
LEONE, JASON STEVEN, M.S. A Distributed Approach to XML Interoperability.
(2007)
Directed by Dr. Fereidoon Sadri. 47pp.

 We expand upon previous research performed on creating a lightweight

infrastructure for the purpose of achieving interoperability among XML data sources.

The approach is based on enriching local sources with semantic declarations so as to

enable interoperability. These declarations capture the information content and concepts

of the sources through mappings to a common application specific vocabulary. We

design and implement a peer-to-peer network architecture through which global queries

are initiated and responded to. We further examine and implement a methodology for

merging the XML results of global queries into a single XML formatted response.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149229789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A DISTRIBUTED APPROACH TO XML INTEROPERABILITY

By

Jason Steven Leone

A Thesis Submitted to
the Faculty of the Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Science

Greensboro
2007

 Approved by

 Committee Chair

APPROVAL PAGE

This thesis has been approved by the following committee of the Faculty of The

Graduate School at The University of North Carolina at Greensboro.

Committee Chair_______________________________

Committee Members____________________________

Date of Acceptance by Committee

Date of Final Oral Examination

 ii

TABLE OF CONTENTS

Page

LIST OF FIGURES ……………………………………………………………………...iv

CHAPTER

I. INTRODUCTION…………………………………………………………...1

II. PREVIOUS WORK………………………………………………………....4

XML Technologies………………………………………...............…4
XML Interoperability Research………...…………….…...............….6

III. CONTRIBUTIONS………………………………………..……………....10

XML Merging……………………..……………………………..…10
Schema-less Merging….…..….……...…………………………..…11
DTD Driven Merging..……….……...…………………………..…12
DTD Driven Merging Example….………….……...………..…..…16
Distributed Network Design and Overview.…….…...…………..…26
Implementation and Code Organization……...……....……...…..…30
XMLMerge Overview……….…..…….……………….………...…30
XMLT Overview………………………………………………..…..31

 IV. RELATED WORK………………………………………………………....34

Crossing the Structure Chasm..……………………………………..34
Efficient Query Reformulation in Peer Data Management Systems..35
Continuing XML Interoperability Research…..…………………….36

V. CONCLUSIONS AND FUTURE WORK……………..…………………...37

Future Research…………………….……..……..…………………38
Future System Development………..…….………………………...39

REFERENCES……………………………………………………………………..……41

APPENDIX A. CLASS DIAGRAMS……………………………….………………….42

 iii

LIST OF FIGURES

Page

Figure 2.1: Conceptual System Architecture...................................…………....…7

Figure 2.2: Binary Property Mapping Format…………………………………….8

Figure 3.1: Example XML Documents and Corresponding DTD..….…………..17

Figure 3.2: Visualization of Merging Steps, Part 1………..….………..………..18

Figure 3.3: Visualization of Merging Steps, Part 2………………….…………..18

Figure 3.4: Visualization of Merging Steps, Part 3….….………..….…………..19

Figure 3.5: Visualization of Merging Steps, Part 4………………….…………..20

Figure 3.6: Visualization of Merging Steps, Part 5………………….…………..21

Figure 3.7: Visualization of Merging Steps, Part 6………………….…………..21

Figure 3.8: Visualization of Merging Steps, Part 7.……………..………..……..22

Figure 3.9: Visualization of Merging Steps, Part 8……………....….…………..23

Figure 3.10: Visualization of Merging Steps, Part 9……………………...……..23

Figure 3.11: Visualization of Merging Steps, Part 10…………………….……..24

Figure 3.12: Visualization of Merging Steps, Part 11……..…………….…..…..25

Figure 3.13: Merge Result……..………………………………...…………..…..25

Figure 3.14: Peer Network Model……..………………………...…………..…..28

Figure A.1: XMLMerge Class Diagram……..…………………..…………..…..42

Figure A.2: XMLT Class Diagram………………………....………………..…..43

 iv

CHAPTER I

INTRODUCTION

Although Extensible Markup Language’s (XML) roots lie in document

management, its simplicity and widespread use have led to its adoption as one of the most

popular contemporary data exchange technologies. XML provides certain advantages

over traditional relational database systems in this regard. Its self-documenting, human

readable data format makes it easy to use. Its open, plain-text format makes it application

neutral in a world largely driven by expensively licensed proprietary data systems.

Having a flexible structure, XML can be employed to solve a wide variety of demands

for data storage or configuration.

With such rising use of XML, particularly on the Internet, it is natural that

researchers would seek to leverage the technology into areas of interoperability and data

integration. The idea of combining similar data resources residing across different

locations to derive an expansive body of information is not new and has indeed been

researched extensively. Alternatively, having the ability to query across such a

distributed network of data sources to obtain composite results is an area of database

research that has also been explored considerably.

Attempting to apply this research onto the relatively new venue of XML presents

some unique challenges due to the technology’s non-relational nature. The flexibility of

XML’s syntactic model presents two main problems: (i) local data sources can model

 1

globally similar data in entirely differing ways, and (ii) local data sources may even refer

to globally similar data using vastly differing terminology [3].

Various approaches to interoperability of XML data have been considered which

attempt to overcome these problems through diverse means and with differing degrees of

success. One straightforward approach is to force all local data sources to adhere to the

same model. Though this approach would be able to draw on a very large body of

traditional relational database theory and research, it would require one universal

authority with control over all of the remote data sources. This is entirely impractical

when the international and even inter-institutional nature of today’s global networks is

considered.

Another approach, defined by Halevy et al [1], is for a network of participating

data sources to maintain source-to-source mappings which would allow data or queries

from one source to be translated to the model of any other source. More recent work on

this concept has evolved it into a peer data management system where local sources

maintain semantic mappings to similarly modeled neighbors, instead of mappings for all

peers [5]. Queries issued at one source can traverse semantic paths of mappings to

retrieve data from any peer that is reachable across the network. This approach is further

discussed in the related work section of this paper.

The approach taken by Lakshmanan and Sadri [3] is to use a lightweight

infrastructure, inspired by the semantic web initiative, to enrich local data sources with

semantic declarations. These declarations map local data models to a common,

 2

application specific vocabulary, which can then be used by the participant sources to

issue global queries.

