
RENN, CHARLES FREDERICK, M.A. On Union-Closed Families. (2007)
Directed by Dr. Theresa Vaughan. 73pp.

A union-closed family is a non-empty finite collection of non-empty sets, F ,

such that for any A, B ∈ F , then A ∪ B ∈ F [7]. Peter Frankl conjectured in 1979

that if F is union-closed, then there exists an element α such that α occurs in at

least half of the sets of F (cf. [6]). Despite its simplicity, the conjecture has defied

any general proof. In [6], Bjorn Poonen proved the result for families involving up

to 7 elements, and only marginal improvement has been made on this bound.

In this paper we attempt to approach the above conjecture from a broad per-

spective. We begin by imposing a numbering on all possible subsets, or collections,

of the power set on n elements. From this, we investigate relationships between

the numbering of a given collection and whether or not it is union-closed. We also

look for a pattern in the distribution of union-closed families within the numbering

for n ≤ 5. For this work, we use a complete listing of the union-closed families.

We make use of several custom computer applications written in C++ to produce

complete union-closed family listings for n = 3, 4, 5.

ON UNION-CLOSED FAMILIES

by

Charles Frederick Renn

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Arts

Greensboro
2007

Approved by

Committee Chair

Dedicated to
my grandfathers,

Harland Frederick Duerk, and
Charles Francis Renn

ii

APPROVAL PAGE

This thesis has been approved by the following committee of the

Faculty of The Graduate School at The University of North Carolina at Greensboro.

Committee Chair

Committee Members

Date of Acceptance by Committee

Date of Final Oral Examination

iii

ACKNOWLEDGMENTS

I would like to thank the members of my committee, Sebastian Pauli and

Paul Duvall, for their open doors and their willingness to listen and comment on

my ideas throughout the development of this thesis. I would also like to make a

special thank you to my advisor, Theresa Vaughan, who has consistently supported

me throughout this process and who simply encouraged me to “play”.

I would also like to thank my employer, the National Board for Certified

Counselors, for their flexibility with my erratic student schedule and for their con-

tinued support over the past two years. In particular, I would like to thank my col-

leagues, Adrian Goulbourne and Bob Henegar, who patiently endured many math

conversations and were always willing to offer a fresh perspective.

Lastly, I would like to thank my wife, Karen. Without her continuous love

and understanding, this thesis would not have been possible.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . vii

CHAPTER

I. INTRODUCTION . 1

II. DEFINITIONS AND NOTATION . 3

2.1. Preliminary Definitions . 3
2.2. Collection Numbering . 4
2.3. Equivalence Classes on Collections . 6
2.4. Two Counterexamples . 8

III. USING COLLECTION NUMBERS . 12

3.1. Some Easy Lemmas . 12
3.2. Special Collections . 14
3.3. Summary of Results and Graphical Representations 15

IV. USING THEOREMS OF BURNSIDE AND POLYA 24

4.1. Definitions and Notation . 24
4.2. Calculations . 25
4.3. Summary of Results . 29

V. SQUASHED ORDERING AND SUPERCOLLECTIONS 32

5.1. Definition of Squashed Ordering . 32
5.2. Application of Squashed Order to Supercollections 35

VI. GRAPHS OF UNION-CLOSED FAMILIES . 45

6.1. Families and Graphs . 45
6.2. Constructing the Graph Programmatically 48

VII. NOTES ON TECHNOLOGY USED . 50

v

7.1. The MSET and MFAMILY Classes . 50
7.2. The GNODE class . 52
7.3. Finding the Permutations of a Collection . 53
7.4. Other Technology Used . 55

BIBLIOGRAPHY . 56

APPENDIX A NUMERICAL DATA FOR UC-CLASSES 57

APPENDIX B CALCULATED CYCLE INDICES . 60

APPENDIX C NUMERICAL DATA FOR MINIMAL-MAXIMA 62

vi

LIST OF FIGURES

Page

2.1. The collection A, #A = 29856. 9

2.2. The collection B, #B = 31746. 10

2.3. The collection A with #A = 1946157178. 11

3.1. Counts of isomorphism classes for 1 ≤ n ≤ 5. 16

3.2. Distribution of Classes by Cardinality for n = 3. 18

3.3. Distribution of Classes by Cardinality for n = 4. 18

3.4. Distribution of Classes by Cardinality for n = 5. 19

3.5. The plot of f3. 20

3.6. The plot of f4. 21

3.7. The plot of every 15199th collection for f5. 22

3.8. An expanded section of the graph of f4 . 23

3.9. Another expanded section of the graph of f4 . 23

4.1. Colorings of F1 and F2. 25

4.2. All elements of S3 and their cycle indices. 26

4.3. Calculations for 2 ≤ n ≤ 6. 30

4.4. All 2-colorings of the set P∗[3]− {1, 2, 3}. 31

5.1. The 3-sets in {1, 2, 3, 4, 5} in lexicographic and squashed order. 33

5.2. The 3-sets in {1, 2, 3, 4, 5} in the squashed order. 34

5.3. Minimal-maximum graph for (3, i)-supercollections. 40

5.4. Minimal-maximum graph for (4, i)-supercollections. 41

5.5. Minimal-maximum graph for (5, i)-supercollections. 42

vii

5.6. Binary representations for (3, i)-supercollections. 43

5.7. Binary representations for (4, i)-supercollections. 43

5.8. Binary representations for (5, i)-supercollections. 44

6.1. The collection B, #B = 31746. 46

6.2. An example of cover relations that are within a single level or from a
lower level to a higher level. 47

A.1. Count of UC-Classes by Cardinality when n = 3. 57

A.2. Count of UC-Classes by Cardinality when n = 4. 58

A.3. Count of UC-Classes by Cardinality when n = 5. 59

B.1. Cycle indices for n = 3. 60

B.2. Cycle indices for n = 4. 60

B.3. Cycle indices for n = 5. 61

B.4. Cycle indices for n = 6. 61

C.1. Minimal-maximum data for (3, i)-supercollections. 62

C.2. Minimal-maximum data for (4, i)-supercollections. 63

C.3. Minimal-maximum data for (5, i)-supercollections. 64

viii

1

CHAPTER I

INTRODUCTION

A union-closed family is a non-empty finite collection of non-empty sets, F ,

such that for any A, B ∈ F , then A ∪ B ∈ F [7]. Peter Frankl conjectured in 1979

that if F is union-closed, then there exists an element α such that α occurs in at

least half of the sets of F (cf. [6]). Despite its simplicity, the conjecture has defied

any general proof. In [6], Bjorn Poonen proved the result for families involving up

to 7 elements. This result has been extended by Morris for families on 9 elements

[5]. Gao and Yu have proved the result for families where |F| ≤ 32 [2].

In this paper we attempt to approach the above conjecture from a broad per-

spective. We begin by imposing a numbering on all possible subsets, or collections,

of the power set on n elements. From this, we investigate relationships between

the numbering of a given collection and whether or not it is union-closed. We also

look for a pattern in the distribution of union-closed families within the numbering

for n ≤ 5. For this work, we use a complete listing of the union-closed families.

We make use of several custom computer applications written in C++ to produce

complete union-closed family listings for n = 3, 4, 5.

Chapter 2 of this paper defines many of the terms that will be used through-

out the paper. This chapter also describes the numbering scheme mentioned above

and a natural equivalence relation on these collections. The problem of finding a

unique representative for the resultant equivalence classes is discussed. In Chapter

3 we present some consequences and results of this numbering. We provide data

related to the distribution of families and corresponding graphical representations.

2

In Chapter 4 we apply counting theorems of Burnside and Polya to the

problem of counting union-closed families for a given n.

We introduce the concept of squashed ordering in Chapter 5. This provides

a secondary numbering on the collections, and we investigate an application of this

squashed order to possibly identify non-isomorphic collections that are union-closed.

Union-closed families have a direct representation as a semilattice, as de-

scribed by Poonen [6]. In Chapter 6 we briefly discuss this approach and provide

several interesting examples. We also discuss the graph-generating algorithm used

by the computer program. Lastly, Chapter 7 presents some notes and comments

regarding the computer applications used throughout this paper.

3

CHAPTER II

DEFINITIONS AND NOTATION

2.1 Preliminary Definitions

Let [n] = {1, 2, 3, . . . , n}. Throughout this paper we will be considering subsets of

the power set on n elements excluding the empty set (i.e. P([n]) − {∅}, denoted

P∗([n])). Such subsets are called collections.

