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Merely a speck of dust, incapable of life without the guidance of a breeze onto the

perfect spot, perhaps a mound of fallen leaves, perhaps an emerald bed of moss,

an orchid seed, most minuscule of all, cannot survive without the nurture of a

symbiote.
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whom I surely would have fallen to the ground and never grown into the person I

am today, I dedicate this thesis.
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CHAPTER I

INTRODUCTION

Periodicity of words and partial words can have many practical applications

in ordinary and quite familiar fields such as text searching and pattern matching.

These sorts of common place algorithms can in turn be applied to more sophisticated

and technologically advanced topics such as computational biology and theoretical

mathematics [13, 19, 20, 21, 27, 29, 30, 32, 45]. For instance, DNA is a biological

analog of partial words, and therefore many concepts introduced in this thesis are

relevant to computations on genetic code [15, 30, 41, 44, 48]. Research on DNA

and gene sequences is advancing at a rapid pace due to the potential benefits of

genetically modified crops, gene therapy for incurable diseases, and a myriad other

genetic technologies. Therefore, the importance of research on partial words can-

not be understated. Intrinsically, gene sequencing techniques are often prone to

error, be it human error or otherwise. Mutations themselves may be viewed as

errors. Mutations can be as minuscule as a single base substitution or the dele-

tion of a position, and they can be as complex as an insertion of many nucleotides

[52]. Mathematically we can acknowledge mutations and other practical errors by

representing them with holes in our sequence. However, we must then alter our

mathematical models to accommodate these holes.

We cannot begin a proper discussion on periodicity without first introducing

the theorem of Fine and Wilf. Given a word u with at least two periods, p, q, if

|u| ≥ p + q − gcd(p, q), then gcd(p, q) is a period of u [26]. The theorem of Fine

and Wilf allows Guibas and Odlyzko’s theorem to guarantee that for every word u
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over an alphabet A, there exists a word v over {0, 1} such that the set periods of

u and the set of periods of v are equal [28]. This tells us that the periodicity of a

word is independent of its alphabet. The next step in the discipline of periodicity

is to extend these concepts to partial words. Blanchet-Sadri and Chriscoe were

able to prove that the periodicity of a partial word with at most one hole is also

independent of its alphabet [6]. A novel and efficient algorithm was devised to aid

in the proof of concept. The algorithm of Blanchet-Sadri and Chriscoe, which finds

some solution v for partial word u with at most one hole, works by classifying u

into a series of cases and sub cases. Each classification dictates how to construct

a primitive factor which can be used to compute a final solution. Attempts to

amend this approach have thus far proven to be unsuccessful due to the relative

complexity of the algorithm itself. Indeed, we could potentially use this idea to

design an algorithm which works for partial words with at most two holes, but

the possibility of generalizing the approach to an arbitrary number of holes seems

unlikely.

Fundamentally the problem of finding a binary conversion for a partial word

containing an arbitrary number of holes is significantly more complex than it is

for the cases of one hole or no holes at all. Ideally we would hope to extend

the efficient, linear time algorithm first developed by Blanchet-Sadri and Chriscoe.

However, due to the relatively unscalable nature of the former algorithm, we have

devised a completely new approach to deal with this complex problem on partial

words. Initially the goal of this new algorithm was to determine some v for any u

with at most two holes, but as the algorithm solidified, it became apparent that the

new approach would likely work for partial words with any number of holes. The

algorithm described in this thesis has been implemented using C++ and the World

Wide Web server interface is available at http://www.uncg.edu/mat/bintwo/.
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Now let us briefly summarize the various stages of this algorithm. We first

explore a partial word to determine key pieces of information about it such as its

periodicity and the location of its holes. Using this information, we will be able to

construct a tree whose nodes characterize the relationship between sets of positions

of our word. Each path of our tree represents a potential solution, but not every

path is acceptable. So, we must scrutinize each path until we find a valid solution,

and we do this using graphs. By 3-coloring a graph, constructed from data contained

in a particular path of our tree, we can tell if that path provides us a valid output

or not. This relatively complex algorithm is not computationally efficient as the

algorithm of Blanchet-Sadri and Chriscoe, but it does provide an output v over

{0, 1} for any u, so long as such a conversion exists. Otherwise, this algorithm can

be treated as a recognizer of the special class of partial words for which no v over

{0, 1} exists with H(v) ⊂ H(u), P (v) ⊂ P (u), and P ′(v) ⊂ P ′(u). We use H(w) to

denote the set of holes of partial word w, P (w) to denote the set of periods of w,

and P ′(w) to denote the weak periods of w.
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CHAPTER II

PRELIMINARIES

This section is devoted to fix notations, and to review definitions and ele-

mentary properties of words and partial words.

2.1 Words

An alphabet is a concept with which we can all identify, however we need to examine

a precise mathematical definition for this term. In mathematics, an alphabet is a

finite set of symbols. For instance, we are all familiar with alphabets like the English

alphabet, {a, b, c, . . . , z}. Of particular relevance to this research and computer

science in general is the binary alphabet, {0, 1}. As we have explained, an alphabet

is a set, therefore the usual set operations are applicable. These operations include

union(∪), intersection(∩), and star(∗). The star operation is one with which you

might not be familiar, so we will start with a demonstration of it.

Example 1 We represent our alphabet, whatever it may be, with A. For this exam-

ple, let us assume A = {0, 1}. Here the elements of A∗ are written in lexicographic

order yielding the set A∗ = {ε, 0, 1, 00, 01, 10, 11, . . .}.

We use A∗ to denote the infinite set of words over alphabet, A, where each

element, s ∈ A∗, is called a word. Be aware that there is a special word called

the empty word, denoted by ε, which has a length of 0. The empty word is the

result of a 0-concatenation and is the first element of A∗ when this set is ordered
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lexicographically. You will find that the mathematical definition of a word is similar

to our inherent understanding of words in general. Words are analogous to character

arrays or strings in computer science. This observation allows us to borrow the

concept of a position index to identify specific positions within a word. We have

chosen to denote the symbol of a position by enclosing its index within a set of

parentheses. Using this notation for u = 011, we would write u(1) = 1 to indicate

that position one of u is the symbol 1. Do not let the index confuse you, we

have simply chosen to start our indices at 0 and end them with |u| − 1, where

|u| denotes the length of our word u, since this adheres more closely to the C++

implementation of our algorithm. Obviously this is a matter of convention, and

in certain programming environments, it may be more sensible to denote positions

with indices spanning from 1 to |u|.

A factor or substring of a word is a discrete stretch of positions within the

word. We use basic boundary notation (i.e. “[, ], (, )”) when describing substrings.

The symbols “[” and “]” are inclusive bounds, whereas “(” and “)” are exclusive.

So, u[0..4] represents the first five positions of u but u[0..4) represents the first four

positions. A factor of u which begins at position 0, such as u[0..4], is called a prefix

of u. Likewise, a factor of u which ends at position |u| − 1, such as u[2..5] where

|u| = 6, is called a suffix of u. Let us look at an example of indexing and substrings.

Example 2 Let us assume our alphabet, A = {a, b} and we pick u = ababb from

this alphabet. Notice u(1) = u(3) = u(4) = b, which we would state by saying that

the symbols in positions 1, 3, and 4 are all b’s. In contrast, u(0) = u(2) = a, and we

would say that the symbols in positions 0 and 2 are both a’s. Here, u[0..1] represents

ab, as does the equivalent notation u[0..2).

A word u = a0a1 . . . an−1 of length n over A can be defined by the total

function u : {0, . . . , n − 1} → A where u(i) = ai. Words, as well as alphabets,
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are subject to concatenation. If we have the words u1 = 001 and u2 = 111,

we can concatenate them as u1u2 = 001111. We can designate that we want to

concatenate a word with itself a specific number of times using the notation ui,

where i ≥ 0. Thus we get . . .

ui = uu . . . u︸ ︷︷ ︸
i copies of u

Most often we refer to this kind of concatenation as the i-power of u. The

0-power of any word u generates the empty word, ε. Let us look at an example of

i-power.

Example 3 We select u = aba from the alphabet {a, b}. We should mention that

this particular alphabet is a binary alphabet, though we have not explicitly chosen to

represent the elements with 0 and 1. If we pick i = 3 the result is u3 = abaabaaba.

Notice that our word, u3, contains a repeated substring, aba. We call such

repetitions periods. Before we formally explain what a period is, we can use tables

to visually demonstrate the concept.

Let us make a table with three columns. Initially our table has only one

row, and in each cell, we place one position of u3. Once we reach the end of a row,

if there are any positions left in our word, then we start a new row, and continue

filling out each entry with the next position of u3. Placing u3 = abaabaaba into

a table with three columns means we will have three rows for a total of 9 cells to

accommodate the length of this word. This is what the table would look like.

Row 1st column 2nd column 3rd column

1 a b a
2 a b a
3 a b a
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Notice when we align u3 into three columns like this, each column is uniformly

composed of the same symbol. This is an especially interesting characteristic of

certain words, and a characteristic which is a focus of this research. Eventually

we will be able to demonstrate that these patterns, which we will call periods, are

independent of the alphabet of a word. Now let us give a formal definition for this

feature of words. We use P(u) to denote the periods of partial word u. A period

is an integer p satisfying 1 ≤ p ≤ n where ai = ai+p for 0 ≤ i < n − p. Here,

n = |u|, the length of our word, u. In other words, p is a period of u if the prefix

and suffix of u of length n− p are equal. Arbitrarily, |u| is always a period of u. We

call the smallest period of a word, u, the minimal period, and it is denoted by p(u).

Some properties of periods in words include: If p is a period of a word u, then any

multiple of p smaller or equal to n is also a period of u. For more details, we refer

the reader to [17, 28, 39].

Example 4 Let us build the tables corresponding to each period of u = abaabaaba.

The set of periods of u, P(u), is {3, 6, 8, 9}.

3 ∈ P
a b a
a b a
a b a

6 ∈ P a b a a b a
a b a

8 ∈ P a b a a b a a b
a

If we align the positions of u into p columns and verify that for each column,

all positions in that column are compatible, we can conclude that p ∈ P(u). In
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order to define the concept of compatible, let us first denote our alphabet as the

set of distinct symbols {a1, a2, . . . , an} such that ak ∈ A for all 1 ≤ k ≤ n. Using

this notation, we say that two symbols are compatible, ai ↑ aj, if and only if i = j.

Conversely, two symbols are considered incompatible, ai 6↑ aj, if i 6= j.

Example 5 As a counterexample to our alignment of u into columns corresponding

to its periods, let us align u into four columns. Note that 4 6∈ P(abaabaaba).

a b a a
b a a b
a

Figure 2.1: Misalignment of u into four columns

In Figure 2.1 you can see that there are several columns which are not uniform.

In the first column alone, we observe u(0) 6↑ u(4) and u(4) 6↑ u(8). Therefore, you

should conclude that 4 is not in the set of periods of u.

