3 

72.32 
22.07 

60.71 
42.93 17.68 <0.0001 1 

234

Streamflow/Area 
m3/min·km2 

1.75 
0.57 

0.85 
0.62 415.2 <0.0001 1 

234

DSi Discharge/Volume 
(moles/min·km3) 

5.255 
1.670 

4.168 
3.310 20.72 <0.0001 1 

234

DSi Discharge/Area 
(moles/min·km2) 

0.129 
0.041 

0.052 
0.051 445.6 <0.0001 1 

234
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non-rain events in sA (mean=2.880m3/min, std dev=0.619) than in sB (mean= 

0.352m3/min, std dev=0.249) according to the 2-way ANOVA [Treatment: (F=2440.20, 

p<0.0001, df=1, 234), Block (F=25.94, p<0.0001, df=4, 234)]. DSi discharge was 

significantly higher in sA (mean=0.241 moles/min, std dev=0.076) than in sB 

(mean=0.024 moles/min, std dev=0.019) according to the 2-way ANOVA performed 

[(Treatment (F=1987.32, p<0.0001, df=1, 234), Block (F=72.12, p<0.0001, df=4, 234)].   

Streamflow per km3 of watershed was also calculated and compared between 

watersheds during the several non-rain events and found to be significantly different  

[Treatment (F= 17.68, p<0.0001, df=1,234), Block (F=93.07, p<0.001, df=4, 234)]. 

Stream A had an average discharge of 72.32m3/min·km3 (std dev=22.07) while sB had 

an average of 60.71m3/min·km3. DSi discharge rate per km3 of watershed was higher 

for sA (mean=5.255 moles/min·km3, std dev=1.670) than for sB (mean=4.16 

moles/min·km3, std dev=3.310). A 2-way ANOVA showed a significant treatment effect 

[Treatment (F=20.72, p<0.0001, df=1, 234), Block (F=61.09, p<0.001, df=4, 234)].  

Streamflow per km2 between watersheds during the several non-rain events was also 

significantly different  [Treatment (F= 415.17, p<0.0001, df=1,234), Block (F=121.59, 

p<0.001, df=4, 234)]. Stream A had an average streamflow of 1.75m3/min·km2 (std 

dev=0.57) while sB had an average of 0.85m3/min·km2 (std dev=0.62). DSi discharge 

rate per km2 of watershed was higher for sA (mean=0.129 moles/min·km2, std 

dev=0.041) than for sB (mean=0.052 moles/min·km2, std dev=0.051). A 2-way ANOVA 

showed a significant treatment effect [Treatment (F=445.60, p<0.0001, df=1, 234), 

Block (F=103.02, p<0.001, df=4, 234)]. 
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Samples collected from the shallow well in wA gave a mean concentration of 

66.3µM (std dev=4.8, n=6), which was similar to baseflow concentrations found in both 

streams (Figure 6). Samples collected from the deeper well, a few meters away from 

the shallow well, gave higher DSi concentrations (136.7µM (std dev=30.93, n=6). 

 

Rain events 

Plots were created for each event that showed the response of several 

parameters to the increasing streamflow during a rain event. Representative examples 

are shown in Figures 7, 8, and 9. Only two rain events are presented since only during 

those two events DSi concentration samples were collected directly from sB. A 

significant decrease of DSi concentration was observed with increasing streamflow in 

sA whereas DSi concentration in sB remained constant throughout the rain event. 

During the lighter rain event that took place on June 4, 2003 (0.35 cm), the streamflow 

of sA experienced a 64% flow increase whereas the flow of sB did not change at all.  

DSi concentration dropped by 18% in sA whereas sB did not change significantly.  

During the heavier rain event in July 2003 (2.33 cm), the streamflow of sA increased by 

198% where as the streamflow of sB increased by 30%.  Concentration of DSi in sA 

decreased by 47% but in sB no significant change was observed. The DSi discharge for 

sA during the same event increased by 108% and in sB it increased by 27%. 

For each of the four rain events, total water volume (m3) and total DSi (moles) 

discharged over the 17.25-hour sampling events were calculated.  Results are 

summarized in Table 4.  Total water and DSi discharge were higher in sA than sB.  

Total water and DSi discharge per unit volume and area of watershed were also  



   
  
 33 
 

Stream A Stream B Shallow Well Deep Well

[D
Si

] (
µΜ

)

0

20

40

60

80

100

120

140

160

180

 

 
Figure 6. DSi concentrations of the two streams and groundwater wells during non-rain 
events. (Stream A: mean=72.4µM, std dev=4.38, n=120. Stream B: mean=67.6µM, std 
dev=2.07, n=55. Shallow well: mean=66.3µM, std dev=4.80, n=6. Deep well: 
mean=136.7µM, std dev=30.9, n=6) 
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b. 