Definition 2.1 A collection in n, A, is a non-empty subset of the set P∗([n]).

Often, such an object is referred to simply as a collection. A collection in n A

is called proper if A 6⊂ P([n − 1]). If a collection is not proper, we say it is

non-proper.

We use the convention of script capitals to refer to collections, and Roman

capitals to refer to subsets of [n]. To represent the cardinality of a collection, A, we

use the usual notation, |A|.

Definition 2.2 A union-closed family (or, simply family) is a collection F

with the following property: for any A, B ∈ F , A ∪ B ∈ F . That is, F is closed

under unions. For a given n, the maximal family is P∗([n]).

Later, we will have need to consider sets of collections in a given n, and we

will use the following definition.

Definition 2.3 The n-supercollection is the set of all possible non-empty collec-

tions in n, which is equivalent to P(P∗([n])) − {∅}. A (n, i)-supercollection is

the set of all possible collections in n with cardinality i.

4

2.2 Collection Numbering

In this section, we define a numbering, based on the binary expansion of integers,

on an n-supercollection. This will allow for numerical manipulation of collections,

including the ability to represent collections as a single point on the number line. In

addition, our numbering acts as an encoding of the collection itself, so all information

about the structure of the collection is contained within its number. This provides

us with a method of efficiently handling these collections programmatically.

We begin with defining a numbering on the subsets of [n]. Let A be a subset

of [n] and let α be a function from P∗([n]) to the set of sequences of length n, with

α(A) = (an, an−1, . . . , a2, a1). We define its members in the following way.

ai =

{
1 i ∈ A
0 i 6∈ A

for i ∈ {1, 2, 3, . . . , n} (2.1)

If we write α(A) without commas and parentheses, we obtain what may be inter-

preted as an integer in binary representation. This number, which we will write

#A, is assigned to the set.

Example 2.4 Let A = {1, 2, 4, 6}. Then, α(A) = 101011, and #A = 43.

Because of unique binary representation for integers, this numbering is well-

defined and reversible. For completeness, we note the following.

Corollary 2.5 Let A be a subset of [n]. The set number for A is

#A =
∑
i∈A

2i−1

Consequently, #A ∈ {1, 2, 3, . . . , 2n − 1}.

We can extend this process to uniquely assign numbers to collections in an

obvious way. We now consider sequences of length 2n − 1, where each element

5

bi corresponds to the set with set number i. Given a collection A, we define a

function β from all collections in n to sequences of length 2n − 1. So we have

β(A) = (b2n−1, b2n−2, . . . , b1) where

bi =

{
1 i = #A for some A ∈ A
0 i 6= #A for some A ∈ A for i ∈ {1, 2, 3, . . . , 2n − 1} (2.2)

Again, we write β(A) without commas and parentheses and interpret it as an integer

in binary representation. This integer is the number assigned to the collection. We

will write #A for this number.

Example 2.6 Let A = {{1}, {1, 2}, {3}, {1, 2, 3}} ⊂ P∗([3]). First, calculating the

set numbers for the member sets we obtain

#{1} = 1

#{1, 2} = 3

#{3} = 4

#{1, 2, 3} = 7

This yields β(A) = 1001101 and #A = 77.

As before, we note

Corollary 2.7 Let A be a subset of P∗([n]). The collection number for A is

#A =
∑
A∈A

2#A−1

Consequently, #A ∈ {1, 2, 3, . . . , 22n−1 − 1}.

6

2.3 Equivalence Classes on Collections

Consider the following collections.

F1 = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}, and

F2 = {{2}, {1, 2}, {2, 3}, {1, 2, 3}}

Although these families are visibly distinct families and have different collection

numbers, they are structurally identical. Indeed, if the symbols ‘1’ and ‘2’ are

interchanged in F1, we obtain F2. In general, any permutation of the symbols ‘1’,

‘2’, and ‘3’ would yield a structurally identical family, preserving the property of

union-closedness. We use this idea to define an equivalence relation on the set of

collections in n.

First, we refine our notion of a permutation acting on a collection in n. Let

π ∈ Sn, where Sn is the symmetric group on n elements. This permutation induces

a permutation π∗ of the set P∗([n]) in the obvious way. We define the action of π∗

on a set A ∈ P∗([n]),

π∗(A) = {π(i) | i ∈ A}

Let S∗
n represent the set of all permutations induced on P∗([n]) by Sn. If F is

collection in n, we can abuse the notation slightly, and write what we mean by the

permutation π∗(F),

π∗(F) = {π∗(A) | A ∈ F}

Definition 2.8 Let A and B be collections in n. We say that A is permutation-

equivalent to B if and only if there exists a π ∈ Sn such that π∗(A) = B. We write

A ∼P B.

It is easy to check that permutation-equivalence is an equivalence relation on the

set of collections. We denote the permutation-equivalence class of a collection A

7

by [A]P . It is clear that if A and B are permutation-equivalent, then they are

structurally identical, i.e. isomorphic.

Definition 2.9 Let B be a collection in n. The closure of B is the collection

formed by the union of B with the set of all possible unions of the member sets of

B. We write the closure of B as B.

B = B ∪ {
m⋃

i=1

Xi|Xi ∈ B, m ∈ Z+}

Consider the following two collections,

F = {{1}, {2}, {1, 2}, {1, 2, 3}}, and

G = {{1}, {2}, {1, 2, 3}}

Clearly F 6∼P G, as |F| 6= |G|. However, we see that G = F . That is, F is the

closure of G. This leads us to our next notion of equivalence.

Definition 2.10 Let A and B be collections in n. We say that A is union-closed

equivalent to B if and only if the closure of A equals the closure of B. We write

A ∼U B.

The relation of union-closed equivalence is also an equivalence relation on

the set of collections, and we denote the equivalence class for the collection A by

[A]U .

It is clear that many different collections may have the same closure, and

are therefore in the same class with respect to union-closed equivalence. In an

equivalence class, there exists a collection whose cardinality is less than or equal to

the cardinality of any other collection in the equivalence class. We call this collection

the minimal generating collection (MGC) [4], and it has the obvious property

8

that none of its members are equal to unions of smaller sets that are still members

of the collection. Johnson and Vaughan proved the uniqueness of the MGC for a

given equivalence class in [4].

We follow with the following observation. Let A be a collection in n and

π ∈ Sn. Then,

π∗(A) = π∗(A)

From this fact, we can combine the ideas of permutation equivalence and union-

closed equivalence and realize that

[[A]P]U = [[A]U]P

We realize that in this case the subscripts are irrelevant, and we omit them, writing

[[A]] instead. We say that [[A]] is the UC-class for A. These classes define a

useful partition on collections. If two union-closed families are not in the same

UC-class, then the two families must be structurally distinct (ie. non-isomorphic).

Consequently, counting these classes will yield the number of distinct union-closed

families for a given n.

2.4 Two Counterexamples

When dealing with these equivalence classes, it would be instructive to have methods

of characterizing each class based on the structure of the union-closed family. For

example, if each class had a unique vector of cardinalities for its member sets,

identifying union-closed equivalent collections and obtaining an inventory of non-

isomorphic classes would be simpler. However, as the following counterexample

shows, several possible characterizations prove to be not unique.

Example 2.11 Let A and B be the collections in 4 below, #A = 29856 and #B =

9

31746.

A = {{4}, {2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}} and

B = {{2}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

Let e be the sequence where ei equals the number of occurrences of the element i,

and let c be the sequence where ci equals the number of member sets of cardinality

i. For both A and B, we have the following:

e = (3, 4, 4, 5)

c = (1, 1, 3, 1)

However, A and B are not isomorphic. It is easiest to see this using a graphical

representation for each collection, where nodes (member sets) are joined by edges

indicating containment. We will discuss this representation further in Chapter 6,

but provide the graphs for A and B here.

Figure 2.1: The collection A, #A = 29856.

Another possible characterization uses the idea of graph levels. The level of

a node is the length of the minimal path from itself to the top node (i.e. the set [n]).

10

Figure 2.2: The collection B, #B = 31746.

If we let l be the sequence where li equals the number of sets at level i, i ≥ 0, then

we see both collections above have l= (1, 3, 2), disproving the uniqueness of l.

From the previous example, we cannot characterize the isomorphism classes

uniquely based on these aspects of the family’s structure. Instead, we often will

take the maximal collection number of all collections in an isomorphism class as the

representative element.

