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ABSTRACT 

The importance of oyster filtering in moderating aspects of water quality has 

received increased attention over the past several years.  With population growth and 

increasing development in coastal watersheds come increased runoff and pollution of 

tidal creeks.  It has been suggested that bivalves may play an important role in controlling 

phytoplankton levels in shallow coastal areas, with several laboratory studies and models 

estimating the potential filtration effects of these organisms.  However, few field studies 

have been undertaken to quantify these effects.  This study examined the influence of 

intertidal oyster reefs on chlorophyll a, fecal coliform bacteria and total suspended solid 

concentrations under field conditions in a tidal creek estuary.  Oyster reefs of varying live 

oyster density were sampled during summer 2002, winter 2003 and spring 2003.  Water 

samples were taken upstream and downstream of each reef as well as over a mudflat 

control area on an ebb tide and analyzed for concentrations of these water column 

constituents.  Summer data showed consistent and statistically significant decreases in 

chlorophyll a concentrations as water moved over the reef, usually by 10-25%.  Fecal 

coliform counts were frequently lower downstream, by up to 45%, but were much more 

variable and not statistically different in most cases.  Data taken in winter, when 

temperatures and oyster feeding rates are lower, show less consistency in upstream vs. 

downstream patterns.  In spring, chlorophyll a decreases were less frequent than in 

summer, but significant fecal coliform decreases were more frequent.  Data from this 

study indicate that feeding by oysters and changes in water flow caused by the presence 

of reefs may both play a role in reducing particulate loads in the water column. 
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INTRODUCTION 

Increasing coastal populations and watershed development have led to concerns 

over water quality for both shellfishing and human contact waters.  Among the water 

quality concerns in coastal areas are water-borne pathogens, eutrophication, increased 

turbidity and sediment loads.  Most water pollution in coastal areas is from non-point, 

anthropogenic sources.   Nutrients, sediments and pathogens enter natural water bodies 

through runoff and can have both human health and ecosystem-level impacts.   

Microbial pathogens, particularly those from human and animal feces, can pose 

concerns for human health (Grimes 1991).  Fecal coliform bacteria are used as indicators 

of pathogens associated with human and animal wastes, and their water column 

concentrations can be used to classify water bodies.  Fecal coliform concentrations are 

strongly correlated with human population density, development, and especially with 

percent impervious surface coverage in a watershed (Young and Thackston 1999; Mallin 

et al. 2000).  They have also been shown to be positively correlated with nitrate and 

orthophosphate concentrations (Mallin et al. 2000) and turbidity (Pommepuy et al. 1992; 

Mallin et al. 2000), and inversely correlated with salinity (Goyal et al. 1977; Mallin et al. 

1999; Mallin et al. 2000).  Suspended solids and turbidity can contribute to survival and 

even growth of fecal coliform bacteria by providing protection from light, an organic 

substrate, and a mechanism for transport downstream (Gerba and McLeod 1976; 

Pommepuy et al. 1992; Sayler et al. 1975).  Additionally, rainfall events can be correlated 

with increases in fecal coliform concentrations (Goyal et al. 1977; Struck 1988; Howell et 

al. 1995) due to runoff inputs. 
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Increasing sedimentation and turbidity are concerns not only for their role in the 

survival of fecal coliforms, but also because of their effects on water column irradiance.  

Suspended solids and turbidity can prevent light from penetrating the water column and 

negatively impact the growth of primary producers such as rooted aquatic macrophytes, 

benthic microalgae, and phytoplankton (Cordone and Kelley 1961).  Additionally, 

benthic community structure, including shellfish beds, can be affected by burial by 

sediments and interference with feeding (Loosanoff and Tommers 1948; Posey 1990; 

Shumway 1996).  Major contributors to increased sedimentation are construction and 

increased runoff due to impervious surfaces and certain agricultural practices.   

Nixon (1995) defines eutrophication as “an increase in the rate of supply of 

organic matter to an ecosystem.”  Direct effects of eutrophication include changes in 

chlorophyll, primary production, and phytoplankton communities (Cloern 2001).  

Dominance in the phytoplankton community with eutrophication can switch from 

diatoms to flagellates and cyanobacteria, and nuisance or toxic algal blooms can occur.  

Extreme phytoplankton biomass can result in hypoxia or anoxia when the algae die 

(Bricker et al. 1999).  Indirect effects include changes in water transparency, nutrient 

cycling, benthic communities, and food web structure (Cloern 2001; Posey et al. 2002).  

