NUMERICAL SOLUTIONS OF NONLINEAR PARABOLIC
PROBLEMS USING COMBINED-BLOCK ITERATIVE
METHODS

Yaxi Zhao

A Thesis Submitted to the
University of North Carolina at Wilmington in Partial Fulfillment
Of the Requirements for the Degree of
Master of Science
Department of Mathematics and Statistics

University of North Carolina at Wilmington

2003

Approved by

Advisory Committee

Chair

Accepted by

Dean, Graduate School


https://core.ac.uk/display/149229479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

ABSTRACT . . . . iii
DEDICATION . . . . . . iv
ACKNOWLEDGMENTS . . . . . . . . . \
LIST OF TABLES . . . . . . . . o vi
1 INTRODUCTION . . . . .o 1

1.1 Background and Motivation . . . . . ... .. .. ... ... 1

1.2 Problem and Goal . . . . . ... .. ... ... 2
2 Finite Difference System . . . . . . ... ... ... ... ... ... 4
3 The Block Jacobi Iterative Scheme . . . . . . .. ... .. ... ... 12
4 The Gauss-Seidel Iterative Scheme . . . . . . .. ... .. ... ... 16
5) Applications and Numerical Results . . . . . . ... ... ... .... 19
6 Discussions . . . . . . ..o 34

6.1 Conclusions . . . . . . . . ... 34

6.2 Future Studies . . . . . . .. ... 36
REFERENCES . . . . . . . 37

i



ABSTRACT

This paper is concerned with the block monotone iterative schemes of numerical
solutions of nonlinear parabolic systems with initial and boundary condition in two
dimensional space. By using the finite difference method, the system is discretized
into algebraic systems of equations, which can be represented as block matrices.
Two iterative schemes, called the block Jacobi scheme and the block Gauss-Seidel
scheme, are introduced to solve the system block by block. The Thomas algorithm
is used to solve tridiagonal matrices system efficiently. For each scheme, two conver-
gent sequences starting from the initial upper and lower solutions are constructed.
Under a sufficient condition the monotonicity of the sequences, the existence and
the uniqueness of solution are proven. To demonstrate how these method work, the
numerical results of several examples with different types of nonlinear functions and

different types of boundary conditions are also presented.
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1 INTRODUCTION

1.1 Background and Motivation

The studies of many physical phenomena like heat dispersion, chemical reaction
and population dynamics etc. lead to reaction diffusion equations of the nonlinear
parabolic type (See [6] about classification of PDE). For example, consider a simple

irreversible monoenzyme kinetics in a biochemical system in space 2 € R?

9 - —0ou .
Ut—DVU = m mn (O,T]XQ
BC: u(t,z,y) = h(t,z,y) {t€(0,T], (z,y) € 00}

IC: uw(0,7,y) = g(z,y) in Q

where o, a, and b are positive constants and functions h, g are given.

Among all nonlinear PDEs only a few special types can be solved analytically. In
most situations such as the above example, we investigate the existence and unique-
ness of their solutions, and also need to employ some appropriate numerical algo-
rithms by utilizing the speed and memory of digital computers to get close approx-
imations. There are many iterative methods for solving the nonlinear parabolic
system such as the Picard, Jacobi, Gauss-Seidel monotone iterative schemes.

The fundament of this paper, the monotone iterative method, has been widely used
recently. The details of this method may be found in [1] by Pao. In [2] Pao sought
the point-wise numerical solution of a semilinear parabolic equation. In [4], Lu
extended this method to the time-delay parabolic system and proved that his mono-
tone iterative scheme is quadratically convergent. Most monotone iterative schemes
are of the point-wise Picard type, which is inefficient in two or higher dimensional
space.

By combining block partitioning and monotone methods Pao developed two itera-



tive schemes, namely the Block Jocobi and Gauss-Seidel monotone iterative schemes,
for nonlinear elliptic equation in [3]. These new numerical schemes are much more

efficient than point-wise numerical schemes.

1.2 Problem and Goal

Consider the nonlinear parabolic type system with boundary and initial conditions

in two dimensional space,

uy — (D'ug)y — (D*uy)y = flu,x,y,t)  in Qx (0,7 (1)
BC': Blu| = h(z,y,t) on 0Q x (0,T]

1C: u(z,y,0) =g(z,y) inQ

where the boundary operator is defined as:

Blu] = am” + [u

% is the outward normal derivative on 992, and f(u, z,y,t) is a C! function. D' =
DY(z,y), D? = D?*(x,y) are positive functions on QUIN. a = a(z,y), 8= B(z,y).
This paper extends Block Jocobi and Gauss-Seidel monotone iterative schemes into
solving parabolic systems to improve the computational efficiency further.

First we discretize (1) by finite difference and represent the corresponding finite
difference system in terms of matrices. By partitioning the the system with respect
to row, the system can be represented by block matrices. To solve the finite difference
system, we construct monotone iterative sequences, namely,upper or lower sequences
starting from either upper or lower solution, respectively, by applying Jocobi or

Gauss-Seidel method on block matrices. Each block matrix is in the form of Ax =

b, where A is tridiagonal. We choose to use the Thomas algorithm to solve the



tridiagonal block because of its well known efficiency. The monotone properties
of upper and lower sequences, existence and uniqueness of solutions are proven for
both Block Jocobi and Gauss-Seidel methods. Finally numerical simulations of some

examples are given to demonstrate the efficiency of both new numerical schemes.



2 Finite Difference System

To describe the continuous domain {2 as discrete points, we discretize the domain
into NV column and evenly divide each column into pieces with the size m. Therefor,
the number of points on each column is M;, where M is integer and j € (0, N +1).
Let the size of mesh grid to be m x n, m = min(M%_) and n = %, where M;, N are
positive integers indicating the number of pieces along x-direction and y-direction.
The continuous bounded convex domain € in R? can be approximately describe
as (M + 1) x (N + 1) discrete grids. Correspondingly. w is represented by w; ;-

According to the finite difference method, one can consider the first derivatives

Uy, Uy s,

Wit 1,5k — Ui—1,5k Ui j+1,k — Ui j—1,k
um — u g 2
m

om Y

and the second partial derivatives u,,,u,, by central approximation as

0

52 = 2 [Wis1jk — 2Uijx + Ui jk]

Pu 1
o 3 ligere = 2+ ti-1]

Suppose we are solving the DE on [0,t], we divide time ¢ into P pieces, each of which

has the same length p. By the forward difference method, u; can be described as

Wijk — WUijk—1
b

U =

Now consider the general nonlinear parabolic system (1),

Uy — (Dlux)x - (D2uy>y = f(uaxvyat)



Substitute these derivatives into Eq. (1), and it becomes

1 1
Wijr — Wigh—1  Dipiy —Disiy Uigigr — Witk 1 Wirlgk — 2Wijk + Wio1jk
_ j J _pt
P 2m 2m "I m2
2 2
D i1 — Dijo1 Wik — i1k _ D2 Wik — 2Wigk + Wij—1k f
] ] - i’ "
2n mn 1] n2 j

