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In this study I propose a statistical model, the Riparian Nutrient Attenuation 

Model (RNAM), designed to quickly and accurately access the nutrient attenuation 

capability of riparian buffer zones. This information may help land managers evaluate 

riparian systems in terms of their capacity to retain nutrients. 

Developed using data available in the literature, RNAM uses three physical 

properties of the riparian, including vegetation type, slope, and width, to estimate the 

retention of total N, NO3
- and P. Three RNAM sub-models, RNAM-nitrogen, RNAM-

nitrate and RNAM-phosphorus, were developed to handle each of the three nutrients. In 

developing RNAM, the relationships between the predictor variables and nutrient 

retention were examined. 

A preliminary test of RNAM indicated that each of the sub-models is capable of 

producing reasonably accurate estimations of percent nutrient reduction. RNAM-nitrogen, 

however, produced inconsistent estimates of nitrogen reduction at higher levels. More 

data is needed to calibrate and validate RNAM.
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CHAPTER I

INTRODUCTION

Riparian zones are transitional areas that lie between upland terrestrial and aquatic 

environments. Healthy riparian zones are often composed of unique and diverse 

ecosystems (Forman 1997; Xiong and Nilsson 1997; Sparovek et al. 2002). Due to their 

spatial and topographical position between the stream and upland matrix, riparian zones 

are capable of performing a variety of functions critical to the health and stability of the 

stream ecosystem. Riparian vegetation, for instance, helps to maintain stream bank 

stability, moderate stream water temperature, and provide habitats for terrestrial and 

aquatic organisms (Karr and Schlosser 1977; Sweeney 1992). In addition, a variety of 

riparian biotic and abiotic components interact with and retain sediment from upland 

erosion, and buffer excessive nutrient loads from upland surface runoff and groundwater 

flow (Hill 1996; Casey et al. 2001). 

In the past, riparian research related to nutrient buffering has primarily focused on 

agricultural areas, which receive excessive loads of nutrients through agricultural 

activities, particularly, the overuse fertilizers. With the recognition that urban watersheds 

deliver significant volumes of NO3
-, NH4+, PO4

-3 and other nutrient pollutants to stream 

and coastal waters, riparian buffers are receiving more attention (Miller et al. 1997). 

Groffman and Crawford (2003) found that some urban riparian zones, after having 

undergone significant alteration (with a variety of litter, soil disturbance, and exotic plant 
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species), were still capable of acting as effective biological sinks with denitrification 

potential (DNP) equal to that of much less disturbed rural riparian zones. Likewise, a 

recent study conducted by Bishop and Mou (2004) indicated that the top layer of soil 

within the urban riparian study sites (both forested and grassy) were able to filter out 99%, 

95% and >85% of applied NH4
+, PO4

-3 and NO3
- carried by runoff, respectively. These 

and other similar studies (Peterjohn and Correll 1984; Hill 1996; Casey et al. 2001;

Groffman et al. 2002) have clearly indicated that urban riparian zones are capable of 

effectively buffering pollutants.  

Urban riparian zones, however, are uniquely vulnerable to a wide variety of 

anthropogenic alterations and disturbances that can influence the morphology and 

biological composition of the riparian, and ultimately decrease its ability to perform 

critical buffering functions. Perhaps the most influential – and obvious – anthropogenic 

alterations in urban areas are impervious surfaces, such as buildings, roads, parking lots, 

and other paved surfaces (Freeman and Schorr 2004). Impervious surfaces, along with 

unusually compact soils in urban areas, decrease the direct infiltration of water into the 

soil, thereby increasing stormwater runoff. Stormwater is typically channeled directly to 

the stream through pipes or drainage basins, often entirely bypassing riparian areas 

(Dunne and Leopold 1978; Rose and Peters 2001; Groffman and Crawford 2003). 

These hydrological alterations, which focus the movement of large quantities of 

stormwater runoff quickly and frequently to the stream, have important consequences for 

both the stream and riparian environment (Paul and Meyer 2001; Groffman and Crawford 

2003). The increase in stormwater volume and water flow speed in the stream often 
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causes incision or “downcutting” of the stream channel (Henshaw and Booth 2000). 

Downcutting, produced by fast moving water scouring out sediment left behind by 

construction projects and (perhaps earlier) agricultural activity within the watershed, 

results in a widening and deepening of the stream channel and an increase in suspended 

sediment concentration (Booth and Jackson 1997; Henshaw and Booth 2000; Paul and 

Meyer 2001). As the stream water becomes more turbid, less light is able to penetrate the 

water column, reducing the photosynthetic capacity of benthic plants and the ability of 

fish and other aquatic organisms to visually forage for prey. Entire aquatic food chains 

can be disrupted in this manner (Lenat and Crawford 1994; Wood and Armitage 1997; 

Paul and Meyer 2001).

The combination of stream incision and reduced infiltration in urban watersheds 

can significantly reduce riparian water table levels. Groffman et al. (2002) observed that 

the water table depth at two suburban and one urban riparian site in the Baltimore, MD 

area (over a 2 year period) was significantly lower than at a forested reference site. 

Lowering urban riparian water table depth can alter the structure and function of these 

ecosystems. A decrease in soil water content, for instance, can significantly affect the 

composition of riparian plant communities, as well as the fauna that depend on them, that 

prefer wet, hydric soils. In addition, a change from hydric to mesic soils can have a 

dramatic impact on the microbial processes critical to the consumption of NO3
- within the 

riparian. Groffman et al. (2002) found that the anaerobic process of denitrification was 

lower in urban riparian soils with relatively deep water tables than in forested riparian 

soils with shallow water tables. Finally, riparian zones directly bypassed by drainage 
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systems cannot filter non-point source pollutants, such as NO3
- and PO4

-3, which are 

transported via surface water runoff. Although this may not harm the riparian, it can have 

a significant impact on stream water quality. 

In order to help mitigate the consequences of altered urban watershed hydrology, 

and improve the general capability of riparian zones to act as non-point source pollution 

buffers, thereby protecting stream water quality, it has been proposed that surface water 

runoff from urban uplands be channeled to a source of broad application at the upper 

boundary of “high-quality” riparian corridors (Casey et al. 2001; Groffman and Crawford 

2003). A simple form of this proposed broad application would consist of a storm drain 

pipe or basin that empties into a smaller pore-lined pipe lying perpendicular to the stream 

for some lateral distance. The application pipe, located upslope from the stream, would 

allow surface runoff to slowly drain down the slope and through the riparian zone. As the 

flow moves toward the stream, water and suspended pollutants can be physically slowed 

through their interaction with riparian vegetation, soil, and organic litter. This allows time 

for water and nutrients to infiltrate the soil and be taken up by vegetation or retained in 

the soil profile. 

In addition to preventing excessive nutrient loads from reaching the stream, this 

course of action should also help reduce the frequency and severity of flash floods in 

lower order streams. Allowing surface runoff to drain slowly through riparian zones, 

instead of channeled directly into the stream, will decrease the amount of water being 

deposited into the stream following heavy precipitation. Lessening the frequency and 

severity of floods will decrease the current rate of stream bank incision. Consequently, 
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urban stream banks will become more stable, further helping to decrease soil erosion, 

sediment deposition, and the eutrophication of downstream water bodies.

A variety of models currently simulate hydrology and nutrient cycling within and 

around riparian and aquatic ecosystems. Several of these models, including the Riparian 

Ecosystem Management Model (REMM), the Chemicals, Runoff, and Erosion from 

Agricultural Managements Systems (CREAMS) model, the Environmental Management 

Support System (EMSS), and the Soil and Water Assessment Tool (SWAT) were 

developed primarily to evaluate the potential impact of different land management 

practices on local water quality (Kinsel 1980; Lowrance et al. 1998; Vertessy et al. 2001;

Neitsch et al. 2002). None of these complex process models, however, were designed 

specifically to estimate the nutrient attenuation capacity of riparian buffer zones. 

Therefore, the development of a new, less complex, statistical model is necessary to 

evaluate riparian zones in terms of their buffering capability, and quickly identify which 

buffers are most capable of accepting the broad application of storm water proposed in 

this study.
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CHAPTER II

LITERATURE REVIEW

Riparian Functions

The critical functions performed by intact riparian zones can be divided into 

three major categories: protection of water quality, regulation of hydrology and 

geomorphology of the stream, and maintenance of natural biological structure and fitness. 

The health of the entire stream ecosystem depends on these interconnected functions.  

 Riparian zones are capable of protecting stream water quality by regulating three 

critical components: water temperature, nutrient and sediment load. Water temperature in 

lower-order streams is principally controlled by riparian vegetation along stream banks, 

which can provide considerable shade to the stream channel. Overhanging leaves and 

branches help to keep the water cool, especially in summer months. Consequently, the 

removal of riparian vegetation can significantly increase stream water temperature 

(Brown and Krygier 1970; Karr and Schlosser 1977; Holtby 1988). Loss of riparian 

stream bank vegetation can also increase daily water temperature fluctuations and reduce 

temperatures in winter months (Beschta et al. 1987). Water temperature is an important 

aspect of overall water quality, and can be the determining factor in whether cool water 

organisms are able to inhabit the stream.