These effects are moderated by system attributes; some areas are more sensitive to 

nutrient loading than others (Cloern 2001).  The main cause of eutrophication is nutrient 

loading, which can come from fertilizers, human and animal wastes, and fossil fuel 

combustion (Nixon 1995, Bricker et al. 1999).    

Eutrophication, sediment loading, and pathogen problems are all serious water 

quality issues to which watershed development contributes.  Increasing populations lead 
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to increased demands on land and water, and proper management practices must be 

implemented as preventative measures.  For example, vegetated buffer zones help filter 

water naturally and reduce sediment, nutrient and pollutant loads before runoff enters 

natural waterways.  Other natural measures are being studied as possible remediation 

techniques.  Some recent studies have centered on the role of bivalves, such as the eastern 

oyster, Crassostrea virginica, in regulating suspended particulate loads in estuarine 

systems. 

Models based on laboratory studies of bivalve filtration rates predict that bivalves, 

when sufficiently abundant in shallow waters, can control phytoplankton biomass (Cloern 

1982; Officer et al. 1982; Gerritsen et al. 1994).  In the shallow freshwater and 

oligohaline portions of Chesapeake Bay, bivalves may consume more than 50% of annual 

primary production (Gerritsen et al. 1994).  These models, however, are often based on 

high estimates of feeding rates from laboratory trials and fail to take into account 

variability in bivalve feeding rates under field conditions or bivalves’ release of nutrients, 

which could actually stimulate phytoplankton growth.  Oyster feeding rates can be 

affected by temperature, salinity, suspended solid concentrations, and other factors 

(Shumway 1996).  Filter feeding is not the only possible mechanism for removal of 

particulate matter.  It may also be caused by physical effects of oyster reefs on water flow 

(Dame 1987).  The presence of reefs can cause eddies and turbulence, which lead to the 

settling of fine particles.   

Field studies regarding removal of particulate matter by oyster reefs are somewhat 

limited.  Dame et al. (1984, 1985, 1989) and Dame and Dankers (1988) used a plexiglass 

tunnel to measure the change in several water column constituents as water traveled over 
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the oyster reef.  They found significant decreases in total organic carbon, particulate 

organic carbon, total suspended solids, nitrite+nitrate, and chlorophyll a (Dame et al. 

1984; Dame et al. 1985; Dame and Dankers 1988).  Ammonium concentrations increased 

downstream of oyster reefs, suggesting a role for oyster reefs in nutrient cycling (Dame et 

al. 1984; Dame et al. 1985; Dame et al. 1989; Dame and Dankers 1988, Nelson et al. 

2003).  Tidal creeks with oysters did not show significantly lower chlorophyll a levels 

than creeks without oysters, suggesting that oyster grazing may not limit phytoplankton 

growth at this scale (Dame and Libes 1993). 

The eastern oyster is a filter feeder that is widely believed to reduce the amount of 

particulate matter in the water column.  Field evidence to support this idea, however, is 

limited, and no field tests of fecal coliform reductions over oyster reefs have been 

published.  This research assessed the impacts of intertidal oyster reefs on suspended 

solids, chlorophyll a, and fecal coliform bacteria in a human-impacted tidal creek, and 

examined whether live oyster density over natural ranges influenced rates of seston 

removal. 

METHODS 

Study Site 

Six natural, intertidal oyster reefs were chosen for study in Hewletts Creek, 

southeastern North Carolina.  Hewletts Creek is an anthropogenically impacted tidal 

creek with a watershed that is approximately 70% developed, with 18% impervious 

surface coverage (Mallin et al. 2000).  The reefs used in this study were bar reefs 

approximately 10 m wide and were selected to provide a gradient of ambient live oyster 

density from “low” (79 live oysters  m-2) to “high” (167 live oysters m-2; Table 1) based  
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Table 1.  Physical characteristics of oyster reefs used in the study.  Live oyster densities 
(m-2) were measured in Summer 2002 and Spring 2003.  Also indicated is % shell cover, 
which is indicative of the amount of dead shell covering the reef.  Width is the distance 
water traveled over the reef between upstream and downstream sampling locations; 
height is the vertical difference between the crest and base of the reef.   
 