This thesis expands upon the existing body of work done under this approach.

Firstly, methodologies for merging the results of global queries into a single XML

formatted response are examined, and one such methodology is implemented. Secondly,

peer-to-peer network clients are designed and implemented, through which global queries

are initiated and responded to. These components are then integrated with other existing

portions of the overall system already designed by previous researchers.

 3

CHAPTER II

PREVIOUS WORK

 The previous work that this thesis relies upon can be divided into two categories:

XML technologies and XML interoperability research. The XML technologies utilized

in this thesis include DTD, XPath, and XQuery. The XML interoperability research this

thesis builds upon is that originally conducted by Lakshmanan and Sadri, as presented in

their paper, “Interoperability on XML Data”, and further extended by the research efforts

of their students.

XML Technologies

 XML data itself is not required to adhere to any sort of format or schema unless it

explicitly states that it will within its containing document. The oldest schema format,

Document Type Definition (DTD), is included in the XML 1.0 W3C Recommendation

[10]. It is derived substantially from the Standard Generalized Markup Language

(SGML). A DTD is a group of markup declarations which together define a grammar for

a class or set of documents by means of constraining the structure of those documents.

Two common markup declarations are element and attribute-list declarations. Element

declarations specify the allowed elements within a document, and the orientation of those

elements relative to each other (ordering, containment, etc). Attribute-lists specify the

 4

allowable set of attributes for each of the specified elements. An XML document is said

to be valid if it complies with the constraints specified in its associated DTD.

 XML Path Language (XPath), defined in the XPath 1.0 W3C Recommendation, is

a language for addressing parts of an XML document [12]. This addressing is

accomplished by means of a path expression, a sequence of location steps each separated

by a ‘/’ character. These path expressions are used for matching path patterns, where an

XML document is considered to be modeled as a tree of nodes. XPath defines seven

such types of nodes, including element, attribute, and text nodes. A path expression can

be evaluated to yield an object of type node-set, Boolean, number, or string. Path

expressions also provide some functionality to manipulate strings, numbers, and

Booleans, primarily through the inclusion of predicates within the expression.

 XQuery, defined in the XQuery 1.0 W3C Recommendation, is a query language

designed to query XML data; it provides a way to extract and manipulate data from XML

(compatible) data sources [13]. XQuery is built upon XPath. Hence, it also considers

XML data to be modeled as trees of nodes, and XPath expression syntax can be used for

addressing parts of the XML data. XQuery queries are said to be similar to SQL queries

in appearance, and are organized into “FLWOR” expressions. “FLWOR” expressions

are composed of five sections: for, let, where, order by, and return. The output of an

XQuery can be XML; this powerful functionality allows new XML (documents) to be

formed as a result of an XQuery that runs across potentially several XML data sources.

 5

XML Interoperability Research

 Lakshmanan and Sadri, in their paper “Interoperability on XML Data” [3]

examine how XML can be utilized in achieving goals of interoperability and data

integration. They suggest (inspired by the Semantic Web Initiative) that, although XML

by itself cannot accomplish interoperability, by enriching the XML data with semantic

declarations, the results would be interoperable within the target application area. This

overcomes the two key problems of XML data integration that they identify:

heterogeneous data modeling and heterogeneous terminology.

 To begin with, the authors describe a lightweight infrastructure for enabling

interoperability across multiple data sources. Interoperability is to be achieved via

common ontologies. Each local source would retain its data in whatever native model it

chooses. If the local administrator desires to participate in data sharing under the system,

he would select a set of properties (which seem to most closely fit his local data) from

one of the ontologies and then provide mappings of his local data onto those properties.

These mappings have a structure similar to the binary relation format specified by the

RDF, or Resource Definition Framework. In RDF, two resources or objects are

connected together in a binary relation based upon a property which they have in

common. A collection of these relations can be seen to serve as a traditional binary table

structured view over a tree-like structured XML data set.

Once these mappings are in place, user queries can be posed using the common

terminology of the ontology properties. A “coordinator” would be responsible for query

expansion, preparation, optimization, and transformation, as well as coordinating sub-

 6

query execution at the different sources and combining the results of the sub-queries.

This accounts for cases where the global query is broken down into local sub-queries

and/or inter-source queries. In a local sub-query, all of the data necessary to answer the

sub-query resides at the same source. In an inter-source query, data from different

sources must be joined together to answer the query. Figure 2.1 illustrates the conceptual

architecture of this system.

Figure 2.1: Conceptual System Architecture

 The authors suggest that the mappings can be constructed with the help of tools,

or by hand. Figure 2.2 shows the format of a mapping for a binary property p. In the

case of XML data, it is helpful to visualize a tree representation of the data in order to

understand how the mappings might be accomplished. In the figure, there are three paths

specified. The first path is for the “glue” variable, represented by $G. This path is a

 7

common ancestor node, usually the least common ancestor, for the other two nodes being

bound in the relation. The second path, represented by $X, and the third path,

represented by $Y, are the two XML element nodes (or attributes) tied to the property.

Consistent with the RDF specification [9], f($X) is a URI-generating function, “a one-to-

one function that takes an identifier of an object and generates a unique URI for that

object” [3]. Similarly but less restrictive, g($Y) can be either a URI-generating function

or $Y itself.

Figure 2.2: Binary Property Mapping Format

 A global query initiated over the participant data sources, i.e. those data sources

which have specified the relevant mappings, will be translated using the mappings to

queries appropriate for each of the local sources. The translation algorithm (noted as

“Algorithm 1”) as specified by Lakshmanan and Sadri is as follows [3]:

Algorithm 1 (Local sub-query generation for an XML source)
Input: Global query Q, source mappings mi for source i
Output: Local sub-query Qi at source i resulting from Q.
Method: The idea is to replace variable declarations of Q with variable
declarations of source i using the mapping rules mi. Certain details should be
observed in this translation as follows:
(1) If a variable declaration $X in Q corresponds to a tuple of a predicate p, then

replace it by the declaration for the glue variable in the mapping rule for p in
mi.