Simplify this,

AmPn® (i jp — Wijh1) — NQP(DZH] D} 1) (Wit ke — Wic1jik)
—4n? pD (Uz+1;k 2Ui,j,k + Uz‘—l,j,k) m p(DHH D?,jfl)(ui,j—i-l,k - ui,j—l,k)

—4m pD (umH k — 2Ui,j,k —+ Ui,j—l,k) = 4m2n2pfi’j,k
Collect terms,

(4m*n? + 8n2pDZ»17j + 8m2pD,ij + Am*n®py)u; i
(m pD”Jrl m2pD 4+ 4Am? pD )umH &
(mpDUl—mijHJrélmpD Ui 1k

—(n? pDZH] -n pDz—l] + 4n? pD Witk

(n pDz—l] -n pDz-i-l] +4n pD )uz—ljk - 4m n pfz,]k

Divide both sides by 4m?n?,

2pD} . 2pD?. pD?. pD?._ pD
(1 + 2 = + 9 = )u@j,k - ( 7];_1 - 7]2 ! + )ul,]Jrl k
m n 4n 4n n?
pDiZ,jq pDiQ,jJrl pD pDilJrl,j le 1,j pD
—( An2  dp2 + )“m 15— ( 2 am? + )uerl,],k
pDi—l,' pDz—i—l, pD ,
—( 4m? "o 4m? o 23)“@‘—1&”@ — Uijk-1 = Plijk



Rearrange terms,

D! . D! .. D!, o2pDY.  2pD2?.
[_(p 1—1,j _ p i+1,7 + p ] )Ui—l e + (1 + p 2] + p 2,) )'U/Z ”
4m?2 4m?2 m?2 7 m2 n? 7
pDi;  pDiyy;  pDj; pDY 1 pDi | DY
~( 4m2  4m?2 m2 Juirin] = An2  4n2 n? i
pD% i+1 pD»27-_1 PD‘Q,'
—( 4;]2 - 4;;2 n2” JUijr1e = Uigh—1 = Pfijk
If we let
b — pDil—l,j B pDil—i—l,j 4 pDil,j yo— pDz‘1+1,j _ PDZ‘I—LJ‘ pDil,j
Y Am? 4m?2 m2 9 4Am? 4m?2 m?2
o pD}; B pD} ;1 n pD}; r_ pD} ;4 B pD}; 1 pDi;
T g2 4n? n2 0 T T2 4n? n?2
2pD}.  2pD?.
aij = bij + by iy Ty 1= 14—t 4 =
then we can rewrite Eq. (2) as
uZ_lv]vk
< —bij ai; —b; > Ui j k = CGijlij—1k — C;jui,j-i-l,k — Ui jk—1 = Pfijk
Uit1,j,k

If the domain we are solving is not a rectangular box, at any moment k and for each

fixed 7, the number of grid points on x direction for each k, j is not a constant,

which depend on j. So i ranges form 0 to M; including the boundary for each fixed

k, j. Actually Eq. (3) represents a system of M; — 1 equations for a fixed time and

J.

Writing this system of equations in matrix form, it is



/
—boj ao; by : : : 0 U1k
/ . .
O _b17.7 al’] - 1,] ° ° : uomjvk
/
—bry-1 any-1y —by,; 0 UM, j
/
0 : : : ~buyi amys o —bg, UM; 41,5,k
/
cj - 0 Uo,j—1,k cj - 0 U0,j+1,k
/
0 . cmyy UM 51,k 0 . dyy, UM, 541,k
Uo,j,k—1 fo,j,k
UM, ,j,k—1 fMj,j,k

Notice that terms,u_1 jx, unr 41,51 and u; ok, Ui Nk, are undefined. Those four terms
are eliminated by applying the boundary condition on the extended exterior points

and the points inside the domain. Then the system can be rewritten as the following.

/
CLOJ 90,5 . . 0
/ .
—b1;  a; o by : ; Uo,j &
/
—bry—1; anmy-1; —bh_ U, ik
0 . . —ijJ‘ CLMJ.J'
/
c; - 0 Uo,j—1,k c; - 0 Uo,j+1,k
/
0 . gy UM, -1,k 0 . cuyy, UM, 41,k



Uo,5,k—1

UM;,j5,k—1

fO,j,k

fMj7]7k

G* is associated with coefficients bojx, by ;. bu; ks Uiy j i, Which are determined

by the boundary condition. They could be zero if the boundary condition is of the

Dirichlet type.
For each j,k j € [0..N],k € [1...P], let

GOJ 6&- 0
—617] ay,j ble p’7 0
A= , ;=
=by;15 ano1y — /]wj_Lj 0 j2el
0 . . —bM].J‘ anvj
uO,j,k COJ' 0
Ujp = , Oy =
UN; 5k 0 CM;
06,3' 0 Jojk
Ci=1| & i FaelUgk) =p :
0 . CIMJ_J fMj,j,k

A; is a tridiagonal matrix with all diagonal entries greater than zero. A; is invertible.

Again, the sizes of matrices U;;, C, I' depend on j. Then the above equation

becomes

AU = (CiUj—1p + CiUj 1) — Ujmr = Fn(Uji) + G (4)



This is equivalent to
AjUM = CjU];Lk + C;-Uj+17k + Uj,kfl + Fj,k(Uj,k) +G* (5)

Definition 2.1 For each j, k, a column vector Uy = (Upjk, ..., Ung, jne) € RY is

called the upper solution of (5), if

AUk > CiUj 1k + CiUj a0+ Uiy + Fiw(Us) + G° (6)
and Uy = (Uo s -y (AJMij)’ € RN s called the lower solution of (5) if

AU < C3Us1 g+ CiUja g + Ujgeor + Fp(Us) + G (7)

We say that U K and Ujk are ordered if U > U. At any time step k, given any ordered

A~

: 7 — (17 7 / — (T g /
upper and lower solutions Ujx = (Uojik, -, Untyjk)'s Uik = (Vo - Unty k), We

set
<U,U >= {UERN;US U},
< Ung,Uj’k >= {Uij - RM; UM < ﬁng}; (8)
Define

Ofijk
u

Yije = max{—=52 (uir); Ugr < Uijr ),

where w1, Ui, are the components of upper and lower solution respectively.

Yire = max{0, yijr }, Vi = min{~;5; i =0,1,..., M}



Yijk 1s any nonnegative function satisfying 7;;, > fygk
Define

I'; = diag(pyojk, ‘-‘apf_Yijk%

then we have

~ ~ A~

F(Uj) = F(Ujn) + T5(Uj — Uj) 2 0 9)

By adding I';U; i, to both sides of Eq. (5), we get

(Aj + Fj)Ung = CjUj_Lk + O}Uj.{-Lk + Uj7k_1 -+ Fj7k(Uj,k) + G* + FjUch (10)

No confusion should be raised that the upper solution Uj,k‘ and the lower solution
Uj,k are still the upper and lower solutions of Eq. (10).