2.2 Partial Words

Scenario 1 Think about a scenario such as this. . .

You have received an important letter through the mail. Moisture has leaked onto

the contents, and as a result, the ink has been water marked and is illegible in

certain spots. You can clearly read some pieces of the letter, but some areas are, in

essence, gone. You might read a partial word, like “per..ds”, and try to decipher it

by context. However, in the absence of such context, you would have to treat such

gaps in information much more carefully. This is because you know nothing about

the gap, or hole. Indeed, you do not even know exactly how many characters are

missing, let alone the identity of such characters.
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In theoretical and real world applications, we do not always have the luxury

of dealing with full words as they were described in the previous section. Often

times, we do not have a complete set of data. In these situations, there are holes in

our words, which we must somehow account for when we examine the information

we have. Unfortunately, we know absolutely nothing about this missing information;

it could span hundreds, thousands, or even more positions. Conversely, we might be

missing no information at all, or perhaps, we might only be missing a single position

of data. Somehow, we must cope with this lack of information if we intend to extend

our concepts on words to the larger class, partial words. A partial word is a word of

length n over the alphabet A ∪ {�}, where the � symbol is used to represent a hole.

Notice that � is not a part of the alphabet. Similar to a full word, a partial word

can be represented by a partial function, u : {0, . . . , n− 1} → A. For 0 ≤ i < n, if

u(i) is defined, then we say that i belongs to the domain of u, denoted by i ∈ D(u),

otherwise we say that i belongs to the set of holes of u, denoted by i ∈ H(u). A

word over A is a partial word over A with an empty set of holes (we sometimes

refer to words as full words). If u is a partial word of length n over A, then the

companion of u (denoted by u�) is the total function u� : {0, . . . , n− 1} → A ∪ {�}

defined by

u�(i) =

{
u(i) if i ∈ D(u),
� otherwise.

For the sake of convenience, we will contract the statement “the partial word with

companion abb�bbcbb” to a simpler form “the partial word abb�bbcbb”. As you

can see, the placeholder symbol, �, provides us a convenient notation to designate

positions in which we are missing information. To simplify our representation of

partial words, let us consider the bijectivity of the map u 7→ u�, which allows us
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to define for partial words concepts such as concatenation, factor, prefix, suffix, i-

power, etc. in a trivial way. For instance, the word u� = abb�b�cbb is the companion

of the partial word u of length 9 where D(u) = {0, 1, 2, 4, 6, 7, 8} and H(u) = {3, 5}.

When dealing with partial words, we have introduced a new symbol �. A

surprising property of this symbol is that it is compatible with every other symbol

of A. So, for any symbol a ∈ A we can say a ↑ � (the symbol a is compatible with

�). This is an expansion of our earlier definition of compatibility because now we

define it as ai ↑ aj if i = j, or if one of the following is true . . . ai = � or aj = �. We

will further refine the definition of incompatibility as ai 6↑ aj if i 6= j and neither

ai 6= � nor aj 6= �. Let us look at how this property affects the periodicity of a

partial word. Let us say we align u = abb�b�cbb into three columns just as we have

done in previous examples. If we examine each column of Figure 2.2, we see that

a b b
� b �
c b b

Figure 2.2: Alignment of abb�b�cbb into three columns.

only the second column is uniform. The first and third columns contain different

symbols on each row. An interesting observation to make is that the first column

is a�c, in addition you see that a ↑ � and � ↑ c. Also, the third column is b�b

which can be summarized as b ↑ � and � ↑ b. In essence, the � has divided the

columns into discrete sets, such that incompatible symbols are isolated from each

other, and therefore we get another kind of pattern that is similar to, but not as

strict as, a period. We call this kind of alignment a weak period.
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An integer p satisfying 1 ≤ p ≤ n is a period of a partial word u of length

n over A if u(i) = u(j) whenever i, j ∈ D(u) and i ≡ j mod p. In such a case, we

call u p-periodic. Similarly, an integer p satisfying 1 ≤ p ≤ n is a weak period of

u if u(i) = u(i + p) whenever i, i + p ∈ D(u). In such a case, we call u weakly p-

periodic. Let us compare the partial word abb�bbabb with the partial word abb�bbcbb,

since these partial words provide us a good example to demonstrate the difference

between a period and a weak period.

a b b
� b b
a b b

a b b
� b b
c b b

Figure 2.3: Comparison of a period and weak period.

Although the first column of both partial words contains a �, the partial word

abb�bbcbb is weakly 3-periodic but not 3-periodic, whereas the partial word abb�bbabb

is weakly 3-periodic and 3-periodic. Yes, there is a � in the first column of our table

for abb�bbabb, but notice that the column begins with a, then is bisected with a �,

and the position after the � is also a. Since the symbol of the positions in this column

does not change, this column does not contradict the definition of a period. Based

on Figure 2.3, you may notice that weakly p-periodic full words are p-periodic, but

we cannot say the same about partial words. Another difference worth noting is the

fact that even if the length of a partial word u is a multiple of a weak period of u,

then u is not necessarily a power of a shorter partial word. The smallest period of

u is called its minimal period and is denoted by p(u), and the smallest weak period

of u is called its minimal weak period and is denoted by p′(u). We denote the set of

all periods of u by P(u) and the set of all weak periods of u by P ′(u). We have that
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{|u|} ⊂ P(u) ⊂ P ′(u) ⊂ {1, . . . , |u|}. In this context we say X ⊂ Y if all elements

in X are in Y .

We mentioned compatibility between symbols of an alphabet and this concept

can be extended to partial words. Before we can determine compatibility, denoted

u ↑ v where u and v are both partial words of the same length, we need to examine

a couple of properties of those words. Foremost, we must ensure that u and v have

the same length. If u and v are of equal length, then u is said to be contained in v,

denoted by u ⊂ v, if D(u) ⊂ D(v) or all elements in D(u) are in D(v) and u(i) = v(i)

for all i ∈ D(u). Let us say we have two words u1 = a��ab and u2 = ab�ab. Here,

u1 ⊂ u2, but u2 6⊂ u1. Figure 2.4 demonstrates the concept of containment.

u1 = a � � a b
↓ ↓ ↓ ↓ ↓

u2 = a b � a b

u2 = a b � a b
↓ 6↓ ↓ ↓ ↓

u1 = a � � a b

Figure 2.4: Containment

The important thing to notice is that u2 6⊂ u1, since D(u2) 6⊂ D(u1). Contrast this

with u1 ⊂ u2, where D(u1) ⊂ D(u2) and u1(i) = u2(i) for all i ∈ D(u1). Formally,

we say that the partial words u and v are compatible, denoted by u ↑ v, if there

exists a partial word w such that u ⊂ w and v ⊂ w. We call such a minimal w a

least upper bound of u and v, denoted u ∨ v. The least upper bound is such that

u ⊂ u ∨ v and v ⊂ u ∨ v and D(u ∨ v) = D(u) ∪D(v).

Example 6 We have two partial words, u = ab�bab and v = a��ba�. Is u ↑ v? We

see that |u| = |v| = 6. If the least upper bound of u and v, denoted w = (u ∨ v),

exists, then let us find it.

u = a b � b a b
v = a � � b a �
w = a b � b a b



13

Notice that all three elements in each column are compatible with one another, thus

we have found a w such that w = (u∨ v). To check compatibility, we do not need to

check for containment, but if we have found a w such that u ⊂ w and v ⊂ w, then

we can conclude that u ↑ v.

2.3 Graphs and Trees

Graphs are computationally useful constructs which are particularly suitable in

decision making processes. Let us look at a graph, G, which is defined by the set of

its vertices, V , and the set of its edges, E, which connect one vertex to another. We

define G as G = (V, E). The edges of a graph can be directed, such that movement

between nodes is restricted to one direction. If an edge between two nodes, r0 and

r1 is undirected, then the possibility of two transitions exists, that is, the transition

from r0 → r1 or r0 ← r1. A sequence of transitions from node to node over some

set of edges is called a path. A cycle is a path which ends where it begins. Not

all graphs contain cycles, these graphs which contain no cycles are called acyclic

graphs. Directed acyclic graphs are called trees. In the context of this research, a

node is a vertex of a tree. Trees begin with a root node, which can contain any

number of children. Each child, too, may have any number of children. Eventually,

in a finite tree, we will encounter leaf nodes. Leaf nodes are terminal nodes which

have no children. The graph in Figure 2.5 is a simple example of a tree.

Binary trees are trees in which each node has at most two children. Binary

trees are especially useful in computer science because of the simplicity they offer

in regards to traversal algorithms, and their suitability for recursion. In this bi-

nary configuration, left traversals represent a move to Child1, and right traversals

represent a move to Child2. In succeeding chapters, left traversals will represent a

different data relationship from a right traversal, but we choose not to go into those
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Figure 2.5: A Non-Binary Tree

specific details until later. Figure 2.6 is an example of a basic node structure within

a binary tree. Superficially, the data we desire to represent in this thesis does not

Figure 2.6: Basic Node Structure

adhere to a binary relationship, but a simple shift in the way we conceptualize a

tree can lead us from the non-binary graph in our first figure to the binary graph in

the second figure. In Figure 2.5 we have node r0, which has three children, r1, r2,

and r3. In the binary graph such as the one shown in Figure 2.7, we would reserve

the left pointer such that it points to one of the three children of our non-binary

representation As you can see in Figure 2.7 we have chosen to set our pointer to r1.

The right pointer of r0 remains null. Node r1 has two siblings in Figure 2.5, and no
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children. Thus, we set the left pointer of r1 to null, and the right pointer now leads

us to r2. Similarly, the left pointer of r2 is null, and the right pointer points to r3.

Node r3 is the final child of r0, and having no children of its own, both the left and

right pointer are null in Figure 2.7 Using the binary representation in Figure 2.7,

Figure 2.7: Binary Representation of a Tree

if we want to find all the direct descendants of r0, we must access the left child of

r0, which is node r1. Then we will discover the nodes which were siblings of r1 in

our non-binary tree (Figure 2.5) by following the right pointer of each node until

we reach the null pointer of node r3. This gives us r0 → r1 → r2 → r3 → NULL.

We stop at NULL, and thus we have determined that the children of r0 are r1, r2,

and r3.
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CHAPTER III

NORMALIZATION ROUTINE

We should not make any assumptions about our partial word, u, nor should

we make any assumptions about its alphabet, A. We must treat u as though

each position was arbitrarily assigned a symbol from its alphabet. Normalization

will distill u into its basic properties, at which point, a new non-minimal alphabet

will be assigned. Here, we define the non-trivial alphabet {0, 1} as minimal for

any partial word. The resulting partial word u′ will share the same properties

as u, except that each a ∈ A′, where A′ is the new alphabet, will no longer be

arbitrarily assigned to positions in u′. Although the necessity of this step may not

be immediately apparent, as we progress through the algorithm, you will see that

assigning a meaning to the symbols of the alphabet is vital to discovering our final

result.