(2) If a variable declaration $X in Q corresponds to an argument of a predicate p,
and the declaration also has a selection condition on the other argument, then
replace it by the declaration for the glue variable in the mapping rule for p in
mi, and include the selection condition as well.

 8

(3) If a variable declaration $X in Q corresponds to an argument of a predicate p,
and rule (2) above does not apply, then replace it by the declaration for the
argument obtained from the mapping rule for p in mi.

(4) If a URI is used in Q, then Qi will use its corresponding object id.
(5) Variables declared in Q with respect to an object-objectId predicate do not

need a counterpart declaration in Qi if the object-objectId predicate is joined
with another predicate p having the same object as one of its arguments. In
such cases the declaration in Qi corresponding to p can supply the required
variable.

Again, the authors envision a coordinator that would dispatch queries to the local sources,

receive partial results back from the local sources, and ultimately combine the results to

achieve a meaningful answer to the query. Some efficiency can be gained by having the

local sources execute their queries in parallel.

 9

CHAPTER III

CONTRIBUTIONS

 The goal of this thesis is to build upon the approach taken in [3] and expand upon

the related body of work accomplished by previous researchers. We modify the

conceptual system architecture (see figure 2.1) to design and implement the system as a

peer-to-peer network; instead of queries and results passing through a single coordinator,

in our network, any peer can pose queries and receive the results of those queries.

Queries are posed in the form of XQuery, and results are received in the form of XML

data. In order to process the results of queries, XML merging techniques are explored,

and one such algorithm is implemented.

XML Merging

 When a peer in the distributed network issues a query, it expects to receive

responses to its query from the other peers over a random amount of time. As it receives

these responses, it needs to combine them together, along with its own local query

results, to obtain a meaningful answer to the global query. This thesis assumes the

responses from the network peers will all be formatted as XML data, valid against some

predetermined global “answer” DTD (see the Future Work section for more on this

notion). The peer that issued the query must then be able to merge together the XML

 10

data (results) it receives from the other peers. To this end we have explored various

approaches and have developed an algorithm for merging XML.

Schema-less Merging

 Our first approach to merging was to attempt to merge the XML data together

without any guidance from a schema or DTD. We call this approach Schema-less

Merging. The technique is to consider the XML data as a tree-like data structure, and

begin by attempting to merge the roots of two XML documents (trees), without regard for

the children of the roots. This involves confirming equality between the root nodes'

element types, text values (if present), and attribute lists. Attributes that are present in

both roots must have equal values; attributes present in one root but not the other can

simply be added to the merged root node. If the two roots can be merged without regard

for their children, then an attempt can be made to merge their children together. This

amounts to taking the children of one root one at a time and attempting to merge them

with any of the children of the other root. This is done with a recursive application of the

algorithm. If the currently considered child is successfully merged with one of the

second root's children, then the next of the first root's children can be considered. If the

child is not successfully merged with any of the second root's children, it is simply added

as a child to the merged root.

 Although this merging technique works well in some limited cases, for the most

part it provides meaningless results. The problem is that the algorithm never fails to

merge two XML documents, because when it cannot merge particular nodes, it simply

ends up adding them individually to the resultant tree. The merged result has no sorts of

 11

constraints or consistent nature, even when merging multiple pairs of documents which

all adhere to the same schema. For example, merging XML data which contains the first

and last names of people as children elements of a "person" node may in some cases

result in "person" nodes which have multiple first names and single last names, or single

first names and multiple last names, or even multiple first and last names. The recursive

concept seemed promising however, and when combined with some techniques to

consider a schema in the merging process, it led to our next approach which proved to be

more successful.

DTD Driven Merging

 Our next approach to merging is based on the concept of using a Document Type

Definition to guide the process of merging two trees of XML data. We again attempt to

merge the nodes of the tree in a recursive manner, but this time we use the element

content models defined within the DTD as a reference for where and how element nodes

may appear within the resultant merged tree. This provides the consistency and

constraints that were lacking from the Schema-less Merging approach.

 DTD allows for some considerably complex possibilities in defining an XML

schema. In order to make the merging process more manageable, we assume a

simplified, yet still valid, DTD model. Specifically, the DTD model used in the

following merging approach is constrained as follows:

• A DTD can only have <!ELEMENT> and <!ATTLIST> markup declarations.
• An element’s content model must be declared to contain other elements or be

of PCDATA or CDATA types only.

 12

• An element’s content model may not contain parenthesized subsections.
• An element’s content model may not contain choice lists (use of “|”).
• An element’s content model may contain the optional character operators

following element names (use of “+”, “*”, “?”).
• Attributes must be of type CDATA.
• An attribute’s default declaration must be #IMPLIED.

 Under the assumption of this simplified DTD model, the MergeTrees algorithm is

used to merge two XML documents. Here, the term ‘XML document’ is used to refer to

any well-formed XML data that conforms to a specified DTD, not necessarily a file

system document. The MergeTrees algorithm considers XML data as a tree of nodes,

where each node corresponds to a single element defined within the related DTD. The

main idea of the algorithm is to merge the two XML documents while referring to the

associated DTD as a guide to how the documents can be appropriately combined. The

algorithm is specified below:

Algorithm MergeTrees
Input: DTD document D; nodes T1 and T2 from XML documents 1 and 2
respectively. Documents 1 and 2 are assumed to be valid against D. To fully
merge the two documents, T1 and T2 would be the roots of the two documents.
Output: The new node Tm that is the merge of T1 and T2, or an indication (null)
that the two nodes could not be merged. Tm is valid against D.
Method:
1. If T1 and T2 are of different element types or have different text values then

return null. Otherwise, set Tm’s type and value to T1’s type and value.
2. Attempt to MergeAttributes with inputs Tm, T1, and T2. If MergeAttributes

returns false then return null.
3. Attempt to MergeChildren with inputs D, Tm’s element type, T1’s list of

children, T2’s list of children. If MergeChildren returns null then return null.
Otherwise, set Tm’s list of children to the result of MergeChildren and return
Tm.

 13

Algorithm MergeTrees makes calls to MergeAttributes and MergeChildren.