By taking the maximal collection number for a given class, we know the

corresponding collection must be union-closed. It is tempting to attempt to use the

fact that the collection number is maximal to show that this family possesses an

element occurring in at least half of the sets of the family, which is the conjecture of

Frankl mentioned earlier. Moreover, because of the maximal nature of this number,

we may think that the element n would be the element to satify the conjecture.

However, the following counterexample when n = 5 proves otherwise. Interestingly,

no similar counterexample can be found for n < 5.

Example 2.12 Consider the collection A with #A = 1946157178 and the graph

structure below. It can be shown that the collection number #A is maximal for

11

[[A]]. We can see that e= (5, 6, 7, 4, 4) and |A| = 9. In particular, although the

Figure 2.3: The collection A with #A = 1946157178.

family does satify the Frankl conjecture, neither element 4 or 5 occur in at least half

of the sets of A.

12

CHAPTER III

USING COLLECTION NUMBERS

In this chapter, we investigate patterns and consequences that arise from

the binary-based numbering on collections introduced in the last chapter. We are

interested in methods by which a collection’s union-closedness could be determined

from only its collection number.

3.1 Some Easy Lemmas

We begin with several simple results about the collection numbering.

Lemma 3.1 A collection number is odd if and only if the collection contains the

singleton set {1}.

Proof: A collection number is odd if and only if b1 = 1. This requires that the set

with set number 1 be in the collection, and for any n the set with number 1 is the

singleton {1}. �

Lemma 3.2 Let A be a collection in n. If #A is odd, then #A is odd.

Proof: By Lemma 3.1, {1} ∈ A, and therefore {1} ∈ A. Hence, #A is odd. �

Theorem 3.3 Let A be a collection in n. If #B is odd for all B ∈ [A]P , then A

contains all singletons in P([n]). The closure of A is the family P∗([n]), and [[A]]

is UC-class for P∗([n]).

13

Proof: Assume #B is odd for all B ∈ [A]P . There exists a permutation π in Sn

such that π∗(A) = B. In particular, π maps i to 1 for some i ∈ [n]. Because #B is

odd, it contains {1} by Lemma 3.1, and therefore (π∗)−1({1}) = {i} ∈ A. Since B

is arbitrary, we have that A contains all singletons {i} for i ∈ [n]. �

Corollary 3.4 Let A be a collection in n. If #B is even for all B ∈ [A]P then A

contains none of the singletons in P∗([n]).

Here we have a result relating the preservation of a number’s parity with

the structure of a collection. Unfortunately, this verification is not efficient, since

the work required to verify all permutations of a given collection is comparable to

simply calculating the closure of the collection.

From the results above, we realize that for some collections, [A]P = {A}.

That is, all permutations of A are A itself. We characterize this fact in the following

theorem.

Theorem 3.5 Let π ∈ Sn and A be a collection in n. Then π∗(A) = A for all

π ∈ Sn if and only if, if A contains a set of cardinality i, then A contains all

possible sets of cardinality i.

Proof: Suppose π∗(A) = A for all π ∈ Sn, and suppose U ∈ A, |U | = i. As in

Theorem 3.3, for a set V ∈ P∗([n]) with |V | = i, there exists a permutation π such

that π∗(V) = U . Therefore, by the hypothesis, (π∗)−1(U) = V ∈ A. Since V was

arbitrary, A contains all possible sets of cardinality i. The converse is obvious. �

Corollary 3.6 Let A be a collection in n and let π ∈ Sn. The collection A is union-

closed and π∗(A) = A if and only if A consists of all sets in [n] with cardinality

greater than or equal to k, for some fixed k.

14

3.2 Special Collections

Within a n-supercollection, there are several collections which have special signif-

icance. We have already defined P∗([n]), which is the collection containing every

possible non-empty set. Clearly, this collection is maximal and union-closed, and

its collection number is maximal, that is,

#P∗([n]) = 22n−1 − 1

We introduce two more special collections here.

Definition 3.7 The singleton collection in n, denoted Sgl(n), is the collection

containing only the singletons in P∗([n]). It is the minimal generating collection for

the family P∗([n]).

Because Sgl(n) is the minimal generating collection for P∗([n]), a collection

in n is proper only if its collection number is greater than #Sgl(n). We provide a

lemma about the collection number of Sgl(n) below. It is a direct consequence of

the collection numbering, and we leave the proof to the reader.

Lemma 3.8 The collection number of Sgl(n) can be calculated by the following

recursive formula.

#Sgl(n) = #Sgl(n− 1) + #P∗([n− 1]) + 1

Definition 3.9 The halfway collection in n, denoted Half(n), is the collection

containing only the set [n]. It has the property that its collection number is half of

one more than the total number of collections:

#Half(n) =
#P∗([n]) + 1

2
= 22n−2

15

The binary nature of the numbering leads to the fact that any collection with

a number greater than #Half(n) must include the set [n]. Thus, the collections

‘repeat’ in the sense that any collection in the latter half of the collection listing

has exactly the same structure as a set in the first half of the listing, save for the

inclusion of the set [n]. We state this fact slightly differently in the following lemma.

Lemma 3.10 If A is a proper collection in n with #A < #Half(n), then

A ∼U (A ∪ Half(n))

The sum of these facts allows us qualitatively describe the UC-classes for

families in n. Moreover, are able to define numerical ranges where collection num-

bers for families must be. First, a family is either proper or non-proper. Indeed,

for every collection number #A, 1 ≤ #A < #Sgl(n)), [[A]] is an non-proper family

class, and these are the UC-classes for collections in n− 1.

Now, given a proper family, it is either degenerate or normal. A degenerate

family is identical to a non-proper family, with the inclusion of the set [n]. If #A,

#Half(n) < #A < #Half(n) + #Sgl(n)), then [[A]] is a degenerate family class.

(Note that because we do not allow empty collections, Half(n) is not degenerate,

but nonetheless trivial.)

Every other family is considered normal. By Lemma 3.10, we observe that

every normal UC-class has a representative with a collection number greater than

#Sgl(n) + #Half(n).

3.3 Summary of Results and Graphical Representations

By the results of the previous section, we obtain the number of isomorphism classes

of union-closed families by using a computer to iterate through collection numbers

from Half(n) to P∗([n]). We present the results for 1 ≤ n ≤ 5 in Figure 3.1 below,

16

where Np is the number of proper union-closed family classes and N is the total

number of union-closed family classes.

n Np N

1 1 1
2 3 4
3 14 18
4 165 183
5 14480 14663

Figure 3.1: Counts of isomorphism classes for 1 ≤ n ≤ 5.

With these counts, we wish to graph histograms showing the distribution

of proper UC-classes with respect to the cardinality of the family (ie. the number

of UC-classes of cardinality i). For a given cardinality i, there are
(
2n−1

i

)
possible

collections. This is of course a symmetric, normal distribution, but it may be

surprising that the distribution of families is also near-normal. The following Figures

3.2, 3.3, and 3.4 show the distributions for n = 3, 4 and 5, respectively. The

numerical data for these figures is given in Appendix A.

Let the set Cn be the set of all collection numbers for the n-supercollection,

and then consider the function fn : Cn 7→ Cn where f(#A) = #A. That is, each

collection number is mapped to the collection number of its closure. It is interesting

to notice that the resulting graph is very reminiscent of the well-known Sierpinski

triangle. We provide graphs f3 and f4 in Figures 3.5 and 3.6. Although the graphs

appear to have points on the same vertical line in numerous places, this is due to

the compression of the horizontal scale.

A complete picture of f5 would require the plotting of over two billion points

and so is not included. However, we can reduce the number of points plotted by

plotting every ith collection. Setting i = 15199 (which is prime), we obtain a partial

17

graph of f5 containing 141291 points, shown in Figure 3.7. The Sierpinski pattern

is again clearly visible.

In all the graphs fn, the horizontal translation symmetry is very strong. Each

graph has two triangles in the top half of the graph, and each time the right-hand

triangle is exactly the left-hand triangle shifted by #Half(n). This is exactly for

the reason given in Lemma 3.10. By the same idea, we can explain all horizontal

translation symmetries.

We end this chapter with some expanded graphs for f4. As noted above,

although the graph appears to have vertical components, it is in fact a function.

And, when expanded, the horizontal translation becomes more apparent and the

graph could be said to be locally periodic. Two expanded portions of f4 are provided

in Figures 3.8 and 3.9.

18

Figure 3.2: Distribution of Classes by Cardinality for n = 3.