Normalization is the process by which we convert partial words to a standard-

ized form. For the purposes of normalization, we can describe any partial word, u,

with the 4-tuple (|u|, D(u),P(u),P ’(u)). This 4-tuple represents an |u|-length par-

tial word independent of any specific alphabet. The original alphabet is discarded

since it becomes irrelevant. Recall that |u| is the length of partial word u and D(u)

is its domain. This leaves us to describe P(u) and P ’(u), terms we have not pre-

viously encountered. The periods, P(u), and weak periods, P ′(u), are essential to

describe the behavior of a partial word u. However, notice that the list of all periods

and weak periods contains redundant information, since {|u|} ⊂ P(u) ⊂ P ′(u). We

use this information to trim the sets P(u) and P ′(u) to their respective minimal
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forms, P(u) and P ’(u). Let us look at the first half of our relationship.

Example 7 We can minimize the set P(u) using the relationship {|u|} ⊂ P(u).

Notice that |u| is a member of the 4-tuple which describes u. The maximum period

of u is pn, and we know pn = |u|. Because |u| is a period of every partial word

u, we consider |u| a trivial period. If we trim pn from P(u), we get a new set,

P(u) = P(u) \ {pn}. We can use P(u) in our 4-tuple instead of P(u) without

losing any information about u, since pn is preserved by the |u| member.

Looking at this example, you see that a similar technique can be applied to

P ′(u) to minimize the number of relevant periods. Doing so will lead to a more

concise description of u. Let us examine the second half of the relationship between

periods and weak periods.

Example 8 We can minimize the set P ′(u) using the relationship P(u) ⊂ P ′(u).

If we trim P(u) from P ′(u), we get a new set, P’(u) = P ′(u) \ P(u). We can use

P’(u) to describe u instead of P ′(u) without losing any information about u since

the elements of P(u) which we removed from P ′(u) to make P’(u) are preserved by

|u| and P(u) in our 4-tuple.

The set P(u) is composed of all non-trivial periods of u. We call this set

the strong periods of u. We call P ’(u) the strictly weak periods of u since this set is

composed entirely of weak periods and nothing else. Notice that P(u)∩P ’(u) = ∅,

because we have guaranteed that these sets share no common members.

Our algorithm prepares for the normalization process by calculating (|u|,

D(u), P(u), P ’(u)) for the input, u. Our goal is to discover a partial word, u′, over

the non-minimal, augmented alphabet A′, where u and u′ are both represented by

the same 4-tuple. We begin with a generic |u|-length partial word which is composed

as follows . . .
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1. By default, each position of u′ is assigned a unique symbol over A′.

• u′ = a0a1 . . . an−1 where aj, ak ∈ A′ and aj 6= ak for all 0 ≤ j < k < |u|.

2. The positions which are holes in u remain holes in u′.

• We will enumerate the holes of u′ such that . . .

– �1 is the first hole,

– �2 is the second hole,

– �i is the ith hole, and so on.

– The alphabet of u′ becomes A′ ∪ {�1, �2, . . . , �N} where N is the

number of holes of u.

Example 9 If we have u = abca�cacc with A = {a, b, c}, then the generic 9-length

partial word we initially generate is u′ = abcd�1efgh, with A′ = {a, b, c, d, e, f, g, h}.

Normalization will re-assign symbols to the positions of this generic u′, and

in doing so, we will remove unused symbols from our new alphabet A′. This step

by step process causes u′ to evolve into its final form. You must be mindful that

we intend to revise both u′ and A′ at each step based on each additional piece of

information we process. Overall, normalization can be broken up into two distinct

stages. The first stage enforces the strong periods of u upon u′. We re-assign

symbols of u′ so that for each p ∈P(u) we have p ∈P(u′). In the second stage, we

enforce the strictly weak periods of u upon u′, such that for each p ∈P ’(u) we have

p ∈P ’(u′). Let us explain the details of how these two stages operate. For reasons

which will be evident later, we need a flagging system to track which positions of

u′ have been assigned a symbol. We will underline these positions to flag them.

By convention, we flag the first non-hole position in u′. Holes are never flagged

because they remain �’s throughout the entire normalization process. If we attempt

to assign a symbol to a non-hole position, u′(i), one of two situations will occur.
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• If u′(i) is not flagged, we assign position i with our selected symbol, b, and we

underline the position to indicate that it is flagged. Here, u′(i) = a becomes

u′(i) = b.

• If u′(i) is flagged, we assign position i with our selected symbol, b. Let us

assume that previously u′(i) = a. The position u′(i) remains flagged, but now

instead of just changing u′(i) to b, we search the entire partial word u′ and

re-assign all positions having the value a with the new value b.

Both stages of normalization adhere to this flagging system. However, the

mechanism for assigning a value to a position varies in the two stages. Let us look

at the first stage now.

3.1 Strong Periods of u

For each pi ∈P(u) we place our u′ into a 2-dimensional table such that the positions

are aligned into pi columns as shown in Figure 3.1.

C0 C1 . . . Cpi−1

u′(0pi + 0) u′(0pi + 1) . . . u′(0pi + pi − 1)
u′(1pi + 0) u′(1pi + 1) . . . u′(1pi + pi − 1)
u′(2pi + 0) u′(2pi + 1) . . . u′(2pi + pi − 1)
...

...
...

Figure 3.1: Our Table Structure

The positions in each column function as though they are symbolically equivalent.

To ensure this characteristic is preserved in our final u′ we must assign a symbol

for each column which contains at least two non-hole positions. Our algorithm

typically chooses the symbol of the first non-hole position in a given column as the

representative symbol for that column. Then it assigns this representative symbol
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to the rest of the positions in the column. Each position in the column is assigned a

value according to the guidelines we previously outlined. If the algorithm encounters

a position which is already flagged, then we know it has already been assigned a

symbol, so now we must not only re-assign the representative symbol to this position,

but we must perform a search and replace routine through the entire u′ to ensure all

such positions assigned with the old value are re-assigned with this new symbol. To

demonstrate this idea, let us look at an example using u = abaaba. We transform

this u into an initial u′ = abcdef noting that P(u) = {3, 5}.

• Step 1: Enforce p2 = 5

C0 C1 C2 C3 C4

a b c d e
f

C0 C1 C2 C3 C4

a b c d e
a

In this step, we have chosen symbol a for the first column, constructed from

positions u′(0) and u′(5), because this column begins with a. Both positions

are flagged when we assign this value to them. No other columns contain two

or more symbols, so we do not consider them.

• Step 2: Enforce p1 = 3

C0 C1 C2

a b c
d e a

C0 C1 C2

c b c
c b c

This step considers three columns. In the first column, we first encounter

u′(0) = a, thus u′(0) and u′(3) become a. Next we consider the second column,
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which begins with u′(1) = b. We choose to represent this column with b

such that we assign u′(1) and u′(4) with b. The third column begins with

u′(2) = c, and we choose c to represent this column. However, when we

encounter u′(5) = a, we are forced to perform a search and replace operation

whereby all positions u′(i) = a, where 0 ≤ i < |u′|, are assigned c.

• Result: Strictly for aesthetic purposes, we opt to replace the symbol c with

the symbol a such that our alphabet A′ = {a, b}. Therefore, we get u′ =

abaaba.

3.2 Strictly Weak Periods of u

Just as we did with the strong periods, we now represent u′ with a 2-dimensional

table where the positions of u′ are aligned into p′i columns for each p′i ∈P ’(u). When

dealing with strictly weak periods, the columns of our table will fall into one of two

cases . . .

Case 1 There are no holes in the column.

Case 2 There are N holes in the column.

In the first case, we can treat the column exactly as we did when dealing with

strong periods. That is, the column is treated as one distinct set of symbolically

equivalent symbols. A symbol is chosen to represent the column, then the process

of assignment or re-assignment takes place on each of the positions. Fundamentally,

the columns which contain at least one hole behave differently than columns with no

holes in them when we are dealing with strictly weak periods. At least one column

of our table will be broken up into N +1 sets, where N is the number of holes in the

column. Instead of treating each column as one distinct symbolically equivalent set,
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we must now treat the positions which are isolated by the �’s as discrete symbolically

equivalent sets. The first of these discrete sets is composed of all symbols above the

first hole, next come all of the inner sets which are the positions between the ith

and ith + 1 hole, and the final set is composed of all positions below the N th hole.

Let us mention that any set of symbolically equivalent positions can be the empty

set whenever two holes appear in a column without any positions in between them.

Here is a simple demonstration of a column with three holes.

a
b
c

 First Set

�
�
d
e

}
Second Set

�
f
g
h

 Third Set

Figure 3.2: A Column With Three Symbolically Equivalent Sets

As you can see in Figure 3.2, the general idea of strictly weak period alignments

is similar to that of strong periods, but we have to modify our symbol assignment

technique to accommodate the discrete sets bounded by the holes which occur in

at least one of the columns of our table. Now, instead of assigning a symbol to a

column, we assign a symbol for each symbolically equivalent set (which may or may

not span an entire column). The flagging and assignment rules remain intact. In

other words, if we assign a symbol to an unflagged position, we must remember to

flag it. If we attempt to assign a symbol to a flagged position, we re-assign its value,

and we must also perform a search and replace to re-assign all flagged positions
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which shared the original symbol. Let us look at an example using u = abca�cacc.

Initially u′ = abcd�1efgh. Observe that P(u) = ∅, therefore, u′ remains abcd�efgh

as we enter stage 2 of normalization. Here, P ’(u) = {3}.

• Step 1: Enforce p′1 = 3

C0 C1 C2

a b c
d �1 e
f g h

C0 C1 C2

a b c
a �1 c
a d c

• Result: We have chosen to assign u′(7) = d instead of g as a matter of

aesthetics. Thus, we get u′ = abca�1cadc.

Once stage 2 of normalization is complete, the process as a whole is complete.

Our goal was to discover a partial word u′ over some augmented alphabet A′ which

shares the same 4-tuple description as our original input, u. Now that we have

accomplished our goal, the flags used in this process can be discarded, as they were

temporary flags which served only to track whether a position had previously been

assigned a symbol. From this point forward, our algorithm will use u′ for all of its

processes. Thus, we may also discard the input u.
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CHAPTER IV

THE RULE-TREE ALGORITHM

Our normalization process has left us with an augmented partial word, u′,

which is now in a standardized form. Normalization is a necessary preprocessing

step because the symbols in the alphabet are assigned based on their behavior in

relation to the periodicity of u′. In the Rule-Tree phase of our algorithm, we generate

rules regarding the behavior of each symbol a ∈ A′.

4.1 Rules

The rules we generate fall into one of two categories. The first category of rules

indicates that the binary values of two symbols are compatible, and this is written

(a ↑ b) where a, b ∈ A′ ∪ {�1, �2, . . . , �N}. On the other hand, we may wish to

indicate that two symbols cannot have the same binary values, that is, they are

incompatible, denoted as (a 6↑ b) where a, b ∈ A′ ∪ {�1, �2, .., �N}. Recall that our

ultimate goal is to discover some v over the alphabet {0, 1} ∪ {�} such that every

symbol in A′ will eventually be assigned a binary value of 0 or a binary value of 1.