MergeAttributes will merge the attribute lists of two nodes whose type is assumed to be

the same. MergeChildren will merge the ordered list of children of two nodes whose type

is again assumed to be the same. Both algorithms are listed below:

Algorithm MergeAttributes
Input: Node Tm, the node to contain the merged attributes; nodes T1 and T2,
whose attributes are to be merged.
Output: True if T1’s and T2’s attributes were successfully merged and set into
Tm; false otherwise.
Method:
1. If T1 and T2 have no attributes, then set Tm’s attributes to null and return

true.
2. If T1 or T2 has no attributes, then set Tm’s attributes equal to those of the

node which does have attributes and return true.
3. Look at each attribute in T2. If it is not an attribute of T1, set it as an attribute

of Tm. If it is an attribute of T1 and has a different value than that attribute in
T1, then return false.

4. Set all attributes of T1 as attributes of Tm and return true.

Algorithm MergeChildren
Input: DTD document D; element type E of the parent node; ordered list L1 of a
nodes children; ordered list L2 of a nodes children. E is assumed to be a valid
element type within D, L1 and L2 are assumed to be valid lists of child elements
for a parent of type E, within D.
Output: An ordered list Lm that is the merge of L1 and L2, or an indication (null)
that the two lists could not be merged. Lm is a valid list of child elements for a
parent of type E, within D.
Method:
1. Create a pointer Pe = 0, to sequentially parse through (a copy of) the content

model of E (found by looking up E in D) represented as a list Le.
2. Create pointers P1 = 0 and P2 = 0, to sequentially parse through L1 and L2.
3. Create an empty ordered list Lm.
4. If Pe is at the end of Le, but P1 or P2 is not at the end of its respective list,

then return null.
5. If Pe, P1, and P2 are all at the end of their respective lists, then return Lm.

 14

6. If P1 and P2 are at the end of their respective lists, then parse the remainder of
Le to determine if there are any required child elements remaining. If so,
return null. Otherwise, return Lm.

7. If P1 is at the end of L1, but P2 is not at the end of L2 then compare Le[Pe] to
L2[P2]:

1. If Le[Pe] is a required element (i.e. has no optional character operator),
and L2[P2] is not of the correct element type, then return null.
Otherwise, add L2[P2] to Lm, increment Pe and P2, and return to step 4.

2. If Le[Pe] is marked with the character operator ‘+’, modify Le to replace
the ‘element+’ entry with the two entries ‘element, element*’. Return to
step 4.

3. If Le[Pe] is marked with the character operator ‘*’, then if L2[P2] is of
the correct element type, add L2[P2] to Lm and increment P2.
Otherwise, if L2[P2] is not of the correct element type, increment Pe.
Return to step 4.

4. If Le[Pe] is marked with the character operator ‘?’, then if L2[P2] is of
the correct element type, add L2[P2] to Lm and increment P2 and Pe.
Otherwise, if L2[P2] is not of the correct element type, increment Pe.
Return to step 4.

8. If P2 is at the end of L2, but P1 is not at the end of L1, then handle similar to
step 7.

9. None of Pe, P1, or P2 is at the end of its respective list. Look at Le[Pe].
10. If Le[Pe] is a required element, then look at L1[P1] and L2[P2]:

1. If both are of the correct element type, then attempt to MergeTrees with
inputs D, L1[P1], L2[P2]. If the merge is successful, add the result to
Lm and increment Pe, P1, P2. Otherwise add L1[P1] to Lm and
increment Pe, P1. Return to step 4.

2. If L1[P1] is of the correct element type but L2[P2] is not, then add
L1[P1] to Lm and increment Pe and P1. Return to step 4.

3. If L2[P2] is of the correct element type but L1[P1] is not, then add
L2[P2] to Lm and increment Pe and P2. Return to step 4.

4. If neither are of the correct element type, then return null.
11. If Le[Pe] is marked with the character operator ‘+’, then do the following:

1. Make a list S1 of the next consecutive elements in L1 that are of the
correct element type (Le[Pe]). Advance P1 past this consecutive group.

2. For each of the next consecutive elements in L2 that are of the correct
element type, attempt to merge them one by one into S1 using
MergeTrees. Any that are unsuccessfully merged into S1 are appended
to the end of S1. Advance P2 past this consecutive group.

3. If S1 is of size 0, return null.
4. Add the elements of S1 to Lm, increment Pe, and return to step 4.

12. If Le[Pe] is marked with the character operator ‘*’, then handle similarly to
step 11, omitting the check of step 11.3.

 15

13. If Le[Pe] is marked with the character operator ‘?’, then look at L1[P1] and
L2[P2]:

1. If both are of the correct element type, then attempt to MergeTrees with
inputs D, L1[P1], L2[P2]. If the merge is successful, add the result to
Lm and increment Pe, P1, P2. Otherwise add L1[P1] to Lm and
increment Pe, P1. Return to step 4.

2. If L1[P1] is of the correct element type but L2[P2] is not, then add
L1[P1] to Lm and increment Pe and P1. Return to step 4.

3. If L2[P2] is of the correct element type but L1[P1] is not, then add
L2[P2] to Lm and increment Pe and P2. Return to step 4.

4. If neither are of the correct element type, then increment Pe. Return to
step 4.

DTD Driven Merging Example

 We will walk through an example of the merge of two XML documents to

demonstrate the algorithms defined for the DTD Driven Merging approach. Consider the

two XML documents and their corresponding DTD presented in figure 3.1. As a

shorthand notation for our example, we will refer to the MergeTrees algorithm as MT, the

MergeAttributes algorithm as MA, and the MergeChildren algorithm as MC.

 16

Figure 3.1: Example XML Documents and Corresponding DTD

We start by invoking MergeTrees with the inputs of ex1.dtd as D1, the

<warehouse> node of ex1_1.xml as T11, and the <warehouse> node of ex1_2.xml as T21.

In step MT.1, T11 and T21 are of the same element type and have no text values, so Tm1

is set to be an element of type "warehouse". In step MT.2, a call is made to

MergeAttributes with inputs Tm1, T11, and T21. This leads to step MA.1, where T11 and

T21 have no attributes so Tm1's attributes are set to null (none) and MergeAttributes exits

returning a value of true. Figure 3.2 shows an abstract visualization of the merge so far.