Figure 3.3: Distribution of Classes by Cardinality for n = 4.

19

Figure 3.4: Distribution of Classes by Cardinality for n = 5.

20

Figure 3.5: The plot of f3.

21

Figure 3.6: The plot of f4.

22

Figure 3.7: The plot of every 15199th collection for f5.

23

Figure 3.8: An expanded section of the graph of f4

Figure 3.9: Another expanded section of the graph of f4

24

CHAPTER IV

USING THEOREMS OF BURNSIDE AND POLYA

The previous chapter was focused on counting UC-classes. Here, we con-

sider permutation-equivalence classes and ask, for a given n how many permutation

equivalence classes of proper collections are there? This gives an upper bound on

the number of UC-classes. We attempt to answer this question by considering 2-

colorings on P([n]) and by using the results of Burnside and Polya in [9].

4.1 Definitions and Notation

Let F be a proper collection in n. Let C = {b, w} be our set of colors (‘black’ and

‘white’). We define the coloring cF : P([n]) 7→ C by the function

c(A) =

{
b A ∈ F
w A 6∈ F

Thus, b represents inclusion in F , and that by our definitions cF([n]) is always b.

Example 4.1 Consider the following collections.

F1 = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}, and

F2 = {{2}, {1, 2}, {2, 3}, {1, 2, 3}}

The families F1 and F2 are shown with their colorings in Figure 4.1, and it

is clear that F1 ∼P F2.

We observe that for any A ∈ P∗([n]), |π∗(A)| = |A|, that is, π∗ preserves

cardinality. In terms of the graph representation of families, we say that π∗ “pre-

serves levels”. With this in mind, we realize that each permutation in Sn induces

25

{1, 2}

{3}{2}{1}

{2, 3}{1, 3}

{1, 2, 3}

{1, 2}

{3}{2}{1}

{2, 3}{1, 3}

{1, 2, 3}

F1 F2

Figure 4.1: Colorings of F1 and F2.

a permutation of the
(

n
k

)
k-sets in P∗([n]). For a given π ∈ Sn, we define π(k) as a

restriction of π∗ to only those sets of cardinality k, and we let Sk
n be the set of all

permutations π(k). We note that Sn = S
(1)
n .

We use the notation Z(G) to refer to the cycle index for a group G of sym-

metries on a set. Similiarly. for a single permutation π, Z(π) will represent the

cycle index.

Now we are able to ask the question from the introduction in terms of color-

ings: What is the number of equivalence classes of 2-colorings on the set P∗([n])−[n]

induced by the group S∗
n? This is well-suited to the application of results from Burn-

side and Polya.

4.2 Calculations

We first answer the above question when n = 3, and then hope to generalize for

greater n. Because we will consider the set [n] to always be colored black and we

ignore the empty set, we have
(
3
1

)
singletons and

(
3
2

)
doubletons for a total of 6 sets

26

π ∈ S3 Z(π) Z(π(2)) Z(π∗)
(1)(2)(3) x3

1 x3
1 x6

1

(12)(3)
(13)(2) x1x2 x1x2 x2

1x
2
2

(23)(1)
(123) x3 x3 x2

3

(132)

Figure 4.2: All elements of S3 and their cycle indices.

to consider. Thus, we have 64 families (26) to consider when n = 3.

Consider the case of colorings containing one singleton, A, and one doubleton,

B. Either A ⊂ B or A 6⊂ B. For any π∗ ∈ S∗
n, if A ⊂ B, then π∗(A) ⊂ π∗(B).

Hence, containment is preserved by π∗, and it is sufficient to consider only these

two cases (A ⊂ B or A 6⊂ B). By such logic, we deduce all possible colorings and

present them in the chart in Figure 4.4. There are 20 distinct colorings.

We now approach this problem from the direction of Burnside’s Lemma.

There are six permutations in S3, and we list them in Figure 4.2 with their corre-

sponding cycle structure.

From this, we can write the cycle index for S∗
3

Z(S∗
3) =

1

6

[
x6

1 + 3x2
1x

2
2 + 2x2

3

]
By inspection, we note that Z(S3) = Z(S

(2)
3) and

Z(S3) = Z(S
(2)
3) =

1

6

[
x3

1 + 3x1x2 + 2x3

]
The reason for this is clear when we note that as S3 permutes the singletons, the

complementary sets are also permuted in the same fashion. In general, we have the

following lemma.

27

Lemma 4.2

Z(S(k)
n) = Z(S(n−k)

n) for i ∈ {1, 2, 3, . . . , n− 1}

Using Burnside’s Lemma, we can calculate N , the number of distinct 2-

colorings.

N =
1

6

[
26 + 3(24) + 2(22)

]
=

1

6
[120]

= 20

This agrees with our work in Figure 4.4.

By the following substitution, xi = (bi + wi), we can invoke Polya’s theorem

and obtain a pattern inventory for the 2-colorings.

Z(S∗
3) =

1

6

[
(b + w)6 + 3(b + w)2(b2 + w2)2 + 2(b3 + w3)2

]
= b6 + 2b5w + 4b4w2 + 6b3w3 + 4b2w4 + 2bw5 + w6

Because our families are designated by the set colored black, we can weight w = 1

and obtain a clearer inventory of families,

b6 + 2b5 + 4b4 + 6b3 + 4b2 + 2b + 1

Here the exponent of b is the cardinality of the family, not including the set [n].

Again, this result coincides with the results on our chart. However, in the above

inventory we lose information about how many sets from each level are colored.

28

In summary, of the possible 64 families with n = 3, only 20 distinct 2-

colorings exist. Of these families, only 14 are union-closed.

The use of Burnside’s Lemma and Polya’s theorem for n > 3 requires us to

find the cycle index Z(S∗
n). Since this induced permuation preserves the permuta-

tions at each level, we can decompose π∗ as follows,

π∗ =
n−1∏
i=1

Z(π(i))

From this, we can write the cycle index for Z(S∗
n),

Z(S∗
n) =

1

n!

∑
π∈Sn

(
n−1∏
i=1

Z(π(i))

)
(4.1)

The remaining task is to calculate the cycle indices of the induced permu-

tations π(i). However, this is not a straightforward calculation. As we will show,

it is possible to compute the cycle index for some S
(i)
n . But, in order to make use

of (4.1), we need to know the particular π(i) an individual permutation π induces.

This information is lost when we write Z(S
(i)
n) due to the collapsing of terms within

the expression.

It is tempting at first glance to attempt to “reverse engineer” the cycle index

Z(S
(i)
n) in an effort to extract information about the permutations π(i). However,

even when i = 2, the expression for the induced cycle index is extremely complicated,

and it is very likely that the cycle indices for i > 2 are even more difficult - if

expressible at all.

In [3], Harary provides general formulas for Z(Sn) and Z(S
(2)
n). For the

symmetric group Sn, we have

Z(Sn) =
1

n!

∑
(j)

n!∏n
k=1 kjkjk!

aj1
1 aj2

2 ...ajn
n (4.2)

29

where the sum runs over the set of solution vectors j = (j1, j2, . . . , jn) to the equation

1j1 + 2j2 + . . . + njn = n (4.3)

It is clear that the vector j describes the cycle decomposition of a permutation

in Sn and the component ji is the number of i-cycles in the cycle decomposition.

There is a interesting recursion involved with equation (4.3) that, with the definition

Z(S0) = 1, leads to the following recursive definition of Z(Sn) (from [12])

Z(Sn) =
1

n

n∑
k=1

xkZ(Sn−k)

Harary also provides a formula for the cycle index of S
(2)
n which he names

the pair group [3]. We include it here to demonstrate the mounting complexity of

these cycle indices.

Z(S(2)
n) =

1
n!

∑
(j)

n!∏n
k=1 kjkjk!

bn/2c∏
k=1

(akak−1
2k)j2ka

k(jk
2)

k

b(n−1)/2c∏
k=0

a
kj2k+1
2k+1

∏
1≤r<s≤n−1

a
GCD(r,s)jrjs

LCM(r,s)

A complete listing of cycle indices for 3 ≤ n ≤ 6 can be found in Appendix B.

By substituting 2 in for each xi in the Z(S∗
n) formulas, we can obtain the number

of distinct 2-colorings on the set P([n]) − {∅, [n]}. This is also the number of

permutation equivalence classes for collections in n, but each class may or may not

represent a union-closed family.