Let Uy, be a column vector with (N + 1) block entries. For j = 0...N, after adding
I Uy, to both side of Eq. (4), we can write the system of Eq. (4) in a more compact

form. For j = 0...N, we can write the system of Eq. (4) in more compact form.

Uo i

U, =

Unsik

Similar to the way we deal with by; and b}, ;, Co and C}y are determined by the
boundary condition along the y-direction. Again CoU_; ; and CyUn 1k can be move
to the right side as G™*. Let A be the tridiagonal block matrix with diagonal sub-

matrices Ag+ Ty, ..., Ay + 'y, off-diagonal sub-matrices —C1, ... —Cy and —CJ, ... —

10



/
N—-1-

Ag+To | | =C

—Cn_q Anv_1p+Tno —Cy_y

—Cy Ani+Tn

/
fk = (FO,ka s 7F1jfl,k> Fjj,k: F1j+1,k7 s FN,k)

For each k, the whole system can be written as

Ay = Fi + Up 1 + G + T Uy (11)

Without considering the boundary condityon, the tridiagonal matrix A; + I'; in
Eq. (10) has pasitive entries on diagonal and negtive entries on offdiaganols for
n = 1..N — 1 and it is diagonally dominant. Moreover, A; 4+ I'; is invertible when
the boundary condition is either Dirichlet type or Rubin type. In fact, its eigenvalues
have positive real parts (see [9]). For Neumann boundary condition, the eigenvalues

have nonnegative real parts. In any case (A; + I';) ™! exists and is positive.

11



3 The Block Jacobi Iterative Scheme

Based on Eq. (10), starting from either the initial upper solution U or the initial
lower solution U, for V k we formulate the Jacobi type of block iterative scheme to

generate the sequence {U ](72}
(A + DU = CUTT) + iUl + Uy + FUSTY) + G070 11,0070 (12)

where j = 0...N;, and r =0, 1,2, ....

It is easy to see that A; +1; is a tridiagonal matrix with all entries on the diagonal
greater than zero, so the inverse of A;+T'; exits and (A; +T';)~' > 0. This equation
can be solved by using the Thomas algorithm (see [5]). Starting form the upper
solution U or lower solution U, U,io) = U, or U ,(CO) = U, we construct a sequence
{U,(:)} = {Ug,;), ...,U(Nrjk} or {Q,(J)} = {Qg,;), A ‘v }, which refers to the maximal
sequence or the minimal sequence. The monotone properties of these sequences are
given by the following lemma.

Lemma 3.1 The mazimal and minimal sequences {Uﬁ)}, {Q,(;)} given by Eq. 12

with U,E;O) = U, and Q,io) = U, possess the monotone property

r+1)

O, =U <v <..<uy <uy™ <y <0y <L <Y <TY = 0,
(13)

Moreover for each r, Uﬁf) and Q,(:) are ordered upper and lower solutions.

Proof. Let W} =T\ — T\ = U, - T\,

~ =(1
(A + )W) = (Aj+Fj)Ujk_(Aj+Fj)U§'k)
By Equ. (12)
= (A +T)0; — [C;TY, , + T, +U
(Aj + T U — [C3U; 2 5+ CiU oy + Ujpa

+FO) + @0 41,0



= (A; +T)Uj — [C;U; 14 + C;Uﬂlk + Ui
+F(0j7k) + é* + Fjﬁjk]

= AU — [CiUj-1e + ClUj 1k + Uspor + F(Uyg) + G

Because Uj,k is the upper solution, from the Definition 2.1, the right hand side is
greater than zero. We have (A; + Fj)Wj(,S) > 0. Also because (A4; +T;)~' > 0, then
W(O) > 0 and Ug-(,? > Uﬁ). In the same fashion we can show U ﬁ) < Qﬁ).

Let Wi =T — Uy

(A +TOWS = (4 + D)0 — (A, +T,)US)

T 41,0

= CjU e+ CU j+1k+Ujk 1+F( )+G
~CU = G g = Ugger = FUS) = G0 = T,U)

= CiUj_1x+ CiUjrn + Ujpor + F(Ujp) + G* + ;U
—CiUjrp — CUsr g — Ujpoy — F(Uyy) — G* = T5U;

~ A

= Cj(Uj-1k — Uj1) + Ci(Ujsrn — Ujran) + (U1 — Ujjeo1)

A~

+E(Ujx) — F(Ujp) + (G* = G*) +T(Ujp — Uy

Since < (~]j7k, Uj,k > are ordered, so Uj—l,k > Uj_l,k. According to inequality (9) and
the nonnegative property of C' and I' the right hand side of the above equation is

greater than zero. Then we have
77(1) 1
Uy > USY

r+1

In the same fashion, by mathematical induction, we have Ugr > 5 ik Qﬁ) <

U g’,:rl) and US,;) >U 57,;) Putting these together, we have

G=U® <U0 <. <UD <Ut <TE <T0 < < TV < TP = 5,



QED.

Based this monotonicity lemma, we have the following convergence theorem.
Theorem 3.1 Let Uj,k, Ujﬁk be a pair of ordered upper and lower solutions of Eq.
(4). Then the sequences {U,(:)} = {U&),...,U(erk}, (U = {Q&),...,Q%?k} given
by Eq.(12) with T = U, U9 =T converge monotonically to solutions Uy, and Uy
of Eq. (4), respectively. Moreover

U,<..<UV <. <U,<U,<..<U" <. <0, (14)

and if U €< U, Uy > is the solution of Eq. (4) then
Up <U; < Uy

Proof. By Lemma 3.1 we know that {U,(:)} is monotone decreasing and it is
bounded below by U,. From [8], a bounded monotone sequence must have a limit,
say lim,_, U,(Z) =Uy. So U, < U,(:). Similarly we have lim,_,., U ,(Z) = U,. Letting
m — oo, Uy and U, are solutions of Eq. (4). For Vr = 0,1, ..., Q,(:) and Uﬁj’ are
ordered and those two sequences are monotone, U, < Uj. Now if U} is a solution in

the sector < Uk, Uy, >, then Uk Uj,k are ordered upper and lower solutions. Using

J— A~

0) = Uz, and U'Y) = U, theorem 3.1 Ineq (14) tells that Uy, < Uz, Similarly, it

is easy to get Uy < Upg. So

A~

U, <..<UV <.  <U<U <U,<..<TU <. <T, (15)

QED.
The following theorem shows that under a certain condition the finite system has a

unique solution.

14



Theorem 3.2 (Uniqueness) Let

Ofijk
ou

o= max{ (ui7]~7k); ai,j,k < Uj, 5.k < ilz-,j,k},

If the conditions in Theorem 3.1 hold and o < p~', then U, = U, and it is the
unique solution of Eq. (4).

Proof. Let V, =U;, —U,. When k=1,V, =U, — U, > 0.