Figure 7. DSi concentration response to streamflow increase during a rain event (July 
23-24, 2003) in the two streams (Rain=2.34cm).  a.) Stream A b.) Stream B 
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b. 
 

Figure 8. DSi concentration response to streamflow increase during a rain event (June 
4-5, 2003) in the two streams (Rain=0.35cm).  a.) Stream A b.) Stream B 
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Figure 9. DSi discharge for each stream during two different rain events. a.) April 23-24, 
2003 (Rain=2.34cm). b.) June 4-5, 2003 (Rain=0.35).   
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Table 4. Total water and DSi discharge over each rain event with per unit watershed 
calculations incorporated. 
 
 

Event date 4/25/03 5/22/03 6/4/03 7/23/03 

Rainfall 
(cm) 4.90 11.8 0.34 2.34 

sA 13,200 21,240 3,978 4,369 Total Water 
discharge  

(m3) sB 1,712 7,385 331 169 

sA 358.5 392.3 243.6 204.6 Total DSi 
discharge 
(moles) sB 34.6 125.3 23.6 10.6 

sA 287,000 461,700 86,490 94,990 Total Water 
discharged by 

1 km3 of 
watershed (m3) sB 295,200 127,300 57,050 29,100 

sA 7,060 11,360 2,127 2,336 Total Water 
discharged by 

1 km2 of 
watershed (m3) sB 4,175 18,010 807 412 

sA 7,794 8,528 5,296 4,447 
Total DSi 

discharged by 
1 km3 of 

watershed 
(moles) 

sB 5,972 21,610 4,071 1,921 

sA 191.7 209.7 130.3 109.4 
Total DSi 

discharged by 
1 km2 of 

watershed 
(moles) 

sB 84.4 305.6 57.6 25.9 
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calculated by dividing the total volume of water or the DSi discharged during the 

sampling event by the volume or area of each watershed accordingly.  The results 

obtained from these calculations showed that sA discharged more water and DSi per 

km3 and km2 of watershed than sB in 3 out of 4 rain events (Figure 10 and 11). 

 Total DSi and water discharge showed a positive correlation with rainfall height 

in both streams (Figure 12). Analysis of covariance showed that the slopes of the two 

regression lines in Figure 12 a. (sA: slope= 15.27 moles/cm, std err= 6.79, R2=0.716; 

sB: slope= 9.91 moles/cm, std err= 5.96, R2=0.89) were not significantly different 

(F=0.549, p=0.50, df=1, 4) suggesting that DSi discharge increased with rain in each 

stream in a similar fashion.  In Figure 12 b. the slope of sA is significantly greater 

(F=15.58, p<0.025, df=1, 4) than sB (sA: slope=1670.86m3/cm, std err=272.720, 

R2=0.95; sB: slope =663.71m3/cm, std err=110.43, R2 =0.94) suggesting that wA can 

produce more runoff faster than wB. The data collected during each rain event were 

corrected for baseflow in order to eliminate effects that could not be controlled and to 

study solely the effect rainfall had on each stream. This was done by separating the 

streamflow and DSi discharge hydrographs into 3 sections (Figure 4). This method 

allowed me to calculate how much runoff ([DSi]=0) and how much interflow were 

discharged by each stream during each rain event.  Results obtained using this 

approach are summarized in Table 5.  

As one would expect, sA discharged more runoff as well as interflow than sB in 

every rain event because of the larger area and volume wA occupied. After these two 

parameters were normalized by area and volume of watershed, however, sA discharged 

more runoff per km2 and km3 of watershed than sB in only 3 events out of 4.



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. 

a.) Relationship between total DSi discharged per km3 of  
watershed and total precipitation for each rain event. 
b.) Relationship between total water discharged and total precipitation for each 
rain event 
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Figure 11. 

a.) Relationship between total DSi discharged per km2 of  
watershed and total precipitation for each rain event. 
b.) Relationship between total water discharged and total precipitation for each 
rain event 
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Figure 12. 

a.) Relationship between total DSi discharged and total precipitation  
for each rain event. 
b.) Relation between total water discharged and total precipitation for each rain 
event. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
  
 41 
 

R a in  ( c m )

0 2 4 6 8 1 0 1 2 1 4

To
ta

l D
Si

 d
is

ch
ar

ge
d 

(m
ol

es
)

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

S t re a m  A
S t re a m  B
R 2 = 0 .7 1
R 2 = 0 .9 0

 
 

a. 
 