4.3 Summary of Results

We begin this section by summarizing the results of our computations. In the

following table, P = 2|P([n])−{∅,[n]}|, N is the number of equivalence classes of 2-

colorings, and NUC is the number of equivalence classes that represent a union-closed

family.

30

n |P | N NUC N/P NUC/N

2 4 3 3 0.75 1
3 64 20 14 0.3125 0.7
4 16384 996 165 0.06079 0.16566
5 1073741824 9333312 14480 0.008692 0.0015514
6 4611686018427390000 6406604874137940 ? 0.001389 ?

Figure 4.3: Calculations for 2 ≤ n ≤ 6.

By observing the values for N/P we see that considering only distinct col-

orings of the power set greatly reduces the number of cases to verify. However, as

mentioned before, we lose information regarding how many sets at each level are

colored for each distinct coloring, and this makes any organized iteration through

the distinct coloring impossible. In addition, despite the fact that N � P , the

magnitude of N is still very large and prohibitive.

31

Figure 4.4: All 2-colorings of the set P∗[3]− {1, 2, 3}.

32

CHAPTER V

SQUASHED ORDERING AND SUPERCOLLECTIONS

Up to this point, we have made use of collection numbers as an ordering

on an n-supercollection, and with Lemma 3.10 we attempted to identify intervals

containing at least one member of each UC-class. In this chapter we will refine

our process by only considering (n, i)-supercollections. This is a natural refinement

because all permutations of a family in n with cardinality i must necessarily be

entirely contained within the (n, i)-supercollection. To this end, we use the squashed

ordering of collections and some related results (see Anderson [1]).

5.1 Definition of Squashed Ordering

Let A and B be subsets of [n] with cardinality i. Let A�B = (A∩B′)∪(A′∩B), where

A′ = [n]−A. The expression A�B is also known as the symmetric difference. Using

this, Anderson provides us with the following two technical definitions for orderings

on the i-sets A and B of [n].

Definition 5.1 (Lexicographic Order) We say A <L B if the smallest element

of A �B is in A.

Definition 5.2 (Squashed Order) We say A <S B if the largest element of A�B

is in B.

The technical definitions given above are not intuitively clear. Most readers

will conceptualize the lexicographic ordering as a ‘dictionary’ ordering where the

33

Lexicographic Squashed
<L <S

123 123
124 124
125 134
134 234
135 125
145 135
234 235
235 145
245 245
345 345

Figure 5.1: The 3-sets in {1, 2, 3, 4, 5} in lexicographic and squashed order.

‘alphabet’ is replaced by the positive integers, and we agree to write sets in the

increasing element order. The intuition behind the squashed ordering is less obvious.

For comparison, we provide a listing of the 3-sets in {1, 2, 3, 4, 5} according to both

orderings in Figure 5.1.

The pattern behind the squashed order becomes clearer when we agree to

write the sets in decreasing, or reverse, element order. In fact, we will see that it

will be advantageous to represent a set A using the β(A) defined in Chapter 2. For

both the reverse notation and the β notation, we see in Figure 5.2 that the squashed

order is a lexicographic ordering of these alternate notations.

With n = 5, there are
(
5
3

)
3-sets. Reading down from the top in Figure 5.2,

the set {1, 2, 5} is in the 5th squashed order position, for example. We will make

use of the following theorem [1, Theorem 7.2.1].

Theorem 5.3 Given positive integers m and l, there exists a unique representation

34

Set A Reverse of A β(A)
123 321 00111
124 421 01011
134 431 01101
234 432 01110
125 521 10011
135 531 10101
235 532 10110
145 541 11001
245 542 11010
345 543 11100

Figure 5.2: The 3-sets in {1, 2, 3, 4, 5} in the squashed order.

of m in the form

m =

(
al

l

)
+

(
al−1

l − 1

)
+ · · ·+

(
at

t

)
where al > al−1 > . . . > at ≥ t ≥ 1. This representation of m is called the

l-binomial representation of m.

Choosing m to be the squashed order position and l to be the cardinality of

the sets, we will see that this binomial representation allows us to recover the set

itself. Consider the set {3, 4, 5} which is the last set, in the 10th position. With

m = 10 and l = 3, we have 10 =
(
5
3

)
, or, it is the last subset of 5 elements taken 3

at a time.

Recall the earlier example with set B = {1, 2, 5}, which is in the 5th position.

Taking m = 5 and l = 3, this time we obtain 5 =
(
4
3

)
+
(
2
2

)
. Inspecting Figure

5.2 again, we see that B is preceded by the
(
4
3

)
sets that have a leading 0 in the β

listing, and it is the first set with a leading 1 - hence the addition of
(
2
2

)
.

This combinatorial interpretation of the binomial representation forms the

basis of a reconstruction algorithm for the set when given the squashed order posi-

35

tion and the set’s cardinality.

Algorithm 5.4 1. Let m be the squashed order position for a set B, |B| = l.

2. Choose al so that
(

al

l

)
≤ m and

(
al+1

l

)
> m.

3. Put m1 = m −
(

al

l

)
. If m1 = 0, then we are done. Otherwise, choose al−1 so

that, as before,
(

al−1

l−1

)
≤ m1 and

(
al−1+1

l−1

)
> m.

4. Continue until mi = 0. We now have the l-binomial representation of m as

in Theorem 5.3, including the sequence (al, al−1, . . . , at).

5. Using the above sequence, we reconstruct the set B as

{al + 1, al−1 + 1, . . . , at, at − 1, . . . , at − (t− 1)}

That is, add 1 to all ak, except for at, and this will provide a partial list of

elements in the set B. The remaining elements of B are the t descending,

consecutive integers beginning with at.

Example 5.5 Let us reconstruct the 6th 3-set of [5]. Setting m = 6 and l = 3, we

obtain the l-representation of m:

m = 6 =

(
4

3

)
+

(
2

2

)
+

(
1

1

)

From the algorithm, the set must be {5, 3, 1}, or {1, 3, 5}.

5.2 Application of Squashed Order to Supercollections

We will apply the squashed ordering to (n, i)-supercollections, and we will be in-

terested in the position of a collection in the squashed order. We begin with the

following definition.

36

Definition 5.6 Let A be a collection in n of cardinality i. Then Sqi(A) is the

position of A in the (n, i)-supercollection.

As in Example 5.5, we can take Sqi(A) and reconstruct the collection A

and obtain #A. Moreover, this process can be reversed. Therefore if we know A

belongs to the (n, i)-supercollection and only one of A, #A, or Sqi(A) is known,

the other two quantities can be obtained. We present two examples of this process,

one beginning with the squashed order position, and the second starting with the

collection number.

Example 5.7 Let B be a collection with n = 3 and cardinality 4, and let Sq4(B) =

22. Then,

Sq4(B) = 22 =

(
6

4

)
+

(
4

3

)
+

(
3

2

)
From this representation, we have β(B) = 1010110. This gives #B = 86 and

B = {{2}, {1, 2}, {1, 3}, {1, 2, 3}}

Example 5.8 Let D be a collection in the (3, 5)-supercollection with #D = 103.

Written in binary, 103 is 1100111. From this we know

D = {{1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}

We reconstruct the 5-binomial representation of D as

(
6

5

)
+

(
5

4

)
+

(
3

3

)
= Sq5(D) = 12

This kind of calculation allows for a new way to iterate through the collections

for a given n, namely by iterating through each (n, i)-supercollection independently

in order to find UC-classes. By Lemma 3.10, we know that it is sufficient to only

37

inspect collections that include the set [n]. So, for a (n, i)-supercollection it is

sufficient to only iterate through the squashed order positions
(
2n−2

i

)
through

(
2n−1

i

)
since any collection in this range necessarily contains [n]. We call this subset the

topset of the (n, i)-supercollection. At this point, the total number of sets to

check is the same, 22n−2. However, we can make use of the (n, i)-supercollections

and squashed order to reduce the number of collections to iterate through.

Certain (n, i)-supercollections always contain the same number of UC-classes,

for any n. A trivial example is the (n, 2n − 1)-supercollection which contains only

one collection, P∗([n]), and this is clearly the only UC-class in this supercollection.

(Figures 3.2, 3.3, and 3.4 are convenient graphs of the number of UC-classes in

the (n, i)-supercollections for n = 3, 4, 5, and the related data is given in Appendix

A.) Equally as trivial is the (n, 1)-supercollection. This supercollection only has

one (proper) UC-class as well, namely [[Half(n)]]. Other supercollections can be

completely analyzed as well. We consider the (n, 2)-supercollection in the following

lemma.

