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There is great concern with an increase in the number of Americans who are 

overweight and obese.  Fat cells or adipocytes play a central role in obesity.  These cells 

are metabolically active and play a fundamental role in energy allocation and storage.  

The adipocyte functions as the energy storage cell by storing excess energy in the forms 

of triglycerides in lipid vesicles within the cell.  The morphology of mitochondria is a 

dynamic process that varies from cell type to cell type and in response to a variety of 

signals and conditions (Wilson-Fritch, 2002; Wilson-Fritch, 2004).  The morphology of 

mitochondria in the cell often reflects the functions of that type of cell.  In my thesis I 

characterize the changes in mitochondrial morphology and actin during adipogenesis.  In 

this thesis I found that mitochondria undergo a radical change in morphology during the 

first two days of adipogenesis.  In the pre-adipocyte cell mitochondria assume a reticular 

morphology that is distributed uniformly throughout the cell.  After stimulation of 

differentiation this reticular morphology fragments.  The fragmented mitochondrial 

morphology persists throughout adipocyte differentiation and is the form of the 

mitochondria present in the mature adipocyte. These results suggest that the 

reorganization of mitochondrial morphology is established early during adipogenesis and 

may play a role in the functions of fully differentiated adipocytes.
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CHAPTER I   

INTRODUCTION 

 
Obesity is reaching epidemic levels in modern America.  Approximately 25% of 

Americans are obese and more than 50% are overweight.  This increase in the obesity 

population is unclear.  The net result of obesity is the accumulation of excess white 

adipose tissue (Gregoire, 2001).  The simplest explanation to the cause of obesity is when 

more energy is taken in than is used (Chiu, 2004).  One possible explanation to the 

dramatic increase in the number of overweight individuals is a heterogenous chain of 

causality which includes different biological factors.  Understanding the cellular and 

molecular processes associated with obesity will lead to a more comprehensive 

understanding of this disease and further the development of therapies to treat diseases 

related to obesity (Gregoire, 2001). 

 Obese people have the ability to loose weight but some of these people find it 

difficult to sustain the weight loss (Webber, 2003).  This observation suggests that 

obesity is far more heterogeneous than previously believed.  Obesity is a complex genetic 

disorder that is associated with a number of different cellular processes, such as 

uncoupling protein polymorphisms, hormones, and mutations of the leptin gene (Webber, 

2003).  Polymorphisms of uncoupling proteins 2 and 3 (UCP-2 and -3) are associated 

with obesity by having low rates of energy expenditures (Webber, 2003).  UCP-3 is likely 

to play a role in fat oxidation verses energy expenditures (Webber, 2003).  Low rates of 
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fat oxidation can cause an individual to be susceptible to weight gain.  One major cause 

of obesity is mutations of specific genes.  Mutation in leptin causes early onset obesity, 

which is attributed to hyperphagia (Montague, 1997).  Mutations in mitofusin 2 (Mfn2), 

in mitochondria fusion, causes an individual to become obese by causing reduced glucose 

oxidation and membrane potential (Chen and Chan, 2005).   

Glucocorticoids, leptin and insulin are hormones that control appetite. Mutations 

of these proteins will cause an individual to consume more food and the consequence of 

more food consumption is more adipocytes produced in order to store excess energy.  

Leptin is one example of a protein hormone that regulates body weight and metabolism.  

Leptin level also increased in expression during terminal differentiation (Gregoire, 1998).  

Leptin proteins are in adipocytes which controls hunger.  Leptin also affects the 

metabolic affects of insulin which include glucose transport, glycogen synthease, 

lipogenesis, and protein synthesis (Muller, 1996).  Other ways that leptin helps with 

metabolism by increasing insulin-stimulated utilization of glucose and stimulates 

lipolysis (Siegrist-Kaiser, 1997).  When the leptin gene is not expressed, increased food 

intake occurs because the gene is not regulating hunger (Webber, 2003). 

