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efforts are followed by developing a new technique to eliminate the costly approach

involving inter-source subqueries in [7].
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CHAPTER I

INTRODUCTION

The notion of data integration represents a long standing open problem in

the database community. The research area of data integration has broadened,

now extending its focus to Peer to Peer (P2P) approaches to integration [3], data

integration for medical research [5], and more. With the expansion of techniques to

data integration and application domains, researchers remain motivated to innovate

new ideas to bring to the community.

With regards to data integration, Extensible Markup Language (XML) par-

takes a prominent role in research efforts [4]. This emerged with [1] showing the

benefits of semi-structured data. XML’s self documenting and human readable

properties provide users with flexability not apparent in the traditional relational

database systems. Attempts are made by the data integration community to harness

those properties in its research.

This thesis builds on a foundation established by XML Interoperability. The

authors of the aforementioned paper attempt to leverage the developments of the
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semantic web. In doing so the ability to enrich local sources with semantic declara-

tions becomes available which provides the technology required to compose queries

over a application specific common vocabulary of predicates. Expansion of one of

the aforementioned queries results in ©(nm) subqueries with all but n of those

queries requiring data transmission, and the research focuses on providing efficiency

in this area of the framework. Discussion of complete details about the framework

presented in [7] take place in Section 1.1.

The concept of large scale data integration provided motivation for research

efforts herein. [7] presents the concept of inter-source subqueries in its research.

These subqueries require data of multiple sources to reside at a central location

in order for the evaluation to take place. Obtaining a central location requires

the transmission of data from sources required by the inter-source subquery to a

location where inter-source processing can take place. Also, this thesis provides

discussion about the concept of data transmission. Herein discussion of the notion

of optimal data transmission also takes place. From that the research presents a

naive approach to acquiring the optimal solution and some other potentially useful

concepts regarding efficient data transmission.

Inter-source subqueries cause additional overhead in the framework. In re-

gards to large scale data integration, ©(nm) queries could be extremely costly and
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lead to major system performance issues. This is not just the overhead involved in

processing©(nm) queries, but also the cost of transmitting data required for query

processing to take place. This leads to the question of whether the elimination

of all inter-source subqueries is possible without the framework losing functional-

ity. The research leads to the discovery of an approach that eliminates the need of

any inter-source subqueries which is a technique known as the relational approach.

With the ideas regarding this approach,it may be possible to move closer to estab-

lishing a framework with improved scalability, capable of efficient large scale data

integration.

1.1 Prior Work

The integration of multiple collections of data should be a simple process. Users

should posses the ability to gather results of queries based not only on their own

data, but also the data of other sources containing information from a common

domain. Doing this should not require knowledge of the precise structure of other

users’ data. A method, proposed by Laks V. S. Lakshmanan and Fereidoon Sadri,

to accomplish the task surfaces in the paper XML Interoperability. Neither the

problem at hand nor a solution to the problem is unique. The authors present a

different technique to address the problem. XML (Extensible Markup Language)
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dispenses a means of presenting each user’s data (also referred to as source). XML’s

flexibility, constant advancements, and recent establishment as a World Wide Web

Consortium (W3C) standard all made it an ideal selection. An overview of the

proposed solution is as follows. Multiple users, possibly at different locations, all

retain their individual collections of data. All the collections of data partake in a

common domain. Therefore, the ability to map all sources to a common vocabulary

is possible. This possibility supports method of enabling interoperability amongst

multiple XML data sources presented by [7].

The architecture proposed by [7] appears in Figure 1.1. For the processing

of a query in the framework, the coordinator first receives and processes the user

query in terms of the semantic model. The processing of the query eventually leads

to the creation and transmission of local subqueries. Semantic enrichment occurs,

allowing individual sources to provide their data. Sources’ data (local intermediate

results) are returned to the coordinator for any processing which remains. The data

from all individual sources now possess the schema of the global predicates. Upon

completion the union of all the answers is returned to the user. The framework

provides a solid foundation for research efforts in the realm of data integration.

This section expands on the concepts of the framework and prepares readers for the

new ideas and concepts established by research efforts made during the process of
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writing this thesis.

Figure 1.1: Architecture for Interoperability

While providing insight on XML Interoperability, a simple example is used

to relate key points to a possible real world scenario which pertains to student

and course information maintained by institutions. A Document Type Definition

(DTD) representing the University appears in Figure B, and this “schema“ aids in

illustrating different concepts presented by the paper [7].

Enriching local sources with semantic declarations constitutes the founda-

tion for the lightweight framework which enables interoperability. An ”application

specific ontology” provides the source of such declarations (in line with Resource

Description Framework (RDF), brought about by the Semantic Web). The critical

endeavor of predicate simplification occurs during the creation of the aforemen-

tioned ontologies. Creating simple binary predicates is key to the concept at hand.
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To provide maximal flexibility predicates should be as simple (not divisible any fur-

ther) as possible. Establishing that simplicity provides many benefits. Simplicity of

predicates alleviate difficulties associated with adding attributes to a global schema.

Additionally, it increases the likelyhood that predicates will exist that correspond

to data in sources schemas. Binary predicates alleviate heavyweights previously

associated with data integration and more specifically the notion of global schema.

An ontology corresponding to the presented example includes id-name, id-major,

id-cno, cno-title, and cno-credit. The arguments id and cno correspond to an

individual student and a particular course respectively. The ontology also contains

detailed information pertaining to each argument of the ontology. Take note to the

fact that each predicate illustrates a relationship between two arguments.

The use of the simplified binary predicates allows users to selectively create

mappings for particular predicates. This allows users who lack information for all

predicates to still contribute data. Furthermore, it provides the user discretion

about what information they wish to share. If the ontology contains predicates

which require data the source considers no disclosable, the source has the option of

not mapping to those predicates.

Binary predicates gain their usefulness upon the establishment of connections

between the predicate and individual sources. This occurs through the mapping of
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univ1

student*

id fname? lname? major? classes

course*

cno title credit

Figure 1.2: Tree representation of University 1

source information to appropriate binary predicates of a specified ontology. Ideally

each database administrator of a source involved in transmission/retrieval of data,

maps their local XML data to a set of predicates. Previous discussions of the

development of tools to assist administrators brought about talk of mapping tools.

The creation of a predicate mapping consist of mapping two nodes and one

associating element, called the glue, to a predicate. The glue illustrates a common

ancestor (least common ancestor in most cases) of the two nodes of the mapping.

The proposal of a graphical interface leads to the possibility of simplifying the map-

ping process. This interface would present a XML document illustrated in tree form

which would allow users to select three nodes appropriate for the arguments of a

predicate. Figure 1.1 displays a tree representation of a XML document simulating

the proposed graphical interface. If a person was to consider the mapping of in-
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formation from a source to the predicate id-name. The expression to do so would

appear is depicted by Figure 1.3.

id-name($I, $N) ← univ1/student $G, $G/@id $I, $G/name $N

Figure 1.3: A subset of XPath is used to represent mapping in [7] and will be used
in this thesis likewise.

Using the graphical interface to accomplish this involves selecting the @id

and name child nodes of students for the first and second predicate arguments re-

spectively and the student node as the glue.