Lemma 5.9 In the (n, 2)-supercollection, there are n− 1 proper UC-classes.

Proof: Every proper UC-class in the (n, 2)-supercollection consists of exactly two

sets, one being the set [n]. Let A = {[n], A} and A′ = {[n], A′}. If |A| = |A′|, then

A ∼P A′. Therefore, there are only n− 1 UC-classes in the (n, 2)-supercollection.�

We also pose the following conjecture about (n, i)-supercollections near P∗([n]).

Conjecture 5.10 The number of UC-classes for the (n, (2n−1)−i)-supercollections

is the same for all n ≥ i.

For those supercollections that we cannot directly calculate, we ask if each

UC-class has an element within a specific interval of the squashed order. For ex-

ample, does every proper UC-class have a family F , |F| = i, so that the squashed

38

order position of F is in the “top half” of the topset? That is,

Sqi(F) ≥
(
2n−1

i

)
−
(
2n−2

i

)
2

The above statement turns out to be false, with a counterexample when n = 5 and

i = 4 or 8 (see Figure 5.5).

In a (n, i)-supercollection, each UC-class has precisely one maximal element,

and of these maxima there one having the least associated value. This so-called

“minimal-maximum” is by definition the boundary value that is of interest, as every

UC-class must have an element with squashed order position greater than or equal

to this value. Therefore, to account for all UC-classes it would be sufficient to

begin at the minimal-maximum value and increment until the final squashed order

position. The question remains, what is the minimal-maximum for a given (n, i)-

supercollection?

For each minimal-maximum, we calculate its percentile rank within both

the entire (n, i)-supercollection and the related topset. For example, let G be the

minimal-maximum collection in the (3, 2)-supercollection. The collection number

for G is 72, and its squashed order position is 19. Because there are
(
7
2

)
= 21

collections in this supercollection, the percentile rank for G in the supercollection is

19
21

, or 90.48%. In other words, 90.48% of the collections in the (3, 2)-supercollection

have collection number less than or equal to #G. The percentile rank for G in the

topset is 66.67%.

We present the percentiles for the minimal-maximum collection for each

(n, i)-supercollection for n = 3, 4, 5 in Appendix C, but provide graphs of these

percentiles in Figures 5.3, 5.4, and 5.5 below.

Looking at these graphs, there appears to be a pattern in the percentiles of

the total squashed ordering. In particular, the supercollection with cardinality 2n−1

39

has the lowest percentile, and for n = 4 and 5 the percentiles are 83.21 and 83.25,

respectively. We will return to this idea in a moment.

Now, instead of graphing the percentiles for these minimal-maximum collec-

tions, we ask if there is a pattern within their structure, and we inspect the binary

representation for these collections. In order to highlight any patterns, we place the

binary representations in a grid and color the gridboxes containing 1. Doing this,

we obtain the grids in Figures 5.6, 5.7, and 5.8.

A repeated visual pattern can be seen in these grids. Moreover, note the

minimal-maximum for the (n, 2n−1)-supercollections:

n = 3 1101010
n = 4 110101010101010
n = 5 1101010101010101010101010101010

Each collection is a degenerate family, because the element 1 only occurs in the set

[n]. In other words, these collections are isomorphic to P∗([n − 1]) ∪ [n]. We can

imitate this pattern for n = 6, and we get a family whose squashed order position

is at the 83.3 percentile. This is in line with previous observations. This brings us

to another conjecture.

Conjecture 5.11 Let [[A]] be a UC-class in n with cardinality i. If A′ is the

collection with the maximal collection number in this UC-class, then

#A′ > .83

(
2n − 1

i

)

40

Figure 5.3: Minimal-maximum graph for (3, i)-supercollections.

41

Figure 5.4: Minimal-maximum graph for (4, i)-supercollections.

42

Figure 5.5: Minimal-maximum graph for (5, i)-supercollections.

43

Figure 5.6: Binary representations for (3, i)-supercollections.

Figure 5.7: Binary representations for (4, i)-supercollections.

44

Figure 5.8: Binary representations for (5, i)-supercollections.

45

CHAPTER VI

GRAPHS OF UNION-CLOSED FAMILIES

In Figures 4.1 and 2.2, we used graphical representations of families to easily

observe similarities (and differences) in families. In this chapter we show how graphs

for families are created, and we make some simple observations about these graphs.

We finish with an explanation of our graph-creation algorithm.

6.1 Families and Graphs

In his work, Poonen observes that a union-closed family, with the subset relation,

has the structure of a semilattice [6], a special type of partially-ordered set (or,

poset). Posets easily lend themselves to graphical representations, called Hasse

diagrams [8]. First, we define the notion of covering within a poset, as stated in [8]

Definition 6.1 Let (P, <) be a poset, and let x, y ∈ P . We say x covers y if x < y

and if there is no z ∈ P such that x < z < y.

In a Hasse diagram, the elements of the poset form the vertices of the graph,

and the edges of the graph are the cover relations. Moreover, if x < y then the

vertex for y is drawn “above” x, that is, with a greater vertical coordinate [8].

For our graphs of families, we use a variation of the Hasse diagram. Instead

of having the vertical positioning of the vertices (sets) be determined by the covering

relation, we calculate the vertical position of a set according to its level. Recall that

the level of a set is defined as the length of the minimal path from itself to the the

46

set [n]. Vertices with a lower level are placed higher in the graph, and thus the set

[n] is at top of the graph. Consequently, it is possible that a set A may be placed

lower in the graph than a set B, even though A may cover B. In order to preserve

this information, we present the covering relations as directed edges where B → A

if and only if A ⊂ B, and the resulting graph is a directed graph. For a vertex v in

a directed graph we notate the indegree and outdegree of v as deg+(v) and deg−(v),

respectively.

We present an example of the graph of a family in Figure 6.1. In Figure 6.2

we present an example where a set covers a set in a higher level ({1, 3, 5} covers

{3, 5}) and also where a set covers a set in the same level ({1, 3, 4, 5} covers {1, 3, 4}).

Figure 6.1: The collection B, #B = 31746.

One convenient consequence of the set numbering we use throughout this

paper is stated in the following lemma.

Lemma 6.2 Let A, B be distinct sets of a family in n. If A ⊂ B, then #A < #B.

Proof: Consider the binary sequences α(A) = (an, . . . , a1) and α(B) = (bn, . . . , b1).

Since A ⊂ B, we know if aj = 1, then bj = 1, and because A 6= B, there exists i,

1 ≤ i ≤ n, where ai = 0 and bi = 1. Therefore #A < #B. �

47

Figure 6.2: An example of cover relations that are within a single level or from a
lower level to a higher level.

We can also use the graph to re-state certain properties of the family. Clearly

the root node [n] is the only node with indegree equal to zero. Also, in [4] Johnson

and Vaughn define the minimal generating collection of a family as the collection

of sets in the family having no more than one child. In terms of the graph we can

restate this definition as follows.

Definition 6.3 Given the graph of a family F , the minimal generating collection

for F is the collection formed by the sets with outdegree less than or equal to 1.

The following is also a rephrasing of a lemma of Johnson and Vaughan [4].

Lemma 6.4 Let A be a set of a family in n, F , and consider the graph of F . If

|A| = i, then deg−(A) ≤ i.

48

6.2 Constructing the Graph Programmatically

In this section (and in the next chapter) we shift our focus to the programmatic

structures used to model collections, families, and their graphs.

When constructing the graph of a family, there are several important ques-

tions to consider. The first of these is deciding how to iterate through the sets in

the family. It is simplest to begin with the root node [n] and construct the branches

below. Fortunately, the sets of a family are stored in memory as elements within

a map container, and this map container maintains all the sets in numeric order

according to set number. We can then make good use of Lemma 6.2 and know that

all subsets of a given set will occur earlier in the numeric listing. Therefore, we

iterate through the sets in reverse set number order.

It is important to note that the graph is not a tree; there may be more

than one path from the root node to a given node. This fact raises the next few

questions, one of which is, how do we construct an efficient and accurate algorithm

to place each node? We choose to use a recursive algorithm, and it necessarily must

be exhaustive. That is, it must determine if the node being placed is a subset of

each existing node in the graph. Of course, it is only necessary to visit a node once

when placing a new node. For this reason, as we search through the entire graph we

“color” each existing node as visited so that if it happens to be the child of multiple

nodes it is still only checked once. After a node is placed, then the graph is reset

and all nodes appear unvisited so that the next node can be placed.