Riparian zones are able to retain water-suspended nutrients, including various 

forms of nitrogen and phosphorous, before they reach the stream channel (Osborne and 
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Kovacic 1993; Hill 1996; Casey et al. 2001). Reducing the amount of inorganic nutrients 

that reach the stream helps maintain low water turbidity and limit the rise of harmful 

algal blooms in downstream lakes and estuaries (Nebel 1990; Burkholder and Glasgow 

1997). Riparian vegetation physically slows down and takes up dissolved nutrients as 

they move, via surface runoff and shallow subsurface flows, from the upland to the 

stream (Tabacchi et al. 2000). Nutrients also leach into the riparian soil where the may be 

processed by bacteria, or eventually absorbed by plants. In this way, riparian zones act as 

effective nutrient sinks (Lowrance et al. 1997; Groffman 2002). Riparian vegetation, 

however, can also contribute nutrients to the stream in the form of leaves and other 

organic material (Gregory et al. 1991). 

As with dissolved nutrients, riparian zones are effective at retaining sediment 

bound for the stream channel. Sediment, especially in urban areas, commonly originates 

from pockets of soil erosion (Waters 1995; Freeman and Schorr 2004). As sediment 

moves down the hillslopes and through the riparian zone, it comes into contact with a 

variety of vegetation and ground litter (leaves, branches, logs). This interaction slows 

down surface sediment flow, increasing infiltration of water and suspended sediment 

particles (Castelle et al. 1994). 

In addition to water quality, riparian zones can significantly impact the hydrology 

and geomorphology of the stream. For instance, riparian soil, litter, and vegetation 

interrupt the flow of water that carries both nutrients and sediment from the upland 

matrix toward the stream. Infiltration of surface water into the soil profile, and 

subsequent uptake by riparian vegetation, significantly reduces the amount of water that 
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reaches the stream channel. It also slows the rate at which storm water is released into the 

stream following periods of heavy precipitation (Booth 1990). This relatively slow 

release of storm water not only helps reduce the amount of nutrients and sediment that 

reaches the stream, it also decreases stream bank incision by moderating the volume and 

rate of in-stream flow (Paul and Meyer 2001; Henshaw and Booth 2000).

The geomorphology of the stream is strongly influenced by a variety of large 

woody debris (LWD), provided by riparian vegetation. LWD, which include large 

branches, tree trunks, and rootwads, are usually washed into the stream channel from the 

surrounding watershed during flood events, or fall directly into the channel from adjacent 

stream banks. LWD directly impacts the rate and path of in-stream flow by physically 

blocking the water, and creating small impoundments, such as pools and point bars 

(Robinson and Beschta 1990; Forman 1997). The speed of water flow, especially in 

lower order channels, is commonly reduced by LWD and the impoundments they create. 

By dissipating some of the hydrologic energy of the stream flow, LWD helps to decrease 

incision and stabilize the stream bank (Bilby 1988). 

The riparian zone helps sustain the biological structure and fitness of the stream 

ecosystem by performing the functions necessary to maintain water quality, and 

preserving natural geomorphic and hydrological conditions. Without riparian vegetation, 

for example, the water temperature of the stream would increase, leading to a dramatic 

decrease in dissolved oxygen concentration. Many aquatic organisms, including salmon 

and steelhead, require high levels of dissolved oxygen (> 4 mg/l), and would be 

negatively affected by an increase in water temperature (Alabaster and Gough 1986; 
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Mueller and Stadelmann 2004). Furthermore, without the filtering capacity of adjacent 

riparian zones, the diversity and composition of the entire aquatic community may be 

disrupted by the excessive influx of sediment and nutrients. Although the overall biomass 

of the stream may actually increase as result, the composition of organisms will change 

dramatically as turbidity increases and oxygen levels drop. Overall species diversity 

generally decreases as many oxygen-dependent fish and benthic macroinvertebrates and 

plants are replaced by species tolerant of eutrophic conditions (Sand-Jensen and Riis 

2001). 

Another critical biological function of riparian vegetation is the contribution of 

LWD to the stream channel. Not only does LWD stabilize the stream bank, it provides 

shelter for a variety of fish and other aquatic organisms. Deep pools that rarely form 

without the input of LWD are frequently the habitat of many species of fish (Keller 1971; 

Forman 1997; Opperman and Merenlender 2004). Trout density and biomass, for 

instance, was found to be greater in stream segments with LWD dams then in control 

segments without impoundments (Lehane et al. 2002).

Riparian vegetation is also an important source of food at the base of the aquatic 

food web, especially for low order streams. A substantial amount of organic matter is 

deposited into the stream from falling leaves and other plant material. Bacteria, fungi, and 

protozoa break down the organic material into detritus, which is consumed by 

microcrustacea and a variety of aquatic organisms (Forman 1997; Ribblett et al. 2005). 

Microcrustacea are typically consumed by macroinvertebrates, which are themselves 

food for fish, amphibians, and other members of the stream community. When the input 
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of organic material from riparian vegetation is diminished or removed, the entire aquatic 

food web can be disrupted (Johnson and Wallace 2005). 

Riparian Zones as Nutrient Buffers

The role of riparian zones as “nutrient buffers” has been documented by 

numerous studies conducted throughout the past few decades. Collectively, these studies 

have shown that most riparian zones can filter a variety of nutrient pollutants moving 

from the upland matrix to the stream via surface runoff and subsurface water flow (Casey 

et al. 2001). A pioneering study by Peterjohn and Correll (1984) found that a riparian 

forest in Maryland filtered 45 kg nitrate per ha, per year, from subsurface water moving 

from agricultural land towards the stream. Pinay (1986) estimated that riparian forest 

vegetation retained 75% of the N and 45% of the P applied to nearby cropland. Several 

hundred studies have since been conducted, firmly establishing the riparian as a critical 

sink for several nutrients, especially nitrate (NO3
-), ammonium (NH4+), and phosphorus 

(P) (e.g., Hill 1996; Lowrance et al. 1997; Casey et al. 2001; Groffman et al. 2002; Hill et 

al. 2004).

Nitrate

Nitrate, the most common pollutant found in U.S. drinking water, is a common 

derivative of anthropogenic activities, including fertilizer application, waste water 

treatment, and fossil fuel combustion (USEPA 1990; Groffman et al. 2002). Excessive 

nitrate levels in both fresh water and estuarine ecosystems can facilitate eutrophication 

(Vitousek et al. 1997). Under eutrophic conditions, algal blooms greatly disturb the 

ecosystems of lakes, rivers, and coastal waters by increasing turbidity and decreasing 
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dissolved oxygen content. Benthic plants die off as a consequence of reduced sunlight 

infiltration, and a variety of fish suffocate from lack of oxygen (Nebel 1990). High levels 

of nitrate in wetlands can also decrease native species richness by enhancing the 

colonization and growth of invasive vegetation (Green and Galatowitsch 2002).

Due to its potential to undermine the water quality and integrity of wetland 

ecosystems, the majority of riparian-oriented research has focused on the movement and 

biogeochemical processing of nitrate in agricultural watersheds (Peterjohn and Correll 

1984; Vought et al. 1995; Lowrance et al. 1997). This research has yielded several 

important insights into the movement of NO3
- and the processes capable of mitigating its 

release into freshwater streams and marine waters. First, nitrate anion moves freely with 

surface and groundwater flow. Thus, it can easily move from source locations (usually 

upland crop fields) to nearby streams either with surface runoff or by leaching into 

groundwater (Peterjohn and Correll 1984; Vought et al. 1995; Lowrance et al. 1997). 

Second, the concentration of NO3
- in water may decrease substantially as it moves along 

riparian flow paths (Hill 1996; Gold et al. 1998; Casey et al. 2001). Third, the capacity of 

riparian zones to attenuate NO3
- is highly dependent upon the ability of riparian 

vegetation and soil microbes to capture and process the nutrient. Anaerobic microbes 

convert NO3
- to N gases (N2O, N2O, N2) through denitrification (Groffman and Crawford 

2003). The N gases are then released into the atmosphere and liberated from the 

ecosystem. In addition, most riparian vegetation can readily take up nitrate from the soil, 

incorporating the nutrient into various tissues (Firestone, 1982; Groffman 2002). 
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Ammonium

Ammonium (NH4
+) is another prevalent form of inorganic nitrogen utilized by 

plants. Most NH4
+ enters the ecosystem through organic matter decomposition, and as a 

relatively minor source, fixation by soil-dwelling organisms, which reduce atmospheric 

N2 to NH4
+ (Nebel 1990; Kimmins 1997). Like nitrate (NO3

-), ammonium is also 

deposited as a component of several common fertilizers, such as ammonium sulfate 

((NH4)2SO4) and ammonium nitrate (NH4NO3) (Aldrich 1980).

Negatively charged soil particles, including clay and humus, attract NH4
+

electromagnetically to their surface. As a result, NH4
+ is typically bound to the surfaces 

of soil particles, and may be less likely to leach into groundwater or move via water flow 

in soil (Aldrich 1980). Nonetheless, NH4
+ is readily taken up by the root systems of 

plants and a wide variety of soil microbes. The decay of these organisms returns organic 

nitrogen to the soil (Aldrich 1980; Nebel 1990; Paul and Clark 1996).

The rate at which NH4
+ is absorbed by plants depends on several factors, 

including soil composition, temperature, pH, and availability of other nutrients. An 

increase in pH (up to 7.4), temperature (up to 30 C), soil Ca content, and organic matter 

content typically increases the rate of NH4
+ absorption (Marcus-Wyner and Rains 1982; 

Singh et al. 1984; Fenn and Taylor 1990). 

In addition to absorption by plant and soil microbes, NH4
+ may also be oxidized 

to NO3
- by nitrifying bacteria, becoming free anions in soil water, or reduced to 

anhydrous ammonia when soil pH is high, and released to the atmosphere via 
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volatilization (Aldrich 1980; Pinay et al. 1993). Each of these processes may occur as 

NH4
+ transverses the riparian zone, making it an effective sink for soil NH4

+.