 17

Figure 3.2: Visualization of Merging Steps, Part 1

Next is step MT.3, where MergeChildren is called with the inputs of D1 as D2,

"warehouse" as E1, T11's list of children as L11, and T21's list of children as L21. Steps

MC.1 and MC.2 create the pointers Pe1, P11, and P21 which all point to the starts of their

respective lists. Figure 3.3 shows an abstract visualization of the merge at this point.

Figure 3.3: Visualization of Merging Steps, Part 2

Step MC.3 creates the empty list Lm1. Steps MC.4 through MC.8 do not apply,

so in step MC.9 Le1[Pe1] is examined, and we see that it indicates "item" elements

qualified with the '*' character operator. This means that 0 or more <item> nodes are

expected to appear next. Step MC.12 matches this condition, so step MC.12.1 is

executed, creating the list S11 and advancing the pointer P11. Figure 3.4 visualizes the

merge state so far.

 18

Figure 3.4: Visualization of Merging Steps, Part 3

Step MC.12.2 begins by attempting to merge S11[0] with L21[P21]. The

subsequent call to MergeTrees (inputs: D2, S11[0], L21[P21]) passes through step MT.1

ok, but fails to merge the two nodes' attributes in step MT.2 since they have differing "id"

values. Step MC.12.2 continues by attempting to merge S11[1] with L21[P21]. The

subsequent call to MergeTrees (inputs: D2, S11[1], L21[P21]) also fails in step MT.2 since

the "id's" again differ. Since L21[P21] cannot be merged into S11, it is marked to be

added onto the end of S11, and P21 is advanced. Figure 3.5 shows an abstract

visualization of the merge at this point.

 19

Figure 3.5: Visualization of Merging Steps, Part 4

Step MC.12.2 continues by attempting to merge S11[0] with L21[P21] which

results in a call to MergeTrees with inputs D2 as D3, S11[0] as T12, and L21[P21] as T22.

In step MT.1, T12 and T22 are of the same element type and have no text values, so Tm2

is set to be an element of type "item". In step MT.2, a call is made to MergeAttributes

with the inputs Tm2, T12, and T22. Steps MA.1 and MA.2 do not apply. In step MA.3,

the "id" attribute of T22 is compared to the "id" attribute of T12 and seen to have the same

value, so it is ignored. In step MA.4, the "id" attribute of T12 is set to be an attribute of

Tm2, and MergeAttributes exits returning a value of true. Figure 3.6 show an abstract

visualization of the merge so far within the current call to MergeTrees.

 20

Figure 3.6: Visualization of Merging Steps, Part 5

Step MT.3 is next, in which a call to MergeChildren is made with D3 as D4,

"item" as E2, T12's list of children as L12, and T22's list of children as L22. Steps MC.1

and MC.2 create the pointers Pe2, P12, and P22 which all point to the starts of their

respective lists. Figure 3.7 visualizes this merge state.

Figure 3.7: Visualization of Merging Steps, Part 6

Step MC.3 creates the empty list Lm2. Steps MC.4 through MC.8 do not apply,

so in step MC.9 Le2[Pe2] is examined, and we see that it indicates an unqualified "name"

element. This means that exactly one <name> node is expected to appear next. Step

MC.10 matches this condition, so L12[P12] and L22[P22] are examined. In step MC.10.1,

both nodes are of the correct element type, so MergeTrees is invoked with inputs D4 as

 21

D5, L12[P12] as T13 and L22[P22] as T23. Steps MT.1 and MT.2 result in Tm3 being set to

an element of type "name" with a value of "hammer". Step MT.3 invokes MergeChildren

with inputs of D5, "name", T13's (empty) list of children, and T23's (empty) list of

children. This run of MergeChildren exits at step MC.5 returning an empty list which is

set to be Tm3's list of children. MergeTrees then returns Tm3, which causes the calling

step MC.10.1 to resume (of the call MergeChildren(D3, "item", {T12->name}, {T22-

>name, T22->description})). Tm3 is added to Lm2, and Pe2, P12, P22 are all incremented,

and the algorithm goes to step MC.4. Figure 3.8 visualizes the merge state at this point.

Figure 3.8: Visualization of Merging Steps, Part 7

Steps MC.4, MC.5, and MC.6 do not apply. In step MC.7, P12 is at the end of

L12, so Le2[Pe2] and L22[P22] are examined. Step MC.7.4 applies, and L22[P22] is of the

correct (expected) element type, so L22[P22] is added to Lm2, and Pe2 and P22 are both

incremented. The algorithm moves to step MC.4. Figure 3.9 shows a visualization of the

merge stat at this point.

 22

Figure 3.9: Visualization of Merging Steps, Part 8

Step MC.4 does not apply, but step MC.5 does, so Lm2 is returned by

MergeChildren. The calling step MT.3 resumes (of the call MergeTrees(D2, S11[0],

L21[P21])), where Tm2's list of children is set to Lm2. Figure 3.10 shows a visualization

of this result.

Figure 3.10: Visualization of Merging Steps, Part 9

Tm2 is returned, and Step MC.12.2 resumes (of the call MergeChildren(D1,

"warehouse", {T11->item(id="101"), T11->item(id="102")}, {T21->item(id="103"), T21-

>item(id="101")})) with S11[0] being set to Tm2 and P21 being incremented. Figure

 23

3.11 shows an abstract visualization of the merge so far within the current call to

MergeChildren.

Figure 3.11: Visualization of Merging Steps, Part 10

Step MC.12.3 is omitted. Step MC.12.4 adds the elements of S11 to Lm1 and

increments Pe1 before moving to step MC.4. Figure 3.12 shows a visualization of the

merge at this point.

 24

Figure 3.12: Visualization of Merging Steps, Part 11

Step MC.4 does not apply, but step MC.5 does, so Lm1 is returned by

MergeChildren. The calling step MT.3 resumes (of the call MergeTrees(ex1.dtd,

ex1_1.xml:<warehouse>, ex1_2.xml:<warehouse>)), where Tm1's list of children is set

to Lm1. Tm1 is returned, and the merge is complete, as illustrated in figure 3.13.