 

Reef # Summer 
density 

Spring 
density 

% Shell 
cover 

Length 
(m) 

Width 
(m) 

Height 
(m) 

Vertical 
complexity

1 79 132 100 14.5 13.5 0.29 0.68 
2 113 129 100 10.0 15.0 0.15 0.64 
3 114 150 60 13.0 8.0 0.40 0.68 
4 116 163 80 13.0 9.5 0.50 0.75 
5 129 176 100 13.0 8.0 0.30 0.70 
6 167 183 100 17.7 5.5 0.65 0.73 
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on live densities available in the study area.  Because the amount of shell hash covering 

oyster reefs also may contribute to physical effects on water flow, reefs with different 

amounts of shell cover were used.  Two of the reefs had low dead shell cover 

(approximately 60-80% of the reef consisted of live oysters, and the rest of the substrate 

was mud); the others were completely covered by live and dead shell.  All reefs were 

located in the middle reaches of the creek (Fig. 1).  They were located near a channel in 

the creek to ensure sufficient flow and were at least 5 m distant from other reefs.  They 

were not immediately adjacent to marsh, thus reducing potential effects of sedimentation 

associated with marshes.  A mudflat area immediately upstream of the selected reefs was 

used as a no-oyster control (Fig. 1).  The vertical height and vertical complexity of each 

reef were measured, as they may impact physical effects such as flow velocity (Lenihan 

1999; Table 1).  Reef height was measured while water covered the crest of the reef by 

recording the depth of water over the crest and subtracting this from the depth of water 

covering the edges of the reef.  Vertical complexity was calculated by allowing a 1 m 

long chain to conform to the vertical contours of the reef and measuring the actual 

horizontal distance covered by the chain.  Complexity was measured as a ratio  of straight 

distance after conforming to the contours divided by 1 m.  Values for complexity range 

from 0-1, with smaller values indicative of higher complexity. 

 

Flow  Studies 

To ensure that the same water mass was sampled as it flowed over a reef, a series 

of dye studies was conducted on ebbing tides with tidal ranges consistent with those used 

for sampling. A pellet of Formulabs fluorescent yellow/green tablets was dissolved in a 
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Figure 1.  The study site:  a)location  b) relative positions of oyster reefs used in the study.  
Aerial photograph from New Hanover County GIS, 1998.    
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bucket of creek water.  A syringe was used to inject this colored water into the current at 

approximately mid-depth just upstream of the reef, and the direction of flow as well as 

the point of departure downstream of the reef were recorded.   

Because flow speed can affect bivalve growth and filtration (Lenihan et al. 1996) 

as well as sediment deposition, it was important to characterize the flow regime of each 

reef in this study.  Flow measurements were taken with a Marsh McBirney, Inc. Flo-mate 

Model 2000 hand-held current meter once in the summer and during sample collection in 

winter and spring.  A SonTek Handheld ADV FlowTracker was used to take three-

dimensional current measurements upstream, downstream and over the crest of each reef 

on a characteristic ebb tide in March 2003. 

 

Sampling 

Fecal coliform and chlorophyll a concentrations in tidal creeks have been shown 

to be highest at approximately mid-to-low tide (Mallin et al. 1999).  Additionally, 

significant decreases in chlorophyll a concentrations downstream of a created oyster reef 

in the study area were observed 3 hours after high tide (Nelson et al. 2003).  To increase 

the likelihood of detecting effects, water samples were taken as close as possible to mid-

ebb tide (generally about 2 hours after high tide).  Samples were taken from a canoe to 

avoid disturbing sediment.  All sampling was conducted on ebb tides with a predicted 

range of 0.9 – 1.1 m after a high tide of approximately 1 m.  Water depth was less than 35 

cm on the upstream and downstream sides of the reef at the time of sampling and only a 

few cm of water were present over the crest, thereby maximizing the amount of water 

that came into contact with the oysters.   
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Samples were taken at two locations upstream and two locations downstream of 

each reef.  The two upstream samples were approximately 1 m apart from each other, as 

were the downstream samples.  Upstream samples were taken at mid-depth in the water 

column.  The flow studies showed that water from mid-depth flowed up over the crest of 

the reef and stayed near the surface, so downstream samples were taken just under the 

surface of the water.  Because sampling could resuspend solids in the water column, 

downstream samples were taken before upstream samples.  This practice avoided 

collection of sediments that had been stirred up by prior sampling.  For the same reason, 

the first reef sampled in a day was downstream of the second reef. 