 

Adipocytes

Adipocytes are lipid filled storage cells which play important roles in energy 

homeostasis. When an organism consumes more food than needed for its current 

metabolic needs, lipogenesis occurs, converting this energy into long term storage 

molecules in lipovaccules within adipocyte (Webber, 2003).  The stored energy can than 
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be used later during fasting and other situation of need.  Adipocytes also play a 

significant role in energy homeostasis, by releasing adipocyte-derived signaling 

molecules that act at distant sites to regulate energy homeostasis (Walczak and Tontonoz, 

2002).  There are two types of adipocytes in mammals; white adipose tissue (WAT), 

which stores excess energy as triglycerides in lipid droplets, and brown adipose tissue 

(BAT) which utilizes lipids to generate heat (Tong and Hotmisligil, 2001).  White 

adipose tissue is white because they lack the iron that brown adipose tissue contains.  In 

my experiment I will be using white adipose tissue to look at the morphology of the actin 

and tubulin filaments and mitochondrial morphology. 

 

Adipogenesis

The differentiation of adipocytes called adipogenesis begins with a population of 

undifferentiated mesenchymal cells that receive a specific set of adipogenic and 

mitogenic signals from genes (Guo, 2000; Smas, 1995; Wilson-Fritch, 2002; Tong and 

Hotamisligil, 2001).  These signals instruct the mesenchymal cells to undergo an 

immediate growth arrest.  This growth arrest involves the expression of two transcription 

factors, C/EBP alpha and PPAR gamma (Gregoire, 1998). 

After growth arrest, undifferentiated mesenchymal cells receive adipogenic and 

mitogenic signals in order to continue in the differentiation process (Gregoire, 1998).  

During growth arrest and clonal expression, the cell shows changes in gene expression.  

Genes such as lipoprotein lipase (LPLs), C/EBP alpha, and PPAR gamma are increased 

in expression during this stage of adipogenesis (Gregoire, 1998).  Preadipocyte factor 1 
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(Pref-1) shows a dramatic decrease in expression (Gregoire, 1998).  The shape of the cell 

goes from a fibroblastic, flat shape to a spherical, rounded shaped cell.  Changes in the 

extracellular matrix, cytoskeleton and morphology are shown during early gene 

expression.  Late gene expression and terminal differentiation show an increase in mRNA 

levels to form proteins that allow for lipid metabolism (Gregoire, 1998).   

 

Mitochondria

The centerpiece of cellular metabolism is the mitochondria.  The mitochondria 

contain the molecular machinery that governs many distinct metabolic processes by 

which chemical energy in the form of lipids, carbohydrates, and proteins are converted to 

ATP.  Mitochondria are cellular organelles that contain two distinct membranes 

(Meeusen and Nummari, 2005).  The inner membrane of the mitochondria encloses the 

mitochondrial matrix where the Krebs cycle and several other bioenergetic pathways that 

contribute to mitochondrial energy metabolism including pyruvate oxidation, 

tricarboxylic acid (TCA) cycle, fatty acid beta oxidation, and oxidative phosphorylation 

(Goldenthal and Marin-Garcia, 2004).  Embedded within the mitochondrial inner 

membrane are protein complexes of electron transport which establishes a proton 

gradient used by the F0F1 ATPase, to generate ATP.  The outer membrane consists of 

surface proteins such as transmembrane and fusion proteins and interacts with the 

cytoskeleton.  In addition to production of ATP, mitochondria also perform a number of 

different tasks including detoxification of environmental poisons and the regulation of 

cellular homeostasis through a complex and largely undescribed signaling network.  
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These signaling networks allow the mitochondria to respond to a variety of challenges 

including environmental stress and alteration of energy source (Goldenthal and Marin-

Garcia, 2004).  

 For instance, mitochondria respond to environmental stimuli such as high calorie 

diets and cold temperature by altering their numbers in a process called mitochondria 

biogenesis (Wu, 1999).  Mitochondria biogenesis can be also stimulated by drugs such as 

thiazolidenedione which increase the levels of several proteins that are involved with 

mitochondria biogenesis (Wilson-Fritch, 2002). Central to mitochondrial biogenesis is 

the PGC-1 gene which encodes a transcriptional co-activator that triggers mitochondria 

replication by stimulating mitochondrial DNA replication and biogenesis during stress 

and environmental stimuli (Wu, 1999).  PGC-1 is also activated by increases in cAMP 

levels caused by norepinepherine receptors which are activated by the sympathetic 

nervous system when there is a change in an outside environment (Wu, 1999).   