Phosphorus 

Phosphorus (P) is a highly limiting macronutrient for plant growth in many 

freshwater ecosystems, second only to nitrogen (Schachtman et al. 1998). For this reason, 

phosphorus in the form of phosphate (PO4
-3) is a common component of many fertilizers 

applied to agricultural fields and urban lawns. Phosphates are also routinely used in 

laundry detergents as a water softener, although this practice has been strictly regulated in 

many areas and prohibited in at least 27 states (Nebel 1990; Litke 1999). Nevertheless, 

large quantities of P are continuously transported with sediment via surface runoff to 

lakes, streams, and rivers where it contributes to (primarily freshwater) eutrophication 

(Carpenter et al. 1998). 

Although soil usually contains a large quantity of phosphorus, most of it exists in 

unavailable forms (Troeh and Thompson 1993). The phosphorus contained in organic 

matter is firmly held within the structure of that material until it fully decomposes. 

Inorganic phosphorus, which comes from the mineral apatite, is typically adsorbed by 

iron and aluminum compounds in the soil (Troeh and Thompson 1993). Dissolved 

inorganic phosphorus, usually in the form H2PO4
- or HPO4

-2, are readily taken up by plant 

roots via active or passive transport (Troeh and Thompson 1993; Schachtman et al. 1998). 

Symbiotic mycorrhizal fungi that grow out into the soil from plant roots often enhance 

uptake of phosphorus (Brady and Weil 2001). However, excessive soluble inorganic P, 

i.e., H2PO4
- and HPO4

-2 can easily react with soil Al, Fe, and Mn, and precipitate in the 
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soil profile (Brady and Weil 2001). Large quantities of phosphorus adsorbed to soil 

particles may be transported by soil erosion. Unlike nitrogen, however, phosphorus 

cannot to be liberated from the ecosystem in a gaseous phase. Therefore, riparian zones 

may be characterized as areas of phosphorus retention rather than removal (Casey et al. 

2001). 

Riparian Models

Several models have been developed to describe and predict riparian buffer zone 

filtering capacity. Philips (1989) developed two physics-based models to describe buffer 

zone effectiveness: the Hydraulic Model and Detention Model. Both models compare the 

buffer zone under study with an arbitrary reference buffer. The Hydraulic model deals 

exclusively with the surface flow of sediments and sediment-bound materials, whereas 

the Detention Model also takes into consideration subsurface flow. The Philips Models 

have yet to be calibrated or validated experimentally using field data. In addition, Philips’ 

reference buffers were chosen, in his own words, “somewhat arbitrarily,” which may 

limit the accuracy of the models (Philips 1989).

The Riparian Ecosystem Management Model (REMM) simulates daily surface 

and subsurface water movement, nutrient cycling, sediment transport and deposition, and 

plant growth within a three-zone riparian buffer running parallel to the stream (Lowrance 

et al. 1998). Each zone is classified by degree of management, with the least managed 

zone, consisting of undisturbed forest, closest to the stream bank. The REMM computer 

program is designed to allow riparian buffer managers to determine the impact of several 
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physical and climatic variables, including slope, vegetation, precipitation, and soil, on the 

water quality of the adjacent stream (Lowrance et al. 1998).

Initial testing of the model’s hydrological component at the Southeast Watershed 

Research Laboratory in Tifton, GA showed that REMM was capable of producing a 

reasonable estimation of water table levels in a three-zone riparian buffer (Inamdar et al.

1998a). A separate study was carried out to evaluate the nutrient component of REMM. 

Nitrate concentrations in subsurface flow calculated by REMM were significantly close 

approximations in two out of the three zones of a single riparian buffer. REMM 

predictions of overall soil water nitrate concentrations within each zone, however, were 

significantly lower than observed (Inamdar et al. 1998b). 

Major features of the REMM model include its complexity and data-intensive 

requirements. Therefore, its applicability is likely limited to organizations capable of 

conducting data intensive studies. For those few with the necessary resources, however, 

REMM may prove to be a useful and realistic riparian management tool once calibrated 

to local conditions.

Another well-known riparian model is the Chemical, Runoff, and Erosion from 

Agricultural Management Systems (CREAMS) model. CREAMS simulates runoff, 

erosion, and chemical transport in field-sized agricultural watersheds (Kinsel 1980). 

Several studies have been conducted to test and evaluate the model. Silburn and 

Freebairn (1992) found that CREAMS produced reasonable estimates of total soil 

moisture content, but consistently overestimated runoff volumes by 1 to 39 percent, in 

two areas with self-mulching Vertisol soil. In addition, CREAMS accurately estimated 
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the removal of sediment by grass filter strips (Flannagan et al. 1989), as well as nitrogen 

and phosphorus losses from agricultural fields undergoing different tillage practices 

(Yoon et al., 1992). 

Several catchment-scale models, including the Environmental Management 

Support System (EMSS) (Vertessy et al. 2001) and the Soil and Water Assessment Tool 

(SWAT) (Neitsch et al. 2002), contain components that model riparian buffer 

performance. The ability of riparian zones to affect the water quality of entire watersheds 

provides the basis for their incorporation into these broad-scale simulations. EMSS is a 

composite of several other models that collectively simulate daily transport and storage of 

suspended sediment, nitrogen, and phosphorus at scales of mid-sized watersheds 

consisting of a number of sub-catchments. 

SWAT, like EMSS, is a physically based process model that operates on a daily 

time step (Arnold et al. 1998; Neitsch et al. 2002). In general, the SWAT model is 

primarily used to evaluate the long-term consequences of different agricultural 

management practices on large watersheds and river basins. Components of EMSS 

simulate a wide variety of watershed-scale parameters, including soil temperature, crop 

growth, weather, and the daily movement of nutrients, pesticides, and sediment. Surface 

runoff is calculated using a function that varies non-linearly with soil moisture content 

(Arnold et al. 1998; Neitsch et al. 2002). 

These models, with the possible exception of the Philips Model, are highly 

complex and data-intensive. They are designed to produce estimations of a wide variety 

of physical parameters at different scales. CREAMS, SWAT and EMSS are specifically 
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used to simulate conditions in catchments and watershed-scale areas. Their suitability as 

riparian-scale models has not been confirmed. REMM and the Philips Model operate on a 

site-level, riparian scale, however REMM is too cumbersome for many practical 

applications, and the Philips Model has yet to be sufficiently validated. Each of these 

models is also process-based, and not developed from field data. The model proposed in 

this study, the Riparian Nutrient Attenuation Model (RNAM), is unique in that it is a 

statistical model based upon field data, is simple to use, and is designed specifically to 

estimate nutrient retention in riparian systems. 
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CHAPTER III

PURPOSE OF STUDY

The purpose of this study was to develop a simple statistical model capable of 

evaluating riparian zones in terms of their relative capacity to buffer common nutrient 

pollutants, including total nitrogen (N), nitrate (NO3
-1), total phosphorus (P), and 

phosphate (PO4
-3). By accurately estimating the percent nutrient attenuation of select 

riparian zones, the Riparian Nutrient Attenuation Model (RNAM), will enable the 

quantitative comparison of multiple riparian zones within a watershed, or along a 

particular stream. This will allow land managers to select only the optimal riparian zones 

for the broad application of stormwater, designed to reestablish the natural role of 

riparian corridors as nutrient buffers in urban areas. 

In developing RNAM, the relationships between individual variables used in the 

model, including width, slope, vegetation, and soil, and riparian nutrient retention were 

also evaluated. The nature and extent of these relationships may be useful in further 

improving the RNAM model, as well as developing other relevant models and best land 

management strategies. 

Research Objectives

1) Develop a simple, yet robust, riparian nutrient attenuation model 

(RNAM) to predict the percent reduction of four common nutrients 

(nitrogen, phosphorus, nitrate, phosphate) by riparian buffer zones
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2) Test the accuracy of the model using randomly selected field data.

3) Determine degree of correlation, and potential relationship, between 

      width, slope, vegetation type, soil type and riparian buffer zone 

      nutrient reduction.
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CHAPTER IV

MATERIALS AND METHODS

Data obtained from previously conducted research on nutrient retention in 

riparian buffer zones (Appendix A) will be used to develop a riparian nutrient attenuation 

model (RNAM) for total nitrogen, phosphorus, nitrate, and phosphate. RNAM, as a 

relatively simple statistical mode, will represent a practical alternative to more complex 

process-based models, including REMM and CREAMS. Values of nutrient retention 

obtained from RNAM will constitute rough preliminary estimations, particularly useful to 

land managers interested in quickly gauging the nutrient retention potential of different 

riparian systems. 

Basis for Variable Selection

As a natural system, riparian zones, and the catchments in which they exist, are 

highly complex. There are countless variables, many spatially heterogeneous and 

temporally dynamic, which influence the ability of riparian buffer zones to trap and 

process nutrients as they transverse the system. Some variables, however, contribute to 

overall riparian buffer effectiveness more than others. Decades of research have provided 

a relatively short list of key variables that are known to contribute significantly to riparian 

buffer effectiveness. These variables include buffer width (perpendicular from the stream 
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to edge of riparian), slope, soil characteristics (moisture content, organic matter content, 

infiltration rates, water retention capacity, roughness coefficient, structure, composition, 

temperature, pH, and nutrient loading rates), vegetation type and density/cover, 

catchment size, land use, and precipitation and climate.

Complex riparian models, such as REMM, attempt to incorporate each of these 

variables in great detail to simulate the buffer processes mechanistically. In order to 

construct less data-intensive models, only four key variables will be used in RNAM: 

riparian width, slope, soil type, and vegetation type. These variables were chosen 

primarily because: 1) they contribute directly or indirectly to the ability of riparian 

buffers to remove key nutrients, such as nitrogen and phosphorus, 2) they are recorded in 

nearly all riparian-nutrient studies, allowing RNAM to be constructed using a diverse 

collection of pre-existing data, and 3) they are relatively easy to measure and evaluate in 

the field, providing convenience to land managers. 