With the initial focus of enabling interoperability complete, lets direct at-

tention to the process of query composition and processing. Selection, Join, and

Projection are the basis of the queries discussed in this research. The bulk of

the query processing revolves around the join of the necessary binary predicates

required to obtain the desired results. The expansion of a user query leads to

the union of predicate fragments from all sources joined together. Further ex-

pansion leads to a set of subqueries consisting of all permutations of joins. An

example is provided to clarify the concept of the composition of queries. Consider

a query where the results consist of the title of courses taken by students with
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the data deriving from two sources. Based on the ontologies previously provided

this query would appear as id-cno 1 cno-title. Expansion of the query leads to

(id-cno1∪id-cno2) 1 (cno-title1∪cno-title2). Further expansion of the query

leads to the desired expression as it appears in Figure 1.4.

(id-cno1 1 cno-title1) ∪ (id-cno1 1 cno-title2)∪
(id-cno2 1 cno-title1) ∪ (id-cno2 1 cno-title2)

Figure 1.4: Union of all subqueries.

For n sources and m predicates, there are ©(nm) subqueries to possibly

evaluate. The final expansion of the example query shows this by the number of

fragments unioned. Of those subqueries, only©(n) can be executed locally [7]. The

n local subqueries exemplify the notation of intra-source processing. The concept

refers to when all fragments of the subquery share the same source. The underlined

subqueries in Figure 1.4 identify the local subqueries. In the case where there are

nm subqueries, outside of the n local queries, inter-source processing must occur.

The evaluation of those subqueries require communication between multiple sources,

thus creating additional overhead.

Inter-source processing provides additional overhead to the framework, but

[7] provides a method of identifying subqueries requiring no inter-source processing.
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Consistency Condition: We say a predicate p satisfies the consistency

condition, provided: (i) whenever a constraint p(α)← p(β) holds in p, then it holds

for every fragment pi; (ii) if for fragments pi and pj we have ti ∈ pi, tj ∈ pj, and

t(α) = tj(α), then ti(β) = tj(β).

Let Q be a query involving the join of p(A, B) and q(B, C), and Q also has

the distinct clause to eliminate duplicates. Let k be a source.

Theorem 1 No inter-source processing involving pk is needed if and only if the fol-

lowing conditions hold: (1) The key contraint B ← C, and the consistency condition

hold for q, and (2) There is a foreign key contraint from pk to qk on the attribute

B.

Theorem 4.1 of [7] formally states when the elimination of inter-source pro-

cessing can take place. Particular inter-source subqueries can be eliminated when

the consistency constraint and a key constraint between the elements in the second

binary predicate hold, and there is a foreign key constraint from the first binary

predicate (its second variable) to the second binary predicate (its first variable) on

an element of both. With regards to the expanded query as shown in the last ex-

ample, if the consistency constraint [7] holds for cno-title (regardless of the source,

a course will always have the same title) and there is a foreign key constraint from

id-cno to cno-title on the course attribute, all inter-source queries can be elimi-
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nated involving sources where that holds true. Eliminating inter-source processing

essentially boost system performance in all cases.

Moreover, the concepts brought about in [7] establish a strong foundation

for the development and further advancement of a lightweight infrastructure that

successfully enables interoperability. The idea eliminates some of the shortcom-

ings associated with a “global schema” by enriching local source with declarations

based on an “application specific ontology“ composed of binary predicates. With

the advancement of knowledge presented by [7] and the development of the tools

mentioned, the lightweight infrastructure should help make advancements in the

area of interoperability and data integration.
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CHAPTER II

CONTRIBUTIONS

2.1 Generation of Subqueries

2.1.1 Concept of Subqueries

A major benefit of applying a global schema is that it allows users to pose queries,

evaluated over multiple sources, with knowledge of only the global schema. In

addition to that, sources need not alter their schemas for the inclusion of data in

the results of queries other users (possibly located at alternate sources) request. It

is only required that a mapping exist from sources to the global schema. In this

research the ontology, in a sense, provides the global schema. Those sources are the

ones who desire the inclusion of their data. For both qualities mentioned to hold

true simultaneously, translation from a query composed over the semantic model

into multiple queries must occur. The execution of each query needs to take place

at a source which posses data from all sources involved in the query.

In the framework, the coordinator handles the tasks of managing and trans-

lating queries. The coordinator translates a global query into a group of queries
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Univ1(student info)
id name major

50231 Jack CSC
50457 Mark MTH
50825 Wendy BIO

Univ1(registration)
id cno title

50231 656 Foundations of CSC
50457 555 Algo. Analysis
50825 671 Adv. Databases

Table 2.1: A listing of student ids, their
names, and course numbers for Univer-
sity 1.

Univ2(student info)
id name major

50322 Jane CSC
50411 Jim MTH

Univ2(registration)
id cno title

50457 705 Computer Vision
50322 692 Adv. Wireless Networking
50411 605 Adv. Operating Sys.
50411 720 Human Comp. Interaction
50231 720 Human Comp. Interaction

Table 2.2: A listing of student ids, their
names, and course numbers for Univer-
sity 2.

which not only (1) return the complete results based on each individual source but

(2) take into consideration when one source may not harbor all the information

required to answer the query completely. Upon gaining information from alternate

sources complete answers become obtainable.

Example

Provided is an example to give better understanding of the subqueries the coordi-

nator creates, illustrating a specific instance of the scenario at hand. Tables 2.1

and 2.2 exemplify two separate universities where each university maintains infor-

mation about its full time students and the course registration of all students. The
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two universities are integrated in the sense that students can register for courses at

the university where their enrollment is less than full time. This thesis makes the

assumption that all students are enrolled full time at only one university. Here the

university where the student is not enrolled full time is referred to as a alternate

university. Additionally, students enrolled full time at a university are regarded

to as primary students. A student is identifiable by a single id, regardless of the

university. When a student registers for a class at an alternate university, that

school lacks information about the student aside from their registration information

(e.g. cno, title). That indicates that there is no foreign key relationship between

the student info table and the registration table (at a particular university) on the

student id attribute. Suppose one would like to determine the name of every stu-

dent from Univ1 and Univ2, and the title of all courses in which they are enrolled

(at either university). Performing a natural join of the student info table and the

registration table at Univ1 on the id attribute, selecting the name and title of each

record, and projecting that information unioned with the corresponding information

of Univ2 seems as an appropriate approach to the results. Evaluating the query in

that fashion leads to the results in Table 2.3.

Table 2.3 corresponding to the results of the query mentioned actually dis-

plays incomplete results. The results fail to list courses students are registered for
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Results
name title

Jack Foundations of CSC
Mark Algo. Analysis
Wendy Adv. Databases
Jane Adv. Wireless Networking
Jim Adv. Operating Sys.
Jim Human Comp. Interaction

Table 2.3: Incomplete Query Results

Results
name title

Jack Foundations of CSC
Mark Algo. Analysis
Mark Computer Vision
Wendy Adv. Databases
Jane Adv. Wireless Networking
Jim Adv. Operating Sys.
Jim Human Comp. Interaction
Jack Human Comp. Interaction

Table 2.4: Complete Query Results

at an alternate university. The lack of a tuple indicating that Mark is enrolled in the

course titled Computer Vision and that Jack is enrolled in Human Comp. Interac-

tion illustrates this point. The query actually returns the names of all students and

the courses they are enrolled in at their primary universities. To obtain the results

that is sought requires the union of these results with the results of (1) student

info table of Univ1 joined to the registration table of Univ2 on the id attribute and

(2) the student info table of Univ2 joined to the registration table of Univ1 on the

id attribute. These additions allow for the inclusion of results where a student is

registered for classes at an alternate university. This concludes with the complete

results as they appear in Table 2.4. In the example above, both University 1 and

University 2 share the same schema. That is not an assumption made in the frame-

work, and presents another issue to overcome. Thus, the use of a semantic model
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resolves issues pertaining to the heterogeneity of sources’ schemas.