Sampling of the six reefs, as well as a mud-bottom control area, was 

accomplished over a period of three days during each sampling period, with two reefs 

sampled per day.  Sampling was conducted twice per season during summer 2002 (once 

in July and once in August) and spring 2003 (twice in May, approximately two weeks 

apart).  Due to low concentrations of water column constituents as well as weather 

limitations, only one sampling period was conducted in winter 2003 (February).  

Sampling within 24 hours of rain was avoided due water column composition that could 

potentially be altered by stormwater runoff.  In winter, however, there were such low 

concentrations of the water column constituents of interest that it was necessary to 

sample after a rain event, in addition to the scheduled sampling period, to have 

sufficiently high chlorophyll a and fecal coliform concentrations to allow detection of 

potential effects.  The two highest live-oyster density reefs and the mudflat control area 

were all sampled the day after a rainfall of approximately 3 cm in February 2003. 
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Chlorophyll a samples were taken in triplicate into 125 mL opaque plastic bottles. 

A fourth bottle was used to ensure collection of enough water for total suspended solids 

(TSS) analysis.  Fecal coliform samples were collected using autoclaved 500 mL glass 

bottles.  All samples were kept on ice until they were filtered.  Water remaining after 

filtration of fecal coliforms and chlorophyll a was combined and stored at 4o C until it 

could be used in analysis of TSS.  Originally, this project was intended to focus on 

changes in turbidity rather than total suspended solids.  However, initial attempts to 

measure turbidity met with methodological difficulties, and TSS analysis was added to 

the study in the second summer sampling period. 

 

Sample Processing 

Fecal coliform and chlorophyll a samples were filtered upon return to the lab and 

within 6 hours of collection.  Fecal coliform bacteria concentrations were determined 

according to the Membrane Filter Procedure, using mFC medium (APHA 1995).  

Chlorophyll a samples were filtered through Gelman A/E glass fiber filters with 1.0 µm 

pore size.  The filters were wrapped individually in aluminum foil and frozen in a sealed 

container with desiccant.  Concentrations were determined flourometrically 

(Welschmeyer 1994) within three weeks.  TSS were analyzed gravimetrically (APHA 

1995) using 500 mL of water from each sampling location.  TSS were filtered through 

pre-dried, Gelman A/E 47 mm diameter glass fiber filters with 1.0 µm pore size. 
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Sediment Analysis 

 Oyster reefs may cause settling of fine particles, and it was desirable to determine 

whether sediment composition was different upstream versus downstream of the reefs in 

this study.  Two sediment samples were taken from each side of the reef (upstream and 

downstream), at approximate water column sampling locations, on a low tide in June 

2003.  Samples were refrigerated overnight at 4o C.  They were then passed through a 1.7 

mm sieve and grain size fractions were determined using a Beckman LS Coulter Counter.  

Due to the counter configuration, which did not place a division at the particle size of 

62.5 µm (the standard delineation between fine sediment and sand), the cutoff between 

fine and course sediment was chosen to be 63.41 µm. 

 

Statistical Analysis 

The parameters of chlorophyll a and fecal coliform concentrations were tested for 

normality and non-heterogeneity of variances.  Though variances upstream and 

downstream of reefs were non-heterogeneous for both parameters, neither showed a 

normal distribution, leading to the use of non-parametric tests.  Kruskal-Wallis tests were 

used (Sokal and Rohlf 1995) to test upstream versus downstream concentrations of the 

sampled variables and to determine whether they were significantly different across each 

individual reef for each sampling period.  In all other analyses, which involved 

concentration changes of variables and not the non-normally distributed concentrations 

themselves, parametric methods were used.  Multiple regression was used to determine 

whether the concentration changes of the studied variables were related to live oyster 

density, mean upstream flow speed, tidal range and the amount of time between high tide 
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and sampling.  Time after the high tide was included in the regressions because, although 

similar predicted tides were used for sampling, weather phenomena caused differences in 

the timing of the correct water level.  Because flow was not measured concurrently with 

sampling in summer, it was not included in the summer multiple regression model.  In 

winter, samples were only taken once for each reef (as opposed to twice in summer and 

spring); this led to reduced degrees of freedom so interactions could not be included in 

the model.  An ANOVA was used to test for differences between the high-shell and low-

shell reefs of the same live oyster density.  A t-test was used to test for overall reef effects 

within a season (i.e. did the reefs show consistently decreased concentrations 

downstream?).  All analyses utilized SAS (SAS Institute, Inc. 1989).  For all tests, p<0.05 

was considered significant. 