We may also choose to assign any element in {�1, �2, . . . , �N} a binary value of 0 or

1, though a hole may remain a � in the final v if neither assignment, 0 nor 1, leads

to a solution. We use a boldface font to denote the binary value of a symbol in A′.

One of the properties of � is that it is compatible with every other symbol in the

alphabet. Be aware that rules of the form (�k 6↑ a) where a ∈ A′ and 0 < k ≤ N are

possible, but in such a case we know that �k cannot remain a � in the final solution.
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In binary relationships, � is compatible with both 0, 1, and �, and thus we cannot

say � 6↑ 0, � 6↑ 1, or � 6↑ �. Let us look at the compatibility matrix for the binary

alphabet {0, 1} ∪ {�}, shown here in Figure 4.1.

↑ 0 1 �
0 True False True
1 False True True
� True True True

Figure 4.1: Compatibility Matrix For {0, 1} ∪ {�}

4.2 Candidate Weak Period Enumeration

Recall this figure, which we covered in our chapter on Normalization . . .

C0 C1 . . . Cpi−1

u′(0pi + 0) u′(0pi + 1) . . . u′(0pi + pi − 1)
u′(1pi + 0) u′(1pi + 1) . . . u′(1pi + pi − 1)
u′(2pi + 0) u′(2pi + 1) . . . u′(2pi + pi − 1)

...
...

...

Figure 4.2: pi-Column Alignment Of u′

If we want to test whether an integer, pi, is a weak period of partial word u, we

align u into pi columns and inspect each column to ensure it is composed of discrete,

uniform sets divided by �’s. We call this table a pi-column table. Now we want to

introduce a methodology to enumerate the plausible values of pi, also called the

candidate weak periods of partial word u. Let us first generate the 3-column table

of an anonymous partial word, u, of length 8. Here we are testing if pi = 3 ∈ P ′(u),

as shown in Figure 4.3.
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C0 C1 C2

u′(0) u′(1) u′(2)
u′(3) u′(4) u′(5)
u′(6) u′(7)

Figure 4.3: 3-Column Alignment Of An Anonymous u

To ensure that 3 is a weak period of u, we would test u′(0) ↑ u′(3), u′(3) ↑

u′(6), u′(1) ↑ u′(4), u′(4) ↑ u′(7), and u′(2) ↑ u′(5). Contrast this with a candidate

weak period enumeration table, described next, which as the name implies, is a

method to enumerate all possible values of pi, where 0 < pi ≤ |u|. Each row of this

table should check the same compatibilities that our pi-column method would test.

Figure 4.4 is a generalized reference showing how we build such a table.

Row pi u′(0) u′(1) u′(2) . . . u′(n− 2) u′(n− 1)

1 n− 1 u′(n− 1)
2 n− 2 u′(n− 2) u′(n− 1)
3 n− 3 u′(n− 3) u′(n− 2) u′(n− 1)
...

...
...

...
...

n− 1 1 u′(1) u′(2) u′(3) . . . u′(n− 1)
n 0 u′(0) u′(1) u′(2) . . . u′(n− 2) u′(n− 1)

Figure 4.4: pi-Enumeration Table

Now if we specifically look at the pi-enumeration table for our anonymous partial

word u of length 8, shown in Figure 4.5. The topmost row of the table in Figure 4.5 is

the column header row. The first two columns, labeled Row and pi, provide auxiliary

information identifying the row number and corresponding candidate weak period

(pi) of each row. Each subsequent column in this header, labeled u′(0), u′(1), ..., u′(7)

in this example, indicates a position in u. Below the column header are rows
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containing the proper suffixes of u, starting with the proper suffix of length 1 and

ending with the proper suffix of length |u| − 1.

Row pi u′(0) u′(1) u′(2) u′(3) u′(4) u′(5) u′(6) u′(7)

1 7 u′(7)
2 6 u′(6) u′(7)
3 5 u′(5) u′(6) u′(7)
4 4 u′(4) u′(5) u′(6) u′(7)
5 3 u′(3) u′(4) u′(5) u′(6) u′(7)
...

...
...

Figure 4.5: pi-Enumeration Table For u

Example 10 If u = abcd, the set of proper suffixes of length 1 to |u| − 1, ordered

from shortest length to longest, would be {d, cd, bcd}.

We are dealing with weak periods, and the information we yield from this

pi-enumeration table will be compatibility rules. For the moment, we are concerned

only with rows that correspond to weak periods of u.

Let us assume that 7 and 3 are weak periods of this anonymous 8-length

u. Row 1 of the table in Figure 4.5 corresponds to the weak period 7. This row

contains u′(7), the proper suffix of u having a length of 1. This suffix has only one

single position, u′(7), and if you look at the column head under which position u′(7)

is aligned, you will see that this column is labeled with u′(0). Because u′(7) aligns

with u′(0), we construct the rule (u′(0) ↑ u′(7)) to represent this relationship.

We have completed our inspection of this row, so now we move to Row 5

since it corresponds to the weak period 3 of our anonymous u. The proper suffix

placed in this row is u′(3)u′(4)u′(5)u′(6)u′(7). Here, u′(3) falls in the column labeled

u′(0), u′(4) falls in the column labeled u′(1), u′(5) falls in the column labeled u′(3),

u′(6) falls in the column labeled u′(4), and u′(7) falls in the column labeled u′(4).
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Thus, we generate the set of rules {(u′(3) ↑ u′(0)), (u′(4) ↑ u′(1)), (u′(5) ↑ u′(2)),

(u′(6) ↑ u′(3)), (u′(7) ↑ u′(4))}.

If we compare this result to the results we got from the pi-column method,

we still get the same set of rules, albeit the rules are generated in differing orders,

but this is a trivial difference. Having demonstrated the equivalence between the

weak period enumeration table and the pi-column alignments, let us note that from

this point on, we choose to use the weak period enumeration table for partial words.

Now that you understand what information the pi-enumeration tables gen-

erate, you may be asking some questions. Where do rules come from? How are

they generated? How are rules and pi-enumeration tables related? Rules act as

guidelines, telling us how to assign 0’s and 1’s to symbols in u′ such that we end up

with a v with the same periods, weak periods, and a subset of the holes of u. So, if

we know that (a 6↑ b) in u′, then we know that a 6↑ b in v, meaning the binary value

of a is not compatible with the binary value of b. Let us visualize this concept with

an example.

Example 11 Let us look at the partial word u′ = ab�1abc. If 5 ∈ P(u′), then we

should be able to align u′ into a table with 5 columns as such . . .

0 1 2 3 4

a b �1 a b
c

However, in the first column, you see that u′(0) 6↑ u′(5), since a 6↑ c. If we allowed

u′(0) ↑ u′(5) , then v(0) ↑ v(5) in our final solution v and 5 would be a period

of v. This must be avoided. To exclude 5 as a weak period of v, we might select a

v = 00�001 such that we generate the following alignment . . .
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0 1 2 3 4

0 0 � 0 0
1

Since v(0) = 0 and v(5) = 1, v(0) 6↑ v(5). We have carefully selected binary values

for these two positions which prohibit v from being aligned into 5 columns.

In a normalized partial word, you must consider all positions represented with

the same symbol as an atomic set. Ultimately, we are trying to find equivalences

amongst these sets of positions, separating or combining them until we have reached

a state in which only two sets are left, corresponding to 0 and 1. When we encounter

a compatibility rule, (a ↑ b), this implies that all positions corresponding to symbol a

are compatible with all positions corresponding to symbol b. Incompatibility implies

that all positions corresponding to symbol a are incompatible with all positions

corresponding to symbol b. We begin to look past individual rules now, and start

looking at the rules as sets. We will build a pi-enumeration table with |u| − 1 rows,

from which we can infer information about v, our output over {0, 1} ∪ {�}. For

each i, Rowi relates to an alignment of u′ as if |u| − i were a weak period of u′. We

compare each row to some weak period of u, and if indeed |u| − i is an element of

P ′(u′), then the rules generated on that row are all compatibility rules of the form

(a ↑ b) where a, b ∈ A′ ∪ {�1, �2, . . . , �N}. Otherwise, the rules generated will all

be incompatibility rules of the form (a 6↑ b) where a, b ∈ A′ ∪ {�1, �2, . . . , �N}. Our

table is built such that the first row, Row0 is empty. The second row, Row1 will be

composed of one position, the suffix of u′ of length 1 which is the last position in

u′. The third row, Row2 is composed of the suffix of u′ of length 2 such that it is

the last two positions in u′. This continues until the final row which is composed of

the substring corresponding to the last |u| − 1 positions of u′.
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Example 12 This is the pi-enumeration table for u′ = ab�1abc, the partial word

we introduced in Example 11 . . .

i a b �1 a b c

0
1 c
2 b c
3 a b c
4 �1 a b c
5 b �1 a b c

Each row of the table is examined independently of the other rows. First we check

to see if (|u| − i) ∈ P ′(u). If (|u| − i) 6∈ P ′(u), then we want to build incompatibility

rules. Otherwise, we want to build compatibility rules. The first row, Row0 is trivial,

and may be ignored. In Row1, only one column is populated, the u′(0) column. The

element which populates it, u′(|u| − 1) or c, implies that (a 6↑ c). Thus, Row1

generated only one rule. In fact, this row will always generate at most one rule. It

is plausible however that no rule is generated. This situation would occur if |u| − i,

5 for this example, is a weak period of u. In the second row two rules are generated,

(a 6↑ b) and (b 6↑ c). In order to prevent a specific alignment from corresponding to

a weak period, we only need to consider one of these possibilities.

Row2, in the top table, corresponds to a weak period of 4. Since 4 6∈ P ′(u), we must

ensure that 4 6∈ P ′(v). Notice in the lower two tables of Figure 4.6 corresponding

to v over {0, 1}, it is sufficient to consider only one possibility, either v(0) 6↑ v(4)

or v(1) 6↑ v(5). It is too early to determine which of these possibilities to choose.

Therefore, at this time, we will not discard either.
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a b �1 a
b c

0 0 �1 0
1 0

0 0 �1 0
0 1

Figure 4.6: Two Options To Prevent A Period Of 4

We use (|u|− i) to determine which row corresponds to the two periods of u′, where

P ′(u′) = {3, 6}. For u = ab�1abc, |u| = 6 and we have a weak period 3. Thus we

use Row(|u|−i) to calculate that Row3 corresponds to the weak period 3. In order

to preserve 3 as a weak period in our solution v, we have to make sure that each

column generates a compatibility rule. Notice that (a ↑ a) and (b ↑ b) are trivial

rules which are always true. They do not give us any useful information, thus we

drop them. However, the final rule generated on this row, (�1 ↑ c) is preserved. If

it were not for the fact that the two former rules are trivial, this row could have

potentially generated 3 rules; we would have no choice except to observe all three

rules.

a b �1
a b c

0 1 �
0 1 1

Figure 4.7: Enforce Weak Period 3

Row3 corresponds to a weak period of 3. Since 3 ∈ P ′(u), we must ensure

that 3 ∈ P ′(v). Here we see that u′(0) ↑ u′(3) and u′(1) ↑ u′(4) and u′(2) ↑ u′(5)
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indicating that v(0) ↑ v(3) and v(1) ↑ v(4) and v(2) ↑ v(5) in our final solution.