Classification of Subqueries

[7] introduces an approach which encapsulates both points that the coordinator

must take into consideration. That approach consist of generating subqueries to

be executed at particular sites (with access to all data sources involved in the sub-

query). The establishment of these subqueries involve identifying global predicates

in the user query and replacing them and other items described in terms of the

predicates with the appropriate information. The source mappings furnishes the in-

formation necessary to replace the binary predicates in the user query. An example

source mapping is located in Appendix F.

Subqueries fall into one of two categories:

1. Local subqueries: a query derived from the global query translated in terms

of a single source mapping.

2. Inter-source subqueries: a query derived from the global query translated in

terms of multiple sources mappings (involves data of more than one source).

Evaluating local subqueries requires the data of exactly one source. Complete eval-

uation of these subqueries requires no prior data transmission. On the other hand

inter-source subqueries need data from multiple sources to completely evaluate the
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subquery. Data transmission occurs to ensure the availability of the appropriate

data from various sources for the processing of the subquery, and this thesis pro-

vides discussion on the notion of data transmission.

2.1.2 “AllSubqueries” Algorithm

With the conceptual knowledge pertaining to subquires explained, the question that

must be answered is, how does one arrive at these subqueries? [7] provides an algo-

rithm which given a global query Q and a source mapping Mi for source i outputs a

local subquery Qi at source i resulting from Q. The complete algorithm is located

in Appendix A. In this thesis, extension of the algorithm occurs to allow to the

generation of inter-source subqueries as well. The acquisition of the desired results

require modifications to the input and output accordingly. The input to gener-

ate all subqueries requires the global query Q and all n source mappings M . The

corresponding output consists of all possible subqueries. In Algorithm 1 n and m

respectively correspond to the number of sources and number of predicates involved

in the subquery. The array a[i] provides an indication of which source mapping

provides the translation information for the ith (unique) predicate in the user query.

For example, a[2] = 5 indicates that the second predicate in the user query and

everything evaluated in terms of a variable assigned to that predicate is translated
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Algorithm 1 AllSubqueries algorithm

1: procedure AllSubqueries(Q,M)
2: n← number of sources
3: m← number of predicates involved in global query Q
4: a[m]← array of size m
5: x← 0
6: for i← 0, nm − 1 do
7: a[x]← a[x] + 1
8: while a[x] == n do
9: a[x]← 0

10: x← x + 1
11: a[x]← a[x] + 1
12: if x == n then
13: exit while loop
14: elsex← 0
15: end if
16: for j ← 0, m− 1 do
17: if sourcea[j] does not contain predicate j + 1 then
18: dontStore← TRUE
19: exit for loop
20: else
21: ReplacePredicate(j + 1, a[j])
22: dontStore← FALSE
23: end if
24: if dontStore == FALSE then
25: StoreSubquery()
26: end if
27: end for
28: end while
29: end for
30: end procedure

in terms of source five. So for a given global query, m replacements specified by [7]

algorithm for each subquery occurs. Instead of using the ith source to translate the

entire global query at once, now the source specified on the particular iteration of the

for loop is used to translate each predicate individually. Those actions correspond

to the ReplacePredicate routine. The routine takes two parameters, (1) the posi-

tion of the predicate and (2) the source used when translating the predicate. That

statement executes m times for each of the nm iterations of the outer for loop. If a
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global query entailed three sources and four predicates, the sequence of inter-source

subqueries produced would consist of, 1-1-1-1, 1-1-1-2, 1-1-1-3, 1-1-2-1, . . . , 4-4-4-4.

Following the translation of the global query, the subquery is stored by the coordi-

nator (the StoreSubquery() routine) until transmission time. Subqueries where a

predicate fragment is not available are excluded using the dontStore boolean, and

this is because the completely translation of the global query is not possible. As

previously mentioned, sources may not provide a mapping to a predicate for various

reasons. When they do not there is no need for a subquery which contains that

predicate fragment. No useful information can be acquired due to the fact that the

partial information possibly obtainable from the subquery will appear in results of

other subqueries.

2.1.3 Application of Optimization Techniques

[7] proves that obtaining complete results does not require all subqueries under

particular circumstances. The algorithm discussed above disregards that during

its generation of subqueries. To overcome this hurdle, the algorithm previously

described can be replaced with an alternative algorithm, and this algorithm takes

the required subqueries as input. Each subquery contains m predicate-source pairs.

The output would consists of all subqueries corresponding to the requirements. The
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coordinator generates each subquery using its respective predicate-source pair. This

corresponds to the ReplacePredicate routine that was previously described. Instead

of passing the position of the predicate and the source it uses for translation, the

predicate to be replaced and the source used for translation are provided as input.

Another alternative involves creating all the subqueries but distinguishing

which queries to transmit when obtaining the results to the query, and this consists

of storing the subqueries with additional information distinguishing which sources

where involved in each subquery. With this approach, once the coordinator com-

putes which subqueries are needed and where they should be transmitted, the se-

lection and transmission of the required subqueries is possible.

2.2 Efficient Data Transmission

2.2.1 Evaluation of Subqueries

The system is presented a query in terms of the global binary predicates (using

relation algebra). The query entered by the user involve a join of two predicates,

reading as id-cno 1 cno-title. For a system where there are i sources, each

of the i sources possibly contains a fragment of the predicate p, denoted pi. The

global predicate p is equal to the union of all i fragments (without duplicates). For

the example presented, id-cno is equivalent to id-cno1 ∪ id-cno2 . . . ∪ id-cnoi
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and cno-title is equivalent to cno-title1 ∪ cno-title2 . . . ∪ cno-titlei. Ex-

pansion of the global query must occur for further evaluation. This is accom-

plished by replacing the predicates of the query with the union of their fragments.

(id-cno1 ∪ id-cno2 . . . ∪ id-cnoi) 1 (cno-title1 ∪ cno-title2 . . . ∪ cno-titlei)

which evaluates to id-cno1 1 cno-title1∪id-cno1 1 cno-title2 1 . . . id-cnoi 1

cno-titlei. Processing of the inter-source subqueries requires transmission of the

required data to a central location. This situation brings about the issue of how to

determined where to send the data.

2.2.2 General Idea

Obtaining the subqueries places the concept one step closer to determining the re-

sults of the global query. The coordinator is responsible for handling the processing

and distribution of the subqueries. Section 2.1.2 of the thesis presented techniques

for the generation of the subqueries. Now the transmission of the subqueries to

the correct sources must occur. After transmission, subqueries are at sources which

contains the appropriate combination of data from all sources.

To allow the joining of predicate fragments, the sources containing the data

fragments must transfer their data to a central location. At the location the evalua-

tion of the subquery may take place. For simplicity, an assumption is made that the
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cost of transmitting the data is equivalent to the size of the data (XML document)

transmitted. Additionally, one has to assume a uniformed network for the data

transmissions (i.e the transmission of data from a particular source to any other

node is identical). For example, transmitting data from source one to source two

and transmitting from source two to source five have identical cost. For a source to

acquire the data required for a local subquery involving itself requires zero units.

2.2.3 Processing Subqueries Using the Coordinator

One method of establishing a centralized location for the processing of subqueries

involves transmitting the data from all the sources to the coordinator. With this

technique, the coordinator may request for the data of all sources. While waiting

for sources to complete transmission of data, the simultaneous generation of the

subqueries provides good use of potentially idle time. In this method data trans-

mission cost is irrelevant. The coordinator will send all sources involved in the

query a data request and the corresponding sources respond by sending their data.