Substitute it in Eq. (11)

AV = F(0) - FU,)+To—Uy+ Gy — Gy

recall that F' = pf and when k& = 0 the initial condition applies.

= plf(U1) = f(U,y)] < PU(Ul_Qﬁ = poVy

If po <1, then (A—1)V; < (A—po)V; <0

(A—1)"' >0 = V4 <0. Because V; can not be > 0 and < 0 and the same time,
so Vi =0.

When k& = 2,3..., following the same derivation, by induction, we can prove that
Vi, =0, Vk € N. That is U, = Uy,

QED.

15



4 The Gauss-Seidel Iterative Scheme

Based on Eq. (10), we can construct the block Gauss-Seidel iterative scheme:

(Aj + T)UL = CU, y + CUPT 4+ Uger + FUSY) + G070 +T3U770 (16)
Denote the sequence again by {U,(fm)} = {Ué?,...,U%’Z,l} when U,(CO) — U, and
(wimy = whm, ,Qg\%} when U\” = U, and refer to them as the maximal and
minimal sequences, respectively. The following lemma gives an analogous result as
in Lemma 3.1.

Lemma 4.1 The maximal and minimal sequences {U,(Cm)}, {Q,(Cm)} given by (16)
with U,(CO) = Uy, and {Q,gm)} possess the same monotone property (13). Moreover, for
each r {U,(j”’}, and {ngm)} are ordered upper and lower solutions.

Proof. Let Wj(,‘j) - Uﬁ) _ Uﬁ) - Uﬁ).

1
(A; + YW = (A + )0 — (A; + D)UY

J

By Equ. (16)

= (A + )T — [CT 4+ OO 4 + Ugss + FOR)
+G" 1,0

= (A + )T — [CT 4 + C0j s + Upor + ()
+G* + ;U5

. —a - . - -
— AU — (G0 + C U + Uppr + F(Uj) + G
Because Uj,k is the upper solution, from the Definition 2.1, we have

(A +TYWY > ;0,1 — UD, = oW,

J



When j =0, Cy =0, (4, + Fj)WO(,S) > 0. Because inv(A4; +T';) > 0, WO(,S) > 0.
When j =1, (4; + T)WY > C;W), = W) >0
By induction, Wk > 0, that is U]k > U]k Similarly we can show Ujk < Ujk
Then let WS = T') — ()
(A +TOW = (A + DT — (4, + 1)U
— UYL+ T 4T+ FOS) + T 4 1,0%)
—CU3 i = U = Uga = FUS) = 67O = 13U
= CUY o+ CUas + Usgos + F(Uj0) + G+ 1,05
—CUL, = CoUsak = Ui — F(Ujx) = G7 = T;Uj
= (UEI—)l e = U0+ iU — Uprp) + (Ut — Ujgn)
+F(Us) = F(Us) + (G" = G*) + 15Uy = Uyp)

= Cjo(PLk + CJI'(UJH,k - Ujﬂ,k) + (Ujk—1 — Ujp—1)

+F(Ujp) — F(Uj) + (G* = G*) + T5(Usp — Uy )

Since < Uj,k, Uj,k > are ordered, so 0j+1,k > UjJrLk and ﬁj,l,k > Uj,Lk. According
to inequality (9) and the nonnegative property of C' and I' the right hand side of

above equation is greater than C; W 1%- Then we have
(A + D)Wy = G,

When j =0, Co =0, (4, + )W >0, = Wy >0
When j =1, (4; + TY)WY > oW, = W) >0
By induction, I/V]k > 0, that is U]k > U]k By induction again, Vr, U > U, s

m+1

In the same fashion, by mathematic induction, we have oo jk > 5 ik ngl) <

17



QS,?H) and Ug-;n) >U g’,:) Putting these together, we have
O, =UY <ul < . <u? <vf <ol <00 < <TO <TO = 1,

QED.

Theorem 4.1 Let the conditions in Theorem 3.1 hold. Then the sequences {U,ﬁm)}, {ngm)}
given by (16) with U,(CO) = U, and {Q,gm)} converge monotonically to their respective
solutions U and U, they satisfy the same relation (14). Moreover if U* is any solu-

tion of Eq. (4) in < U, U>, then U<U*<TU.

Proof. The proof exactly follows the same steps as the proof of Thm 3.1.

Theorem 3.2 (Uniqueness) Let

Ofijk
ou

o= maX{ (ui7j7k); '&i,j,k < Uik < ’&i,j,k}a

If the conditions in Theorem 3.1 hold and o < p~', then U, = U, and it is the

unique solution of Eq. (4).
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5 Applications and Numerical Results

In this section, several numerical results are given by applying the block monotone
iterative methods. It is shown that the computational error tends to zero by de-
creasing the mesh size. Considering the complexity of the program, the examples
are solved only on a rectangular domain. The problems with irregular shapes can be
solved in the same fashion. The programming environment is chosen in MATLAB
because of its excellence of matrix manipulating.

Example 1.

Consider the IBVP problem on a unit square Q = {(z,y), 0 <z <1, 0 <y <1}.
u — Au = f(u,z,y,t)

BC: u(0,y,t) =u(l,y,t) = u(z,0,t) = u(x,1,t) =0
IC : u(x,y,0) = 100 sin 7z sin my

with nonlinear function f(u,x,y,t) = u(l —u) + q(z,y,t), where
q(x,y,t) = 200e ! sinrz siny(—1 + 72 + 50e ! sin 7z sin 7y).
The analytical solution can be found as 100e~" sin 7z sin 7y.

The first step of solving the nonlinear system is to find the upper and lower solutions.
w — Au = u(l — u) + (100e > sin 7z sin 7y)? — 100e > sin 72 sin ry < 12000
The solution of the linear parabolic system

u; — Auw = 12000



with the same boundary condition and initial value is the upper solution of corre-
sponding nonlinear system. It is also easy to verify that zero is the lower solution.

If the point-wise /5 norm of the two sequences is small enough,
T — U™|| < ¢, where € is any positive real number,

then iterations are terminated at r*" step. Either the upper solution of the lower
solution can be regarded as the approximation of the true solution. Tab(1l) and
Tab(2) show the maximal and the minimal solutions and the error rate as long as
the number of iteration when ¢ = 1 with mesh size 0.1 x 0.1. Tab(3) and Tab(4)
contain the solutions on some fixed points with different time ¢. Tab(5) and Tab(6)
demonstrate the monotone property of the two iterative methods.

Example 2.

Consider this model describing the enzyme kinetics

—u e tsinmwwsinm
u— Au = + . L B (2% — 1)e " sin o sin Ty
14+u 1+etsinmrsinmy
BC:u =0
IC: u = sinmrsinmy

The numerical results given in Tab(7) through Tab(12) are similar to Tab(1) through
Tab(6).
Example 3.

Consider a parabolic DE with the Neumann type of boundary condition:

uy — Au = u(l —u) + (27° — 2)e " cos mx cos Ty + (e " cos mx cos Ty)?