Width

Several studies have demonstrated a strong correlation between riparian buffer 

width and nutrient retention. Dillaha et al. (1989) demonstrated that grass buffer strips of 

9.1m wide could remove significantly more nitrogen, phosphorus, and nitrate than those 

of 4.6m wide. In at least two trials involving the 4.6m buffer strip, percent nitrate 

retention was negative, indicating that the short buffer released more nitrate than entered. 

Similarly, Chaubey et al. (1995) tested the nitrogen and phosphorus removal 

effectiveness of five grassy riparian strips of varying width (3.1, 6.1, 9.2, 15.2, and 

21.4m). All other variables, including slope, were kept constant. Both nitrogen and 
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phosphorus retention increased with increasing buffer width. The most significant 

increases in nutrient retention occurred between 3.1m and 6.1m, while the least 

significant increases occurred between 15.2m and 21.4m. Additional studies have 

revealed a similar pattern, indicating that the majority of nutrient retention by riparian 

buffers occurs within the first 5 to 10m (Patty et al. 1997; Schmitt et al. 1999; Uusi-

Kamppa et al. 2000; Abu-Zreig et al. 2003; Blanco-Canqui et al. 2004).

Slope

The slope of the land bordering either side of the stream is considered one of the 

most important variables influencing the speed at which runoff passes through riparian 

buffers. The steeper the slope, the faster runoff moves through the riparian buffer, and the 

less time there is for soluble nutrients to infiltrate riparian soils to be processed. Despite 

this widely accepted relationship, few studies have directly investigated the effect of 

varying slope on riparian nutrient removal. 

Patty et al. (1997) examined the effect of width on the removal of several 

agricultural pollutants, including nitrate and phosphorus, in 12 riparian field plots. Four 

plots of varying widths were each constructed at three experimental sites throughout 

France. The three sites were recorded as having different average slopes: 7%, 10%, and 

15%. Although not discussed by Patty et al. (1997), there appears to be a limited 

relationship between slope and percent nitrate removal. The experimental site with 7% 

slope was consistently more effective at retaining nitrate than the site with 10% slope. 

However, there does not appear to be a significant difference in nitrate retention between 

the sites with 7% and 15% slope. Furthermore, a greater percentage of soluble 
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phosphorus was retained at the site with 15% slope than at either of the two other sites. 

Differences in site conditions, such as soil texture and structure, watershed size and 

topography, and land management practices, make it difficult to compare the effects of 

slope on nutrient removal across the three experimental sites.    

The experimental riparian plots used in Patty et al. (1997) had moderate slopes 

(15% or less) and a wide range of nutrient removal efficiencies. It is generally believed 

that riparian buffers with steep to very steep slopes (perhaps 25% or greater) are largely 

inadequate for removing contaminants (Cohen et al. 1989; Schueler 1995). Furthermore, 

it is well documented that significant increases in percent slope reduce soil infiltration 

rates, a critical step in nutrient retention (USDA-SCS 1984).

Vegetation

Riparian vegetation has a significant impact on both surface and subsurface flow. 

High stem density reduces the velocity of surface water, allowing more time for dissolved 

nutrients and sediment to infiltrate the soil. Plant roots can also increase infiltration rates 

by creating root channels, and reducing soil bulk density. Nutrients in subsurface flow are 

primarily retained via plant root uptake and denitrification by soil microbes (Tabacchi et 

al. 2000). Over time, vegetation increases the organic content of the soil, leading to 

higher denitrification rates (Osborne and Kovacic 1993).

The density, age, and type of vegetation can all effect riparian nutrient retention. 

Riparian buffers covered primarily with grass and other herbaceous vegetation with high 

stem densities typically trap sediment and nutrients faster than mixed hardwood and pine 

forests. Due to the presence of more extensive root systems, however, the soils of riparian 
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forests are often less compact, and thus more favorable to infiltration (Bharati et al. 2002;

Schoonover et al. 2005). The age of vegetation tends to have a greater impact on nutrient 

retention in forested riparian zones. Compared with mature forests, younger forests may 

sequester more nitrogen and phosphorus through additional growth (Mander et al. 1997). 

Several researchers have suggested periodic harvesting of riparian vegetation to 

maintain nutrient retention rates (Kimmins 1977; Groffman et al. 1991; Vought et al. 

1994). Phosphorus, which cannot be liberated to the atmosphere like nitrogen, is 

commonly released from older, phosphorus-saturated forests, which may lead to a net 

increase in phosphorus release to the stream (Osborne and Kovacic 1993). 

Despite their differences, grass, forest, and mixed grass-shrub-forest riparian are 

all reasonably effective at retaining nutrients (Schmitt et al. 1999; Lee et al. 2000; Lee et 

al. 2003). By directly comparing forested and herbaceous riparian buffers, Schoonover et 

al. (2004) found significantly higher nitrate retention in the herbaceous (predominantly 

giant cane, Arundinaria gigantea) riparian buffer at 3.3m. By 10 meters, however, both 

riparian plots demonstrated near 100% retention. High stem density and a thick litter 

layer are believed responsible for the more rapid nitrate retention in the cane-dominated 

riparian buffer (Schoonover et al. 2004). 

Other studies have suggested that forested riparian zones may be equally as 

capable of attenuating nutrients. Schmitt et al. (1999) found no significant difference in 

percent mass reduction of contaminants, including total phosphorus and total nitrogen, 

among 7.5m and 15m wide 2-yr-old grass and grass-shrub-forest riparian plots. 

Interestingly, there was a noticeable difference in nutrient retention between the 2-yr-old 
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and 25-yr-old grass plots; the 25-yr-old grass plots tended to be more effective at 

removing nearly every contaminant. This directly opposes the trend observed between 

forest age and nutrient retention (Osborne and Kovacic 1993, Mander et al. 1997). As 

demonstrated by Abu-Zreig et al. (2003), riparian plots with no vegetation (bare soil) 

perform considerably worse at retaining nutrients than either grass or forest buffers. 

Although intuitive, this finding does provide evidence for the role of vegetation in 

riparian nutrient retention.  

Soil

The relationship between soil and riparian nutrient retention is highly complex.  

Soil texture, structure, moisture content, organic matter content, temperature, CEC, pH, 

etc., can all effect nutrient retention. Several studies have demonstrated the relationship 

between denitrification rates and certain soil properties. Denitrification is generally 

higher in soils with more organic matter and moisture, higher temperatures, and less 

dissolved oxygen (Groffman et al. 1991; Hanson et al. 1994; Willems et al 1996;

Schnabel et al. 1997; Cey et al. 1999). Changes in these soil conditions may therefore 

have a significant impact on overall nitrogen attenuation. 

Soil texture and composition as outlined by the US Department of Agriculture 

(USDA-SCS 1984) has not been shown to have a direct impact on riparian nutrient 

retention. However, soil texture and composition clearly affect rate of surface water 

infiltration, water holding capacity, and nutrient sorption by soil particles (USDA-SCS 

1984; Troeh and Thompson 1993; Gerrard 2000).  
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Model Development

Categorization of Vegetation and Soil

It was first necessary to categorize the two qualitative variables in RNAM, 

vegetation type and soil type. Vegetation was classified into three broad groups for 

incorporation into RNAM: grass, forest, and bare ground. Soil, as described by their 

USDA texture class, was then divided into four major soil groups based upon their 

infiltration rate and runoff potential. This categorization system is based directly upon the 

USDA’s four hydrologic soil groups (USDA 1986). Soil category A contains sand, loamy 

sandy, and sandy loam soils. These soils, commonly found along stream banks, exhibit 

high infiltration rates and a low runoff potential. Soil category B consists of the soils silt 

loam and silt. Soil profiles composed primarily of silt have moderate infiltration rates and 

a moderate runoff potential. They are also moderately to well drained and have a fine to 

somewhat coarse texture. Sandy clay loam is the only soil texture in category C. This soil 

is characterized by a layer of moderately fine to fine particles that hinder the downward 

movement of water. Infiltration rates are low, and runoff potential is moderate to high. 

Soil category C was not represented in the study; there was no soil with a sandy clay 

loam texture. Finally, soil category D contains the soils clay loam, silty clay loam, sandy 

clay, silty clay, and clay. These clay soils have very low infiltration rates and the highest 

runoff potential (USDA 1986). 

Creation of Dummy Variables

Following the categorization of vegetation and soil, the two nominal variables 

were translated into multiple dummy variables for incorporation into RNAM.  This 
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translation allowed the two nominal variables to be treated as interval variables in the 

linear regression model. Where only two classifications were present, such as vegetation 

types grass and forest for nitrogen and nitrate, a 0 and 1 were used to delineate the two 

options. In cases where variables contained more than two classifications, such as soil 

categories A, B, and D for all nutrients, or vegetation types grass, forest, and bare ground 

for phosphorus, the following coding schemes were used:

vegetation dv1 dv2 soil ds1 ds2
Forest 1 0 Soil Cat. A 1 0
Bare Ground 0 1 Soil Cat. D 0 1
Grass 0 0 Soil Cat. B 0 0

In the above table, dv1 represents the dummy variable for forest vegetation, dv2 the 

dummy variable for bare ground (no vegetation), ds1 the dummy variable for soil 

category A, and ds2 the dummy variable for soil category D. Grass and soil category B, 

which contained the greatest number of data points, were chosen as the reference 

categories against which all other categories within that variable would be measured. 