 

R a in  (c m )

0 2 4 6 8 1 0 1 2 1 4

To
ta

l w
at

er
 d

is
ch

ar
ge

d 
(m

3 )

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

S tre a m  A
S tre a m  B
R 2= 0 .9 4
R 2= 0 .9 5

 
b. 



   
  
 42 
 

Table 5. Stormwater discharge data for the two streams with baseflow discharge 
subtracted. 
 

Event date 4/25/03 5/22/03 6/4/03 7/23/03 
Rainfall(cm) 4.90 11.8 0.34 2.34 

sA 8,488 14,170 112 407 Runoff  
(m3) sB 1,231 5,118 0 0 

sA 932 2,705 87 877 Interflow 
(m3) sB 239 1,955 0 8 

sA 4,539 7,578 60 218 
Runoff/km2 

sB 3,002 12,480 0 0 

sA 184,500 308,100 2,434 4,739 
Runoff/km3 

sB 212,200 882,400 0 0 

sA 498 1,447 46 469 
Interflow/km2 

sB 3,002 4,768 0 20 

sA 20,260 58,800 1,891 19,070 
Interflow/km3 

sB 41,330 337,200 0 1,362 

sA 9.1 5.2 1.3 0.5 
Runoff/Interflow 

sB 5.1 2.6 0.0 0.0 

sA 71.0 150.5 5.5 45.6 DSi 
(moles) sB 17.4 108.4 0.0 0.5 

sA 38.0 80.5 2.9 24.4 
DSi/km2 

sB 42.4 264.4 0.0 1.2 

sA 1,543 3,271 119.1 990.2 
DSi/km3 

sB 3,000 18,690 0.0 93.1 
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Two times out of 4, sA discharged more interflow per km2 and km3 than sB as well as 

more DSi. It should be pointed out that for every rain event, the runoff/interflow ratio was 

always lower for sB.  An important finding that rose from this approach is that sB did not 

discharge any runoff at all during the two lowest rainfall events. On June 4, 2003, in 

particular, when rainfall did not exceed 0.34cm the streamflow of sB was not affected at 

all but an increase of interflow and runoff was recorded in sA.  

 According to the CN method used, wA started to produce runoff when rainfall 

reaches 1.34cm, earlier than wB which required more than twice the amount of rainfall 

to produce runoff (3.05cm).  The predicted amount of runoff and total DSi discharged by 

each watershed during the 2-year period are shown in Table 6. 

 

DISCUSSION 

Baseflow 

During non-rain events both streams were mostly fed by groundwater. This was 

supported by the DSi concentrations of the shallow well samples collected. The well 

sample concentrations were very similar to baseflow concentrations in samples 

collected from both streams (Figure 6). On average, sA discharged higher [DSi] water 

than sB during baseflow. Even though the ANOVA showed that concentrations were 

indeed different (F=60.39, p<0.0001 df=1, 173) Figure 6 shows that the difference was 

small but most likely consistent throughout the experiments. Many factors may control 

the concentrations of DSi in groundwater including retention time of water in the aquifer, 

soil mineral content and chemical properties. It was not feasible, however, to identify all 

of the factors that controlled the baseflow DSi concentrations in the streams and 
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Table 6. Total loads discharged by each watershed during a 2-year period (2001-2002) 
estimated using the CN method. 

 

 wA wB 

Total rainfall 
volume (m3) 4,469,000 980,000 

Total runoff 
(m3) 527,200 24,640 

Runoff/km2 

(m3) 281,900 60,100 

Runoff/km3 

(m3) 11,460,000 4,248,000 

Total Baseflow 
(m3) 3,942,000 955,300 

Baseflow/km2 
(m3) 2,108,000 2,330,000 

Baseflow/km3 
(m3) 85,700,000 164,700,000 

Total DSi 
(moles) 285,400 64,580 

DSi/km2 
(moles) 152,600 157,500 

DSi/km3 
(moles) 6,205,000 11,130,000 
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because the difference (4.83µM) was not large further investigation was not considered.   