This approach solves the issue of having all the data in a centralized location. The

question then becomes, is this the most efficient way of handling the situation? The

coordinator will now be performing an extraneous amount of work, while all the

sources are idle. Another question that arises is whether or not there is a way to
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limit the sources that actually transmit their data? With these questions, some

good points arise and addressing those issues lead to the next approach.

2.2.4 Processing Subqueries Using the Largest Source

Proposed is a data transmission technique where the n − 1 smallest data sources

transmit their data to the largest source. That is where all the subqueries will

be evaluated and the results of the global query will be determined. Such an ap-

proach relieves the coordinator from having to do the processing of the subqueries

by assigning them to a source to process. In doing so, it also reduces the number

of data sources which transmit data, thus reducing the amount of data that needs

to be transmitted to evaluate the global query. The approach also overcomes the

shortcomings identified in the method above. Although this approach appears more

sufficient than the previous, the question remains as to whether it is always the best

approach. Earlier in the thesis there was discussion of when inter-source queries can

be eliminated. If this were so, then it may not be necessary to send all the data to a

single source to have it perform all required processing. It is possible that there may

be a situation where half of the sources can be processed at one node and the other

half at another node; however this is all depending on the inter-source subqueries

that are required. For all required subqueries, the set of sources for each one is
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added to the group of sources that need to all be in a common location. Each group

that is a subset of another group can be eliminated and once all subqueries have

been evaluated, the set of groups that has been established shows which sources

need to share a common location. The next approach uses this information and

determines an optimal solution for efficient data transmission which provides the

optimal approach under certain conditions. If for all sources i, j ∈ {s1, s2, . . . sn}

there exist a subquery that requires both i and j, then this approach will provide

the optimal solution. There may be other situations where this also provides the

optimal solution.

2.2.5 Naive Approach to Processing Subqueries

Although the previous method can produce the optimal solution in some cases, it

has its share of shortcomings. The naive approach is presented to overcome those

shortcomings and provide the optimal solution in every scenario. Here iteration

through every possible combination of data transmission between the sources in-

volved occurs. For each iteration (1) check to see if all subqueries are able to be

processed with the particular transmission pattern and if so (2) determine if it has

less of a cost than any of the other previous iterations. If it cost less, store that

solution and the cost and continue to iterate through the possibilities until they
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all have been exhausted. Now an approach has been presented which will always

produce the optimal solution, but its disadvantages are costly. The time complexity

of this algorithm is 2n(n−1) which is well beyond acceptable for the approach when

applied to even a somewhat large number of sources. For the processing of a query

which resulted in the need for all local and inter-source subqueries, the most efficient

scheme of transmitting the data would be to ship the data from each source to the

source which had the largest unit of data to transfer.

2.2.6 Manipulation of Properties of the Framework

The naive approach is a very costly option, but always results in an optimal solution.

The algorithm presented does not always present an optimal solution, but is more

efficient.

Source localization combinations

The number of possible subqueries is of ©(nm), and the transmission of data re-

quired to evaluate particular subqueries may overlap. There is no need to use the

list of required subqueries because it is extremely likely that the list can drastically

be reduced to a form that brings efficiency to obtaining an optimal transmission

scheme. Two subqueries involving the same combination of sources may produce

different results because each source may be applied to a different predicate. The
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subqueries id-cno1 1 cno-title2 and id-cno2 1 cno-title1 are completely dif-

ferent subqueries. But for data transmission only the combinations of sources is

relevant. In combinations, as in set theory, order has no relevance. In the previous

example sources one and two were used in the first subquery and sources two and

one were used in the second. Both subqueries require the same data localization of

data because the two sets of sources required are the same.

To obtain the simplified source combinations the evaluation of each subquery

as a set must occur. The sets are reduced such that no set is a subset of another set

included. The subqueries are treated as sets not multisets. The subquery id-cno1 1

cno-title1 is evaluated as the set {1}. Now as opposed to having at most nm

situations to take into consideration there are at most n(n − 1)/2 when n > 1

possibilities to evaluate.

Obtaining “Optimal Solution”

To determine the optimal solution requires the use all possible pairs (with the

criteria above being met) of size two. The pairs are determined by first obtaining

a list of the sources ordered by size and from this list the pairs are obtained. This

list contains all combinations of sources. The pairs are obtained from the list as

follows. Evaluation of a pair occurs only if a combination appears in a subquery.
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Then data transmission from the source to the destination of the two sources of

the pair takes place if the two do not already preside at a common node. This

results in an optimal solution some of the time. Usually this will produce optimal

solution if no two queries overlap on more than one source. It is possible for this

algorithm to produce the optimal result when overlapping occurs, but there are

certain criteria that must be met for this to occur. Further research is required to

obtain an algorithm that obtains the optimal solution for data transmission in all

cases.

Merger of Source Combinations

In certain situations merging combinations of sources prior to evaluations with the

algorithm described above allows it to produce an optimal solution. If data over-

laps between two combinations and only two combinations, then if for one of the

two combinations the cost of transmitting the overlapping data is more than trans-

mitting the remaining sources then the two combination sets can be unioned and

evaluated as one set. Upon applying the algorithm on the subqueries, an optimal

solution will be obtained.
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2.3 Obtaining Minimal Intermediate Data (Relational)

The concept of inter-source subqueries demands the transmission of data from vari-

ous sources to allow predicate fragments required in a particular subquery to reside

in a common location. The ability to minimize this aspect of the system potentially

reduces an enormous amount of system overhead. This section provides a new ap-

proach attempting to accomplish just that. One of the major benefits of XML is its

flexibility. With this technique, its flexibility provides us with multiple cases to take

into consideration. During research three situations regarding the XML’s schema

have been identified which includes:

1. A top down hierarchical model where a relationship between an attribute is

identified only by its predecessors.

2. “Key/Foreign Key” approach where an identifier is used to relate an element

in one subtree to data in another subtree where the data elements are not

siblings. This corresponding to id-idref and other similar approaches to an

XML schema.

3. A schema using id-idrefs.

The primary focus of this thesis is on the first case listed above. There is some

discussion about the second situation. Case three is not mentioned in more details.
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Currently no mapping techniques have been implemented to handle the situation.

2.3.1 Relational Approach

Here lies a proposal of a alternate method to the prior technique of using local and

inter-source subqueries. The approach discussed previously consist of individual

sources transmitting the data among other sources in a fashion that allowed all the

processing of subqueries. The new approach involves gathering all the information

from each source possibly useful. Each source is queried to obtain its complete

data (which provides the results for the local subquery) and any incomplete data,

possibly useful in performing the necessary joins to other sources.

These intermediate results are presented in relational form. Each tuple of

the results contains either an attribute exactly once, or a null value for the attribute

or the absence of elements. Null values appear when a source does not contain all the

information required to present a complete tuple. One can relate this technique to

a full outer join. With a full outer join of two predicates, when the attribute joining

the predicates does not correspond to an attribute in the tuples of the opposing

predicate, null values appear in the columns of the predicate lacking data. This can

be expressed in relational algebra using its basic operators on binary predicates r
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and s as

(r 1 s)∪((r−ΠR(r 1 s))×{(null)(null)})∪((s−ΠS(r 1 s))×{(null)(null)}) (2.1)

2.3.2 Key Concepts

With the use of XML and XQuery, sources’ schemas do not have to follow suit with

the output of the final results. Another benefit of using XML is that it should have

a top down hierarchy (for case one) and one root element which every other node

in the tree is an ancestor of. From this, the assumption is made that every element

and its ancestors possess some relationship. With that being said, note that every

group of predicates can be written in terms of some least common ancestor (with

the root being the least common ancestor of every element in the tree).