Another issue is the calculation of levels in a graph. Because there may

be multiple paths from a node to the root, we must have a way to determine the

minimal path in order to find the level of a node. As an example, in Figure 6.2

the node {1, 4} has four distinct paths from itself to the root, three of length 3

and one of length 4. In order to calculate levels, we choose to have each node

49

maintain a listing of its parents. Then, we iterate in reverse set number order as

before, calculating the level of each node and setting the level for the root equal to

zero. Therefore when calculating the level of an arbitrary set A, the levels for all

potential parents have been calculated, and the level for A is simply one more than

the minimum level for its parent nodes.

In the following chapter we present the pseudocode for the recursive graph

construction algorithm.

50

CHAPTER VII

NOTES ON TECHNOLOGY USED

Throughout this paper, nearly all calculated results pertaining to sets, col-

lections, and families were obtained through the use of custom programs written in

the C++ language. To model a collection programmatically, three custom classes

were implemented, one for sets, one for collections, and one for graph nodes. A

separate library of functions was also written to generate permutation-equivalent

collections from a given collection.

In this chapter we consider only on portions of these custom code libraries.

For those interested, the complete source code is available for use under the terms

of the GNU General Public License at http://www.uncg.edu/~cfrenn/ucf.

7.1 The MSET and MFAMILY Classes

The MSET and MFAMILY classes represent a set and collection respectively. The

name ‘mset’ (for “mathematical set”) was chosen due to the fact that the word ‘set’

is a reserved word in the C++ language. An mfamily is a set of msets.

The mset class is straightforward, as it is essentially an unsigned integer

variable that stores the set number along with several other basic properties (the

cardinality, for example) and member functions (or, methods). A convenient fea-

ture of the class is the inclusion of several overloaded operators for common set

operations, namely union, intersection, and containment.

The mfamily class is much more complex. The main data structure in an

mfamily is a map container that stores the mset objects for the family. A map

51

stores objects in < key, value > pairs, and specific objects can be retrieved simply

from the unique associated key value. Since set numbers are unique, we use these

set numbers as the key values for the msets in the family. Also, as mentioned in the

previous chapter, the map container automatically maintains its elements in order

according to their key values.

In addition to the map container for the family itself, an mfamily also stores

the related graph structure for a union-closed family. The graph is stored as a

vector of “gnodes”, another custom object discussed below but are essentially the set

numbers for the msets. An mfamily also stores some other secondary information,

such as the size of the family, the minimum and maximum cardinalities of member

sets, and the collection number.

There are many methods related to an mfamily, and we mention only a few

here. One method will create the appropriate collection given a collection number.

Another will return the minimal generating collection for a union-closed family after

the graph has been constructed. The two main methods are to return the closure

of a collection and to build the graph of a union-closed family.

To form the closure of the collection, we follow the logic provided below in

pseudocode.

given a collection, F

declare the mfamily, temp (which is empty)

for each A, where A ∈ F{

for each B, where B ∈ temp{

insert A ∪B into temp

}

insert A into temp

}

52

return temp

Example 7.1 Let F = {A, B, C}. The closure obtained by the above algorithm is

listed below, in order of insertion.

F = {A, A ∪B, B, A ∪ C, A ∪B ∪ C, B ∪ C, C}

The algorithm used to build the graph consists of two parts. The first, which

we will call nodeInsert, is a recursive method in the gnode class and places a given

set in graph as a descendant of the calling node. The second method is in the

mfamily class and simply iterates through the sets of the mfamily and places them

into the graph using the nodeInsert method from the root node. It then resets the

coloring of all nodes in the graph in preparation the insertion of the next set. We

discuss the nodeInsert method in the next section.

7.2 The GNODE class

As mentioned earlier, the GNODE (“graph node”) class is the structure used for

the creation of the graph of a given family. Each gnode stores the set number for

the set it represents, along with the level of the node, a boolean ‘visited’ value, and

two vectors that store the set numbers for its parent and child nodes. The critical

method for this class is the nodeInsert method which recursively seeks to place a

node where appropriate as a descendant of the calling node. For our purposes, we

always insert nodes from the root and assume that all nodes are ‘unvisited’ accord-

ing to out coloring. We provide the pseudocode for the nodeInsert method below.

53

Let X be the calling node and A be the node to be inserted.

if (A ⊂ X) and (X is not visited){

if A is a subset of a child of X{

for each child C of X{

call nodeInsert to place A as descendant of C **Recursion

}

mark X as visited

}

else{

store A as child of X

store X as parent of A

}

}

return

7.3 Finding the Permutations of a Collection

In addition to the classes discussed above, another code library was developed to

realize the permuation equivalent collections of a given collection. This is not a

trivial computation, for even when n = 5, a collection may have up to 120 collections

that are permutation-equivalent. We implement code that, given the collection

number for a collection in n A, returns the collection numbers of all collections

permutation-equivalent to A in a set container. (A set container is similar to the

map container, only that the value stored also serves as the key.)

To accomplish all permutations in n, we first define a vector of set numbers,

permV ector, where the ith element is the set number for the set {i + 1}. (The

54

difference of 1 is due to the fact that the vector index begins at 0, and we have

not considered the empty set in our work.) This original definition serves in fact as

the identity permutation. We then use a built-in C++ function to iterate through

all permutations of these n elements of permV ector. At each stage, the current

permutation π is defined by mapping the vector index to the set contained in that

position. Then, given a set A, the set π(A) is found by the following:

⋃
i∈A

permV ector[i− 1]

Given a collection number, we first extract the collection to a vector of its

member sets. Then, we build a new collection by permuting each set according to

the current permutation defined by permV ector. Once all sets are permuted, then

the collection for the new collection is calculated and stored. We repeat this process

until all permutions of permV ector are considered. We provide the pseudocode for

this process below.

55

Given a collection in n, B

declare collection T

declare set temp

for each permutation π of permV ector{

clear T

for each set A in B{

clear temp

for each element i ∈ {1, 2, . . . , n}{

if i ∈ A{

temp = temp ∪ permV ector[i− 1]

}

}

T = T ∪ {temp}

}

store #T

}

7.4 Other Technology Used

All programming was done in the C++ language, using Microsoft VisualStudio

.NET. Many of the graphs provided in Chapters 3 and 5 were accomplished using

Microsoft Excel, with the exception of the expanded graphs in Figures 3.8 and 3.9.

For these, the GraphSight (http://www.graphsight.com) software program was

used. The graph images were created using the dot graph visualization program

(http://www.graphviz.org).

56

BIBLIOGRAPHY

[1] Anderson, Ian. Combinatorics of Finite Sets. Mineola, NY: Dover Publications,
Inc. 1987.

[2] Gao, W. and Yu, H. Note on the Union-Closed Sets Conjecture. Ars Combi-
natoria. 49 (1998):280-288.

[3] Harary, Frank. Graph Theory. Reading, MA: Addison-Wesley, 1969.

[4] Johnson, Robert T. and Theresa P. Vaughan. On Union-Closed Families, I. J.
Combinatorial Theory, Series A. 84 (1998):242-249.

[5] Morris, Robert. FC-families and improved bounds for Frankl’s conjecture. Eu-
ropean Journal of Combinatorics. 27 (2006): 269282.

[6] Poonen, Bjorn. Union-Closed Families. J. Combinatorial Theory, Series A. 59
(1992):253-268.

[7] Sarvate, D.G. and J-C. Renaud. On the Union-Closed Sets Conjecture. Ars
Combinatoria. 27 (1989):149-154.

[8] Stanley, Richard P. Enumerative Combinatorics, Volume I. Wadsworth &
Brooks/Cole. Monterey, CA. 1986.

[9] Tucker, Alan. Applied Combinatorics. New York: Jon Wiley & Sons, Inc. 2002.

[10] Weisstein, Eric W. “Symmetric Group.” From MathWorld - A Wolfram Web
Resource.
http://mathworld.wolfram.com/SymmetricGroup.html

[11] Weisstein, Eric W. “Pair Group.” From MathWorld - A Wolfram Web Re-
source.
http://mathworld.wolfram.com/PairGroup.html

[12] “Cycle index.” Wikipedia, The Free Encyclopedia. 24 Nov 2006, 17:33 UTC.
Wikimedia Foundation, Inc. 25 Nov 2006
http://en.wikipedia.org/w/index.php?title=Cycle_index&oldid=

89855205

57

APPENDIX A
NUMERICAL DATA FOR UC-CLASSES

Below we provide the numerical data used to create the histograms in Figures
3.2, 3.3, and 3.4, which show the distribution of proper UC-classes with respect to
the cardinality of the family.