In addition to the number of mitochondria within a cell, mitochondrial 

morphology or the organization and distribution of mitochondria within the cell also 

contributes to the functions of this organelle in the cell.  Depending on cell type and other 

factors mitochondria assume a variety of different morphologies ranging from a tubular 

network to fragmented (Santel and Fuller, 2000). Central to the regulation of 

mitochondrial morphology are the opposing processes of mitochondrial fusion and 

mitochondrial fission which are coordinated to optimize cellular and mitochondrial 

function.  Mitochondrial fission is controlled by a family of small enzymes of the Mfn1 

family (Sentel, 2003).   The morphology of mitochondrial is also regulated by the 
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absence of the protein endophilin B1 (Karbowski, 2004).  Endophilin B1 is an enzyme 

(fatty acyl transferase, related to GTPase) which is required for maintenance of 

mitochondrial morphology (Karbowski, 2004).  In the study preformed by Karbowski et 

al, they showed that endophilin B1 affected mitochondria by regulating dynamic stability 

of the mitochondrial networks in mammalian cells and helps form the outer membrane 

bound structures resembling those found in neuronal terminals after inactivation of 

endophilin B1. 

In yeast cells mitochondrial fusion forms tubular networks allowing energy to be 

distributed evenly among the cell and other mitochondrial processes such as cellular 

apoptosis to happen efficiently (Fritz, 2003).  Three proteins are involved in mitochondria 

fusion, Fzo1, Mgm1, and Ugo1 (Meeusen and Nunnari, 2005).  Fzo1, a member of the 

large conserved groups of GTPase, has a critical role in the fusion of the two membranes 

(Westermann, 2002).  Studies have shown that mutated yeast cells which do not contain 

the Fzo1 gene, have fragmented mitochondria from the lack of fusion (Westermann, 

2002).  The same results occur when looking at both Ugo1 and Mgm1 (Sesaki and 

Jensen, 2001; Sesaki, 2003). 

 Mitochondrial fusion is important in the inheritance and maintenance of the 

mitochondrial genome and cellular roles because fusion of the membranes allows the 

unification of mitochondrial compartments (Westermann, 2002).  The mechanism behind 

fusion of the two mitochondrial membranes is rather complex and involves the fusion of 

both inner and outer mitochondrial membranes. Furthermore, mitochondrial fusion must 
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be complex since the process is coordinated with the antagonistic process of fission to 

govern proper mitochondrial function within the cell (Westermann, 2002). 

 

Specific Aims: Characterization of the changes in mitochondrial morphology during 

adipogenesis.

In this thesis, I will characterize the changes in mitochondrial morphology during 

the process of adipogensis.  During adipogenesis the cell undergoes radical changes:  a 

quiescent, undifferentiated cell can differentiate into cells that are fully functional and 

metabolically active.  Mitochondria are the source of cellular energy and alter their 

morphology under a variety of different conditions including different cell type, alteration 

of carbon source, point in the cell cycle and viral infection (Santel and Fuller, 2000).  

Presumably, this alteration of mitochondrial morphology is a response, partly due to 

alteration in energy needs of the cell.  I hypothesize that during adipocyte differentiation, 

the number and distribution of mitochondria will increase because the differentiated 

adipocyte is a metabolically active and responsive cell.  To determine whether there is a 

mitochondrial morphology change during adipogenesis and whether there is a correlation 

between mitochondrial morphology and function during adipocyte differentiation I will 

perform the following experiment: 

 I will use 3T3-L1 preadipocytes to characterize the changes in mitochondrial 

morphology during adipocyte differentiation.  The 3T3-L1 cell line was chosen for this 

experiment because when it undergoes growth arrest and hormonal stimulation, a 

programmed line of differentiation is activated which causes a large lipid vaccule to form 
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(Wilson-Fitch, 2002).  Additionally, these cells become sensitive to insulin, express 

GLUT4, and shows insulin-induced activation of glucose uptake in primary 

preadipocytes (Wilson-Fitch, 2002).  

 The major physical difference between preadiopcytes and adipocytes is the shape 

of the cells (Gregoire, 2001).  When preadipocytes differentiate into adipocytes, it must 

change from its fibroblastic shape to a spherical shape (Gregorie, 2001).  In order to 

determine whether or not there are morphological changes in the mitochondria and actin 

during differentiation, I will use immunoinfluorescence techniques.  The 

immunoinfluorescence techniques will include two different types of stains.  One of the 

stains will include phalloidin which is a toxin derived from the death cap mushrooms.  