Figure 3.13: Merge Result

 25

Distributed Network Design and Overview

 Prior to our efforts, a network implementation of the conceptual system

architecture (see Figure 2.1) had not been done. In considering an implementation of the

system, we had one primary architectural change we wanted to introduce: the removal of

the single system coordinator. The coordinator represented a single point where user

queries would be posed, and the answers to those queries would be given to the user.

Charged with the responsibilities of query expansion, preparation, optimization,

transformation, execution coordination, and result aggregation, the coordinator was

effectively a centralized authority residing over the system. This brought to the system

all of the traditional problems of centralized management, including administration and

configuration. The modified system architecture is purely peer-to-peer. Queries can be

initiated from any client; that client is responsible for result aggregation as it receives

results from other clients. Query translation is expected to occur at each client since it

has complete knowledge of its own data modeling and semantic mappings onto the global

ontology. Issues of optimization are not currently addressed by our system, but it is

envisioned that a coordination/optimization component would be added to each client in

the future (see the Future Work section).

 One of our key goals in designing the network was to produce a system that will

be used by other researchers for future development, testing, and other continuing work

under the Lakshmanan and Sadri approach to interoperability on XML data. To support

this goal we emphasized extendibility and flexibility in the design, where possible.

 26

 As the system is expected to reside on the Internet (or an intranet), there were no

specific network hardware design or even application-hardware interaction issues to

consider; use of a sufficiently advanced programming language (such as Java or C++)

allows the developer to rely on the language's API to provide functionality for

establishing connections between clients on an existing (physical) network, and/or

transmitting data across a network. Left for the developer is the design of the data to be

transmitted and what meaning that data has, as well as the determination of when

communications are to take place. In our design, all communications between clients are

encapsulated within an application layer defined object, which we have called "Packet".

Hence the data transmitted across the network is representative of these Packet objects.

The available logical commands which clients can issue are all defined within the Packet

object; the clients themselves are designed to conditionally react to the type of command

issued. This provides the system with the flexibility to handle many commands and

provides an organizational structure to ease the task of extending the body of commands

used.

 In order to avoid complex issues of network traffic management, we adopt a peer

network model in which each network client knows of the existence of all other clients on

the network and is capable of contacting them directly; this contrasts with other peer

network models in which network communications are relayed along paths across

multiple peers in order to reach all clients in the network (see the Related Work section).

Figure 3.14 illustrates our peer network model.

 27

Figure 3.14: Peer Network Model

 Communications between peers is carried out over TCP/IP connections (provided

through functionality available in the programming language's API). Persistent

connections are not used; when a peer needs to contact another peer, it refers to its table

of known hosts to find the IP address and port number of the target peer, then connects to

that peer long enough to send the desired data, closing its connection afterwards.

Certainly the use of TCP/IP connections adds some overhead to the system, but the

protocol’s reliability and error control mechanisms guarantee a high probability that the

peer’s transmission will correctly reach its target. Clients can join the system by

connecting to another client already on the system. The receiving client notifies all other

clients of the new client, as well as informing the new client about the existing members

of the network.

 28

 Each client listens on a configurable port for incoming communications. Since

there is no synchronization of communications, the clients are multi-threaded to handle

multiple simultaneous connections. As an incoming connection is established, the client

spawns a new thread to handle that connection.

 One of the tasks that clients have to accomplish is to translate received queries

and run them locally. This is modularized into a "query engine" which is solely

responsible for performing these duties. The engine is designed such that any of multiple

translation functions can be invoked. This is another area where ease of extendibility is

evident, as adding new translation schemes is straightforward, and the mechanism for

calling those schemes is already available.

 Each client provides functionality to initiate a query over the system. In the

process of initiating a query, the client must translate and execute the query locally in

addition to communicating its request with the other clients on the network. The client

must keep track of the results of the query it has initiated until all results are received

from the other clients, or until the query has expired against a configurable time limit.

Though the client provides this query execution functionality, the client itself is entirely

decoupled from any sort of user interface. This allows the client to be created and

controlled through flexible means. Our system employs the Facade design pattern

whereby a controller object binds a user interface to a client such that a user may interact

with the system. In our testing of the system, we also created a sort of "dumb" client

wrapper which simply instantiates a client to act as a data source listening on the network

and provides no user interaction mechanisms.

 29

Implementation and Code Organization

 Our system is implemented in Java under the J2SE 1.5.0 API [7]. The code was

developed under two separate projects. The first project is XMLMerge, which

implements the XML merging functionality of the system, primarily as specified in the

MergeTrees, MergeAttributes, and MergeChildren algorithms of the DTD Driven

Merging approach. The second project is XMLT, which implements the distributed

network clients and user interface to the system. XMLT uses the functionality

implemented in XMLMerge to handle the merging of query results. Appendix A

contains class diagrams for both projects.

 XMLMerge makes use of the Jakarta-ORO Java classes available from the

Apache Jakarta Project website [6] as a Java jar file. This library contains a set of text-

processing Java classes that provide Perl and AWK-like regular expression functionality.

It also contains various utility classes for performing substitutions, splits, and other string

manipulations.

 XMLT makes use of the Saxon-B 8.8 Java classes available from the Saxonica

website [8] as a collection of Java jar files. These libraries contain classes that provide a

complete, conformant implementation of the XQuery 1.0 and XPath 1.0 W3C

Recommendations. XMLT also makes use of XMLMerge via a distribution of the

project as a jar file.

XMLMerge Overview

 The XMLMerge project contains the following classes:

 30

xmlmerge.model.Attribute
xmlmerge.model.DTDDocument
xmlmerge.model.DTDElement
xmlmerge.model.ElementChild
xmlmerge.model.Node
xmlmerge.model.Quantifier
xmlmerge.model.XMLMerger

The Attribute, DTDDocument, DTDElement, ElementChild, and Quantifier classes are

used to model DTD documents and their structured content. DTDDocument is capable of

reading a DTD document from the local file system or parsing a string representation of a

DTD. The Node class models an XML element as a node under the conceptualization of

an XML document as a tree of nodes (elements).