BC:  uy(0,y,t) = uy(1,y,t) = uy(2,0,t) = uy(z,1,t) =0

20



IC : u(z,y,0) = cos mx cos Ty

The analytical solution can be found as e~ cosmz cos wy, and f, = 1 — 2u

c=max{—f,} =mar(2u—1) =1

(2, -2) is a pair of upper and lower solutions.

The results are given in Tab(13) and Tab(14).

Not only is the block iterative method designed for nonlinear problems, it can be
used for solving linear problems as well. In this case, by imposing I'; to be 0, starting
from any initial guess the iterative sequences approaches the true solution.

Example 4.

uy — Au = (2r% — 1)100e " sin 7 sin 7y
BC: u(0,y,t) =u(l,y,t) = u(z,0,t) = u(x,1,t) =0
IC : u(zx,y,0) = 100 sin 7z sin Ty

For the comparison, the BC, IC and analytical solution are chosen be be the same
as Example 1 except the the reaction function f. The results are shown in Tab(16)

and Tab(17).
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Table 1: Results of The Block Jacobi Method for Example 1

Iteration

(x,y) | 0.2,0.2] 02,04 | 04,02 |0.4,04 | 0.5, 05| /error
M= 10 | max | 12.7587 | 20.6337 | 20.6338 | 33.3675 | 36.8848 62
P=10 | min | 12.7577 | 20.6326 | 20.6325 | 33.3662 | 36.8835 | 3.0E-3
M=20 | max | 12.7250 | 20.5864 | 20.5864 | 30.3038 | 36.8181 140
P=20 | min | 12.7245 | 20.5858 | 20.5857 | 33.3031 | 36.8174 | 9.30E-4
M=40 | max | 12.7151 | 20.5725 | 20.5725 | 33.2846 | 36.7981 410
P=40 | min | 12.7099 | 20.5650 | 20.5650 | 33.2750 | 36.7979 | 3.21E-4

true | 12.7099 | 20.5650 | 20.5650 | 33.2750 | 36.7879

Table 2: Results of The Block Gauss-Seidel Method for Example 1

Iteration

(x,y) [ 0.2,0.2 02,04 | 04,02 04,04 0.5 05| Jerror
M= 10 | max | 12.7588 | 20.6336 | 20.6337 | 33.3672 | 36.8844 38
P=10 | min | 12.7573 | 20.6325 | 20.6323 | 33.3663 | 36.8838 | 3.0E-3
M=20 | max | 12.7251 | 20.5864 | 20.5865 | 30.3038 | 36.8180 86
P=20 | min | 12.7244 | 20.5858 | 20.5857 | 33.3031 | 36.8175 | 9.36E-4
M=40 | max | 12.7152 | 20.5725 | 20.5725 | 33.2850 | 36.7984 221
P=40 | min | 12.7149 | 20.5721 | 20.5721 | 33.2846 | 36.7981 | 3.21E-4

true | 12.7099 | 20.5650 | 20.5650 | 33.2750 | 36.7879
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Table 3: Solutions by Using The Jacobi Method for Example 1

(x,y) | 0.2,0.2 02,04 | 04,02 | 04,04 |05, 0.5

max | 28.3507 | 45.8516 | 45.8515 | 74.1549 | 81.9801

t=0.2 | min | 28.3504 | 45.8513 | 45.8512 | 74.1535 | 81.9774

max | 25.6577 | 41.4960 | 41.4960 | 67.1109 | 74.1838

t=0.3 | min | 25.6573 | 41.4952 | 41.4953 | 67.1091 | 74.1829

max | 23.2200 | 37.5527 | 37.5526 | 60.7312 | 67.1364

t=0.4 | min | 23.2192 | 37.5520 | 37.5522 | 60.7311 | 67.1352

max | 21.0143 | 33.9853 | 33.9851 | 54.9612 | 60.7557

t=0.5 | min | 21.0130 | 33.9839 | 33.9841 | 54.9602 | 60.7552

max | 19.0180 | 30.7567 | 30.7565 | 49.7391 | 54.9831

t=0.6 | min | 19.0169 | 30.7554 | 30.7556 | 49.7382 | 54.9823

max | 17.2116 | 27.8351 | 27.8350 | 45.0138 | 49.7594

t=0.7 | min | 17.2105 | 27.8338 | 27.8340 | 45.0129 | 49.7586

max | 15.5768 | 25.1913 | 25.1912 | 40.7380 | 45.0326

t=0.8 | min | 15.5758 | 25.1901 | 25.1902 | 40.7370 | 45.0316

max | 14.0975 | 22.7988 | 22.7988 | 36.8688 | 40.7553

t=0.9 | min | 14.0965 | 22.7976 | 22.7977 | 36.8677 | 40.7543

max | 12.7588 | 20.6339 | 20.6338 | 33.3675 | 36.8848

t=1 | min | 12.7578 | 20.6326 | 20.6326 | 33.3662 | 36.8836
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Table 4: Solutions by Using The Gauss-Seidel Method for Example 1

Time | (x,y) | 0.2,0.2 | 0.2,0.4 | 0.4,0.2 | 0.4,0.4 | 0.5, 0.5

max | 28.3512 | 45.8325 | 45.8523 | 74.1569 | 81.974

t=0.2 | min | 28.3498 | 45.8518 | 45.8518 | 74.1568 | 81.9774

max | 25.6578 | 41.4955 | 41.4955 | 67.1092 | 74.1859

t=0.3 | min | 25.6564 | 41.4950 | 41.4950 | 67.1091 | 74.1859

max | 23.2201 | 37.5527 | 37.5528 | 60.7317 | 67.1355

t=0.4 | min | 23.2188 | 37.5522 | 37.5521 | 60.7315 | 67.1353

max | 21.0142 | 33.9849 | 33.9849 | 54.9608 | 60.7557

t=0.5 | min | 21.0128 | 33.9842 | 33.9841 | 54.9605 | 60.7556

max | 19.0180 | 30.7564 | 30.7564 | 49.7389 | 54.9829

t=0.6 | min | 19.0165 | 30.7556 | 30.7554 | 49.7385 | 54.9826

max | 17.2116 | 27.8348 | 27.8349 | 45.0136 | 49.7592

t=0.7 | min | 17.2100 | 27.8339 | 27.8337 | 45.0131 | 49.7588

max | 15.5770 | 25.1911 | 25.1913 | 40.7378 | 45.0324

t=0.8 | min | 15.5751 | 25.1900 | 25.1897 | 40.7370 | 45.0318

max | 14.0975 | 22.7986 | 22.7987 | 36.8685 | 40.7550

t=0.9 | min | 14.0962 | 22.7977 | 22.7975 | 36.8678 | 40.7545

max | 12.7589 | 20.6336 | 20.6338 | 33.3673 | 36.8845

t=1 | min | 12.7574 | 20.6326 | 20.6323 | 33.3663 | 36.8838
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Table 5: Jacobi Iterations for Example 1 When ¢t =1