Sources provide mapping rules for each of the binary predicates it contains

data for. These mappings describe the predicate in terms of the particular source.

As previously stated the glue ($G) variable is the least common ancestor of the two

attributes of the binary predicate. The mappings identify the glue and describes

both attributes in terms of the glue variable. Figures 2.1, 2.2 and 2.3 display map-

pings for predicates id-name, id-cno and cno-title. For the predicate id-cno,

the least common ancestor of the two attributes is /univ/student. This indicates

that for each student in the university, the predicate id-cno list all combinations
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id-name($I, $N) ⇐= univ/student $G,
$G/id $I,
$G/name $N

Figure 2.1: Mapping for id-name.

of their ids and cnos. In this case id describes exactly one student, so for each id

it would list all cnos that correspond to the student.

id-cno($I, $C) ⇐= univ/student $G,
$G/id $I,
$G/classes/course/cno $C

Figure 2.2: Mapping for id-cno.

cno-title($C, $T) ⇐= univ/student/classes/courses $G,
$G/cno $C,
$G/title $T

Figure 2.3: Mapping for cno-title.

Building off of the mapping rules for each predicate, this thesis derives a

mapping rule for the joining of predicates in a user query. Using the same notation

used in [7] the query id-name 1 id-cno 1 cno-title results would appear as

Figure 2.4. The Figure 2.4 depicts each attribute in terms of one of its ancestors.

To obtain this first involves determining the glue of all predicates included in the

join. Upon accomplishing that the glues are written in terms of the closest ancestor

which happens to also be a glue.
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id-name-cno-title($I, $N, $C, $T) ⇐= univ/student $G1,
$G1/course $G2,
$G1/id $I,
$G1/name $N,
$G2/cno $C,
$G2/title $T

Figure 2.4: Mapping for query results.

”GenerateGlues” Algorithm

An algorithm has been derived to create the mapping for the joining of predicates.

The input consist of a list containing each predicates glue and a list of the complete

paths of the predicate attributes. The algorithm outputs the mappings for the

joining of all predicates in the input.

The glues are sorted lexicographically (reading the path from left to right)

in ascending order. After successfully sorting the glues, the FindGlue routine deter-

mines the least common ancestor of all items in glueList. This, in most cases, will

be the first glue in the newly sorted list. The joinMappings array stores sets, with

each set containing (1) the full path of the glue, (2) the glue in terms of a variable

(exception being the least common ancestor) and (3) the new variable for which

the glue used to describe the path. For the least common ancestor of all glues the

path for the first two arguments and a new variable declaration are stored. After

determining the super glue the remaining glues are processed. Iteration through
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the glueList starting from position one of the array follows. If by chance, the least

common ancestor of the glues was not included in the list position zero becomes

the starting position. The variable tPath is used to temporarily store the glue of

the current iteration. The next loop entered iterates downward starting from the

number of levels in the path of tPath, counting down to one. Another temporary

variable tmp is used to store the path of tPath up to the jth element. The variable

tmp is compared against all glues currently in the glueMapping variable. If a glue

corresponding to tmp does not exists tmp is evaluated with the last element removed

from the end of the path expression. If tmp is found in the list of joinMappings

the next step involves ensuring that a glue equal to tPath does not already exist.

If that is also true addition of the set containing tPath to joinMappings occurs, the

path derived from replacing the segment equal to tmp in tPath with the variable

that corresponds to the glue tmp, and a new variable declaration. After adding the

new set to joinMappings or discovering one already exists the inner for loop is

exitted and continue processing the rest of the paths in the glueList. Once all glues

in glueList have been evaluated the evaluation of the attributes of the predicates

must take place. The process is almost identical to that of processing the glues with

a couple of exceptions. The number of levels evaluated in the inner for loop is one

less because it is known that it is an attribute. The other difference is that instead
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of storing a glue for the first argument nothing is stored because it is not a glue and

nothing will be expressed in terms of the attribute.

The example of the mapping in the Figure 2.4 presents a mapping for the join

id-name 1 id-cno 1 cno-title. When applying the algorithm to this problem,

the input includes

• /univ/student

• /univ/student

• /univ/student/classes/courses

for the glueList and

• /univ/student/id

• /univ/student/name

• /univ/student/classes/courses/cno

• /univ/student/classes/courses/title

for the attribute list. The glues are sorted in lexicographical order. This results in

the list as follows

• /univ/student
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• /univ/student

• /univ/student/classes/courses

Next determining the least common ancestor to all of the glues takes place.

The super glue corresponds to the first glue in the list which is /univ/student.

That glue is stored in joinMappings along with the glue again and a variable, $G1

for this example.

Evaluation of the outer for loop follows. The assignment of glueList[1],

which contains /univ/student, to tPath occurs next. With the variable j equal to

two a check occurs to see if the glue /univ/student is contained in the joinMap-

pings, which it is. Subsequently a check occurs to see if the tPath already exists

in the joinMappings. In this case and it does, so the for loop is exited. On the

next iteration evaluation of the glue /univ/student/classes/courses takes place.

This starts with the assignment of the path to tPath. With the full path assigned

to tmp, a check occurs to see if joinMappings contains tmp, which is false. Next

/univ/student/classes is assigned to tmp and once again it is not in joinMappings.

Following that /univ/student is assigned to tmp and it is contained in joinMap-

pings. The algorithm then checks if tPath already exist in joinMappings which is

false which leads to it being added. The first argument when adding to joinMap-

pings will be tPath which is /univ/student/classes/courses. That is followed
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by replacing tmp in tPath with the variable declaration of tmp. The algorithm

replaces /univ/student in tPath with $G1 resulting in $G1/classes/courses. The

last argument of the set to be added to joinMappings is a new variable which is

denoted as $G2.

With all the glues processed, the algorithm processes the predicates. Start-

ing with the assignment of /univ/student/id to the variable tPath. The inner for

loop then iterates downward starting at the level count of tPath minus one. This is

equal to two in this case. Comparisons are made to determine if /univ/student is

contained in joinMappings and it is. The absence of the attribute in joinMappings

leads to the insertion of the set consisting of NULL for the glue (because attributes

are being processed) along with $G1/id and $I for the new variable. This same pro-

cess is carried out for the remaining predicate attributes resulting in the information

necessary to formulate the glue mappings depicted in the Figure 2.4.

2.3.3 Obtaining the XQuery

The proposed framework requires the querying of XML data using XQuery. The

use of XQuery provides a way to obtain the data in the form described above.

Although XQuery has grown to become a powerful language, it lacks a straight

forward method to present results in the form desired. This is because XQuery
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does not directly support full outer join operation. When performing a join in

XQuery, it corresponds to a natural join if attributes are specified for the join or a

cartesian product if none are specified.

2.3.4 Overview of Approach

The concepts presented in this section form an approach that differs from the

method involving subqueries presented in [7]. Presenting the results of each source

in a relation form presents various benefits. Although concepts surrounding the idea

of the relational approach must be extended, a far comparison can still be made.

This approach provides complete and incomplete tuples from every source. Next

would be to determine how to process these results and obtain the complete answers

to the global query.

2.3.5 Merging Results

With the prior approach of obtaining the result of the global query, subqueries were

used. Each subquery consisted of results that were to appear in the final results.