 

RESULTS 

Summer 

 Mean chlorophyll a concentrations ranged from 2.3-10.6 µg L-1 over the reefs and 

mudflat during the summer sampling periods.  Mean fecal coliform concentrations ranged 

from 1.3-54.8 colony forming units (CFU) 100 mL-1.  Total suspended solid 

concentrations ranged from 10-27 mg L-1.  Temperature was approximately 25-27o C and 

salinity ranged from 30-36 ppt at the study site during these sampling periods. 

 Chlorophyll a was significantly lower downstream of reefs than upstream in 

summer for 9 of 12 comparisons, two comparisons for each of the six reefs (Table 2).  

This overall reef effect was significant for all reefs combined (p=0.002), for high-shell 

cover reefs (p=0.023) and for low-shell cover reefs (p=0.053).  Each reef demonstrated a 
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Table 2.  Results of Kruskal-Wallis Tests on upstream vs. downstream concentrations  
of chlorophyll a (chl) and fecal coliform bacteria (fc) concentrations.  Significant 
differences are in bold.  All significant changes were reductions (lower downstream) 
except for one, designated with a +.  Each reef was sampled twice in Summer, 2002 and 
Spring, 2003 and once in Winter, 2003.  The mudflat was only sampled once in Summer, 
and Reef 6 was sampled twice in Winter. 

 
 

Reef Season Parameter df chi-square K-W p-value 
   

 Summer 1 chl 10 5.8099 0.0159 
 Summer 2 chl 10 0.8186 0.3656 
 Winter chl 5 3.6667 0.0555 
 Spring 1 chl 10 0.8499 0.3566 
1 Spring 2 chl 10 9.0000 0.0027 
 Summer 1 fc 9 3.4268 0.0641 
 Summer 2 fc 10 0.3152 0.5745 
 Winter fc 10 4.0460 0.0443 
 Spring 1 fc 8 0.0994 0.7526 
 Spring 2 fc 10 0.6595 0.4167 
   
 Summer 1 chl 9 0.1377 0.7106 
 Summer 2 chl 10 8.7675 0.0031 
 Winter chl 10 1.0000 0.3173 
 Spring 1 chl 10 1.1692 0.2796 
2 Spring 2 chl 10 4.3734 0.0365 
 Summer 1 fc 10 6.3218 0.0119 
 Summer 2 fc 10 1.6643 0.1970 
 Winter fc 9 0.2222 0.6374 
 Spring 1 fc 10 0.5229 0.4696 
 Spring 2 fc 10 0.2409 0.6236 
      
 Summer 1 chl 10 8.3662 0.0038 
 Summer 2 chl 7 5.4915 0.0191 
 Winter chl 10 4.0833 0.0433 
 Spring 1 chl 10 8.3662 0.0038 
3 Spring 2 chl 9 5.3065 0.0212 
 Summer 1 fc 10 0.0068 0.9341 
 Summer 2 fc 8 0.7024 0.4020 
 Winter fc 10 2.8978 0.0887 
 Spring 1 fc 10 6.6572 0.0099 
 Spring 2 fc 10 3.7183 0.0538 
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Reef Season Parameter df chi-square K-W p-value 
      
 Summer 1 chl 10 8.4255 0.0037 
 Summer 2 chl 10 4.7903 0.0286 
 Winter chl 10 5.9783 0.0145 
 Spring 1 chl 10 4.3333 0.0374 
4 Spring 2 chl 10 4.8889 0.0270+ 

 Summer 1 fc 10 0.0581 0.8095 
 Summer 2 fc 9 0.5333 0.4652 
 Winter fc 10 0.9462 0.3307 
 Spring 1 fc 10 0.4103 0.5218 
 Spring 2 fc 10 0.2349 0.6279 
      
 Summer 1 chl 10 8.3958 0.0038 
 Summer 2 chl 10 8.6400 0.0033 
 Winter chl 10 0.0000 1.0000 
 Spring 1 chl 10 1.3309 0.2487 
5 Spring 2 chl 10 5.8428 0.0156 
 Summer 1 fc 10 2.8569 0.0910 
 Summer 2 fc 10 0.1026 0.7488 
 Winter fc 10 0.2435 0.6217 
 Spring 1 fc 8 2.4545 0.1172 
 Spring 2 fc 10 0.0262 0.8714 
      