Here, we must observe all of these rules, which is a striking difference compared to

the way we handled rules generated in Row2.

4.3 AND-sets And OR-sets

Example 12 illustrates two metrics for weak period enforcement. The first metric

occurs when a row does not correspond to a weak period. We know that at least one

column of the row must be incompatible with the corresponding position in u′. We

call these rows OR-sets. The second metric covers all other rows, the ones which

do correspond to a weak period. This situation requires that all positions in the

row be compatible with the positions of u′ which fall in the same column. We call

these rows AND-sets. If we can ensure that v, our result, observes all rules in our

AND-set, then we guarantee that P(u) ⊂ P(v) and P ′(u) ⊂ P ′(v). In addition, if

we can discover a v which observes at least one rule from each of the OR-sets, then

we can ensure that P(v) ⊂ P(u) and P ′(v) ⊂ P ′(u). Combining these concepts,

we form a tight bound on the periodicity of v, thus ensuring that P(v) = P(u)

and P ′(v) = P ′(u). Later, we will discuss how to satisfy our final criterion that

H(v) ⊂ H(u), but for now, we need to elaborate more on how we intend to use the

information contained in our pi-enumeration table.

We intend to convert our pi-enumeration table to a binary tree. This is

because algorithms which operate on binary trees are inherently simple. Our binary

tree will represent all potentially feasible solutions, so eventually we must search

the various paths until we discover one which produces the expected result. Let us

assume we have already created our enumeration table. Instead of having a column

labeled with Row, we will now label that column with i. Additionally, we have two

more columns to consider for each table. The first new column, we label “AND or
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OR”, and we use this to denote whether a row corresponds to an AND-set or to

an OR-set. The second new column is labeled Si, and in this column, we list the

set of all rules generated for Rowi. Each Rowi corresponds to an alignment of u′

with its suffix u′[|u| − i..|u|). For each 0 < i < |u| such that |u| − i 6∈ P ′(u), a rule

is generated such that u′(j) 6↑ u′[|u| − i..|u|)(j), where j is a position of both u′ and

u′[|u| − i..|u|). For each 0 < i < |u| such that |u| − i ∈ P ′(u), a rule is generated

such that u′(j) ↑ u′[|u|−i..|u|)(j), where j is a position of both u′ and u′[|u|−i..|u|).

Let Si be the (ordered) set of rules corresponding to Rowi. If |u| − i 6∈ P ′(u), then

Si is called an OR-set, otherwise it is called an AND-set.

Example 13 Let us look at the partial word u = ab�b�bcb. For this partial word,

P(u) = {4, 8} and P ′(u) = {2, 4, 8}. Normalization results in u′ = ab�1b�2bcb.

Alignment i AND or OR Si

a b �1 b �2 b c b 0
b 1 OR {(a 6↑ b)}
c b 2 OR {(a 6↑ c)}
b c b 3 OR {(a 6↑ b), (b 6↑ c), (�1 6↑ b)}
�2 b c b 4 AND {(a ↑ �2), (�1 ↑ c)}
b �2 b c b 5 OR {(a 6↑ b), (b 6↑ �2), (�1 6↑ b), (b 6↑ c)}
�1 b �2 b c b 6 AND {(a ↑ �1), (�1 ↑ �2), (�2 ↑ c)}
b �1 b �2 b c b 7 OR {(a 6↑ b), (b 6↑ �1), (b 6↑ �2), (b 6↑ c)}

In order to build a tree efficiently, and to minimize the size of our tree which can

become quite extensive in size, it is beneficial for us to perform some reductions

on the OR-Set rules. For instance, if a row contains only one valid rule, then that

rule will occur in every path of the tree. We call these types of rules definitive

rules. We can safely eliminate other rows of our table which contain these definitive

rules, because in essence the definitive rule guarantees that we have selected a rule
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from these other rows. This is also beneficial to us because it may also eliminate

contradictions which we would otherwise be helpless to resolve.

Example 14 Consider Example 13 above in which we have two definitive rules

(a 6↑ b) and (a 6↑ c), generated for i = 1 and i = 2, respectively. If the rule (b 6↑ c)

were to occur in some other row, it would lead to a contradiction. These three rules,

{(a 6↑ b),(b 6↑ c),(a 6↑ c)}, form a negative cycle.

Let us assume we assign a the binary value 0, then b must be 1 in order to

satisfy the rule (a 6↑ b). Since b is assigned the value 1, then c would have to be

assigned 0 to satisfy the second rule, (b 6↑ c). At this point, we reach a contradiction

if we try to observe the third rule, (a 6↑ c), since a = 0 and c = 0, and thus we

cannot accommodate (a 6↑ c).

Alignment i AND or OR Si

a b �1 b �2 b c b 0
b 1 OR {(a 6↑ b)}
c b 2 OR {(a 6↑ c)}
b c b 3 OR
�2 b c b 4 AND {(a ↑ �2), (�1 ↑ c)}
b �2 b c b 5 OR
�1 b �2 b c b 6 AND {(a ↑ �1), (�1 ↑ �2), (�2 ↑ c)}
b �1 b �2 b c b 7 OR

Figure 4.8: Reduced pi-Enumeration Table

Visually, these types of contradictions can be easy to spot, but algorithmi-

cally, the time complexity required to discover negative cycles can be prohibitive.

Therefore, this kind of contradiction often goes undiscovered until after our tree is

generated. Notice however, that the rows corresponding to the i values 3, 5, and 7

can be ignored because they each duplicate the definitive rule (a 6↑ b), and in doing
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so, we avoid dealing with the rule (b 6↑ c). So, often times, using definitive rules

to eliminate redundant information saves us from costly computations related to

detecting negative cycles. The reduced table, with rows containing definitive rules

removed, is shown here in Figure 4.8.

4.4 Binary Rule-Tree

Within a pi-enumeration table, our rules are generated in a hierarchical structure,

ordered from the lowest i-value to the highest, 0 ≤ i < |u|. Later in our algorithm,

we want to choose one rule from each row correlating to an OR-set. This approach

does not guarantee that every combination of rules will lead to a valid output

whenever such output exists. At best we can say that if a valid output exists,

then at least one combination of rules is acceptable. If we choose an unacceptable

collection of rules, we will need some structured technique to guide us in making

our next choice in such a way that we avoid repeatedly selecting the same collection

of rules. The structure we use in our algorithm is a binary tree, which is both

computationally efficient and algorithmically elegant.

Member Data type Accessor Function

value Rule ValueOf(Nodej)
i Integer i(Nodej)
Child1 Node-pointer Child1(Nodej)
Child2 Node-pointer Child2(Nodej)

Figure 4.9: Node Data Members

The binary tree is a structure composed of nodes, each of which possesses

at most two edges leading to its children. The nodes of our adaptation of the tree

contain four important pieces of information, value, i, Child1, and Child2, which
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we intend to describe now. Figure 4.9 summarizes these data members. The value

of a node is a rule, and with the exception of our root node which we will discuss

later, the value of a node will be a rule from some row of our pi-enumeration table.

The i-value of a node is equivalent to the i-value of the row from our table in which

its value, a rule, resides. The i-value of a node guides us in its placement within the

tree. The final two data members of our node structure are pointers . . . think of

these as the edges of our tree. Each node has two pointers, Child1 and Child2, which

are null by default. A null pointer is a non-existent edge. In other words, in a binary

tree, a node can have at most two children, but if a node has no children or only

one child, then it will have no outbound edges or one outbound edge respectively.

Similarly, our node can have at most two pointers, but if there are no children,

then both child pointers are null, and if there is only one child, then one of our two

pointers will be null. The Child1 and Child2 pointers are not equivalent, and the

subtrees to which they lead us indicate two different relationships.

The Child1 pointer directs us to the node which is the root of a subtree for

which the i-value of all its members is strictly greater than the value of our node.

In the context of our pi-enumeration table, the Child1 pointer leads us to the next

row of our table correlating to an OR-set.

The Child2 pointer leads us to a node which is analogous to a sibling. That

is, it points to a node which has an equivalent i-value because it is part of the same

OR-set and thus it was generated on the same row of our pi-enumeration table. The

subgraph rooted at the node to which our Child2 pointer directs us is parallel to,

though not necessarily equivalent to, the subgraph to which Child1 points.

Let us also note that each data member of our node has an accessor function.

The accessor function is used to access the value of a data member. If we want to

know the value of a node, Node2, whose value is (a 6↑ b), we would denote this using
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ValueOf(Node2) = (a 6↑ b). Similarly we have a function to access the i-value of a

node, it is i(Nodej). The child pointers of a node are accessed with the functions

Child1(Nodej) and Child2(Nodej).

Our tree begins its life as a single node, the root node. For the purposes of

our C++ implementation, we use a dummy node as our root. This node, labeled

Noderoot, is initialized with an i-value of 0, to denote its depth as 0, and its pointers

are initialized to null. It is assumed that the root node is assigned a unique value,

and this value will not match the value of any other rule in the tree. We have chosen

to use a dummy root node because we are not guaranteed that any Rowi will result

in a valid rule. This is because any row, including Row1, could correspond to a weak

period which would produce an AND-set, thus it would not appear in our tree. So,

for instance if |u|−1 is a weak period of u, Row1 would not contribute a node to the

tree. We would move to Row2, a row which could potentially generate two rules,

and if that is the case, there would be two entry points into our tree unless we have

a dummy root. We want to avoid multiple entry points, since this complicates tree

assembly and traversal algorithms.

We start at Row1 of our enumeration table, which will produce at most one

rule. Let us assume that this row produces an OR-set. Thus our rule will be inserted

into the tree. We try to insert the new node, Node0 at our root node, which has an

i-value of 0, and two null pointers, Child1 = null and Child2 = null. We compare

the i-values of the root node with the i-value of our new node and discover that the

new node has a higher value, i(Noderoot) < i(Node0), thus we look at the Child1

pointer of the root node, which is null. The null pointer indicates that we have

found the proper home for Node0, so we set the Child1 pointer of our root node

such that it points to Node0. This is denoted by Child1(Noderoot)← Node0.