Iteration | (x,y) | 0.2,0.2 | 0.2,0.4 | 0.4,0.2 | 0.4,04 | 0.5, 0.5
max | 23.5151 | 33.1348 | 30.4532 | 43.9541 | 47.6547

4 min | 6.5165 | 11.7833 | 11.6565 | 21.4181 | 24.4394
max | 15.5955 | 24.0227 | 23.4375 | 36.3808 | 39.9234

8 min | 10.3685 | 17.5200 | 17.5800 | 29.7344 | 33.2629
max | 13.5687 | 21.6245 | 21.4705 | 34.2908 | 37.7820

12 min | 11.9612 | 19.6311 | 19.6914 | 32.2927 | 35.8367
max | 12.9978 | 20.9287 | 20.8866 | 33.6495 | 37.1553

16 min | 12.5077 | 20.3219 | 20.3496 | 33.0476 | 36.5761
max | 12.8301 | 20.7220 | 20.7101 | 33.4529 | 36.9665

20 min | 12.6813 | 20.5397 | 20.5480 | 33.2713 | 36.7924
max | 12.7799 | 20.6600 | 20.6566 | 33.3930 | 36.9092

24 min | 12.7348 | 20.6042 | 20.6075 | 33.3381 | 36.8566
max | 12.7649 | 20.6414 | 20.6403 | 33.3749 | 36.8918

28 min | 12.7511 | 20.6244 | 20.6254 | 33.3582 | 36.8759
max | 12.7603 | 20.6357 | 20.6354 | 33.3694 | 36.8866

32 min | 12.7561 | 20.6305 | 20.6308 | 33.3642 | 36.8817
max | 12.7590 | 20.6340 | 20.6339 | 33.3677 | 36.8850

36 min | 12.7576 | 20.6324 | 20.6325 | 33.3660 | 36.8834
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Table 6: Gauss-Seidel Iterations for Example 1 When ¢t =1

Iteration | (x,y) | 0.2,0.2 | 0.2,0.4 | 0.4,0.2 | 0.4,04 | 0.5, 0.5
max | 14.6396 | 22.4451 | 22.3711 | 33.8552 | 38.0858

6 min | 10.2580 | 18.1873 | 17.4931 | 30.7225 | 34.6686
max | 13.5149 | 21.2943 | 21.3519 | 33.9135 | 37.3119

8 min | 11.6470 | 19.6611 | 19.3505 | 32.4074 | 36.1168
max | 13.0550 | 20.8753 | 20.9182 | 33.5702 | 37.0404

10 min | 12.3005 | 20.2608 | 20.1357 | 33.0189 | 36.6142
max | 12.8723 | 20.7222 | 20.7437 | 33.4426 | 36.9415

12 min | 12.5779 | 20.4931 | 20.4446 | 33.2401 | 36.7879
max | 12.8015 | 20.6660 | 20.6755 | 33.3950 | 36.9052

14 min | 12.6890 | 20.5810 | 20.5625 | 33.3205 | 36.8495
max | 12.7746 | 20.6453 | 20.6492 | 33.3773 | 36.8919

16 min | 12.7321 | 20.6139 | 20.6068 | 33.3449 | 36.8716
max | 12.7644 | 20.6377 | 20.6393 | 33.3708 | 36.8871

18 min | 12.7484 | 20.6261 | 20.6234 | 33.3606 | 36.8796
max | 12.7606 | 20.6349 | 20.6355 | 33.3683 | 36.8853

20 min | 12.7546 | 20.6306 | 20.6295 | 33.3649 | 36.8825
max | 12.7592 | 20.6339 | 20.6341 | 33.3675 | 36.8846

22 min | 12.7569 | 20.6322 | 20.6318 | 33.3660 | 36.8836
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Table 7: Results of The Block Jacobi Method for Example 2

[teration
(x,y) | 0.1,0.1 1 0.2,0.2]0.3,0.3 04,04 |0.5 05| /error
M= 10 | max | 0.0357 | 0.1291 | 0.2447 | 0.3381 | 0.3738 60
P=10 | min | 0.0355 | 0.1285 | 0.2434 | 0.3364 | 0.3719 | 1.09E-2
M=20 | max | 0.0353 | 0.1279 | 0.2422 | 0.3348 | 0.3701 195
P=20 | min | 0.0352 | 0.1275 | 0.2416 | 0.3338 | 0.3691 | 3.30E-3
M=40 | max | 0.0352 | 0.1274 | 0.2414 | 0.3336 | 0.3688 457
P=40 | min | 0.0352 | 0.1272 | 0.2410 | 0.3331 | 0.3683 | 1.10E-3
true | 0.0351 | 0.1271 | 0.2408 | 0.3328 | 0.3679
Table 8: Results of The Block Gauss-Seidel Method for Example 2
[teration
(x,y) 10.2,0.2]0.2,04|04,0.2|04,04 |05 05| /error
M= 10 | max | 0.0358 | 0.1294 | 0.2449 | 0.3382 | 0.3737 31
P=10 | min | 0.0355 | 0.1285 | 0.2434 | 0.3364 | 0.3719 | 1.09E-2
M=20 | max | 0.0354 | 0.1279 | 0.2423 | 0.3348 | 0.3701 99
P=20 | min | 0.0352 | 0.1275 | 0.2416 | 0.3338 | 0.3691 | 3.30E-3
M=40 | max | 0.0352 | 0.1274 | 0.2414 | 0.3336 | 0.3688 290
P=40 | min | 0.0352 | 0.1272 | 0.2410 | 0.3331 | 0.3683 | 1.10E-3
true | 0.0351 | 0.1271 | 0.2408 | 0.3328 | 0.3679
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Table 9: Solutions by Using The Jacobi Method for Example 2

(x,y) | 0.1,0.1|0.2,02|0.3,0.3 |04, 04 | 0.5, 0.5

max | 0.0791 | 0.2862 | 0.5422 | 0.7493 | 0.8285

t=0.2 | min | 0.0789 | 0.2855 | 0.5410 | 0.7476 | 0.8265

max | 0.0717 | 0.2593 | 0.4912 | 0.6789 | 0.7505

t=0.3 | min | 0.0715 | 0.2586 | 0.4899 | 0.6771 | 0.7486

max | 0.0649 | 0.2348 | 0.4448 | 0.6146 | 0.6795

t=0.4 | min | 0.0647 | 0.2341 | 0.4435 | 0.6129 | 0.6776

max | 0.0587 | 0.2125 | 0.4026 | 0.5564 | 0.6151

t=0.5 | min | 0.0585 | 0.2118 | 0.4013 | 0.5546 | 0.6132

max | 0.0532 | 0.1932 | 0.3644 | 0.5036 | 0.5568

t=0.6 | min | 0.0530 | 0.1917 | 0.3631 | 0.5018 | 0.5548

max | 0.0481 | 0.1741 | 0.3298 | 0.4558 | 0.5040

t=0.7 | min | 0.0479 | 0.1734 | 0.3286 | 0.4541 | 0.5020

max | 0.0436 | 0.1576 | 0.2986 | 0.4126 | 0.4562

t=0.8 | min | 0.0434 | 0.1569 | 0.2973 | 0.4109 | 0.4542

max | 0.0394 | 0.1427 | 0.2703 | 0.3735 | 0.4129

t=0.9 | min | 0.0392 | 0.1420 | 0.2690 | 0.3718 | 0.4110

max | 0.0357 | 0.1291 | 0.2447 | 0.3381 | 0.3738

t=1 | min | 0.0355 | 0.1285 | 0.2434 | 0.3364 | 0.3719
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Table 10: Solutions by Using The Gauss-Seidel Method for Example 2