Phalloidin only stains the f-actin fibers in cells.  We evaluated the changes in 

mitochondrial morphology using an anti-cytochrome c, which labels the cytochome c 

protein in the electron transport chain.  
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CHAPTER II 

METHODS 

Cell Culture, Cell Plating and Feeding of M.D.I. cocktail

We used the 3T3-L1 cell line (Hajra, 2000; Parton, 2002; Wade, 2005).  3T3-L1 

preadipocytes undergo adipogenesis spontaneously when left in calf-serum culture media 

over a period of time, but when exposed to a solution of methylisobutylxanthine, 

dexamethasone, and insulin (MDI) the process accelerates (Gregoire, 1998).  The cells 

were fed 10% CS-Dulbecco’s Modified Eagle Media every other day up to day 4 (up to 

90% confluence) after plating.  On the seventh day, the cells were treated with MDI 

media (methylisobutylxanthine [MIX], dexamethasone [DEX], and Insulin [I]).  Two 

days after the cells were treated with MDI, cells were treated with a media consisting of 

DMEM, insulin, and fetal bovine serum (FBS).  Two days after the cells were treated 

with DMEM and insulin, the cells were fed 10% FBS-DMEM media. 

 One of the experimental treatments was using MIX treatment only.  The cells 

were fed with a 10% CS-DMEM every day up to Day four (up to 90% confluence) after
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plating.  On the seventh day, the cells were treated with MIX alone. Two days after the 

cells were treated with MIX, cells were treated with media consisting of DMEM, insulin 

and 10% fetal bovine serum (FBS).  Two days after the cells were treated with DMEM 

and insulin, the cells were fed with 10% FBS-DMDM media for the remainder of the 

experiment duration. 

 Another experimental treatment was using DEX treatment only.  The cells were 

fed with a 10% CS-DMEM every day up to day 4 (up to 90% confluence) after plating.  

On the seventh day, the cells were treated with DEX alone.  Two days after the cells were 

treated with DEX, cells were treated with media consisting of Dulbecco’s Modified Eagle 

Media (DMEM), insulin and fetal bovine serum (FBS).  Two days after the cells were 

treated with DMEM and insulin, the cells were fed with 10% FBS-DMDM media for the 

remainder of the experiment duration. 

 The last experiment treatment was using insulin treatment only.  The cells were 

fed with a 10% CS-DMEM every day up to day 4 (up to 90% confluence) after plating.  

On the seventh day, the cells were treated with insulin alone.  Two days after the cells 

were treated with insulin, cells were treated with media consisting of Dulbecco’s 

Modified Eagle Media (DMEM), insulin and fetal bovine serum (FBS).  Two days after 

the cells were treated with DMEM and insulin, the cells were fed with 10% FBS-DMDM 

media for the remainder of the experiment duration. 
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Cell Staining and Fixation

Over the seven day period of adipogenesis, cover slips containing differentiating 

cells were taken and washed in 1X Phosphate Buffered Saline (PBS).  The cells were 

fixed for 20 minutes at room temperature in a 4% paraformaldehyde solution in 1X PBS.  

After fixation the cells were washed in 1X PBS and incubated in an incubation solution 

of PBT (1X PBS, 1% Bovine serum, 1% goat serum, and 0.1% Triton-X) for 20 minutes 

at room temperature.   The cells were then washed and a solution with incubation mix the 

primary antibody was added.  To examine mitochondrial organization and distribution 

within the differentiating adipocytes I used the mouse monoclonal anti-cytochrome c 

7H8.2C12 antibody (BD PharMingen) and an Goat Anti-mouse secondary antibody 

conjugated to CY3 (Jackson labs, catalogue #115-165-003)).  I examined filamentous 

actin in these cells using Alexia488 Phalloidin (Molecular Probes) at a 1:500 dilution.   

The cells were incubated with the primary antibody at 37°C for one hour.  The 

reason for incubating at 37°C is because that is optimal temperature.  After incubation 

the cells were washed three times with 1X PBS.  The cells were then immediately 

incubated in a secondary antibody solution consisting of PBT and a 1:2000 dilution of the 

secondary antibody.  Again, the cells were incubated at 37°C for 40 minutes.  After this 

incubation, the coverslips with the cells were washed three times in 1X PBS with the 

final wash, containing 1:5000 dilution of Hoescht (Molecular Probes) to stain the nuclei 

of each cell.  PBS was added to rinse out BSA in the washing solution.  After the cells 