Additional vegetation and soil dummy variables may be created in the future to 

expand the applicability of RNAM. The availability of data for soil category C, for 

example, would allow for the creation of a third dummy variable for soil (ds3). This 

expanded RNAM equation could therefore accommodate riparian zones with sandy clay 

loam soil (category C).
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Linear Transformation of Slope and Width

The two quantitative variables, riparian width and average slope, underwent 

standard linear transformations. Riparian width, which exhibited a typical logarithmic 

curve when plotted against percent nutrient reduction, was linearized using a log10 

transformation (Figure 4). Slope, which appeared to have an irregular quadratic 

relationship with percent nutrient reduced, was transformed by squaring each value 

(Figure 5). 

RNAM Equations

A final review of collected data indicated that there were too few phosphate-

related data points (n = 27) to both construct and test a RNAM-phosphate model.  

Phosphate data was therefore eliminated from the study. The largest data set for RNAM 

calculation was available to phosphorus (n = 75), followed by nitrogen (n = 51) and 

nitrate (n = 46). Approximately one third of all data points collected for each nutrient 

were randomly selected and set aside to test RNAM. This left greater than 30 data points 

for the computation of each model. 

Using SPSS statistical software, multiple linear regressions were carried out to 

produce regression (B) coefficients for each regular and dummy variable. These 

regression coefficients were then used to form an individual nutrient attenuation model 

(RNAM) for nitrogen, nitrate, and phosphorus. 

The RNAM equation takes the general form:

Y = a + β1 log10x1+ β 2 x2
2 + β 3x3 + β 4ds1 + β 5ds2             (1)
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where Y is the percent reduction of nutrient, β the regression coefficient, x1 the riparian 

width, x2 the riparian percent slope, x3 the dummy variable for vegetation (x3 = 0 if grass 

and 1 if forest), ds1 the first dummy variable for soil (ds1= 1 for soil category A and 0 for 

all others), and ds2 the second dummy variable for soil (ds2 = 1 for soil category D and 0 

for all others).

The exception to this general form is RNAM-phosphorus, which contains 

multiple dummy variables for vegetation as well as soil: 

Y = a + β 1 log10x1+ β 2 x2
2 + β 3ds1 + β 4ds2 + β 5dv1 + β 6dv2             (2)

where dv1 is the first dummy variable for vegetation (dv1 = 1 for forest and 0 for all 

others), dv2 the second dummy variable for vegetation (dv2 = 1 for bare ground and 0 for 

all others), and all other variables the same as Eq.1.

Elimination of Non-Significant Variables

Variables that are found to have no significant relationship or correlation with 

nutrient retention, and do not contribute significantly (p >> 0.05) to the predictive 

capability of each RNAM model, may be dropped from the regression equations. 

Therefore, Eq.1 and Eq.2 should be considered preliminary base equations from which 

variables may later be removed. 
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Testing RNAM

Data points set aside to test RNAM (nitrogen: n = 15, phosphorus: n = 24, nitrate: 

n = 14), with actual percent nutrient reduction values, were then plotted against model 

predicted values. Linear regressions were used to indicate correlation between model 

predicted and actual nutrient reduction values. 

Additional Analyses

T-tests and one-way ANOVAs were carried out to determine if nutrient reduction 

varied significantly between soil and vegetation categories. Regression analyses were 

also performed to assess the level of correlation between the two continuous variables, 

slope and width, and nutrient reduction.



31

CHAPTER V

RESULTS

Individual Variables and Nutrient Reduction

An ANOVA indicated no significant difference in the percent reduction of 

nitrogen (p = 0.528) and nitrate (p = 0.536) between vegetation categories (Table 1A and 

1B). A significant difference in percent reduction of phosphorus, however, was observed 

between vegetation categories (p = 0.007) (Table 1C). Specifically, there was a 

significant difference in phosphorus reduction between grassy vegetation and bare ground 

(p = 0.009) (Table 1D). Greater average retention was found, for all nutrients, among 

riparian buffers with grass vegetation. There was no significant difference in nutrient 

retention between the three soil categories (nitrogen: p = 0.340, nitrate: p = 0.790, 

phosphorus: p = 0.430) (Table 2). In addition, no one soil category was associated with 

the highest average nutrient retention across all three nutrients. 

Scatterplots further elucidated the potential effects of vegetation and soil type on 

percent nutrient reduction. In plots of percent nutrient reduction versus riparian width, 

vegetation type had a limited effect on nitrogen and phosphorus reduction, as indicated 

by slight variations in slope and intercept (Figure 1A, 3A). Vegetation type had no 

noticeable effect on reduction of nitrate (Figure 2A). Mostly small variations in slope and 

intercept were observed between soil categories A, B, and D for nitrogen, nitrate and 

phosphorus (Figure 1C, 2C, and 3C). Significantly fewer data points among soil 
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categories A and D, however, makes interpreting the effects of soil difficult. Similarly, 

scatterplots of percent nutrient reduction versus riparian slope did not yield interpretable 

results due to a lack of vegetation and soil data for steeper-sloped buffers (>7%) (Figure 

1, 2, and 3).     

A test of correlation indicated a marginally significant negative correlation 

between riparian percent slope and nitrate reduction (r = -0.343, p = 0.055). Non-

significant correlation was observed between slope and reduction of total nitrogen (r = -

0.207, p = 0.241), and phosphorus (r = 0.193, p = 0.174) (Table 3). A significant 

correlation was found between riparian width and percent reduction of all three nutrients: 

nitrogen (r = 0.630, p < 0.001), nitrate (r = 0.564, p = 0.001), and phosphorus (r = 0.603, 

p < 0.001). Scatterplots of percent nutrient reduction versus riparian width and slope 

indicated a general increase in nutrient reduction with increasing width (Figure 4), and a 

decrease in nutrient reduction with increasing slope (phosphorus exhibited a decline in 

reduction only after 10%) (Figure 5). 

RNAM Computation

RNAM-nitrogen

Multiple linear regressions were used to produce separate linear models for each 

nutrient (Table 4, 5 and 6). Nitrogen model regression (B) coefficients indicated a 

negative relationship between slope (squared) and percent nitrogen reduction (-0.05), and 

a positive relationship between width (post-logarithmic transformation) and percent 

nitrogen reduction (55.3) (Table 4C). Thus, for every one percent squared increase in 
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slope, model predicted nutrient reduction (Yn) decreases by 0.05 percent, and for each 10-

fold increase in width, e.g., from 1 to 10 meters, model predicted nitrogen reduction 

increases by 55.3 percent. The regression coefficient for vegetation was -14.4, indicating 

that forested riparian zones retain 14.4 percent less nitrogen than grassy riparian zones in 

the RNAM-nitrogen model. Grass is therefore the favored vegetation type for nitrogen 

retention when combined with all other variables. 

Width and vegetation type had statistically significant predictive capability, i.e., 

the regression coefficient associated with width and vegetation type was significantly 

different from zero (p < 0.001 and p = 0.045, respectively). Slope was non-significant (p 

= 0.150). Soil type (represented as two dummy variables) was removed from the model 

for having substantially non-significant predictive capability (ds1:  p = 0.697, ds2:  p = 

0.700). The overall model was significant (r = 0.698, p < 0.001). The RNAM equation for 

nitrogen ((Eq. (3), RNAM-nitrogen) incorporates an intercept of 24.6, and regression 

coefficients for each variable: 

Yn = 24.6 + 55.3 log10x1 – 0.05x2
2 – 14.4x3                                               (3)

where Yn is the percent reduction of nitrogen, x1 the riparian width, x2 the riparian 

percent slope, and x3 the dummy variable for vegetation (x3 = 0 if grass and x3 = 1 if 

forest).
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RNAM-nitrate

A multiple regression of nitrate data produced a pattern of regression coefficients 

similar to that of nitrogen (Table 5). Regression coefficients were negative for slope (-

0.22), and positive for width (85.1). Thus, for every one percent squared increase in slope, 

model predicted nitrate reduction (Yno3) decreases by 0.20 percent, and for each 10-fold 

increase in width, model predicted nutrient reduction increases by 82.6 percent. The 

regression coefficient for vegetation was -23.7, indicating that forested riparian zones 

retain 23.7 percent less nitrogen than grassy riparian zones in the RNAM-nitrate model.

Slope and width both had significant predictive capability (p = 0.004 and p = 

0.001 respectively), while vegetation was marginally significant (p = 0.057). Soil type 

was once again removed from the model for having substantially non-significant 

predictive capability (ds1: p = 0.310, ds2: p = 0.586). The overall model was significant (r 

= 0.706, p < 0.001). The RNAM equation for nitrate (Eq. (4), RNAM-nitrate) 

incorporates an intercept of 12.1, and regression coefficients for each variable: 

Yno3 = 12.1 + 82.6log10x1 – 0.20x2
2 – 23.7x3                                    (4)

where Yno3 is the percent reduction of nitrate, and all other variables the same as Eq.3. 

RNAM-phosphorus

A final multiple regression for phosphorus data yielded a positive regression 

coefficient for width (41.3), indicating that for each 10-fold increase in width, model 

predicted phosphorus reduction increases by 41.3 percent (Table 6). The two dummy 
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variables for vegetation, dv1 representing forest vegetation, and dv2 representing no 

vegetation (or bare ground), each had a negative regression coefficient (-6.76 and -30.9 

respectively). This suggests that grass, the base vegetation category (with a coefficient of 

0), was the favored condition for total phosphorus reduction. 