(x,y) | 0.1,0.1|0.2,02|0.3,0.3 |04, 04 | 0.5, 0.5

max | 0.0792 | 0.2864 | 0.5425 | 0.7495 | 0.8284

t=0.2 | min | 0.0789 | 0.2855 | 0.5409 | 0.7476 | 0.8265

max | 0.0718 | 0.2595 | 0.4915 | 0.6790 | 0.7505

t=0.3 | min | 0.0715 | 0.2586 | 0.4899 | 0.6771 | 0.7486

max | 0.0650 | 0.2350 | 0.4450 | 0.6148 | 0.6795

t=0.4 | min | 0.0647 | 0.2341 | 0.4434 | 0.6129 | 0.6776

max | 0.0588 | 0.2127 | 0.4028 | 0.5565 | 0.6150

t=0.5 | min | 0.0585 | 0.2118 | 0.4013 | 0.5546 | 0.6132

max | 0.0533 | 0.1926 | 0.3647 | 0.5037 | 0.5567

t=0.6 | min | 0.0530 | 0.1917 | 0.3631 | 0.5018 | 0.5548

max | 0.0482 | 0.1743 | 0.3301 | 0.4560 | 0.5039

t=0.7 | min | 0.0479 | 0.1734 | 0.3286 | 0.4541 | 0.5020

max | 0.0436 | 0.1578 | 0.2988 | 0.4127 | 0.4561

t=0.8 | min | 0.0434 | 0.1569 | 0.2973 | 0.4109 | 0.4543

max | 0.0395 | 0.1429 | 0.2705 | 0.3736 | 0.4128

t=0.9 | min | 0.0392 | 0.1420 | 0.2690 | 0.3718 | 0.4110

max | 0.0358 | 0.1294 | 0.2449 | 0.3382 | 0.3737

t=1 | min | 0.0355 | 0.1285 | 0.2434 | 0.3364 | 0.3719
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Table 11: Jacobi Iterations for Example 2 When ¢t =1

Iteration | (x,y) | 0.1, 0.1 | 0.2,0.1 | 0.3,0.3 | 0.4, 0.4 | 0.5, 0.5
max | 0.42173 | 1.33959 | 2.44566 | 3.03826 | 3.39981

6 min | 0.02085 | 0.07539 | 0.142688 | 0.19704 | 0.21778
max | 0.17016 | 0.59088 | 1.14583 | 1.52015 | 1.73049

12 min | 0.02943 | 0.10647 | 0.20164 | 0.27859 | 0.30797
max | 0.09027 | 0.31931 | 0.61882 | 0.83587 | 0.94511

18 min | 0.03299 | 0.11936 | 0.22608 | 0.31241 | 0.34538
max | 0.05824 | 0.20810 | 0.39979 | 0.54555 | 0.61125

24 min | 0.03446 | 0.12470 | 0.23623 | 0.32645 | 0.36091
max | 0.04499 | 0.16179 | 0.30864 | 0.42392 | 0.47177

30 min | 0.03508 | 0.12692 | 0.24044 | 0.33229 | 0.36737
max | 0.03948 | 0.14248 | 0.27075 | 0.37318 | 0.41377

36 min | 0.03533 | 0.12784 | 0.24219 | 0.33471 | 0.37005
max | 0.03719 | 0.13444 | 0.25502 | 0.35206 | 0.38968

42 min | 0.03544 | 0.12823 | 0.24292 | 0.33571 | 0.37116
max | 0.03625 | 0.13110 | 0.24849 | 0.34326 | 0.37968

48 min | 0.03548 | 0.12838 | 0.24322 | 0.33613 | 0.37162
max | 0.03585 | 0.12971 | 0.24578 | 0.33961 | 0.37553

54 min | 0.03550 | 0.128455 | 0.24335 | 0.33631 | 0.37181
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Table 12: Gauss-Seidel Iterations for Example 2 When ¢ = 1

Iteration | (x,y) | 0.1,0.1 | 0.2,0.1 | 0.3,0.3 | 0.4, 0.4 | 0.5,0.5
max | 0.59801 | 1.63046 | 2.51533 | 3.10614 | 3.40204

3 min | 0.01483 | 0.05895 | 0.11963 | 0.17486 | 0.20353
max | 0.24148 | 0.78721 | 1.39098 | 1.82822 | 1.92930

6 min | 0.02519 | 0.09478 | 0.18551 | 0.26405 | 0.30020
max | 0.13375 | 0.44808 | 0.78948 | 1.01598 | 1.04488

9 min | 0.030755 | 0.11329 | 0.21800 | 0.30547 | 0.34193
max | 0.08067 | 0.27257 | 0.48424 | 0.62945 | 0.65615

12 min | 0.03344 | 0.12194 | 0.23260 | 0.32337 | 0.35940
max | 0.05523 | 0.19080 | 0.34653 | 0.46071 | 0.49153

15 min | 0.03463 | 0.12573 | 0.23887 | 0.33095 | 0.36670
max | 0.043945 | 0.155036 | 0.28718 | 0.38898 | 0.42238

18 min | 0.03514 | 0.12733 | 0.24152 | 0.33414 | 0.36976
max | 0.03910 | 0.13980 | 0.26206 | 0.35879 | 0.39341

21 min | 0.03536 | 0.12801 | 0.24264 | 0.33547 | 0.37103
max | 0.03706 | 0.13338 | 0.25150 | 0.34613 | 0.38128

24 min | 0.03545 | 0.12829 | 0.24310 | 0.33603 | 0.37157
max | 0.03620 | 0.13069 | 0.24707 | 0.34083 | 0.37621

27 min | 0.03548 | 0.12841 | 0.24330 | 0.33626 | 0.37179
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Table 13: Results of The Block Jacobi Method for Example 3 When ¢t=1