Not surprisingly, streamflow was higher in sA since wA was almost 8 times larger 

than wB.  The DSi discharge per unit volume and area of watershed, however, was 

unexpectedly higher in sA than sB.  According to the main hypothesis of this study sB, 

was expected to discharge more DSi as well as water per unit watershed than sA. That 

was expected since wA has higher percent impervious cover. Higher percent 

impervious cover would reduce infiltration, thus reducing the amount of water stored in 

the aquifer.  Such conditions should lead to lower than normal baseflows as Klein 

(1979), Spinello and Simmons (1992) suggested through their work (see page 13).  The 

main hypothesis was based on the assumption that the two watersheds behaved in 

exactly the same way. The results, however, showed clearly that the two watersheds 

did not behave in the same way. The fact that sB did not discharge more water or DSi 

per unit volume or area of watershed could be a result of many different factors that 

could not be predicted or measured. A watershed’s water budget and cycle may include 

numerous variables including stormwater management practices, evapotranspiration, 

water use, etc.  Significant water withdrawal from deeper groundwater aquifers and 

subsequent discharge in the watershed via irrigation etc, for example, could account for 

higher than expected streamflow or even DSi in either stream. Samples taken from a 

deeper well a few meters away from the shallow well in wA showed that DSi 

concentrations in deeper aquifers were significantly higher (mean=119.6µM, std 

dev=28.29, n=6). This volume of water, used for watering lawns, washing cars and 

pavements, could end up in the streams as either baseflow or runoff. 
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The sampling events during baseflow conditions helped establish a baseline to 

which changes during rain events were compared.  DSi concentrations ranged between 

60 µM and 80 µM but they were relatively consistent within each stream (see table 3) 

even though sampling events ranged from March to July. These results are a good 

indication that DSi concentrations of the shallow aquifer in the area remained stable for 

at least that part of the year. Streamflow varied within each stream between events, as 

expected, since streamflow depends on the amount of water stored in the aquifer at that 

particular day and time. Baseflow increased after a rain event and then gradually 

decreased until the next rain.  

 

Rain events 

During rain events, DSi discharge increased in both streams when streamflow 

increased. According to Figure 12 a, DSi discharge increased at a similar rate with 

increasing precipitation. Since wA is so much larger than wB, one would expect that 

total DSi discharge would increase at a much faster rate in sA than in sB.  Instead the 

slopes were not found to significantly differ. Streamflow on the other hand increased 

significantly faster in sA than in sB. Since streamflow in sA increased faster with 

increasing rain than in sB but yet total DSi did not, it is likely that the flow increase in sA 

was mostly caused by low DSi concentration runoff.   

As seen in Table 4, DSi discharge per unit watershed volume and area was 

higher in sA than in sB. It was thought that because wA would generate more runoff 

than wB, sB would discharge more DSi per unit watershed volume and area than sA. 

That, however, was the wrong approach to the issue this study was designed to 
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address. DSi discharge, since it is the product of DSi concentration and streamflow, 

should increase as long as streamflow increases faster than DSi concentration drops. 

For a stream like sA with such a high percent of impervious cover, streamflow increases 

rapidly because of the large amount of runoff generated. Even if DSi concentration 

drops, the increase of flow is so much higher, that there is always a net increase of DSi 

discharge. Further, because baseflow DSi discharge per unit watershed was already 

higher during baseflow it remained higher following rain events. According to Figure 10 

and 11, on three out of four occasions sA discharged more water and DSi per km3 and 

km2 watershed than sB. During the most intense rain event, however, (11.8 cm) sB 

discharged significantly more water and DSi per km3 or km2 than sA.  Even though it 

was an isolated event, it may still suggest that the behavior of the watersheds may have 

changed significantly beyond a certain amount of rainfall. In other words rain height as 

well as percent impervious cover may not only affect the amount of water or DSi 

discharged by a stream but it may also affect the way a watershed responds to 

precipitation.  

After the data were corrected for baseflow (Table 5), it became easier to 

investigate solely the effect of rainfall on each watershed without the baseflow signal 

present. Stream B did not produce any runoff during the two rain events when total 

rainfall reached only 0.34cm and 2.34cm, respectively. This showed the ability of wB, 

with less impervious cover, to retain rainwater more efficiently than wA. Watershed A 

produced 116.6m3 of runoff after a light rain event that did not exceed 0.34cm of rain.  

During the rain event in July rainfall reached 2.34cm, and while sB discharged no runoff, 

sA discharged at least 406m3 over a few hours.  Interestingly enough on May 22, 2003 



 48

sB discharged more runoff per km2 than sA after an 11.8cm rain event.  Even though 

wA discharged less than twice as much runoff per km2 than wB, it produced more than 

three times as much interflow per km2 than wA.  