Riparian width (p < 0.001) and the second dummy variable for vegetation, dv2 (p 

= 0.003) both exhibited significant predictive capability. The non-significance of the first 

dummy variable for vegetation, dv1 (p = 0.258), indicates that a significant difference in 

riparian nutrient reduction exists between vegetation categories grass and bare ground, 

but not grass and forest. Riparian percent slope (p = 0.241), the dummy variable for soil 

category A (ds1) (p = 0.774), and the dummy variable for soil category D (ds2) (p = 0.464) 

were eliminated from the RNAM-phosphorus equation for having non-significant 

predictive capability. The overall model was significant (r = 0.694, p < 0.001). The 

RNAM equation for phosphorus (Eq. (5), RNAM-phosphorus) incorporates an intercept 

of 34.5 and regression coefficients for each variable:

Yp = 34.5 + 41log10x1 – 6.67dv1 – 41.3dv2                             (5)

where Yp is the percent reduction of phosphorus, dv1 the first dummy variable for 

vegetation (dv1 = 1 for forest and 0 for all others), dv2 the second dummy variable for 

vegetation (dv2 = 1 for bare ground and 0 for all others), and all other variables the same 

as Eq.3.
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RNAM Evaluation

Significant (p < 0.001) linear correlations between model-predicted and actual 

percent nutrient reduction values were observed for all nutrients. Correlation was highest 

for RNAM-nitrogen (n = 15, r = 0.850), followed by RNAM-phosphorus (n = 24, r = 

0.840) and RNAM-nitrate (n = 14, r = 0.825) (Table 7, Figure 6). Furthermore, RNAM-

nitrogen predicted most nitrogen reduction values within an error range of ± (10 – 20)% 

of their actual value, indicating relatively high accuracy (Figure 7). Over and under 

estimates of nitrogen retention are also fairly well balanced, with a slight tendency 

towards overestimation at high percentages (Figure 7A). RNAM-nitrate had the least 

overall accuracy, with two predicted nitrate reduction values nearly ± 40% from the 

actual. Most predictions, however, were also within ± (10 – 20)% of the actual. The 

number of over and under estimates produced by RNAM-nitrate were random (Figure 

7B). The accuracy of RNAM-phosphorus was between that of RNAM-nitrogen and 

RNAM-nitrate. Over and under estimates by RNAM-phosphorus were also nearly even 

(Figure 7C).    
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CHAPTER VI

DISCUSSION

Potential Effects of Individual Variables 

The ability of riparian buffer zones to reduce nitrogen, nitrate, phosphorus, and 

other nutrient chemicals has been associated with a wide variety of biological, chemical, 

and physical factors (Peterjohn and Correll 1984; Hill 1996; Hedin et al. 1998). In this 

study, significant associations were found between the reduction of at least one nutrient 

and the individual riparian variables width, slope, and vegetation type. Across all three 

nutrients, the most significant relationship was observed between riparian width and 

percent nutrient reduction, followed by slope and vegetation type. As a single variable, 

soil type was not significantly associated with nutrient reduction. 

The strong positive correlation between riparian width and percent nutrient 

reduction is well supported by the literature (Dillaha et al. 1989; Vought et al. 1994;

Chauby et al. 1995). In a manner similar to this study, Vought et al. (1994) collected and 

plotted 34 data points of riparian width versus percent nitrate reduction. The data 

indicated that rapid reduction of nitrate occurred within the first 10 meters of the riparian 

buffer. By 20 to 25 meters, the increase in percent nitrate reduction leveled off and 

remained near 90 – 100 percent through the maximum recorded width of 70 meters. This 

relationship was immediately discernable in this study as well. Although the collected 

data included a maximum riparian width of only 26 meters, percent reduction of each 
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nutrient increased dramatically between 0 and 15 meters, and leveled off entirely by 15 to 

20 meters (Figure 4). These data suggest that riparian zones need not be wider than 25 

meters to achieve maximum nutrient retention. 

Slope had minimal impact on nutrient retention up to 10 to 12 percent. Beyond 

this point, however, the reduction of nitrogen, nitrate, and phosphorus all began to 

decrease (Figure 5). No riparian buffer included in this study had an average slope greater 

than 16 percent. This severely limits the ability of the current RNAM model to accurately 

predict nutrient reduction values in relation to steep slopes of 20 percent or more. In fact, 

a linear regression of percent phosphorus reduction and percent riparian slope squared 

(quadratic transformation) indicated a general rise in the reduction of phosphorus with 

increasing slope (Figure 5F). This unexpected trend may be misleading because it is 

likely the product of an uneven distribution of slope data, the vast majority of which is 

within the 0 - 5 percent range. Over this range of slopes, percent reduction of phosphorus, 

as well as nitrogen and nitrate, changes very little. Between 5 and 10 percent slope, 

nutrient reduction increases slightly, then decreases by approximately the same amount 

between 10 and 16 percent slope. This suggests that, although an increase in slope 

generally decreases nutrient retention, it may have little effect on nutrient retention when 

less than 10 (or 15) percent. Therefore, it is recommended that additional nutrient 

retention data be obtained from riparian zones with moderate to steep slopes (> 15 

percent) in order to more accurately represent, in the RNAM models, the linear 

relationship between nutrient retention and percent riparian slope. 
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The effect of vegetation type on nutrient retention was significant for phosphorus 

only (Table 1C). The phosphorus data contained two riparian buffers with no vegetation 

(bare ground). The significant difference in phosphorus retention between grass 

vegetation and bare ground produced an overall significant difference between vegetation 

types. The difference in phosphorus retention between the two more numerous vegetation 

types, grass and forest, however, was essentially the same as for nitrogen and nitrate. The 

vast majority of riparian systems used in this study had predominately grassy vegetation. 

A more even distribution of data may produce different results. 

The length and intensity of natural and simulated precipitation events and surface 

water flow varied between studies. The incorporation of data obtained from high intensity 

water applications may have played a role in the significant difference in retention of 

phosphorus between vegetation types. In surface runoff, phosphorus clings tightly to 

sediment particles, often making it more susceptible to interception by vegetation and 

other surface obstructions than nitrogen. In this way, it is possible that during periods of 

high intensity rainfall, phosphorus may be affected by surface vegetation to a greater 

extent than other common nutrients (Owens and Shipitalo 2006).  

Nutrient retention was greatest, though non-significant, among grassy riparian 

zones for all nutrients. This was not unexpected given that a majority of nutrient samples 

were collected within a few centimeters of the riparian surface. With a significantly 

higher stem density, grass is generally capable of trapping water and dissolved nutrients 

more efficiently than trees and other less dense vegetation. Grassy riparian zones in urban 

areas, however, are often utilized as city parks, and undergo significant soil compaction. 
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The compaction of soil reduces infiltration, and hinders the buffering capacity of the 

riparian zone. As a result, more surface runoff reaches the stream, though soil water 

nutrient concentrations remain low (Bishop and Mou 2004). If a greater proportion of 

samples had been taken several meters below the surface, it is possible that forested 

riparian zones, with deeper root systems and less compact soil, would have exhibited 

higher levels of nutrient retention. 

Scatterplots further demonstrate the potential effect of vegetation and soil on 

nutrient retention (Figure 1, 2 and 3). They also illustrate the serious problem that arises 

when too few data points are available for analysis. The insufficient number of data 

points for forest and bare ground makes it difficult to compare the effects of all three 

vegetation categories. This is especially obvious in plots of slope versus percent nutrient 

reduction, in which all forest, soil category A, and soil category D data points have less 

then 10 percent slope (Figure 1, 2 and 3). Without a distribution of data points throughout 

the complete range of slopes, the associated regressions cannot be considered accurate. 

Additional data could give a much clearer picture as to potential effects of vegetation and 

soil type on nutrient retention. 

Although there was no significant difference in nutrient retention between the 

three soil categories, it cannot be concluded that soil texture has no bearing on nutrient 

retention. As with vegetation type, the soil categories in this study contained a very 

uneven number of data points that are limited within a narrow range of soil variation. Out 

of 12 possible texture classes, a vast majority of soil data was of the texture type silt loam. 

This necessitated limiting the number of soil categories in order to maintain a workable 
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number of data points in each category. With only four categories (three of which are

currently used in RNAM: A, B, D), the hydrologic soil groups developed by the USDA 

provided a sensible means of placing the soil data into a limited number of groups. The 

USDA groups also divided the soil texture classes in terms of their runoff potential and 

associated infiltration rates, both of which are expected to have an impact on nutrient 

retention. A larger pool of soil data, with a more even number of data points in each 

category, may produce results different from those reported in this study.   

Variable Predictive Capabilities

The predictive capability of each of the variables in the RNAM linear regression 

equations largely mirrored that of the extent of relationship, or correlation, between the 

variable and riparian nutrient retention. As expected, soil type had very low predictive 

capability in each RNAM model (p ≥ 0.310). The variable was therefore excluded from 

each equation. No definite cut-off point in significance level, however, was established 

for the elimination of variables from RNAM. Therefore, the decision to also eliminate 

slope (p = 0.241) from RNAM-phosphorus and not from RNAM-nitrogen (p = 0.150) 

was a difficult one. Clearly, the available data suggests that soil type adds unduly to the 

complexity of RNAM without adding significantly to its predictive capability. 

Slope, however, exhibits a pronounced polynomial relationship with riparian nutrient 

retention (Figure 5), suggesting that the variable has the potential to add significantly to 

the accuracy of RNAM, if not assumed linear within the model equation.
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RNAM Performance 

Despite the limitations imposed by individual variables, the three RNAM models 

achieved reasonably accurate estimates of percent nutrient reduction. There was a 

significant correlation between model predicted and actual nutrient reduction values for 

each nutrient (Table 7, Figure 6). With at least 14 extra data points to examine each 

model, the models demonstrated robust predictive power. These results suggest that the 

RNAM models have the accuracy and precision required to serve as a quick, preliminary 

tool for estimating the nitrogen, nitrate, and phosphorus reduction potential of riparian 

buffer zones. 