Looking at our pseudo-code in Figure 4.4, you see that there are two main



38

cases to consider. In the first case, NewNode and InsertAt both have the same

i-value. This means that NewNode belongs in the parallel subtree of InsertAt. If

Child2 of InsertAt is null, then NewNode is the first node of its subtree. Otherwise,

we repeat the insertion process, following the Child2 links of nodes until we discover

a node whose Child2 pointer is null, and that is where we insert NewNode. Of course,

any time we encounter a situation where the value and i-value of NewNode and the

value of InsertAt are equivalent, we abort the attempt to insert the node NewNode

along this path of our tree.

The second case is a bit more complicated. First of all, this case occurs

when the i-value of NewNode is greater than the i-value of InsertAt. In general,

this means that NewNode belongs in both subtrees of InsertAt. If InsertAt has no

parallel subtree, Child2 is null, then we only need to consider placing NewNode

in the direct subtree, which is pointed to by Child1. Notice that we make one

additional check before we allow NewNode to be inserted in the direct subtree. In

order to prevent redundancy, we check to make sure that the value of InsertAt is

different from the value of NewNode. In this way, we ensure that no rule occurs

more than once in any given path of our tree.
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Insert(Node NewNode,Node InsertAt)

If NewNode And InsertAt Have The Same Value Then

// Do Not Insert NewNode Into The Tree

Exit Function

End If

// Case One: The Two Nodes Have The Same i Value

// Thus NewNode Is A Sibling Of InsertAt

If InsertAt And NewNode Have The Same i Value Then

If Child2 Of InsertAt Is Null Then

// NewNode Is The First Sibling Of InsertAt

Child2(InsertAt) ← NewNode

Else

// Make NewNode As A Sibling Of InsertAt

Insert(NewNode, Child2(InsertAt))
End If

Else

// Case Two: NewNode Has A Higher i Value Than InsertAt

If Child1 Of InsertAt Is Null Then

// NewNode Is The First Child Of InsertAt

Child1(InsertAt) ← NewNode

Else

// NewNode Belongs In The Child1 Subtree Of InsertAt

Insert(NewNode, Child1(InsertAt))
End If

// NewNode May Be A Child Of The Siblings Of InsertAt

If InsertAt Has Siblings Then

Insert(NewNode, Child2(InsertAt))
End If

End If

End Function

Figure 4.10: Node Insertion Routine

In order to demonstrate this algorithm, let us look at the example of u =

ab�1�2cd where P(u) = {6} andP ′(u) = {2, 6}. After exiting the Normalization

routine, u′ = ab�1�2cd. The table we generate would look like Figure 4.11.
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Alignment i AND or OR Si

a b �1 �2 c d 0
d 1 OR {(a 6↑ d)}
c d 2 OR {(a 6↑ c), (b 6↑ d)}
�2 c d 3 OR {(a 6↑ �2), (b 6↑ c), (�1 6↑ d)}
�1 �2 c d 4 AND {(a ↑ �1), (b ↑ �2), (�1 ↑ c), (�2 ↑ d)}
b �1 �2 c d 5 OR {(a 6↑ b), (b 6↑ �1), (�1 6↑ �2), (�2 6↑ c), (c 6↑ d)}

Figure 4.11: Weak Period Enumeration Table For ab��cd

The possible paths through the tree are shown here in Figure 4.12.

Path 1 (root) (a 6↑ d) (a 6↑ c) (a 6↑ �2) (a 6↑ b) 01�111
Path 2 (root) (a 6↑ d) (a 6↑ c) (a 6↑ �2) (b 6↑ �1) Impossible
Path 3 (root) (a 6↑ d) (a 6↑ c) (a 6↑ �2) (�1 6↑ �2) Impossible
Path 4 (root) (a 6↑ d) (a 6↑ c) (a 6↑ �2) (�2 6↑ c) Impossible
Path 5 (root) (a 6↑ d) (a 6↑ c) (a 6↑ �2) (c 6↑ d) Impossible
Path 6 (root) (a 6↑ d) (a 6↑ c) (b 6↑ c) (a 6↑ b) Impossible

...
...

Figure 4.12: Paths Through Rule Tree Of ab��cd

Let us build a tree to represent this same information. You will see that the tree is

much easier to read. Figure 4.13 gives you an idea of the structure and size of the

tree we have built for the partial word, ab��cd.
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Figure 4.13: Tree Overview

In the succeeding figures, we will follow the most basic traversal of our tree

stopping at each stage for a close up of the structure.

Figure 4.14: Rule Tree For ab�1�2cd, Close-Up Of Step One

Figure 4.14 shows us the root of our tree. The root is a dummy node, which exists

solely for the purpose of providing a single entry point into our tree. The next node

we encounter is (a 6↑ d).
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Figure 4.15: Rule Tree For ab�1�2cd, Close-Up Of Step Two

Figure 4.15 shows us that a move down the this path leads us to our next rule

(a 6↑ c).

Figure 4.16: Rule Tree For ab�1�2cd, Close-Up Of Step Three

In Figure 4.16 we encounter the rule (a 6↑ �2).
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Figure 4.17: Rule Tree For ab�1�2cd, Close-Up Of Step Four

Finally in Figure 4.17 we have completed our path, which ends at (a 6↑ b). If we

observe the rules in our AND-set, (a ↑ �1), (b ↑ �2), (c ↑ �1), (d ↑ �2), as well as the

rules we encountered along our path, we would conclude that 01�111 is a solution

for ab��cd.
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CHAPTER V

TREE TRAVERSAL AND ASSIGNMENT GRAPHS

If a solution, v, exists which meets our expectations, then that solution lies

in one of the branches of our rule tree. Therefore, we intend to extract information

about v from the rule tree. In order to do this, we must traverse at least one of

the various paths of the tree. In the best case scenario, the first path of the tree

we choose will lead us to an answer. However, in the worst case, we might have to

traverse all paths of the tree before we can determine an acceptable solution. Each

path is a set of OR rules, which are rules specifying incompatible symbols, and this

set will potentially lead us to a feasible solution. First we apply AND rules, and

then we apply the rules along a path to the alphabet of u′. If no problems arise,

then we have found a solution. Otherwise, we choose a different path, and make

another attempt to discover a solution.

When we talk about a path in the rule tree, we are talking about a sequence

of nodes starting from the root of our tree and ending at a terminal node. Here, we

define a terminal node as a node in which the Child1 pointer is null. This modified

definition is necessary because our binary tree is representing information which is

not binary in nature. In this case, a dummy node serves as the root. The various

paths in our rule tree do not all have the same number of nodes, the paths are not

uniform because we choose to exclude duplicate values along a path. As we built our

tree, we did not insert a rule if it was equivalent to one of its predecessors, however

the rule might have been inserted in some other paths, and therefore those paths

would have more nodes. Because of this, the size of our tree is quite unpredictable.
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In general, longer words with larger alphabets and fewer weak periods produce

larger trees. However, it is plausible that fairly short words with concise alphabets

might still generate trees with many millions of paths. The primary reason for this

is that the paths of our tree are not guaranteed to be unique, so multiple paths

might actually be equivalent, that is, they may contain the exact same set of rules.

Other implementations of the tree structure could avoid the problem of multiple

equivalent paths, but at this time we have chosen to forgo such an implementation.

In this algorithm, rules are applied to the alphabet of u′, which is the normal-

ized word we produced in the preprocessing phase of our algorithm. The alphabet

of u′ is A′, and we intend to group the symbols of this alphabet into two sets cor-

relating to 0 and 1. In addition, we have the set of holes, {�1, �2, . . . , �N}, each of

which we will assign to 0, 1, or �. By default, we will assume that each � functions

as either a 0 or a 1. We reserve � in v for situations where neither 0 nor 1 are

possible.

5.1 Vertex Structure

Our algorithm uses graph coloring to divide symbols from A′ into three sets. Any

symbol in A′ can be assigned to the 0-set or the 1-set, but of course only elements

of {�1, �2, . . . , �N} can be added to the �-set. The graph we build for each path will

contain a vertex for each symbol of the alphabet, a′
i ∈ A′ ∪ {�1, �2, . . . , �N}. The

vertex structure we use for the assignment graphs is inherently different from the

node structure we use in the rule tree. Let us look at the basic vertex structure.

• Value

– The value of a vertex is a symbol, a′
i ∈ A′ ∪ {�1, �2, . . . , �N}.
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– Each vertex has a unique value.

• Color

– This corresponds to 0, 1, �.

– By default a vertex is colored white.

– White corresponds to 0.

– Black corresponds to 1.

– Grey corresponds to �.

• Discovered Flag

– This is a flag used to identify whether a vertex has been discovered.

– By default, all vertices’ discovered flag is set to false.

5.2 Graph Construction

We convert rules into edges between the vertices of this assignment graph. Recall

that there are two classes of rules, (a ↑ b) and (a 6↑ b). Rules of the first class

result in a positive edge, marked with the value +, between the vertex with value

a and the vertex with value b. The two vertices will either be the same color or

at least one of them will be gray. Rules of the form (a 6↑ b) result in a negative

edge, marked with the value −, between the vertex with value a and the vertex

with value b. These two vertices cannot be the same color under any circumstance.

Further, we conclude that neither vertex can be colored gray. A � can appear in

an incompatibility rule, but due to the fact that � must be compatible with any

other symbol of the alphabet, then this symbol does not function as a hole, and

therefore the vertex cannot be colored gray. Since the algorithm involves traversing

our assignment graph, let us mention that the edges of this graph are undirected
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such that an edge between two vertices A and B allows us to move from A to B or

from B to A as we see fit.

All valid rules in our AND-set must be satisfied to reach a solution regardless

of which path through the rule tree we traverse. Therefore, these rules will be

applied to every possible assignment graph we generate. For this reason, we begin

by populating our graph with the positive edges that correspond to the AND-set.

Each rule is applied, and for each rule, we will have a new positive edge between

two vertices. The graph we build up to this point is composed entirely of positive

edges, and we call this the base graph because these edges appear in all graphs we

generate. If we apply some incompatibility rules that produce a contradiction, for

instance, we will abandon that particular graph and begin anew with this same base

graph.

Each path in our rule tree dictates a particular configuration of negative

edges of a specific graph. When we encounter a rule such as (a 6↑ b) then we add a

negative edge to connect the vertex with value a and the vertex with value b. Upon

reaching a terminal node, we know that we have a fully constructed graph, and thus

we can begin coloring the vertices.

Example 15 Using our example u′ = ab�1�2cd and the tree we generated in the

previous chapter, we see that A′ = {a, b, c, d}∪{�1, �2}. Furthermore, the AND-set,

{(a ↑ �1), (b ↑ �2), (�1 ↑ c), (�2 ↑ d)}. Using this information we can build the base

graph shown in Figure 5.1.
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Figure 5.1: Base Graph of ab�1�2cd

Now, if we follow the path in our tree which generates the rules (a 6↑ d), (a 6↑

c), (a 6↑ �2), (a 6↑ b), then we get the graph shown in Figure 5.2 which we may now

attempt to 3-color.