Cardinality Number of
of Family UC Classes

1 1
2 2
3 3
4 4
5 2
6 1
7 1

Figure A.1: Count of UC-Classes by Cardinality when n = 3.

58

Cardinality Number of
of Family UC Classes

1 1
2 3
3 7
4 13
5 21
6 24
7 25
8 24
9 18
10 12
11 9
12 4
13 2
14 1
15 1

Figure A.2: Count of UC-Classes by Cardinality when n = 4.

59

Cardinality Number of
of Family UC Classes

1 1
2 4
3 12
4 32
5 73
6 149
7 264
8 423
9 625
10 841
11 1057
12 1244
13 1382
14 1448
15 1437
16 1341
17 1167
18 946
19 722
20 507
21 335
22 207
23 124
24 67
25 36
26 19
27 9
28 4
29 2
30 1
31 1

Figure A.3: Count of UC-Classes by Cardinality when n = 5.

60

APPENDIX B
CALCULATED CYCLE INDICES

In Chapter 4, we made use of cycle indices of the elements of the symmetric group
Sn. Here we present tables showing cycle indices for permutations π ∈ Sn and the
permutations π induces, for 3 ≤ n ≤ 6. In the following tables, the cycle indices for
the groups S

(i)
n and S∗

n can be computed in the following manner,

Z(S(i)
n) =

∑
απZ(π(i))

π ∈ S3 απ Z(π) Z(π(2)) Z(π∗)
(1)(2)(3) 1 x3

1 x3
1 x6

1

(12)(3) 3 x1x2 x1x2 x2
1x

2
2

(123) 2 x3 x3 x2
3

Figure B.1: Cycle indices for n = 3.

π ∈ S4 απ Z(π) Z(π(2)) Z(π(3)) Z(π∗)
(1)(2)(3)(4) 1 x4

1 x6
1 x4

1 x14
1

(12)(3)(4) 6 x2
1x2 x2

1x
2
2 x2

1x2 x6
1x

4
2

(123)(4) 8 x1x3 x2
3 x1x3 x2

1x
4
3

(12)(34) 3 x2
2 x2

1x
2
2 x2

2 x2
1x

6
2

(1234) 6 x4 x2x4 x4 x2x
3
4

Figure B.2: Cycle indices for n = 4.

61

π ∈ S5 απ Z(π) Z(π(2)) Z(π(3)) Z(π(4)) Z(π∗)
(1)(2)(3)(4)(5) 1 x5

1 x10
1 x10

1 x5
1 x30

1

(12)(3)(4)(5) 10 x3
1x2 x4

1x
3
2 x4

1x
3
2 x3

1x2 x14
1 x8

2

(123)(4)(5) 20 x2
1x3 x1x

3
3 x1x

3
3 x2

1x3 x6
1x

8
3

(1234)(5) 30 x1x4 x2x
2
4 x2x

2
4 x1x4 x2

1x
2
2x

6
4

(12)(34)(5) 15 x1x
2
2 x2

1x
4
2 x2

1x
4
2 x1x

2
2 x6

1x
12
2

(12)(345) 20 x2x3 x1x3x6 x1x3x6 x2x3 x2
1x

2
2x

4
3x

2
6

(12345) 24 x5 x2
5 x2

5 x5 x6
5

Figure B.3: Cycle indices for n = 5.

π ∈ S6 απ Z(π) Z(π(2)) Z(π(3)) Z(π(4)) Z(π(5)) Z(π∗)
(1)(2)(3)(4)(5)(6) 1 x6

1 x15
1 x20

1 x15
1 x6

1 x62
1

(12)(3)(4)(5)(6) 15 x4
1x2 x7

1x
4
2 x8

1x
6
2 x7

1x
4
2 x4

1x2 x30
1 x16

2

(123)(4)(5)(6) 40 x3
1x3 x3

1x
4
3 x2

1x
6
3 x3

1x
4
3 x3

1x3 x14
1 x16

3

(1234)(5)(6) 90 x2
1x4 x1x2x

3
4 x2

2x
4
4 x1x2x

3
4 x2

1x4 x6
1x

4
2x

12
4

(12)(34)(5)(6) 45 x2
1x

2
2 x3

1x
6
2 x4

1x
8
2 x3

1x
6
2 x2

1x
2
2 x14

1 x24
2

(12345)(6) 144 x1x5 x3
5 x4

5 x3
5 x1x5 x2

1x
12
5

(123)(45)(6) 120 x1x2x3 x1x2x
2
3x6 x2

1x
2
3x

2
6 x1x2x

2
3x6 x1x2x3 x6

1x
4
2x

8
3x

4
6

(12)(34)(56) 90 x3
2 x3

1x
6
2 x10

2 x3
1x

6
2 x3

2 x6
1x

28
2

(1234)(56) 90 x2x4 x1x2x
3
4 x2

2x
4
4 x1x2x

3
4 x2x4 x2

1x
6
2x

12
4

(123)(456) 40 x2
3 x5

3 x2
1x

6
3 x5

3 x2
3 x2

1x
20
3

(123456) 120 x6 x3x
2
6 x2x6x12 x3x

2
6 x6 x2x

2
3x

7
6x12

Figure B.4: Cycle indices for n = 6.

62

APPENDIX C
NUMERICAL DATA FOR MINIMAL-MAXIMA

Here we present the numerical data used to generate Figures 5.3, 5.4, and
5.5, as well as the collection number and squashed order position for each minimal-
maximum collection.

Cardinality Minimal-Maximum Squashed Order %ile of Total %ile of Topset
Collection Number Position

1 64 7 100 100
2 72 19 90.48 66.67
3 97 31 88.57 73.33
4 106 30 85.71 75
5 122 20 95.24 93.33
6 126 7 100 100
7 127 1 100 100

Figure C.1: Minimal-maximum data for (3, i)-supercollections.

63

Cardinality Minimal-Maximum Squashed Order %ile of Total %ile of Topset
Collection Number Position

1 16384 15 100 100
2 16512 99 94.29 57.14
3 18436 422 92.75 63.74
4 18568 1191 87.25 52.20
5 24961 2795 93.07 79.22
6 27272 4729 94.49 86.21
7 27304 5785 89.90 78.35
8 27306 5357 83.25 68.59
9 31402 4719 94.29 90.48
10 32426 2927 97.47 96.20
11 32476 1285 94.14 92.01
12 32746 450 98.90 98.63
13 32762 104 99.05 98.90
14 32766 15 100 100
15 32767 1 100 100

Figure C.2: Minimal-maximum data for (4, i)-supercollections.

64

Cardinality Minimal-Maximum Squashed Order %ile of Total %ile of Topset
Collection Number Position

1 1073741824 31 100 100
2 1073774592 451 96.99 53.33
3 1082163200 4329 96.31 61.84
4 1082163328 29289 93.08 46.40
5 1216348232 161846 95.25 70.57
6 1216905344 684442 92.96 63.62
7 1216907392 2369853 90.12 56.26
8 1216907400 6855085 86.90 49.23
9 1635877249 19052157 94.50 81.07
10 1787332744 42874925 96.67 89.67
11 1789429896 80738314 95.35 86.91
12 1789436576 132207330 93.68 83.68
13 1789569160 189049792 91.66 80.11
14 1789569672 236667607 89.25 76.19
15 1789569704 259765150 86.43 71.96
16 1789569706 250070306 83.21 67.46
17 2058005162 252154796 95.09 91.04
18 2125114026 202883046 98.37 97.19
19 2129308330 138189130 97.92 96.61
20 2129324714 81928847 96.76 94.98
21 2146101930 44104841 99.44 99.18
22 2146101994 19935666 98.89 98.43
23 2147145682 7831342 99.27 99.02
24 2147151594 2588876 98.45 98.00
25 2147409372 726850 98.72 98.41
26 2147417820 165463 97.38 96.88
27 2147483356 31385 99.75 99.71
28 2147483626 4490 99.89 99.88
29 2147483642 464 99.78 99.77
30 2147483646 31 100 100
31 2147483647 1 100 100

Figure C.3: Minimal-maximum data for (5, i)-supercollections.