Iteration
(x,y) 0,0 0.25, 0.25 | 0.5, 0.5 | 0.75, 0.25 1,0 /error

M= 8 | max | 0.3691 | 0.1819 | -0.0053 | -0.1926 |-0.3799

P=10 | min | 0.3663 | 0.1791 | -0.0082 | -0.1956 |-0.3830 | 2.61E-2

M=20 | max | 0.3685 | 0.1838 | -0.0008 | -0.1854 |-0.3701

P=20 | min | 0.3672 | 0.1826 | -0.0021 | -0.1867 |-0.3714 | 4.10E-4

M=40 | max | 0.3690 | 0.1848 0.0007 | -0.1835 | -0.3677

P=40 | min | 0.3667 | 0.1825 |-0.0017 | -0.1859 |-0.3702 | 3.6E-4

true | 0.3679 | 0.1839 0 -0.1839 | -0.3679

Table 14: Results of The Block Gauss-Seidel Method for Example 3 When t=1

Iteration
(x,y) 0,0 |0.25,0.25(0.5,0.5|0.75, 0.25 1,0 /error

M= 8 | max | 0.3690 | 0.1818 | -0.0054 | -0.1927 | -0.3800

P=10 | min | 0.3664 | 0.1792 | -0.0080 | -0.1954 | -0.3828 | 2.67E-2

M=20 | max | 0.3685 | 0.1838 | -0.0008 | -0.1855 |-0.3701

P=20 | min | 0.3673 | 0.1826 | -0.0020 | -0.1867 |-0.3714 | 4.20E-4

M=40 | max | 0.3682 | 0.1840 | -0.0002 | -0.1843 |-0.3685

P=40 | min | 0.3676 | 0.1834 | -0.0008 | -0.1850 |-0.3692 | 1.3E-4

true | 0.3679 | 0.1839 0 -0.1839 | -0.3679
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Table 15: Results of The Jacobi and The Gauss-Seidel Method for Example 4 When
t=1

Iteration
(x,y) | 0.1,0.1 [ 0.2,0.2 | 0.3,0.3 | 0.4, 0.4 | 0.5, 0.5 /error

M= 10 J 3.5517 | 12.8503 | 24.3440 | 33.6425 | 37.1943 | 56/1.1E-2

P=10 G 3.5522 | 12.8526 | 24.3491 | 33.6507 | 37.2042 | 31/1.13E-2

M=20 J 3.5216 | 12.7413 | 24.1374 | 33.3571 | 36.8787 | 154/2.5E-3

P=20 G 3.5230 | 12.7470 | 24.1492 | 33.3747 | 36.8995 | 85/3.0E-3

M=40 J 3.5095 | 12.6976 | 24.0547 | 33.2428 | 36.7524 | 390/9.66E-4

P=40 G 3.5128 | 12.7101 | 24.0795 | 33.2787 | 36.7938 | 215/1.56E-4

true | 3.5129 | 12.7099 | 24.0780 | 33.2750 | 36.7879

Table 16: Comparison of the Number of Iteration of All Examples

Method | Ex. 1 | Ex. 2 | Ex. 3 | Ex. 4
M=10 J 62 66 208 56
P=10 G 38 31 118 31
M=20 J 140 195 399 154
P=20 G 86 99 213 85
M=40 J 410 457 814 390
P=40 G 221 290 420 215

Table 17: Comparison of Error of All Examples

Method | Ex. 1 Ex. 2 Ex. 3 Ex. 4
M=10 J 3.0E-3 | 1.09E-2 | 2.61E-2 | 1.1E-2
P=10 G 3.0E-3 | 1.09E-2 | 2.67E-2 | 1.13E-2
M=20 J 93E-4 | 3.3E-3 | 4.1E-4 | 2.5E-3
P=20 G 9.36E-3 | 3.3E-3 | 4.2E-4 | 3.0E-3
M=40 J 3.21E-4 | 1.1E-3 | 1.6E-4 | 9.66E-4
P=40 G 3.21E-4 | 1.1E-3 | 1.3E-4 | 1.56E-4
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6 Discussions

6.1 Conclusions

Based on the numerical results from the four examples, we have following observa-

tions and comments:

1. Monotone and convergence property
In Tab(5), Tab(6), Tab(11) and Tab(12), it is shown that the for a fixed time
the upper iterative sequence starts from the upper solution and decreases to
true solution monotonically, and the lower iterative sequence starts form the
lower solution and increasingly converges to the unique solution. Actually,
this monotone convergence property holds for every mesh point and any time
t, no matter how the grid size and time interval are chosen. In all tables, it is
also shown that the upper sequence and the lower sequence are ordered, which
are cogent to the Lemma 3.1 and Lemma 4.1. Obviously the way the finite
system is formatted affects the computation accuracy. The numerical results

are consistent with theoretical properties given in Thm 3.1 and Thm 4.1.

2. Times of iteration
The times of iteration depends on how far the initial upper solution and lower
solution are away from the true solution. Suppose the discrete domain has
M x N points and P points for time it needs n steps to get the solution
satisfying given threshold. If we double the points in each dimension it needs

3n steps approximately to get the same threshold.

3. Computation efficiency and comparison between two methods
In each iteration, unlike the traditional point wise method solving the finite
difference system directly, the block Jacobi and Gauss-Seidel method solves it

block by block. Each block is a tridiagonal system representing equations on



one row(x-direction). So it can be solved by the fastest method, the Thomas
Algorithm(See [5]). By using this algorithm a M x M block can be solved
with about 3M operations. To solve the whole system(N blocks), it only
needs 3M N operations. Comparing to M?N? operations needed for the point

wise method the advantage of block methods is obvious.

. Comparison between two methods

From Tab(1), Tab(2), Tab(7), Tab(8) and Tab(16) we see that starting from
the same upper solution and lower solution the number of iteration of Gauss-
Seidel method is dramatically (about 50%) less than that of Jacobi method.
This is because Gauss-Seidel method uses previously computed results as soon

as they are available.

. Error analysis

The error comes from two parts, one from the discrete finite system and another
from the round-off errors. The errors are reduced by choosing the smaller
mesh size and the shorter time interval as shown in Tab(1), Tab(2), Tab(7)

and Tab(8).

. Effect of boundary conditions
Example 3 has the Neumann type boundary condition that makes the problem

more complicate. It requires more iterations.

. Solving for linear problems

It is commonly known that solving nonlinear problems needs more work than
linear ones. But with this method, comparing the different columns in Tab(16)
and Tab(17), it shows that the costs of solving nonlinear and linear systems are

at the same level. This is a major advantage of the block monotone method.
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6.2 Future Studies

1. The convergent rates of both block iterative schemes need to be investigated
theoretically. Specially, it is important to relate the convergent rates between

a linear problem and a nonlinear problem.

The block monotone method can only solve the problem on a convex domain.
This paper only gives the examples on the rectangle box. Basically, a problem
with irregular convex shapes can be dealt with the same way but there are some

issues of how and where to choose grid lines to get the best approximation.

2. How can we extend the block monotone method to three or higher dimensional

space?

3. The relationship among the mesh size, length of time interval and number
of iterations that discussed in above section 6.1.3 is only concluded from ob-
servation. The more detailed theoretical analysis and quantitative numeri-
cal computational will be helpful of showing the efficiency of block monotone

methods.
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