During high rainfall events like the ones in April and May when rainfall reached 

4.90cm and 11.8cm respectively sB discharged more interflow per m3 of watershed than 

sA.  During the June event sB did not discharge any interflow likely because wB had the 

ability to retain all the rainwater. In July there was enough rain during the sampling 

event to produce some interflow in wB but since the ground did not reach water 

saturation runoff was not produced.  When rainfall was adequate to saturate both 

watersheds (May and June events) sB discharged significantly higher amounts of DSi 

per m3 of watershed than sA. The ratio between runoff and interflow for each of the 4 

rain events was always higher for sA. Stream B on every event produced more interflow 

than runoff.   

The corrected for baseflow data in Table 5 were good evidence that the 

relationship between rainfall and either runoff or interflow was not simple. Each 

watershed responded differently to different ranges of rainfall. Watershed A for example 

discharged more DSi per m3 of watershed than wB during lighter rain events but wB 

discharged more DSi per m3 during heavier events.  According to the CN method wA 

not only produced more runoff per km2 of watershed, but it also required less rain to 

begin runoff production than wB. The range of rainfall height capable of producing runoff 

was wider for wA than for wB. According to the CN method wA started to produce runoff 

when rainfall reached 1.34 cm but wB didn’t produce any runoff until rain exceeded 3.05 

cm.  This method underestimated the minimum amount of rainfall required for runoff 
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production in wA since a 0.34 cm event produced a significant amount of runoff 

according to Table 5. The number estimated for wB, however, agreed with the data 

collected for this study. A rainfall frequency chart constructed using 2001-2002 daily 

rainfall data (Figure 13) shows the number of rain events capable of producing runoff in 

each watershed. It is clear that almost three times as many rain events produced runoff 

in wA than in wB during the two years.  

Since rain event frequency increases with decreasing rainfall height (Figure 13), 

more impervious watersheds not only produce more runoff per rain event, but they also 

produce runoff more often.  According to this assumption, runoff production may 

increase exponentially in response to increasing impervious cover.  

According to Table 6, 12% of the rainfall that reached the ground between 

January 2001 and December 2002 was discharged by wA as surface runoff, where only 

2.5% was discharged as runoff by wB. This also means that the amount of DSi 

discharged into the ocean by wA was 12% less than it could be because of the 

impervious cover as the CN method estimated. Watershed B on the other hand, 

discharged only 2.5% less DSi than it could have due to its lower percent of impervious 

cover. The results obtained using the CN method strongly suggested that an overall 

reduction of DSi flow into coastal waters may be in fact taking place as a result of 

increasing impervious cover.  Since DSi loads are inversely proportional to runoff loads, 

and since runoff loads increase exponentially with impervious cover, then long-term DSi 

loads may be declining exponentially in response to the increasing impervious cover. 
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Figure 13. Rainfall frequency distribution chart for 2001-2002 rain events. 
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The findings of this study illustrate how two watersheds of different percent of 

impervious cover may affect the DSi cycle of the region and their estuaries. During rain 

events wA produces a relatively high volume of runoff that is released almost 

immediately to the estuary. This relatively large volume of DSi poor water can cause a 

serious short-term DSi dilution to the estuary while at the same time enriching it with N 

and P abundant in urban runoff. The result may be a reduction of the Si:N and Si:P 

ratios.  Since diatom growth becomes limited when Si:N ratio becomes less than 1 the 

algal community composition may be altered by creating the ideal conditions for noxious 

algal species to flourish. In contrast, wB infiltrates and retains rainwater much more 

efficiently. Infiltrated water is then recharged with DSi and released over time to the 

estuary. During heavier rain events, even the most pristine watershed may produce 

surface runoff. However as in sB the runoff/interflow ratio remained relatively low and 

significant DSi dilution at the estuary would be avoided. Noxious algal species can also 

be favored by reduced estuarine flushing rates observed during rain events. According 

to Hales (2001) exchange rates between ocean and estuaries during rain events drop 

significantly as a result of the increased freshwater inflow.  Rapid freshwater discharges 

are usually associated with high impervious cover since more pervious watersheds 

have the ability to retain more rainwater and release it to the stream over a longer 

period of time.  This reduction of estuarine flushing leads to an increased residence time 

for materials discharged into the estuary including N and P and reduced DSi inputs from 

the ocean. 

The volume of runoff water discharged by a stream is water that, if infiltrated 

would eventually carry a certain amount of DSi to the estuaries. If this amount of runoff 
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increases with increasing impervious cover then more water is being “wasted” as runoff 

and less DSi flows into the estuaries. Over a larger scale this phenomenon can cause a 

long-term reduction of DSi inputs into the ocean and reduce the local or even global 

oceanic DSi budget.  
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