Once all the subqueries were executed, the result of the global query was determined

by unioning all of the individual subquery results. The approach discussed in this

section eliminates the use of subqueries. Instead there is one query issued at each

source. And instead of the query consisting only of results to appear in the results



38

of the global query, they now consists of results of a single source to appear in a

subquery, along with partial information which possibly may not be used at all. To

obtain the result of the global query involves more than a union.

The approach first involves unioning the data from all the sources. Next a

primary key of the data in relational form must be identified. For each item of the

primary key the distinct values corresponding to it and the distinct values of each

attribute that the item functionally determines are to be retrieved. This approach

only returns tuples which include every attribute required by the global query. The

complete results are now available.

2.3.6 Current Limitations

As mentioned three possible scenarios of XML schemas have been identified. Of

those three an algorithm is only presented for one, which is the top down hierarchy.

Type two is described and mappings are discussed, but no algorithm is presented

to obtain the XQuery necessary to produce results from the source which data is

formatted accordingly. With type three there is currently no mapping specifications.

No efforts were made to consider this type for relational form. There have been

no optimization efforts made pertaining to this new technique. There is room for

optimization and further research efforts should identify and provide implementation
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for optimization.

2.4 Compare Approaches

The two approaches attempt to accomplish the same goals but take two different

paths in obtaining the desired results.

2.4.1 Number of Queries to Execute

The first approach requires at most nm subqueries. This is because it must join each

predicate fragment of a source to every other combination of predicate fragments.

With the relational technique only one query is required for each source. This results

in nm − 1 less queries to be executed.

2.4.2 Quantity of Data Retrieved by Subqueries

With the subquery approach every result of the subquery will appear in the results

of the global query. Each subquery does not return any extraneous data. However

there is the possibility that some results may repeat across subqueries though.

With the relational approach there is extraneous data. The queries executed at

each source returns the complete results for that particular source as well as other

information that might be useful with information from other sources. The problem

is that other sources may not need the extra information. With that being said,



40

this research now encounters the fact that this method may return far more data

than what is actually needed to obtain the query results. There is the possibility

that some of the extraneous data can be eliminated with the where clause of the

global query when obtaining the intermediate results.

2.4.3 Optimization Techniques

No optimization techniques have been identified corresponding to the relational

technique. On the other hand techniques to optimize the subquery approach exist.

Optimization efforts include minimizing the number of subqueries to execute. Even

with this technique the least amount of possible subqueries would still equal the

number of subqueries required in the relational approach.

2.4.4 Data Transmission

Both approaches require some sort of data transmission. With the subquery ap-

proach corresponding to methods presented, the data of each subquery must reside

in a common location. This requires the transmission of the documents. With

the relational approach data transmission is only required to send the intermediate

results back to the coordinator where they are unioned together to form the final

results.
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2.4.5 Distribution of Workload

With the relational approach each source is assigned one subquery to execute and

then the coordinator executes one query to union all the results. With the subquery

approach the execution of queries can in some situations be distributed about the

sources and the results can even be unioned at various sources prior to transmission

to the coordinator.



42

Algorithm 2 GenerateGlues algorithm

1: procedure GenerateGlues(G[], P []) . List of glues and list of predicate
attributes (full paths included)

2: glueList[]← G[] . Glues for all predicates involved in join
3: predList← P [] . Paths of predicate attributes where predicates involved

in join
4: Sort(glueList[])
5: glue = FindGlue(glueList[])
6: joinMappings[]← glue, glue, newvariable . new variable i.e G0
7: for i← 1, number of glues in glueList do
8: tPath← glueList[i]
9: for j ← levels of tPath, 1 do

10: tmp← path of tPath up to j element
11: if joinMappings contains tmp then
12: if joinMappings does not contain tPath then
13: joinMappings ←

tPath, Replace(tPath, tmp, variable for tmp), newvariable
14: end if
15: end if
16: exit for loop
17: end for
18: end for
19: for i← 1, number of paths in predList do
20: tPath← predList[i]
21: for j ← levels of tPath− 1 to 1 do
22: tmp← path of tPath up to j element
23: if joinMappings contains tmp then
24: if joinMappings does not contain tPath then
25: joinMappings ←

NULL, Replace(tPath, tmp, variable for tmp), newvariable
26: end if
27: end if
28: exit for loop
29: end for
30: end for
31: return joinMappings . Output mapping for join
32: end procedure
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Algorithm 3 RelationalXQuery algorithm

1: procedure RelationalXQuery(Q, M)
2: predList← LoadPredicates(Q)
3: for i← 0, Count of predicates in predList do
4: arg1← getArg(Mi, predList[i], first)
5: arg2← getArg(Mi, predList[i], second)
6: glue← getPathGlue(Mi, predList[i])
7: if arg1 6= null and arg2 6= null then
8: insertarg1intoargList
9: insertarg2intoargList

10: insertglueintoglues
11: end if
12: arglist← SortPaths(argList)
13: glueList← CreateGlueList(argList)
14: tuple← false
15: tmp← glueList set that contains argList[0]
16: xquery ← "For " + tmp’s variable item + " in " +

tmp’s path in terms of variable
17: for i← 1, Count of elements in argList do
18: if glueListcontainsargList[i] then
19: tmp← glueListset that containsargList[i]
20: if gluescontainsargList[i] then
21: xquery ← xquery + "let $NULL := "
22: xquery ← xquery + "For $NULL in " +

NotExistFormat(tmp’s path in terms of variable)
23: xquery ← xquery + "return <null> "
24: xquery ← xquery + "For " + tmp’s variable item +

" in " + tmp’s path in terms of variable + " union $NULL"
25: tuple← false
26: end if
27: else
28: if tuple = false then
29: xquery ←

xquery + "return <tuple>{ " + tmp’s path in terms of variable
30: else
31: xquery ← xquery + tmp’s path in terms of variable
32: end if
33: tuple← true
34: end if
35: xquery ← xquery + "}</tuple>"
36: end for
37: end for
38: end procedure
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CHAPTER III

RELATED WORKS

3.1 PIAZZA

The problem of efficient data exchange and data integration is a long standing

problem within the database community. The topics discussed by Halevy et al

present a new approach, in an attempt to solve this problem. This concept in a

sense tries to combine concepts from networking P2P systems, the mathematical

concept of transitivity and data exchange to form a solution to problems apparent

in data integration in general and more specifically problems associated with the

mediated schema approach.

The brilliance of databases and data management is apparent when looking

at how they provide semantically rich data representations and expressive query

languages. There are aspects where they have suffered throughout there existence.

Two significant problems associated with information exchange in data management

and data integration tools include:

• Systems typically requires a comprehensive schema design before they can be
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used to store or share data.

• Systems are difficult to extend because schema evolution is heavyweight and

may break backward compatibility.

To avoid these obstacles some users opt to use applications that provide simpler

usability for there everyday task, such as spreadsheets, text files, etc. Although

that ”solution” accomplishes their immediate task, they lack the advance function-

ality that is available when using database systems. Varies techniques have been

proposed, and some implemented, to alleviate issues associated with large-scale

data sharing. Most approaches share the common general idea of using a medi-

ated schema. Mediated schemas provide strong semantics and present data sources

with the ability to evolve independent of each other. Although this does provide

a solution to the problem, the integrated part of the mediated schema can become

a bottleneck. This is clear when you think about the approach and the following

aspects associated with it.

• Schema design must be done carefully and globally.

• Significant changes to data sources may cause them to violate the mappings

to the mediated schema.

• Only the central administrator has the ability to add new concepts to the
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mediated schema.

• Lacks ad-hoc extensibility, which results in limited support for large scale data

sharing.