were rinsed, the cells were mounted in Difco anti-fade mounting media (Fischer 

Scientific). 
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CHAPTER III 
 

RESULTS 
 

During differentiation of a preadipocyte to a fully differentiated adipoctye cell, 

the overall cellular morphology undergoes radical changes (Figure 1).  To initiate 

adipodgenesis we treated our 3T3-L1 preadipocytes with the MDI cocktail.  3T3-L1 cells 

possess a flat fibroblastic cellular morphology.  After MDI treatment, the 3t3-L1 cells 

begin to round up and by day five after MDI treatment begin to express lipid vacuoles, 

the characteristic feature of adipocytes.  In vitro the transition from preadipocyte to fully 

differentiated adipocyte takes seven days.  For my thesis, I wanted to observe the 

mitochondrial morphology changes during this process using specific antibodies to 

mitochondrial proteins. I also wanted to correlate any changes in mitochondrial 

morphology with changes in the actin cytoskeleton.   

To do these experiments, I differentiated preadipocyte 3T3-L1 cells using a 

standard protocol and collected samples at specific time points during the seven days of 

differentiation.  I have found that mitochondria morphology does undergo a great radical 

change when the cells were treated with MDI media.  In the preadipocyte control, Day 0 

samples, the mitochondria possessed a tubular in morphology (see the arrow in the first 

frame of Figure 2).  In samples from Day 2 after MDI treatment, the mitochondria have 

fragmented and appear clustered around the nucleus (see the arrow in the middle frame of 

Figure 2).  This fragmented mitochondrial organization remained throughout 
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adipogenesis and can be seen in the fully differentiated adipocyte (see last frame of 

Figure 2).  

Since mitochondrial morphology depends on interaction with the cytoskeleton 

(Boldogh, 1998), I wanted to look at the changes in actin cytoskeleton during adipogeneis 

to determine whether these could be correlated with the observed changes in 

mitochondrial morphology.  Actin morphology does change during adipogenesis.  Day 0, 

my preadipocyte control show actin appeared as stress fibers throughout the cell (first 

frame of Figure 3).  Day 2, I saw a change in actin, where the stress fibers were reduced 

(middle frame of Figure 3).  Day 7 demonstrated that actin is only found cortically 

around the cell perimeter and in a perinuclear formation.  My results show that during 

adipogenesis, the F-actin was reorganized from stress fibers, scattered throughout the cell 

in a pre adipocyte to the cell cortex and in a cap around the nucleus in a differentiated 

adipocyte (last frame of Figure 3). 

I also wished to determine whether specific component of our treatment were 

sufficient enough to induce changes in mitochondrial morphology.  The identification of 

a specific component within the differentiation mix responsible for the changes observed 

above would help elucidate the mechanism responsible for the observed reorganization of 

the mitochondria that occurs during adipogenesis. When only M, D, or I was used alone, 

none of the single treatments resulted in 90% differentiation and although some cells did 

differentiate and these cells looked identical to adipocyte differentiated by a complete 

MDI cocktail treatment.  Therefore it was impossible to made a definitive conclusion 

between the single treatment and the changes in mitochondrial morphology that I 
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observed and no distinction could be made in the role of the M, D or I in the alteration of 

mitochondrial morphology.  

 In summary, the rearrangement of mitochondrial morphology and actin show that 

the changes in these two cellular components occur simultaneously starting with MDI 

treatment but are not coordinated (Figure 4).  By day 2 after MDI treatment, 

differentiating adipocytes show both mitochondria fragmentation and loss of actin stress 

fibers.  However unlike mitochondria which remain fragmented consistently through 

differentiation, actin continues to change throughout adipogenesis.  By Day 5 we 

observed further increase in the cortical actin and reduction of stress fibers and by Day 7 

in fully differentiated adipocytes, almost all of the filamentous actin could be found 

cortically and concentrated in a cap around the nucleus.  During adipogenesis, a 

significant difference in mitochondrial morphology is seen within two days after 

induction, suggesting that the changes in mitochondrial morphology are an early event 

proceeding obvious markers of differentiation such as lipid vacuole formation. 