Model Strengths and Limitations 

When compared to other riparian models, RNAM appears to have three main 

advantages: 1) it is derived directly from field data rather than second-hand equations, 2) 

it is not data intensive or time consuming to use, and 3) it can easily be recalculated, 

modified and updated by including or replacing additional variables or data points. 

Complicated mechanistic models, such as REMM and CREAMS, are primarily used to 

simulate a wide variety of physical, chemical, and biological riparian processes (Kinsel 

1980, Lowrance et al. 1998). Though they may have the capacity to do so, they are not 

specifically designed to estimate the nutrient retention of particular nutrients. In its 

current state, RNAM is built for this purpose exclusively. Furthermore, because RNAM 

requires very little data input, nutrient reduction estimations may be calculated in the 

field without the aid of a computer program. 
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Unfortunately, the derivation of RNAM directly from field data is currently as 

much a limitation as it is a strength. There is simply not enough data at this point to make 

conclusive judgments concerning the predictive capability of the model’s two categorical 

variables, vegetation and soil. Both variables were divided into a small number of 

restrictive groups, one of which contained only two data points. Many of the groups were 

also highly variable. The vegetation category forest, for instance, contained riparian 

zones with a wide variety and degree of forest cover, including many with varying 

mixtures of forest, grass, and shrubs. Had more data been available, it may have been 

possible to create additional vegetation categories. Similarly, riparian buffers may contain 

many different types of soil textures and structures, which made the assignment of one 

texture class to each riparian buffer a significant oversimplification. In addition, soil 

category B was predominately composed of a single soil texture class, silt loam. Riparian 

buffer zones classified as having this texture class represented 80 – 90 percent of all 

riparian plots used in the study. Many of these riparian buffers may have contained any 

number of other soil textures. Due to the variability within and between vegetation and 

soil categories, it is clear that additional data will be necessary to better gauge the 

potential effects of these variables on nutrient retention. 

Recommendations for Future Research

The addition of alternative variables may improve the accuracy of RNAM without 

adding significantly to its complexity. Such variables may include soil moisture content, 

soil organic matter content, soil oxygen levels, age of vegetation, and vegetation density.
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Research has indicated that each of these variables is capable of influencing the retention 

of various nutrients (Muscutt et al. 1993; Osborne and Kovacic 1993; Schnabel et al. 

1997; Cey et al. 1999). Soil texture, or soil hydrological classification, may also be 

reinstituted as a variable if additional data indicates a more significant relationship with 

nutrient retention. Beyond simply adding or replacing variables, more data is needed to 

better understand the effect of each variable on riparian nutrient retention. It is suggested 

that additional data either be collected in the field, or extracted from untapped pre-

existing records. If feasible, field data collection is the preferred method, as it will allow 

for the inclusion of variables not commonly described in the literature. 
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CHAPTER VII

CONCLUSION

Among the many environmentally beneficial natural functions riparian zones 

perform, the attenuation of potentially harmful nutrient loads is considered one of the 

most vital. Unfortunately, this critical function is often unrecognized and underutilized in 

urban environments. The natural hydrological and biogeochemical processes that mitigate 

the release of nutrients and sediment to the stream are negated through the use of pipes 

and channels. These anthropogenic alterations undermine water quality and pose a 

serious threat to the health of aquatic ecosystems. In many regions around the world, the 

influx of unrestricted nutrient loads can also damage fishing industries, and restrict the 

access of entire populaces to fresh water. 

As part of a comprehensive plan to reinstate the natural role of riparian zones as 

nutrient buffers, thereby protecting stream water quality, land managers and 

environmental engineers will require an accurate means of predicting the nutrient 

retention capacity of riparian systems. A simple model, such as RNAM, may be used to 

provide a side-by-side comparison of multiple riparian zones, from which one or a few 

may be selected as having the highest nutrient “fitness.” Prior to the use of RNAM in this 

capacity, however, it is suggested that additional data be used to fully validate each 

RNAM model, as well as determine the appropriateness of additional variables. 
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APPENDIX A

TABLES AND FIGURES

Table 1. Results of t-tests for percent reduction of nitrogen (1A) and nitrate (1B)  between riparian 
vegetation categories. ANOVA results for percent reduction of phosphorus (1C) between vegetation 
categories. Tukey pairwise comparison (1D) indicating level of difference in phosphorus reduction between 
vegetation categories.

1A

 Veg. Type N Mean Std. Deviation df t Sig.
Grass 27 68.9148 19.30894 32 0.638 0.528
Forest 7 63.3143 25.83973

1B

Veg. Type N Mean Std. Deviation df t Sig.
Grass 23 64.3696 36.86611 30 0.625 0.536
Forest 9 55.9111 26.45479

1C
Sum of 
Squares df Mean Square F Sig.

Between Groups 3048.034 2 1524.017 5.455 0.007
Within Groups 13410.879 48 279.393
Total 16458.913 50

1D

95% Confidence Interval

Veg. Type
Mean 

Difference Std. Error Sig. Lower Bound Upper Bound
Forest 9.98915 7.28444 0.364 -7.6282 27.6065Grass
No Veg. 37.45581* 12.09108 0.009 8.2137 66.6979
Grass -9.98915 7.28444 0.364 -27.6065 7.6282Forest
No Veg. 27.46667 13.64779 0.120 -5.5403 60.4737
Grass -37.4558* 12.09108 0.009 -66.6979 -8.2137No Veg.
Forest -27.46667 13.64779 0.120 -60.4737 5.5403

*The mean difference is significant at the .05 level.
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Table 2A. ANOVA results for percent reduction of nitrogen (2A), nitrate (2B), and phosphorus (2C) 
between riparian soil categories.

2A
Sum of 
Squares df Mean Square F Sig.

Between Groups 932.524 2 466.262 1.117 0.340
Within Groups 12941.696 31 417.474
Total 13874.220 33

2B
Sum of 
Squares df Mean Square F Sig.

Between Groups 580.493 2 290.246 0.238 0.790
Within Groups 35381.594 29 1220.055
Total 35962.087 31

2C
Sum of 
Squares df Mean Square F Sig.

Between Groups 624.829 2 312.414 0.858 0.430
Within Groups 17847.756 49 364.240
Total 18472.585 51
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Table 3. Results of Pearson’s correlation between riparian percent slope and width, and percent reduction 
of nitrogen (3A), nitrate (3B), and phosphorus (3C). 

3A
slope width

slope r 1 -0.139
Sig. 0.433
N 34 34

width r -0.139 1
Sig. 0.433
N 34 34

N
reduction

r
-0.207 0.630**

Sig. 0.241 0.000
N 34 34

* Correlation is significant at the 0.01 level (2-tailed).

3B
slope width

slope r 1 -0.020
Sig. 0.913
N 32 32

width r -0.020 1
Sig. 0.913
N 32 32

NO3

reduction
r

-0.343 0.564**

Sig. 0.055 0.001
N 32 32

* Correlation is significant at the 0.01 level (2-tailed).

3C
slope width

slope r 1 0.014
Sig. 0.924
N 51 51

width r 0.014 1
Sig. 0.924
N 51 51

P
reduction

r
0.193 0.603**

Sig. 0.174 0.000
N 51 51

* Correlation is significant at the 0.01 level (2-tailed).
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Table 4. Results of multiple linear regression, including overall correlation (4A), model significance (4B), 
and regression coefficients (4C) used in RNAM-nitrogen. 4C also indicates the significance of each 
predictor variable. 

4A

Model r r2 Adjusted r2 Std. Error 
N 0.698 0.488 0.436 15.39258

4B

Model
Sum of 
Squares df Mean Square F Sig.

N Regression 6766.275 3 2255.425 9.519 0.000
Residual 7107.946 30 236.932
Total 13874.220 33

4C

Model
Unstandardized 

Coefficients
Standardized 
Coefficients t Sig.

B Std. Error Beta
N Constant 24.614 10.841 2.270 0.031

veg -14.433 6.911 -0.289 -2.088 0.045
slope -.047 .032 -0.203 -1.478 0.150
width 55.321 11.265 0.655 4.911 0.000
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Table 5. Results of multiple linear regression, including overall correlation (5A), model significance (5B), 
and regression coefficients (5C) used in RNAM-nitrate. 5C also indicates the significance of each predictor 
variable. 

5A

Model r r2 Adjusted r2 Std. Error 
N 0.706 0.499 .445 25.37060

5B

Model
Sum of 
Squares df Mean Square F Sig.

N Regression 17939.397 3 5979.799 9.290 0.000
Residual 18022.690 28 643.668
Total 35962.087 31

5C

Model
Unstandardized 

Coefficients
Standardized 
Coefficients t Sig.

B Std. Error Beta
N Constant 12.068 22.522 0.536 0.596

veg -23.731 11.949 -0.318 -1.986 0.057
slope -0.198 0.063 -0.502 -3.158 0.004
width 82.643 21.753 0.515 3.799 0.001
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Table 6. Results of multiple linear regression, including overall correlation (6A), model significance (6B), 
and regression coefficients (6C) used in RNAM-phosphorus. 6C also indicates the significance of each 
predictor variable. 

6A

Model r r2 Adjusted r2 Std. Error 
N 0.694 0.482 0.449 13.47241

6B

Model
Sum of
Squares df Mean Square F Sig.