The XMLMerger class fully implements the MergeTrees, MergeAttributes, and

MergeChildren algorithms. It is capable of reading XML documents from the local file

system or parsing string representations of XML data to create trees of Nodes from the

XML, to be used in the merging algorithms. It uses DTDDocument for the DTD

documents needed by the algorithms.

XMLT Overview

 The XMLT project contains the following classes:

xmltdistributed.model.ClientRequestHandler
xmltdistributed.model.Packet
xmltdistributed.model.QueryEngine
xmltdistributed.model.QueryRecord
xmltdistributed.model.RecordWatchThread
xmltdistributed.model.XMLTHost
xmltdistributed.network.XMLTDistributedClient
xmltgui.XMLTGUI

 31

xmltgui.model.XMLTController

The XMLTDistributedClient implements a multi-threaded peer network client. It opens a

socket and listens on a specified port waiting for incoming connections. When it receives

a connection, it spawns a new ClientRequestHandler thread to process the request. It

uses the QueryRecord class to track queries it initiates and poses over the network; a

running result is kept within the QueryRecord, as well as information on which clients

have not yet responded. The RecordWatchThread class is a background thread of

XMLTDistributedClient’s, which is responsible for monitoring QueryRecords and re-

querying peers who have not responded within a certain time threshold, or expiring

QueryRecords if they have become too old.

 All communications between clients are encapsulated within Packet objects. This

takes advantage of Java’s features for streaming objects over sockets. The

ClientRequestHandlers process Packets they receive and, depending upon their contents,

they may take several different courses of action, including executing a query and

transmitting its response, updating a QueryRecord with a received response, adding a

new peer to the list of known hosts, and notifying the network of a new peer who joined.

 The QueryEngine class is responsible for executing XQueries at the local source.

It uses the Saxon-B 8.8 classes previously explained.

 The XMLTGUI class presents a GUI interface to the user through which he may

type in or load from file a query to execute, execute the query over the network, and view

the results of the query. The XMLTController class handles all interaction between the

 32

XMLTGUI and XMLTDistributedClient in order to keep the two classes decoupled from

each other.

 33

CHAPTER IV

RELATED WORK

Crossing the Structure Chasm [1]

 In this paper, the authors observe that most of the world's data exists outside of

database systems. The primary reason they give for this is that the majority of data

outside of database systems is unstructured. From a user’s point of view, unstructured

data has several appealing properties, such as ease of authoring, querying and data

sharing. In contrast, dealing with structured data, such as that found in a database

system, is more complex, even though it offers its own set of advantages, such as richer

query languages and more precise answers to queries. They call this difference between

the world of structured data and the world of unstructured data the “structure chasm” and

claim that by attempting to bridge it they hope to leverage the advantages of both worlds.

Along this line they introduce the REVERE System, a development on their part which

includes three innovations [1]:

(1) A data creation environment that entices people to structure data and enables
them to do it rapidly;

(2) A data sharing environment, based on a peer data management system, in
which a web of data is created by establishing local mappings between
schemas, and query answering is done over the transitive closure of these
mappings;

(3) A novel set of tools that are based on computing statistics over corpora of
schemata and structured data.

 34

The idea is that a cooperating user will enter their (local) unstructured data into the

system, and the system will structure the data in a meaningful, system-usable way. This

includes understanding and extrapolating key and other constraints imposed by the data.

There would also be tools for establishing source-to-source schema mappings between

the local source and other sources that have structurally similar schemas.

 One of the components of the REVERE System which the authors describe is

Piazza, a peer data management system (PDMS) that allows for decentralized, ad hoc

management of data at the peer level; peers can act as data providers, mediators, or query

nodes. Semantic mappings are developed between small sets of peers. Queries can be

posed using the local schema of one peer and transitively traverse the system to obtain a

complete answer.

Efficient Query Reformulation in Peer Data Management Systems [5]

 In this paper, Tatarinov and Halevy build upon some of the work they had done in

“Crossing the Structure Chasm” [1]. They start with a view of PDMS’s in terms of

individual peers being associated with a schema that represents its local data. Semantic

mappings between pairs or sets of peers provide “semantic paths” by which a query

issued at one peer will be reformulated and traverse the network obtaining relevant data

from any reachable peer. The authors describe techniques for optimizing the query

reformulation process, focusing on ways to prune reformulation paths and minimize

reformulated queries. They also demonstrate the advantages of pre-computing the

 35

semantic paths within the PDMS. Their research is tested out on (almost) real-life XML

data sets using Piazza.

Continuing XML Interoperability Research

 Research and development on the Lakshmanan and Sadri approach to

interoperability on XML data [3] is being continued by researchers under the direction of

Dr. Sadri. One such researcher, John F. Harney, examines issues of query optimization

in his thesis [2]. As the original authors identified, processing global queries that require

inter-source sub-queries can result in an exponentially growing number of joins which

must be performed (see the Previous Work section). In their paper, the original authors

discuss these issues and propose techniques for identifying when inter-source processing

must be done and how to more efficiently carry out that processing. In his thesis, Harney

expands upon these optimization approaches and proposes additional techniques. As part

of his research, he provides partial C++ implementations of the query translation

algorithm and his query optimization algorithms.

 36

CHAPTER V

CONCLUSIONS AND FUTURE WORK

 In their paper, Laksmanan and Sadri introduce an approach to interoperability on

XML data residing across a network of heterogeneous sources [3]. In the later work of

these authors and other researchers, their concepts are further enriched with the

introduction of new ideas and more detailed developments. This thesis has built upon the

existing body of work under this approach to interoperability on XML data. By

implementing a peer-to-peer network we move the system further away from reliance

upon any one authoritative central component. The implementation of the network also

provides future researchers with a platform on which they can further contribute to the

system and conduct extensive testing.

 Our exploration of XML merging provides another useful piece to the picture by

creating a mechanism for the combination of query results. XML merging also opens up

new possibilities in other areas of XML research. With the continuing rise of the

popularity of XML, particularly in areas of data storage, application interaction, and

configuration management, the merging of XML data is likely to become a more visible

subject.