15

Figure 1:  A schematic of adipocyte development. Starting from Day 0, the 

preadipocyte is flat and looks fibroblastic shaped. A preadipocyte control was taken 

before MDI treatment.  MDI was applied to the preadipocytes at Day 0.  Two days after 

MDI treatment, Day 2; the mitochondria fragment and there is a slow rearrangement of f-

actin.  Five days later, Day 5; the actin become cortically around the cell and lipid 

vacuoles (LV) begin to appear.  By Day 7, the cell is a round, sphere shaped cell with an 

increase in size and larger lipid vacuoles (LV). The nucleus is labeled (N). 

 

Day 0 Day 2 Day 5 Day 7
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Figure 2:  Mitochondrial morphology dynamics during adipogenesis.  Differentiating 

adipodyctes were fixed in 4% formaldehyde solution and labeled with a primary antibody 

to anti-cytochrome antibody and then with a secondary antibody Goat anti-mouse 

antibody conjugated to CY3.  At Day 0, the preadipocyte controls, the mitochondrion has 

a tubular and reticular morphology.  At Day 2, there is a change in mitochondrial 

morphology where the mitochondria appear fragmented and clustered around the nucleus.  

Fragmented mitochondria persist though the differentiation to the mature adipocyte 

(Day7) and cluster around the nucleus and lipid vacuoles.   

 

Day 0 Day 2 Day 7 
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Figure 3:  Actin cytoskeleton dynamic during adipogenesis. Samples collected at 

specific time points, fixed in 4% formaldehyde solution and labeled with Phalloidin 

Alexia 488 to visualize the f-actin within the cell. At Day 0, the preadipocyte control, the 

actin appears as stress fibers throughout the cell.  At Day 2 changes in actin cytoskeleton 

appear with a reduction in the stress fibers.  At Day 7, the fully differentiated adipocyte, 

actin is found cortically around the cell periphery and in a perinuclear formation.   

 

Day 2 Day 0 Day 7 
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Figure 4:  Summary of my results comparing changes in mitochondria morphology 

verses changes in actin morphology. Changes in mitochondrial morphology during 

adipogenesis were not fully coordinated with changes in actin cytoskeleton morphology.  

Samples were collected at four time points during differentiation: Day 0- pre-adipocyte 

control; Day 2- two days after MDI induction of differentiation; Day 5- five days after 

MDI induction of differentiation and Day 7- seven days after MDI induction of 

differentiation, these are fully differentiated adipocytes.  Cells were fixed in 4% 

formaldehyde solution treated with Phalloidin Alexia 488 to label the f-actin of these 

cells and anti-cytochrome c was used to label the cytochrome c proteins in the 

mitochondria.  These slides were viewed under a confocal microscope to take image 

shots of the areas of interest in the cell. 
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CHAPTER IV 

DISCUSSION 

In this thesis I have characterized the changes that occur in mitochondrial 

morphology and the actin cytoskeleton during adipogenesis.  During adipocyte 

differentiation the mitochondrion undergoes radical reorganization transitioning from a 

reticular, tubular organization to a punctate fragmented morphology.  During 

adipogenesis the actin also changes. The actin cytoskeleton transitions from bundles of 

filamentous actin in the form of stress fibers found throughout the cytoplasm of the 

predipocyte to a cortical deposition of actin and a nuclear cap of F-actin in the mature 

adipocyte.   

In order to examine which specific component of my induction cocktail resulted 

in changes in mitochondrial morphology or actin distribution I used single components of 

the MDI cocktail.  To do this I attempted to induce adipogenesis using only one M, D, or 

I of the cocktail at a time.  When only M, D, or I component was used singly to induce 

adipogenesis of 3T3-L1 predipocytes, I only observed very low levels (<5%) of 

adipocyte differentiation.  I can conclude that a coordinated and near complete 

differentiation of preadipocytes to mature adipocyte requires at least 2 out of the 3 

treatments together.  Furthermore, when I observed adipocyte differentiation, the mature 

adipocytes had fragmented mitochondria and an actin distribution identical to those 

differentiated by a complete MDI cocktail.  These results suggest that the change of 

mitochondrial morphology are not due to a single component but are part of the program 
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of adipocyte differentiation.  We used MDI to induce adipogenesis however there are 

other ways to do this (Mukherjee, 2000; Janke, 2002).  It is possible that all of these 

treatments converge on a common trigger of differentiation and that downstream of this 

are changes in mitochondrial morphology and actin.  