Figure 5.2: A Specific Uncolored Assignment Graph of ab�1�2cd
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5.3 Graph Coloring

Let us begin by introducing our vertex coloring algorithm. If some 3-coloring exists,

then our graph represents a solution. Any vertex of our graph can be black or white,

just as any position in our solution, v can be encoded as a 0 or 1. We reserve the

color gray for specific vertices whose value falls in the set {�1, �2, . . . , �N}, the set

of holes of u′, but we also place an additional constraint that a gray vertex can only

have positive edges incident to it. This constraint on coloring a vertex gray allows

us to guarantee that H(v) ⊂ H(u), if possible. No individual graph can promise

a solution which fits our criteria, and in fact, it may be possible that no solution

exists for the input. Some partial words fit into a class which we will describe

later for which there is no solution v over the alphabet {0, 1} where P(v) = P(u),

P ′(v) = P ′(u), and H(v) ⊂ H(u).

To begin our coloring of the graph, we must first choose an entry vertex into

the graph. We want to avoid choosing a vertex with a � value. We also have a

design criterion that our output should start with the symbol 0 whenever possible.

Therefore, when choosing the entry vertex, we determine the symbol of the first

element in D(u′), and choose the vertex with that value as our entry point. When

we start coloring, this initial vertex is colored white by default, and due to the

restriction on vertex coloring, it will remain white throughout the entire coloring

and traversal process. However, if we are dealing with a word for which D(u′) = ∅,

then we typically just choose to enter the graph at the vertex with a value of �1,

which is the first position in u′. An additional complexity to mention is that despite

our best attempts, we may still end up with a final result that does not begin with

0, but this situation can easily be remedied simply by replacing all 0’s with 1 and

all 1’s with 0.
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Example 16 If u′ = �1�2a�3babab, then we choose the vertex with value a as our

entry point into the graph because the third position is the first element in D(u′).

We do this as a matter of convention because it is our goal to have the first non-

hole position in v to be a 0. Thus, we color our start vertex white, and we flag it

to denote that it has been discovered, and its color cannot be changed since it was

not a � in u′. However, if the vertex with value �1 is colored black after our graph

is 3-colored, then obviously our v would not begin with 0. Since we prefer our v to

begin with 0, we would simply change all 0’s to 1 and all 1’s to 0 in our solution.

If our graph contains only one vertex, we are finished. However, we describe

how our algorithm explores and colors the the vertices of a non-trivial graph, con-

taining more than one vertex. We explore each edge radiating from a vertex in

depth first fashion, starting from our entry vertex. We must introduce the idea of

an expected color. The expected color is calculated as shown in the table of Figure

5.3. So for instance, if we start at a white vertex and cross a positive edge to arrive

at a new vertex, we expect that the color of the new vertex will be white or gray.

Otherwise, if we cross a negative edge, we would expect the new vertex to be black.

By default, if we start at a gray vertex, we choose our expected color to be white.

Later, if we discover that white was a bad choice, we can re-explore this edge and

use black as our expected color.

Color Positive Edge (+) Negative Edge (−)

White White/Gray Black
Black Black/Gray White
Gray White/Black Impossible

Figure 5.3: Expected Color Matrix

We assume that the edges of the graph are in some order. The method used
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for ordering is unimportant so long as it is consistent. Our algorithm simply orders

edges based on the order which they appear in the path we have chosen from our

rule tree. We pick an edge incident with our current vertex, which is currently the

entry vertex. As we cross the edge to visit the neighbor, we calculate the expected

color. One of three situations will occur.

1. The edge leads to an undiscovered vertex.

2. The edge leads to a previously discovered vertex and . . .

• the vertex is colored as expected.

• the vertex is incorrectly colored.

Case 1 (Undiscovered Vertex) Flag the vertex as discovered. Color the vertex

the expected color. If an unexplored edge exists, explore it, otherwise return to the

previous vertex which led to this vertex’s discovery, and continue exploring the edges

of that vertex.

Case 2 (Discovered Vertex, Proper Color) Everything is going as planned since

the coloring has not yielded a contradiction. Return to the vertex which led to this

vertex. Let us note that the edge between these vertices is not the edge which led

to the discovery of this vertex. Then continue explore the remaining edges of the

previous vertex if any remain unexplored.

Case 3 (Discovered Vertex, Color Conflict) This case is very tricky because

it represents a contradiction. Once a vertex has been visited, its color is fixed and

should not be changed. So clearly if we arrive at a previously discovered vertex that

is not colored as expected, we have a problem. If we can return to a � vertex with
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no negative edges incident to it, then we might be able to color it gray and try a

different expected color as we retraverse the subgraph which led to the contradiction.

This would allow us to alleviate the contradictory coloring, and continue processing

the graph. Unfortunately, if no such � vertex exists, we know immediately that this

assignment graph can not be 3-colored, so we must abandon it and explore the next

path in our rule tree.

How did we arrive at this contradictory coloring? Assuming there is some �

vertex with no negative edges incident to it, we explored an edge, calculated some

expected color, and began exploring and coloring some subgraph of our assignment

graph until we reached a contradiction. Therefore, to cope with the contradiction, we

must unexplore this subgraph and undo all the changes we have made after crossing

the edge incident to the � vertex. We undiscover the vertices and color them white,

retracing our steps until we once again arrive at the � vertex. Now we color the

vertex gray, keep in mind that this vertex might already be gray, but this is not a

problem. Then we re-explore the problematic edge, but this time we choose a different

expected color. So, if we had first tried white, we now try black. If we first tried

black, then now we will try white. This time we traverse the subgraph exactly as we

did before. However, if another contradiction occurs along the subgraph beginning

with this problematic edge which requires us to backtrack to this � vertex, then we

have exhausted our coloring options, and again, we abort this assignment graph

because it can not be 3-colored.

At some point after fully exploring this subgraph, we will return to this �

vertex and explore the other edges incident to it. When exploring these edges, we

might again find that our expected color causes a contradiction in the subgraph we

are exploring. We only abort the assignment graph if an edge incident to a � vertex

forces us to backtrack to this vertex more than once. Thus, we might find ourselves
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backtracking to this vertex many times if more than one edge causes a contradiction

in its subgraph, but this is not a problem so long as no edge requires us to backtrack

more than once.

At some point in our traversal of this assignment graph we will have explored

all edges, so long as no contradiction has occurred that we are unable to resolve.

Thus, barring these unresolvable graphs, we will have an appropriate 3-colored

graph. White vertices correlate to 0 in v, black vertices correlate to 1 in v, and gray

vertices correlate to � in v. The value of a vertex is a symbol of the alphabet of u′,

so we look up the color of each position in u′ and replace it with the appropriate

encoding over {0, 1, �}. After we have finished this substitution process, we have

found our solution, if such a solution exists. We may still need to invert our 0’s and

1’s to ensure that the first non-hole position in v is a 0, but this is an elementary

step we take for aesthetic purposes only.

The graph coloring algorithm we use is shown next. The traverse function is

the main entry point in our code.

Traverse(Vertex Root)

If Visit(Root) Is Successful And

The Traversal Was Not Aborted Then

SOLUTION HAS BEEN DISCOVERED

End If

End Function
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Explore(Vertex Current, Vertex Neighbor, Color ExpectedColor)

Returns Boolean

// First Attempt To Visit The Neighbor

If Visit(Neighbor, ExpectedColor) Is Unsuccessful Then

If Current ∈ H(u) And All Incident Edges Are Positive Then

Color Current Vertex Gray

// We Tried One Color, Let Us Try The Other

ExpectedColor ← Not(ExpectedColor)

textsl// Final Attempt To Visit The Neighbor

If Visit(Neighbor, ExpectedColor) Is Unsuccessful Then

// We Have Exhausted Our Coloring Options

// This Graph Cannot Be 3-Colored
ABORT

End If

Else

// Current Is Not A Hole So We Must Undo Our Changes

// And Return To A Vertex Corresponding To A Hole

Rollback All Changes Which Were Made To The Graph

After Visiting The Neighbors of Current

Return False

End If

End If

End Function

Not(Color VertexColor) Returns Color

If VertexColor Is White Then

Return Black

Else

Return White

End If

End Function
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Visit(Vertex Current, Color ExpectedColor) Returns Boolean

// CASE ONE: Current Was Already Visited

If Current Was Already Visited Then

If ColorOf(Current) Is ExpectedColor Then

Return True

Else

ExpectedColor ← ColorOf(Current)

Return False

End If

End If

// CASE TWO: Current Has Not Yet Been Visited

Mark Current As Visited

Color Current The Expected Color

For Each Edge Incident With Current

If Incident Edge Is Positive Then

ExpectedColor ← ColorOf(Current)

Else

ExpectedColor ← Not(ColorOf(Current))

End If

If Explore(Current, Neighbor, ExpectedColor) Is

Unsuccessful Then

Return False

End If

Next Edge

// All Neighbors Have Been Visited Without A Conflict

Return True

End Function
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Now, let us look at some examples of an assignment graph and its coloring.

For these examples, our normalized word is u′ = ab�1�2cd. Let us assume we have

generated the rule tree, and we are traversing a particular path. Here, we have

chosen the vertex with value a as our entry point into the assignment graph. Let

us look at the vertex coloring process . . .

Step 1 We begin by discovering vertex a. By default, we color it white.

Figure 5.4: Step One
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Step 2 We choose to follow the positive edge from vertex a to vertex �1. Since

vertex a is white and we are following a positive edge, we determine that our expected

color for vertex �1 is white. Thus, we discover vertex �1 and color it white.

Figure 5.5: Step Two

Step 3 Here, vertex �1 is white, and we follow the positive edge to vertex c. Our

expected color will be white, so we discover vertex c and color it white. The only

remaining edge from vertex c is negative and it leads us to vertex a, which has

already been discovered. We have a problem, though, since vertex c is white and

we are crossing a negative edge, we would expect vertex a to be black. Since it is

not black, we must undiscover vertex c and return to vertex �1. In addition, we

recalculate expected value such that we expect vertex a to be white. Crossing the

negative edge from vertex a to vertex c leaves us with an expected color of black.

Then we cross the positive edge from vertex c to vertex �1, leaving us with an

expected color of black.
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Figure 5.6: Step Three

Step 4 We have returned to vertex �1. Since this vertex corresponds to a hole, we

color it gray, then we try to retraverse the graph. This time, our expected value is

black.

Figure 5.7: Step Four
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Step 5 We are back to vertex c, this time with an expected color of black. We re-

discover vertex c, and color it black. From here, we return to vertex a by traversing

the negative edge between vertex c and vertex a. We calculate the expected value to

be white, and since vertex a was already discovered and already colored white, we

have finished traversing the edges of vertex c. We return to vertex �1, and again,

there are no more edges to traverse, so we return to vertex a.

Figure 5.8: Step Five

Step 6 The next edge we follow from vertex a is a negative edge which leads us

to vertex d. Our expected color is black because vertex a is white, and we are

traversing a negative edge. We discover vertex d and color it black.
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Figure 5.9: Step Six

Step 7 The only remaining edge of vertex d is a positive edge leading us to vertex �2.