 Summer 1 chl 10 2.9293 0.0870 
 Summer 2 chl 10 5.8099 0.0159 
 Winter 1 chl 10 3.0083 0.0828 
 Winter 2 chl 10 1.6369 0.2008 
6 Spring 1 chl 10 0.2316 0.6304 
 Spring 2 chl 10 0.1637 0.6858 
 Summer 1 fc 9 1.6559 0.1982 
 Summer 2 fc 9 7.5688 0.0059 
 Winter 1 fc 10 5.5065 0.0189 
 Winter 2 fc 10 0.0072 0.9326 
 Spring 1 fc 10 6.5641 0.0104 
 Spring 2 fc 10 1.7129 0.1906 
      
 Summer chl 10 6.6103 0.0101 
 Winter chl 10 3.2083 0.0733 
 Spring 1 chl 10 0.0579 0.8099 

Mudflat Spring 2 chl 10 3.2743 0.0704 
 Summer 2 fc 9 0.3070 0.5795 
 Winter fc 10 6.5871 0.0103 
 Spring 1 fc 10 5.0433 0.0247 
 Spring 2 fc 10 0.0000 1.0000 
      

Table 2 continued.
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significant decrease in chlorophyll a at least one of the two times it was sampled over the 

summer.  There was no significant difference in percent removal of chlorophyll a  

between the high shell cover and low shell cover reefs of the same live oyster density 

(p=0.516).  The mudflat was only sampled once during summer, and at that time 

chlorophyll a was significantly lower downstream than upstream (p=0.010).  Changes in 

chlorophyll a concentrations were not significantly related to live oyster density (Fig. 2a, 

Table 3) or tidal range.   

 Fecal coliform concentrations were most often lower downstream of reefs than 

upstream (8 out of 12 comparisons), although only two differences were statistically 

significant and there was not a significant overall reef effect (p=0.221).  Fecal coliform 

concentrations were higher downstream on the mudflat than upstream, but this difference 

was not significant.  Changes in fecal coliform concentrations were not significantly 

related to live oyster density (Fig. 2b, Table 4) or tidal range.  There was no significant 

difference in percent fecal coliform removal between the high shell and low shell reefs of 

the same live oyster density (p=0.859). 

Because of difficulties encountered when measuring turbidity, total suspended 

solid concentrations were added to sampling during the second summer sampling period.  

Three of the six reefs showed large (24-38%) decreases in TSS concentrations 

downstream, while two showed large increases (25 and 43%) and one showed only a very 

small increase (2%).  There was no significant overall reef effect on TSS concentrations 

(p=0.444).  The mudflat showed no change in TSS concentration.  Due to a lack of 

replication (only two samples upstream and two downstream), no statistical test could be 

run on the differences across each reef or the mudflat.  Changes in TSS concentrations 
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Figure 2.  Water column constituents as related to live oyster density, Summer, 2002: 
Percent changes in a) chlorophyll a; b) fecal coliforms; and c) TSS.  Negative numbers 
represent a lower concentration downstream of the reef than upstream. 
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Table 3.  Multiple regression statistics for changes in chlorophyll a. 
Tide = predicted difference between high and low tides; Dens = live oyster density;  
mnflow = mean flow speed upstream of the reef; mnturb = mean turbidity upstream of 
the reef; time = amount of time after high tide that samples were taken. 

 
  

Parameter slope t-value p 
    

Summer 2002    
Tide -1.454 0.59 0.5691 
Dens -0.058 0.94 0.3770 
Tide*Dens 0.016 0.82 0.4358 
    
Winter 2003    
Tide -2.020 0.28 0.8254 
mnflow 0.004 0.24 0.8521 
Dens -0.006 0.39 0.7638 
    
Spring 2003    
Tide -4.484 0.12 0.9141 
time 21.275 1.01 0.4193 
mnflow -0.453 0.36 0.7523 
Dens -0.188 0.30 0.7918 
mnflow*Dens 0.005 0.54 0.6426 
Tide*Dens 0.015 0.07 0.9472 
time*Dens -0.152 1.04 0.4067 
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Table 4.  Multiple regression statistics for changes in fecal coliform concentrations. 