The notion of a PDMS attempts to overcome some of the shorting-comings of prior

and some current research efforts geared towards large scale data integration. The

goal of the project is to provide a system which will preserve semantics and rich

query language, but which facilitates ad-hoc, decentralized sharing, and adminis-

tration of semantic relationships. Key concepts:

• Implementation of the system will be based on a peer-to-peer architecture,

hence the name peer data management system (PDMS).

• The system will blend the extensibility of the HTML Web with the semantics

of data management tools.

A PDMS can be informally described as a system which consists of a set of

data sources, also known as peers, which are related through semantic mappings.

The assumption is made that each peer defines its own relational peer schema whose

relations are called peer relations. Queries (select-project-join) in a PDMS will be

posed over the relations from a specific peer schema. Data can be contributed to the

system in the form of stored relations, which can be thought of as data sources. The
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stored relations are provided by the peers, but every peer need not provide stored

relations, they may be in the system to serve as a logical mediator to other peers.

The queries posed over the PDMS eventually are evaluated in terms of these stored

relations, which can be stored locally or at other peers. PDMS system provides a

means of supporting evolving schemas based on attributes that have previously been

mentioned. In the case where a schema has evolved, a peer could simply create a

new peer relation and map it to the previous peer relation. Such a mapping should

be quite simple, mainly because to two relations probably will be closely related.

A Piazza PDMS is composed of a set of nodes (representing physical peers),

which are connectors in an overlay network on the Internet. Query reformulation is

performed at the node that received the query. The reformulator assumes a global

system catalog that provides access to all of the mappings that involve a particular

peer.

PDMS provides an easily extensible, decentralized environment for sharing

data with rich semantics. It attempts to replace the single logical schema with an

inter-linked collection of semantic mappings between peers’ individual schemas. And

it also provides the ability to exploit transitive relationships among peers, which is

key. Lastly, at the moment one aspect that separates it from other notions that try

to accomplish similar task is the fact that it overcomes some of the bottlenecks that
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are apparent in a mediated schema approach to data integration.

Both this thesis and [3] attempt to alleviate some common issues associated

with data integration. The PIAZZA project attempts to eliminate the bottlenecks

that are apparent in a mediated schema approach by using its mapping techniques,

while in this research tools brought about by the semantic web are used to accom-

plish the same goal. Unlike the PDMS, the framework presented in this research

will not require users to disregard data they posses. With the PDMS if a source

is unable to map attributes to other sources those attributes can not be included

in the system. This research eliminates that problem by providing an application

specific standard ontology which should consist of ”all” attributes from a particular

domain.
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CHAPTER IV

FUTURE WORKS AND CONCLUSION

4.1 Future Works

The research efforts of this thesis managed to extend the foundation established by

[7]. Even with the efforts made, there still remains areas for future research. The

knowledge presented in Section 2.2 provides some enlightenment on the issue of data

transmission but does not present an efficient technique to always acquire the opti-

mal solution. The naive approach produces the optimal solution in all situations but

is burdened by its©(2n(n−1)) worst case runtime. There were techniques introduced

to provide efficiency, but they did not always produce the optimal solution.

Throughout this research the capacity of the various sources involved were

disregarded. Currently, it is possible for a data transmission scheme to be used

where all documents are to be sent to a single source to process the subqueries.

How well can this approach scale? The answer to this question may require further

research efforts. This research will need to pertain to how to partially evaluate

subqueries with particular fragments across multiple sources and return all result



50

fragments to the coordinator where it can be further processed, and the final results

obtained.

In this thesis cost is assumed to be the size of the entire document only, and

it was assumed that the network of sources was uniform. Also, the concept of effi-

cient data transmission can be extended to consider the transmission speed between

sources as well. Additonally, efficient data transmission can consider cases where

direction of transmission differs in speed (i.e. transmission from s1 → s2 differs

from s2 → s1). These facts would provide a more accurate picture of transmission

cost and the optimal transmission route.

Furthermore, research can also be done in the area of load balancing which

would entail the workload of the sources. With the approach presented in Section

2.2.6, it is not uncommon to have sources waiting idle. It may be possible to de-

vise an approach that not only considered cost when transmitting data but also

workload. That is to say that even though it may cost more to have two sources

containing the same data, it may be faster and provide better overall system per-

formance by having the two sources process subqueries paralleled. This issue could

prove beneficial especially when considering applying this to large scale data inte-

gration.

Currently, there remain areas of this thesis and the framework established
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by [7] which lack implementation. Through the current research efforts implemen-

tations for the algorithms in Sections 2.1.2 and 2.3.2 were developed. The imple-

mentation of the algorithm from Sections 2.1.2 is based off Dongfeng Chen’s imple-

mentation of the algorithm that appears in Appendix A. The findings which appear

in Section 2.2.6 currently have no implementation. Additionally, there remains the

task of integrating the algorithms mentioned above with the implementation devel-

oped by [8] to illustrate how the framework as a whole would work.

The new approach presented in this thesis is open for further extension. Cur-

rently, acquiring the final result of the user query is an area that can be optimized.

New ideas pertaining to how to distribute the task of obtaining the final answer

among the source instead of assigning the entire task to the coordinator can be

established. There is also the possibility of applying optimization techniques previ-

ously applied to the subquery approach, and this could possibly reduce the amount

of data to transmit.

4.2 Conclusion

Through this research extension of the algorithm for determining local subqueries

into an algorithm which produced all subqueries transpired. This research also

provided insight to the concept of efficient data transmission. Although there was
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no discovery of an efficient algorithm to obtain the optimal solution in all cases,

a foundation has been laid upon which other researchers can expand. Lastly, this

thesis has provided an alternate approach which eliminates the need of inter-source

subqueries. With the application of mapping techniques to all predicates in a query,

this research is able to obtain complete and partial results from a source which will

be merged together with the corresponding data of the remaining sources to obtain

a complete answer. With this research some valuable ideas have come about which

can be appended to the framework established by [7].
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APPENDIX A

LOCAL SUB-QUERY GENERATION

Algorithm 1 (Local sub-query generation for an XML source)
Input: Global query Q, source mappings mi for source i
Output: Local sub-query Qi at source i resulting from Q.
Method: The idea is to replace variable declarations of Q with variable declarations
of source i using the mapping rules mi. Certain details should be observed in this
translation as follows:

1. If a variable declaration $X in Q corresponds to a tuple of a predicate p, then
replace it by the declaration for the glue variable in the mapping rule for p in
mi.

2. If a variable declaration $X in Q corresponds to an argument of a predicate
p, and the declaration also has a selection condition on the other argument,
then replace it by the declaration for the glue variable in the mapping rule for
p in mi, and include the selection condition as well.

3. If a variable declaration $X in Q corresponds to an argument of a predicate
p, and rule (2) above does not apply, then replace it by the declaration for the
argument obtained from the mapping rule for p in mi.

4. If a URI is used in Q, then Qi will use its corresponding object id. (Note:
we are assuming global queries do not ask for URIs. Otherwise, only for the
output, Qi applies the URI-generating function to the corresponding object
id.)