We calculate the expected value to be black, thus we discover vertex �2 and color it

black.

Figure 5.10: Step Seven

Step 8 There is one positive edge leading from vertex �2 to vertex b. We discover

vertex b and color it black.
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Figure 5.11: Step Eight

Step 9 There is one negative edge from vertex b to vertex a. Since vertex b is

black, we calculate the expected color to be white. Notice that vertex a is already

discovered, so all that we need to do is check that vertex a matches the expected

color.

Figure 5.12: Step Nine
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Step 10 Now we return to vertex �2 to explore the final edge in the graph. This edge

is a negative edge leading to vertex a. The expected color is white since vertex �2

is black and we are crossing a negative edge. Since vertex a is the proper color and

we have traversed all edges in the graph, we have found a valid 3-coloring for this

graph and our traversal was successful.

Figure 5.13: Step Ten

Now we clearly see from Figure 5.13 that a is white, b is black, c is black, d

is black, �2 is black, and �1 is gray. Instead of colors, we translate white, black, and

gray to 0, 1, and �, yielding a solution, v = 01�111.
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CHAPTER VI

THE SPECIAL CLASS OF PARTIAL WORDS

Originally the focus of this research was on partial words with at most two

holes. However, the algorithm described in this thesis proved to be adaptable to

partial words with any number of holes, and rather than enforce an artificial limit

of two holes, we chose to explore the possibility that it would work for partial words

with any number of holes. However, it eventually became apparent that there exists

a class of partial words for which no solution exists satisfying our conditions.

Try not to assume that this means the algorithm we have described is fun-

damentally flawed, to do so would be a mistake. Indeed, if such conversion v over

{0, 1} exists, our algorithm will find it. However, the class of special partial words

presents a challenge because such a v which meets our requirements does not exist.

In this class, we can satisfy the constraints that the set of periods of v is equal to

the set of periods of u and the set of weak periods of v is equal to the set of weak

periods of u, P(u) = P(v) and P ′(u) = P ′(v). A problem arises when we attempt

to satisfy the constraint that H(v) ⊂ H(u). It is surprisingly easy to understand

this concept.

Example 17 If we start with a word u = abcdab, we would expect our algorithm

to output v = 010001. Here, P(u) = P(v) = {4, 6} and P ′(u) = P ′(v) = {4, 6}.

A binary partial word such as v′ = 010�01 possesses the same periods and weak

periods of u, but notice that the set of holes of v′ is non-empty. The periods and

weak periods of our v′ are P(v′) = {4, 6} and P ′(v′) = {4, 6}, so we have satisfied
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the requirement that P(u) = P(v′) and P ′(u) = P ′(v′). However H(u) = ∅, yet

H(v′) = {3}, so clearly H(v′) 6⊂ H(u). Thus, we should conclude that v′ is not an

acceptable result because we already know that some v, namely 010001, satisfies all

of our constraints.

In the special class of partial words, we must consider the possibility that one

or more positions in the domain of u will have to become a hole in our final solution,

a situation which we have carefully avoided up to this point. The algorithm as we

have described it takes several precautions to ensure that H(v) ⊂ H(u), such as

assigning an element of {0, 1} to the each symbol of the alphabet A′. So for instance,

there is no possibility of assigning one position with 1 and another position with 0

if both positions are a’s in u′. In the contrasting approach, we could have assigned

binary values on a position-by-position basis, such that the assignments are made

independently of the alphabet, A′. Another precaution we take occurs during the

graph coloring phase of the algorithm. During this phase, we do not allow non-

hole symbols to be colored gray and thus these symbols cannot become a � in any

solution we discover.

Again, we will continue to maintain that the set of periods and weak periods

of all partial words is independent of the alphabet size, but in this special class, we

are unable to maintain that H(v) ⊂ H(u). Let us look more closely at this concept.

Example 18 First, look at the non-special partial word u = ab��cd for which we

can find a suitable v. This u can be normalized such that u′ = ab�1�2cd. For this

u, we have previously shown that there is a v = 01�111. This is a great example

because you will notice that �1 remains a � in v, however, �2 becomes a 1, such that

H(v) ⊂ H(u). This is perfectly acceptable because the set of holes in v is still a

subset of the holes in u.
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Now let us examine the special partial word u = a�����d�bad. We normalize this

partial word as u′ = a�1�2�3�4�5b�6cab. The alphabet of this u′ is A′ = {a, b, c} ∪

{�1, �2, �3, �4, �5, �6}. However, after exhausting all branches of the rule tree that this

special partial word generates, we would not discover a suitable solution v. Notice

that some binary partial word v′ exists that will satisfy the periodicity of this u,

consider v = 0111��1�1�1.

A linear time technique has been created by F. Blanchet-Sadri, J. Gafni, and

K. Wilson [9] to calculate a v for such special partial words. Let us briefly describe

how this works. In our earlier chapters we introduced two derivative periodic sets,

P(u) and P ’(u). The set of strong periods of u, P(u), is described as P(u) − |u|.

The set of strictly weak periods of u, P ’(u), is described as P ′(u)− P(u).

Example 19 Recall from our previous example, Example 18, the special partial

word u = a�����d�bad. This periodicity of this word is, P(u) = {7, 9, 11} and

P ′(u) = {4, 5, 7, 9, 11}. Thus we get P(u) = {7, 9} and P’(u) = {4, 5}.

Now we will build two sets of partial words, one for the strong periods of u,

P(u), and one for the strictly weak periods of u, P ’(u). The formula we use to

generate these partial words is different for the two sets. Let us begin by describing

how to build the partial words for P(u). In this case, we want to generate a set of

|u|-length full words for each period in P(u).

ωp =

{
(01p−1)k01r−1 if p > 0 and r > 0
(01p−1)k otherwise

The first condition applies when the length of our word is not modulo divisible

by our period, such that there is a remainder. Here, we try to induce periodicity



66

by repeating a p-length word, with the singleton period p, k times after which we

append 01r−1, where r represents the remainder.

The second condition applies whenever our the length of our word is divis-

ible by our period. Here we generate a P i-length word, 01p−1, and perform an

i-concatenation such that the result is a u-length word.

Next we deal with the strictly weak periods of u. For each of these strictly

weak periods, we generate a partial word as follows . . .

P ’q = 01q−1�1n−q−1, where n = kp + r and 0 ≤ r < p.

The resulting partial word has a weak period of P ’i and exactly one �.

Now we align each of the words we calculated for P(u) and each of the partial

words we calculated for P ’(u) and align them into |u| columns. We perform the

AND operation, ∧, on each row. The ∧ operation is a binary operation as described

in the following table . . .

∧ 0 1 �
0 0 � �
1 � 1 �
� � � �

Figure 6.1: AND Operation

Visually, it is easier to inspect the columns and perform a short hand sum-

mary of the ∧ operation, such that . . .

Case 1 If all the positions in a column are 0’s, then this position in our answer will

also be an 0. Conversely, if all positions in this column are 1’s, then this position

in our answer will also be 1.
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Case 2 If any position in a column is a �, or if the column is not uniformly 0 or

uniformly 1, then this position in our answer will be a �.

The resulting answer will have the same periods and weak periods as our u,

but the set of holes in the answer will not necessarily be a subset of the holes in u.

Example 20 Let us look at u = a�����d�bad. Here P(u) = {7, 9} and P’(u) =

{4, 5}. Using the formulas described above, we get P7 generates 01111110111, P9

generates 011111111011, P’4 generates 0111�111111, and P’5 generates 01111�11111.

We align our computed partial words and perform the column by column calculation.

0 1 1 1 1 1 1 0 1 1 1
0 1 1 1 1 1 1 1 1 0 1
0 1 1 1 � 1 1 1 1 1 1
0 1 1 1 1 � 1 1 1 1 1

Result: 0 1 1 1 � � 1 � 1 � 1

Superficially, you might conclude that we have found a quick way to calculate

v for all partial words, but this is not the case. This technique produces a result

in linear time, however it makes no attempt to preserve D(u), meaning it can and

does assign �’s to positions in v which were not �’s in u. Unfortunately, we must

accept this result for the special class of partial words, but otherwise, the result is

only acceptable when no solution exists such that H(v) ⊂ H(u).

Our algorithm is designed such that it only assigns binary values to symbols

in A′∪{�1, �2, .., �N}, our normalized alphabet, instead of assigning values to specific

positions in u. Ultimately this ensures that we satisfy H(v) ⊂ H(u), and if we can

not satisfy that requirement, no result is given. If we were to modify our algorithm



68

slightly such that the rules we generate are based on positions in u, we are suddenly

able to find a result even for this special class of partial words at the expense of

losing our ability to guarantee H(v) ⊂ H(u). Obviously due to the computational

costs of our algorithm, this is not an ideal situation. Our current approach works

as such . . .

1. Normalize the input u, such that we have a resulting u′ over the alphabet A′.

2. Generate our rule tree.

3. Explore paths of the rule tree.

(a) If a graph is generated which can be 3-colored, reserving one color exclu-

sively for the set {�1, �2, .., �N}, then use the coloring to encode u′ into

a v over {0, 1} ∪ {�}.

4. Output our v.

Notice that this algorithm acts as a recognizer for partial words u which contain

an encoding v over {0, 1}∪ {�} such that it preserves the periods and weak periods

of u and H(v) ⊂ H(u). Therefore, we can conclude that this algorithm is also a

recognizer for the special class of partial words. If we have exhausted all paths in

our rule tree, and none of those paths has lead us to a solution, then we can assume

that our partial word is special. Furthermore, if we have recognized such special u,

we might simply add an additional subroutine to our algorithm that incorporates

the techniques described in this chapter to output a solution.

Theoretically our algorithm as described in previous chapters is a recognizer

for the class of partial words with a proper output v, but it is impractical to use this

algorithm as a recognizer for this class of partial words. Unfortunately, a rule tree
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can become quite extensive and it is possible that a tree might have many millions

of branches to explore. Computationally, it is very expensive to explore a path,

generate a graph, and then attempt to color the graph. If the graph cannot be

colored appropriately, then we move on to the next path in the tree, and continue

the process. The amount of time involved in seeking a solution dictates that we have

some limits on the number of paths we can explore and the amount of time we have

to perform computations on a partial word. When these limits are reached, we must

stop the process, and thus it can be difficult to determine if we are dealing with

a special partial word or whether we have simply discovered a partial word with a

particularly low density of valid branches, that is branches of the rule tree which

yield a good 3-colored graph and thus a valid result v. Therefore, until a faster linear

time recognizer for the special partial words is developed, our algorithm makes a

best faith attempt to find a solution. If we are able to fully explore a tree with

no result without exceeding our time limit, then we can positively say we have

discovered an special partial word. However, if we are unable to fully explore a tree

for whatever reason, we do not attempt to display any output, because we do not

know if our input is special or simply a computationally expensive partial word.
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Acad. Sci. Paris 268 (1978) 1175–1177.
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