 
  

Parameter slope t-value p 
    

Summer 2002    
Tide -9.585 0.45 0.6679 
Dens -0.593 1.08 0.3110 
Tide*Dens 0.167 1.00 0.3448 
    
Winter 2003    
Tide 73.920 0.49 0.7075 
mnflow -0.176 0.45 0.7305 
Dens 0.130 0.44 0.7387 
    
Spring 2003    
Tide 224.173 0.62 0.5964 
time -47.481 0.23 0.8391 
mnflow 0.075 0.01 0.9956 
Dens 7.283 1.19 0.3551 
mnflow*Dens -0.002 0.02 0.9827 
Tide*Dens -1.492 0.74 0.5360 
time*Dens 0.418 0.29 0.7974 
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were not significantly related to live oyster density (Fig. 2c, Table 5) or tidal range, and 

percent change was not significantly different between the high shell and low shell reefs 

of the same live oyster density (p=0.800).   

 

Winter 

 Mean chlorophyll a concentrations ranged from 0.3-1.5 µg L-1 over the reefs and 

mudflat during the winter sampling period.  Mean fecal coliform concentrations ranged 

from 0.2-8.0 CFU 100 mL-1 over the reefs and 22.5-36.7 CFU 100 mL-1 over the mudflat. 

Temperature was approximately 4o C and salinity ranged from 17-35 ppt at the study site 

during this sampling period.  Turbidity was very low, ranging from 1.5-5.0 NTU, and 

TSS concentrations were between 1.8-7.5 mg L-1. 

 Because concentrations of the studied water column constituents were so low, the 

two highest live oyster density reefs (both with high dead shell cover) and the mudflat 

were sampled after approximately 3 cm of rain, when the creek water level was higher 

than normal.  After this rain event, mean chlorophyll a concentrations ranged from 1.8-

2.6 µg L-1 and mean fecal coliform concentrations were approximately 146-516 CFU 100 

mL-1.  Temperature was 4o C and salinity ranged from 15-29 ppt among sites on the same 

day.  Water flow speed was higher than normal after the rain event.  This was due partly 

to a larger tidal range than was normally sampled (1.5 m; usually a range of 0.9-1.1 m) as 

well as flow effects from stormwater runoff.  Turbidity was comparable to warmer water 

turbidity, ranging from 7.8-12.5 NTU.  TSS concentrations were 9.0-15.4 mg L-1. 

 During the regular winter sampling period, there were 2 significant decreases 

(p<0.05) in chlorophyll a concentrations over the reefs (Table 2).  A t-test did not show a 
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Table 5.  Multiple regression statistics for changes in total suspended solids. 
 

  
Parameter slope t-value p 

    
Summer 2002    
Tide -8.228 0.32 0.7818 
Dens -0.262 0.38 0.7378 
Tide*Dens 0.152 0.70 0.557 
    
Winter 2003    
Tide -49.594 2.04 0.2903 
mnflow 0.077 1.20 0.4412 
Dens -0.103 2.13 0.2794 
    
Spring 2003    
Tide -106.113 2.04 0.1785 
time 48.663 1.63 0.2447 
mnflow -1.551 0.88 0.4737 
Dens -1.860 2.10 0.1701 
mnflow*Dens 0.013 1.01 0.4204 
Tide*Dens 0.566 1.94 0.1923 
time*Dens -0.339 1.64 0.2434 
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significant overall reef effect on this variable for all reefs combined (p=0.691), for high-

shell cover reefs (p=0.582), or for low-shell cover reefs (p=0.323).  The observed 

decreases occurred over the two intermediate live oyster density, low dead shell cover 

reefs.  There was not a significant difference between these reefs and the high shell cover 

reef of the same density (p=0.564).  Over the mudflat, there was no significant change in 

chlorophyll a.  Changes in chlorophyll a in winter were not significantly related to live 

oyster density (Fig. 3a), mean flow speed upstream of the reefs, or change in flow speed 

(Table 3).  After the rain event, both reefs and the mudflat showed slight, non-significant 

increases in chlorophyll a.   

 In the normal winter sampling period, fecal coliforms were lower downstream 

than upstream 5 times (out of 7 comparisons; the highest density reef was sampled twice 

in winter), but this overall reef effect was not significant for all reefs combined 

(p=0.259), for high-shell cover reefs (p=0.224) or for low-shell cover reefs (p=0.856).  

Two of the fecal coliform decreases were significant and these occurred over the highest 

density reef (p=0.019) and the lowest density reef (p=0.044; Table 2).  Fecal coliform 

concentrations significantly decreased over the mudflat (p=0.010) during this sampling 

period.  Changes in fecal coliform concentrations were not correlated with live oyster 

density (Fig. 3b), upstream flow speeds, or changes in flow (Table 4).  There was no 

significant difference between percent change in fecal coliform concentrations between 

the high shell and low shell reefs of the same live oyster density (p=0.667). 