N Regression 7928.140 3 2642.713 14.56 0.000
Residual 8530.772 47 181.506
Total 16458.913 50

6C

Model
Unstandardized 

Coefficients
Standardized 
Coefficients t Sig.

B Std. Error Beta
N Constant 34.501 7.140 4.832 0.000

dv1* -6.761 5.904 -0.121 -1.145 0.258
dv2 -30.922 9.827 -0.334 -3.147 0.003
width 41.316 7.968 0.552 5.185 0.000

*dv1and dv2 are dummy variables for vegetation categories grass and bare ground (no vegetation) 
respectively. 
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Table 7. Results of RNAM tests. Correlation between model predicted and actual percent nitrogen (7A), 
nitrate (7B), and phosphorus (7C) reduction values. 

7A
predicted

actual r 0.863*
Sig. 0.000
N 15

*  Correlation is significant at the 0.01 level (2-tailed).

7B

predicted
actual r 0.761*

Sig. 0.002
N 14

*  Correlation is significant at the 0.01 level (2-tailed).

7C
predicted

actual r 0.843*
Sig. 0.000
N 24

*  Correlation is significant at the 0.01 level (2-tailed).
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A B

C D

Figure 1. Percent nitrogen reduction in riparian buffers with grass and forest vegetation as separate 
functions of log10 riparian width (1A) and percent riparian slope squared (1B). Percent nitrogen reduction 
in riparian buffers with soil categories A, B, and D as separate functions of log10 riparian width (1C) and 
percent riparian slope squared (1D).
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A B

C D

Figure 2. Percent nitrate reduction in riparian buffers with grass and forest vegetation as separate functions 
of log10 riparian width (2A) and percent riparian slope squared (2B). Percent nitrate reduction in riparian 
buffers with soil categories A, B, and D as separate functions of log10 riparian width (2C) and percent 
riparian slope squared (2D).
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A B

C D

Figure 3. Percent phosphorus reduction in riparian buffers with grass and forest vegetation as separate 
functions of log10 riparian width (3A) and percent riparian slope squared (3B). Percent phosphorus 
reduction in riparian buffers with soil categories A, B, and D as separate functions of log10 riparian width 
(3C) and percent riparian slope squared (3D).
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A D

B E

C  F
   

Figure 4. Percent reduction of nitrogen (4A), nitrate (4B), and phosphorus (4C) as a function of riparian 
width. Figures 4D, 4E, and 4F are corresponding functions using log10 transformed riparian width.  



65

A D

B E

F
  

C F

Figure 5. Percent reduction of nitrogen (5A), nitrate (5B), and phosphorus (5C) as a function of riparian
average slope. Figures 5D, 5E, and 5F are corresponding functions using riparian slope squared (quadratic 
transformation).  
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A B

C

Figure 6. RNAM Predicted percent nutrient reduction versus actual percent nutrient reduction for nitrogen 
(6A), nitrate (6B), and phosphorus (6C). 
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A

B

C

Figure 7. Residual plots indicating differences in actual and RNAM-predicted nitrogen (7A), nitrate (7B), 
and phosphorus (7C) reduction values. 
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APPENDIX B

NUTRIENT RETENTION DATA SOURCES

% Retained

Author/
(Year) Location

Precipitation 
Type/
(Land Use) Veg. Soil 

% 
Slope 

Width 
(m) N P NO3 PO4

Abu-Zreig et 
al. (2003) Canada

simulated
(bare field) grass silt loam 2.3 2 31

grass silt loam 2.3 2 33

grass silt loam 2.3 5 47

grass silt loam 2.3 5 54

grass silt loam 2.3 5 60

grass silt loam 2.3 5 53

grass silt loam 2.3 10 79

grass silt loam 2.3 10 55

grass silt loam 2.3 15 77

grass silt loam 2.3 15 89

grass silt loam 2.3 15 72

grass silt loam 5 5 68

grass silt loam 5 5 72

grass silt loam 5 5 65

grass silt loam 2.3 5 65

n/a* silt loam 2.3 5 40

n/a silt loam 2.3 5 27

n/a silt loam 2.3 5 38
Bedard-
Haughn et 
al. (2004)

California, 
US

simulated 
(pasture) grass loam 10.7 8 28

grass loam 10.7 16 42
Blanco-
Canqui et al. 
(2004) Missouri, US simulated grass silt loam 4.9 0.7 55 36 27 37

grass silt loam 4.9 0.7 67 53 68 54

grass silt loam 4.9 4 68 62

grass silt loam 4.9 4 84 72
Chaubey et 
al. (1994)

Arkansas, 
US simulated grass silt loam 3 3 64.9 67

grass silt loam 3 6 69.1 70.9

grass silt loam 3 9 88.7 87.2

grass silt loam 3 15 86.2 91.1

grass silt loam 3 21 87.3 92.4

grass silt loam 3 3.1 39.2 39.6
Chaubey et 
al. (1995)

Arkansas, 
US simulated grass silt loam 3 3.1 39.2 39.6

grass silt loam 3 6.1 53.5 58.4

grass silt loam 3 9.2 66.6 74
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grass silt loam 3 15.2 75.7 86.8

grass silt loam 3 21.4 80.5 91.2
Cole et al. 
(1997)

Oklahoma, 
US simulated grass silt loam 6 4.9 98

Corely et al. 
(1999) 

Colorado, 
US

simulated
(forest) grass clay loam 3.75 10 84 79

Dillaha et al. 
(1988) Virginia, US

simulated
(bare field) grass silt loam 4 9.1 77 80

grass silt loam 4 4.6 61 63

grass silt loam 4 9.1 71 57

grass silt loam 4 4.6 67 52
Dillaha et al. 
(1989) Virginia, US

simulated
(crop field) grass silt loam 11 9.1 92 95 81

grass silt loam 11 9.1 90 90 76

grass silt loam 11 9.1 91 93 78

grass silt loam 11 4.6 76 80 32

grass silt loam 11 4.6 54 65 -13

grass silt loam 11 4.6 65 73 2

grass silt loam 16 9.1 70 72 52

grass silt loam 16 9.1 42 60 3

grass silt loam 16 9.1 56 65 22

grass silt loam 16 4.6 65 67 54

grass silt loam 16 4.6 23 35 -22

grass silt loam 16 4.6 43 49 7
Eghball et 
al. 2000 Iowa, US

simulated
(crop field) grass silt loam 12 0.75 40

Fogle et al. 
(1994)

Kentucky, 
US

simulated
(crop field) grass silt loam 9 4.57 94.4 89.1

grass silt loam 9 9.14 98 98.1

grass silt loam 9 13.72 97.2 97.3
Lee et al. 
(1999) Iowa, US

simulated
(pasture)

forest 
mix loam 3 6 51.2 55.2 46.9 46
forest 
mix loam 3 6 41.1 49.4 37.5 39.4
forest 
mix loam 3 3 31.7 39.5 28.1 38.1
forest 
mix loam 3 3 23.5 35.2 22.3 29.8

Lee et al. 
(2000) Iowa, US

simulated
(crop field) grass

silty clay 
loam 5 7.1 64.3 67.6 61.1 43.7

forest 
mix

silty clay 
loam 5 16.3 89.7 93.1 87.8 85.3

grass
silty clay 
loam 5 7.1 49.7 46.2 40.5 27.6

forest 
mix

silty clay 
loam 5 16.3 72.8 80.7 67.5 34.7

Lee et al. 
(2003) Iowa, US

natural (crop 
field) grass loam 5 7 80.3 78 62.4 57.5

forest 
mix loam 5 16.3 93.9 91.3 84.9 79.8

Lim et al. 
(1998)

Kentucky, 
US

simulated 
(pasture) grass silt loam 3 6.1 78 76.1 74.5

grass silt loam 3 12.2 89.5 90.1 87.8

grass silt loam 3 18.3 95.3 93.6 93
Patty et al. 
(1997) France

natural (crop 
field) grass silt loam 10 6 42 47
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grass silt loam 10 12 22 69

grass silt loam 10 18 89 99

grass silt loam 7 6 0 85

grass silt loam 7 12 46 97

grass silt loam 7 18 83 100

grass silt loam 15 6 79 86

grass silt loam 15 12 89 95

grass silt loam 15 18 89 97
Payer and 
Weil (1987)

Maryland, 
US simulated grass silt loam 2 30 72

grass silt loam 2 30 64

grass silt loam 2 30 62
Sanderson 
et al. (2001) Texas, US simulated grass

sandy 
loam 1 16.4 76

Schmitt et 
al. (1999)

Nebraska, 
US simulated

forest 
mix

silty clay 
loam 6.5 7.5 60 77 59 57

forest 
mix

silty clay 
loam 6.5 15 71 86 72 68

grass
silty clay 
loam 6.5 7.5 72 87 66 67

grass
silty clay 
loam 6.5 15 91 96 90 90

grass
silty clay 
loam 6.5 7.5 57 71 53 50

grass
silty clay 
loam 6.5 15 81 90 78 76

Schoonover 
et al. (2004) Illinois, US

natural (crop 
field) grass silt loam 1 10 100

forest silt loam 1 10 97

grass silt loam 1 3.3 68

forest silt loam 1 3.3 17
Schwer and 
Clausen 
(1989) Vermont, US grass

sandy 
loam 2 26 92

Srivastava 
et al. (1996)

Arkansas, 
US simulated grass silt loam 3 6.1 21.4 25.5

grass silt loam 3 12.2 43.9 36

grass silt loam 3 18.3 67.2 65.5
Syversen 
(2002) Norway

natural (crop 
field) grass silty loam 12 5 62 76

grass silty loam 12 10 81 89