Signaling pathways and regulation of specific genes are required for 

differentiation to occur.  It is well known that MDI is needed to allow for preadipocyte to 

undergo differentiation to develop into mature adipocytes (Gregoire, 2001; Pedersen, 

2001; Guo, 2000; Patel, 1999; Hamm 2001).  When only M, D, or I was used, the results 

were lower in cell number, frequency of activation and slower differentiation.  The cells 

that contained these specific treatments also resulted in less rearrangement of filaments 

and mitochondria. 

When using the MDI cocktail to induce adipogenesis, a set of specific genes 

involved in adipogenesis were activated.  One important mediator of adipocyte 

differentiation is PPAR gamma (Walczak and Tontonoz, 2002).  PPAR gamma is a 

transcription factor that regulates genes involved in lipid metabolism (Walczak and 

Tontonoz, 2002).  The formation of the fat vacuoles confirms that PPAR gamma is turned 

on to regulate lipid metabolism.  PPAR gamma also has the ability to regulate the rates of 

lipid uptake and efflux, which can help explain how some people are susceptible to 

atherosclerosis, the narrowing of arteries due to fat plaque build up (Walczak and 

Tontonoz, 2002).  The differentiation of white adipose tissue requires specific genes.  
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C/EBP alpha (CCAAT enhancer binding protein alpha) is an important transcription 

factor for white adipocyte differentiation (Linhart, 2001).  

The fragmentation of the mitochondria suggests that a fission program might be 

activated during the early stages of adipocyte differentiation.  Mitochondria fusion and 

fission are opposite and coordinated processes, which allow for rapid change of 

mitochondrial organization.   Fusion is the process where mitochondria are joined 

together.  There are two specific proteins that are involved in mitochondrial fusion, 

Mitofusin (Mfn) and OPA1.  Mfn and OPA1 are two specific proteins that are needed for 

mitochondrial fusion (Chen, 2005).  In a future study, I would observe the intensities of 

these two proteins.  I would specifically look for an increase in the Drp1 and Fis1 and/or 

a decrease in Mfn and OPA1 The importance of mitochondrial fusion is to exchange 

mtDNA, resistance to apoptosis, and plays a role in regulating mitochondrial metabolism 

(Westermann, 2002, Meeusen and Nunnari, 2005, McBride, 2006). 

Fission is the process where mitochondria are broken down into smaller rod 

shaped mitochondria.  In a future study, I would observe, specifically Fission1 (Fis1) and 

Dynamin related protein 1 (Drp1) the MDI treatment.  The hFis protein has a direct link 

to mitochondrial fission but not apoptosis (Alirol, 2006).  Specific gene expressions with 

the different treatments could show which specific genes are turned on or inhibited when 

the experimental treatments are applied.  The results I obtained show that mitochondria 

are broken apart.  There could be a possibility that Fission1 (Fis1) and Dynamin related 

protein 1 (Drp1) are increased during adipogenesis.  Mitochondrial fission has been
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shown as a prerequisite for apoptosis and plays a role in regulating mitochondrial 

metabolism (Meeusen and Nunnari, 2005; McBride, 2006).  These two mechanisms are 

the basis for all mitochondrial morphology and change of mitochondria in cells (Meeusen 

and Nunnari, 2005).   

Changes in actin distribution during adipogeneis were observed, I would desire to 

see how specific proteins have an effect on changes in actin distribution.  I would 

specifically look at the ADAM 12 protein since this protein is on the surface of cells and 

interact with actin cytoskeleton.  ADAM 12 assists in rearrangement of actin filaments 

during adipogenesis (Kawaguchi, 2003).  A future study in using ADAM 12 proteins 

would be to knock out ADAM 12 by using RNAi and observe how the actin cytoskeleton 

rearranges during adipogenesis.  While looking at the actin rearrangement, I can link it to 

the question to whether or not the change in mitochondrial morphology during 

adipogenesis is directly related to the changes seen in the actin cytoskeleton.
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List of Terms 

BAT = brown adipose tissue 

C/EBP = CCAAT/enhancer binding protein 

DEX = dexamethasone 

DMEM = Dulbecco’s Modified Eagle Media 

Drp1 = Dynamin Related Protein 1 

FBS = Fetal Bovine Serum 

Fis1 = Fission 1 

Mfn = Mitofusin 

MIX = methylisobutylxanthine 

PBS = Phosphate Buffered Saline 

PGC = PPAR gamma co-activators 

PPAR = peroxisome proliferator-activated receptors 

UCP = uncoupling protein 

WAT = white adipose tissue 

 