 37

Future Research

 In the course of designing our merging algorithms, we uncovered two strong

topics of potential future research. The first topic relates to determining how XML data

is merged together. Our merging algorithms use a simplified version of DTD, and

certainly the loosening of this restriction, particularly in terms of key constraints, would

allow for more flexibility in determining when two XML elements should or should not

be merged (beyond whether they logically can be merged). But in addition to this, there

are several potential data sets where a DTD alone is not sufficient to determine when it is

meaningful or not, in terms of the corresponding application domain, to merge multiple

XML elements with the same values. Consider for example, XML documents that store

statistical data; in this application domain, it may be desirable for the merge of two XML

documents to contain multiple elements with the same values and though the

corresponding DTD may indicate that multiple XML elements of the same type are

permissible, the DTD cannot indicate whether XML elements with the same value should

or should not be merged together. One potential solution to this would be to add custom

markup tags to the DTD or otherwise capture application domain specific meta-

information, which would be used during the merge. W3C’s XML Schema [11] may at

least partially accomplish this with its richer language.

 The second topic of future interest we identified is related to the user generated

global query. To merge XML data together we require a DTD against which the data is

valid. However, when a user within the system generates an XQuery at one of the local

sources, the user can specify an arbitrary (assumed XML) format and structure for the

 38

result, as they define it within the XQuery itself. So the issue emerges of determining a

corresponding DTD to a given XQuery. Research and commercial products designed to

generate a DTD from a given XML document exist, but to our knowledge this has not yet

been leveraged into the area of XQuery.

 Our system implementation assumes a simplified distributed network model in

which all clients can connect directly to each other. Current research in the field of peer-

to-peer networks appears focused on more loosely connected and much more complex

architectures. Additional research and expansion of our network in this direction is of

future interest, particularly as this may generate new possibilities for our system to

leverage some of the related XML interoperability research being done which also

utilizes peer networks or peer data management systems. To this end, extensive

performance testing on our system would almost certainly be valuable in determining the

evolutionary course the network implementation should take.

Future System Development

 We have identified a few system enhancements for both the XMLMerge project

and the XMLT project, which if implemented would substantially expand the

functionality of the system in the direction of the overall goal of implementing the

Lakshmanan and Sadri approach to interoperability on XML data [3]. As such we

consider these enhancements to carry the highest priority in terms of the future

development of the system.

 For the XMLMerge project, the top priority is to extend the merging algorithms to

handle more of the functionality of DTD as defined in theW3C Recommendation [10], or

 39

possibly modify the merging algorithms to work with the W3C’s XML Schema [11].

This would allow the system to perform more flexible, meaningful, and useful merging as

valuable mechanisms such as key constraints and uniqueness could be utilized.

 For the XMLT project, a top priority is the implementation of the query

translation algorithm. We are currently working to convert and enhance John Harney’s

partial (C++) implementation of the query translation algorithm into Java. This will

allow the network peers to use their local semantic mappings to translate a global query

into an appropriate local query, as envisioned in the overall system.

 Another priority for XMLT is to implement a form of query coordination at each

peer. In the original conceptual system, there was a single coordinator to handle (global)

query optimizations and inter-source join calculations, as well as performing the joining

itself. As this does not fit a peer network architecture, we envision implementing a

coordinator module at each peer which would perform these optimizations and

calculations for queries originated at that peer. These coordinators would need certain

information about the data available at the various nodes on the network; the network

could be enhanced such that peers are able to communicate this information amongst

each other upon request. With the implementation of these coordinators, the previous

research done on query and join optimization could be applied to the system.

 40

REFERENCES

[1] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J Madhaven, L. McDowell, and I. Tatarinov.

“Crossing the Structure Chasm”. In Proceedings of Conference on Innovative Data

Systems Research, 2003.

[2] J. F. Harney. "An Optimization Approach for XML Data Integration". Master

Thesis, The University of North Carolina at Greensboro, 2005.

[3] L. Lakshmanan and F. Sadri. "Interoperability on XML Data". In International

Semantic Web Conference, 2003.

[4] A. Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts, 4th edition.

McGraw Hill, Boston, MA, 2002.

[5] I. Tatarinov, and A. Halevy. “Efficient Query Reformulation in Peer-Data

Management Systems”. In SIGMOD Conference, 2004.

[6] http://jakarta.apache.org/oro/

[7] http://java.sun.com/

[8] http://www.saxonica.com/

[9] http://www.w3.org/TR/rdf-syntax-grammar/

[10] http://www.w3.org/TR/REC-xml/

[11] http://www.w3.org/TR/xmlschema11-1/

[12] http://www.w3.org/TR/xpath

[13] http://www.w3.org/TR/xquery/

 41

APPENDIX A – CLASS DIAGRAMS

Figure A.1: XMLMerge Class Diagram

 42

Figure A.2: XMLT Class Diagram

 43

	LIST OF FIGURES
	PREVIOUS WORK

	XML Technologies
	XML Interoperability Research
	CONTRIBUTIONS

	XML Merging
	Schema-less Merging
	DTD Driven Merging
	Algorithm MergeTrees
	Algorithm MergeAttributes
	Algorithm MergeChildren

	DTD Driven Merging Example
	Figure 3.2: Visualization of Merging Steps, Part 1
	Figure 3.3: Visualization of Merging Steps, Part 2
	Figure 3.4: Visualization of Merging Steps, Part 3
	Figure 3.5: Visualization of Merging Steps, Part 4
	Figure 3.6: Visualization of Merging Steps, Part 5
	Figure 3.7: Visualization of Merging Steps, Part 6
	Figure 3.8: Visualization of Merging Steps, Part 7
	Figure 3.9: Visualization of Merging Steps, Part 8
	Figure 3.10: Visualization of Merging Steps, Part 9
	Figure 3.11: Visualization of Merging Steps, Part 10
	Figure 3.12: Visualization of Merging Steps, Part 11
	Figure 3.13: Merge Result

	Distributed Network Design and Overview
	Implementation and Code Organization
	Efficient Query Reformulation in Peer Data Management Systems [5]
	Continuing XML Interoperability Research
	CONCLUSIONS AND FUTURE WORK

	
	Future Research
	Future System Development