5. Variables declared in Q with respect to an object-objectId predicate do not
need a counterpart declaration in Qi if the object-objectId predicate is joined
with another predicate p having the same object as one of its arguments. In
such cases the declaration in Qi corresponding to p can supply the required
variable.
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APPENDIX B

SCHEMAS

<!ELEMENT univ1 (student*)>

<!ELEMENT student (id, fname?, lname?, major?, classes)>

<!ELEMENT classes (course*)>

<!ELEMENT course (cno, title, credit)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT fname (#PCDATA)>

<!ELEMENT lname (#PCDATA)>

<!ELEMENT major (#PCDATA)>

<!ELEMENT cno (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT credit (#PCDATA)>

Figure B.1: DTD: University 1
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<!ELEMENT univ2 (course*)>

<!ELEMENT course (cno, title, credit, enrolment)>

<!ELEMENT enrolment (student*)>

<!ELEMENT student (id, name?, major?)>

<!ELEMENT cno (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT credit (#PCDATA)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT major (#PCDATA)>

Figure B.2: DTD: University 2

<!ELEMENT univ3 (courses, students)>

<!ELEMENT courses (course*)>

<!ELEMENT students (student*)>

<!ELEMENT course (cno, title, credit, enrolment)>

<!ELEMENT enrolment (id*)>

<!ELEMENT student (id, name?, major?, classes)>

<!ELEMENT classes (cno*)>

<!ELEMENT cno (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT credit (#PCDATA)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT major (#PCDATA)>

Figure B.3: DTD: University 3
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APPENDIX C

TREE REPRESENTATIONS

univ1

student*

id fname? lname? major? classes

course*

cno title credit

Figure C.1: Tree representation of University 1
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univ2

course*

cno title credit enrolment

student*

id name? major?

Figure C.2: Tree representation of University 2

univ3

classes

course*

cno title credit enrolment

id*

student*

id fname? lname? major? classes

cno*

Figure C.3: Tree representation of University 3
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APPENDIX D

SAMPLE XQUERY

D.1 Relational Approach

for $G1 in doc("univ1.xml")/univ1/student

let $NULL :=

for $T in $G1[not(exists(id))]

return <null/>

for $I in $G1/id union $NULL

for $G in $G1/classes/course

let $NULL :=

for $T in $G1[not(exists($G/cno))]

return <null/>

for $C in $G/cno union $NULL

let $NULL :=

for $T in $G1[not(exists($G/title))]

return <null/>

for $T in $G/title union $NULL

return

<tuple>{
$I, $C, $T

}</tuple>
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D.2 Merger of Results

let $S1 := doc("relational1.xml")/source1/tuple

let $S2 := doc("relational2.xml")/source2/tuple

let $R := $S1 union $S2

for $I in distinct-values($R/id),

$C in distinct-values($R[id = $I]/cno),

$N in distinct-values($R[id = $I]/name),

$T in distinct-values($R[cno= $C]/title)

return

<results>

<id>$I</id>

<name>$N</name>

<cno>$C</cno>

<title>$T</title>

</results>
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APPENDIX E

SUBQUERY OPTIMIZATION TECHNIQUES

E.1 Approach 1

<query>

<subquery>

<predicate>

<predicateName>id-cno</predicateName>

<predicatePos>1</predicatePos>

<predicateSource>1</predicateSource>

</predicate>

<predicate>

<predicateName>cno-title</predicateName>

<predicatePos>2</predicatePos>

<predicateSource>1</predicateSource>

</predicate>
...

<subquery>
...

<query>
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E.2 Approach 2

<query>

<subquery>

<fragment>

<source>1</source>

<predicate>id-cno</predicate>

</fragment>
...

<filename>subquery1.xq</filename>

</subquery>
...

</query>
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APPENDIX F

SAMPLE MAPPINGS

F.1 University 1

<root>

<mapping>

<predicate>id-idId</predicate>

<type>1</type>

<pathGlue>/univ1/student/id</pathGlue>

</mapping>

<mapping>

<predicate>id-name</predicate>

<type>0</type>

<pathGlue>/univ1/student</pathGlue>

<firstArg>id</firstArg>

<secondArg>name</secondArg>

</mapping>

<mapping>

<predicate>id-major</predicate>

<type>0</type>

<pathGlue>/univ1/student</pathGlue>

<firstArg>id</firstArg>

<secondArg>major</secondArg>

</mapping>

<mapping>

<predicate>id-cno</predicate>

<type>0</type>

<pathGlue>/univ1/student</pathGlue>

<firstArg>id</firstArg>

<secondArg>classes/course/cno</secondArg>

</mapping>

<mapping>

<predicate>cno-cnoId</predicate>

<type>1</type>

<pathGlue>/univ1/student/classes/course/cno</pathGlue>

</mapping>
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<mapping>

<predicate>cno-title</predicate>

<type>0</type>

<pathGlue>/univ1/student/classes/course</pathGlue>

<firstArg>cno</firstArg>

<secondArg>title</secondArg>

</mapping>

<mapping>

<predicate>cno-credit</predicate>

<type>0</type>

<pathGlue>/univ1/student/classes/course</pathGlue>

<firstArg>cno</firstArg>

<secondArg>credit</secondArg>

</mapping>

<root>

F.2 University 2

<root>

<mapping>

<predicate>id-idId</predicate>

<type>1</type>

<pathGlue>/univ2/course/enrollment/student/id</pathGlue>

</mapping>

<mapping>

<predicate>id-name</predicate>

<type>0</type>

<pathGlue>/univ2/course/enrollment/student</pathGlue>

<firstArg>id</firstArg>

<secondArg>name</secondArg>

</mapping>

<mapping>

<predicate>id-major</predicate>

<type>0</type>

<pathGlue>/univ2/course/enrollment/student</pathGlue>

<firstArg>id</firstArg>

<secondArg>major</secondArg>

</mapping>

<mapping>

<predicate>id-cno</predicate>

<type>0</type>



66

<pathGlue>/univ2/course</pathGlue>

<firstArg>enrollment/student/id</firstArg>

<secondArg>cno</secondArg>

</mapping>

<mapping>

<predicate>cno-cnoId</predicate>

<type>1</type>

<pathGlue>/univ2/course/cno</pathGlue>

</mapping>

<mapping>

<predicate>cno-title</predicate>

<type>0</type>

<pathGlue>/univ2/course</pathGlue>

<firstArg>cno</firstArg>

<secondArg>title</secondArg>

</mapping>

<mapping>

<predicate>cno-credit</predicate>

<type>0</type>

<pathGlue>/univ2/course</pathGlue>

<firstArg>cno</firstArg>

<secondArg>credit</secondArg>

</mapping>

<root>

F.3 University 3

<root>

<mapping>

<predicate>id-idId</predicate>

<type>1</type>

<pathGlue>/univ3/student/id</pathGlue>

</mapping>

<mapping>

<predicate>id-name</predicate>

<type>0</type>

<pathGlue>/univ3/student</pathGlue>

<firstArg>id</firstArg>

<secondArg>name</secondArg>

</mapping>

<mapping>
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<predicate>id-major</predicate>

<type>0</type>

<pathGlue>/univ3/student</pathGlue>

<firstArg>id</firstArg>

<secondArg>major</secondArg>

</mapping>

<mapping>

<predicate>id-cno</predicate>

<type>0</type>

<pathGlue>/univ3/student</pathGlue>

<firstArg>id</firstArg>

<secondArg>classes/cno</secondArg>

</mapping>

<mapping>

<predicate>cno-cnoId</predicate>

<type>1</type>

<pathGlue>/univ3/course/cno</pathGlue>

</mapping>

<mapping>

<predicate>cno-title</predicate>

<type>0</type>

<pathGlue>/univ3/course</pathGlue>

<firstArg>cno</firstArg>

<secondArg>title</secondArg>

</mapping>

<mapping>

<predicate>cno-credit</predicate>

<type>0</type>

<pathGlue>/univ3/course</pathGlue>

<firstArg>cno</firstArg>

<secondArg>credit</secondArg>

</mapping>

<root>