 After the rain event, fecal coliform concentrations were elevated above non-rain 

conditions.  Due to crowding of the petri dishes, the counts could not be considered 

reliable enough for statistical analysis.  However, it was apparent that fecal coliform 
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Figure 3.  Water column constituents as related to live oyster density, Winter, 2003: 
Percent changes in a) chlorophyll a; b) fecal coliforms; and c) TSS.  Negative numbers 
represent a lower concentration downstream of the reef than upstream.  
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 concentrations were highest over the mudflat (approximately 400 CFU 100 mL-1), lower 

over the highest density reef, which was slightly downstream of and adjacent to the 

mudflat (Reef 6 in Fig. 1; approximately 360 CFU 100 mL-1), and lowest over the most 

downstream reef (Reef 5 in Fig. 1; approximately 180 CFU 100 mL-1). 

 During the normal winter sampling period, TSS concentrations were higher (25-

36%) downstream of reefs as compared to upstream three times.  They were moderately 

lower (10%) once, and twice were only slighly (<5%) lower downstream.  Given the low 

TSS concentrations during this sampling period, however, an increase of <1 mg L-1 could 

translate to a 30% change.  There was no significant overall reef effect in concentration 

changes (p=0.252).  Upstream to downstream changes in TSS concentrations were not 

significantly related to live oyster density (Fig. 3c), flow speed of water upstream of the 

reefs, or changes in flow speed during the winter sampling period (Table 5).  There was 

no significant difference in TSS change between high shell and low shell reefs of the 

same live oyster density (p=0.744).  TSS concentrations were 0.7% higher downstream 

than upstream over the highest density reef after the rain event, but were 30% higher over 

the second-highest density reef.  Over the mudflat, TSS concentrations were 

approximately 11% lower downstream. 

 

Spring 

 Mean chlorophyll a concentrations ranged from 1.3-7.1 µg L-1 over the reefs and 

2.0-12.2 µg L-1 over the mudflat during the spring sampling period.  Mean fecal coliform 

concentrations ranged from 8-330 CFU 100 mL-1 over the reefs and mudflat.  Fecal 

coliform counts were higher during the first spring sampling period due to a long rainy 
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period preceding sampling.  Samples were not taken within 24 hours of rain, but the 

earlier rain did affect the water column.   Temperature was approximately 24o C and 

salinity ranged from 19-25 ppt during the first spring sampling and 30-34 ppt during the 

second spring sampling period.  Turbidity ranged from 5.8-9.8 NTU over both spring 

sampling periods. 

 In spring, there were 6 significant decreases and one significant increase in 

chlorophyll a concentrations across the reefs (Table 2).  Changes in chlorophyll a 

concentrations did not show an overall reef effect for all reefs combined (p=0.180), for 

high-shell cover reefs (p=0.189) or for low-shell cover reefs (p=0.276).  Chlorophyll a 

changes also were not significantly related to live oyster density (Fig. 4a), flow speed 

upstream of the reefs, change in flow speed, or how long after the high tide samples were 

taken (Table 3).  There was no significant difference in percent removal of chlorophyll a 

between high and low shell cover reefs of similar live oyster density (p=0.448). 

 Ten of 12 comparisons showed fecal coliform concentrations that were lower 

downstream than upstream in spring.  Three of these decreases were significant (Table 2), 

as was the overall reef effect (p=0.009).  The mudflat showed a significant (p=0.025) 

downstream decrease in fecal coliforms during one of the two spring sampling periods. 

Changes in fecal coliform concentrations were not correlated with live oyster density 

(Fig. 4b), flow speed upstream of reefs, or changes in flow (Table 4).  A t-test did show 

significantly decreased fecal coliform concentrations downstream of oyster reefs in 

spring for all reefs combined (p=0.0086).  High-shell cover reefs did not show this 

overall effect (p=0.101); it was driven by the low-shell cover reefs (p=0.012).  However,  



 25

Chlorophyll a

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

120 130 140 150 160 170 180 190

Live oyster density (m-2)

%
 c

ha
ng

e 
in

 c
hl

or
op

hy
ll 

a 
co

nc
en

tr
at

io
n

 

a. 
 

Fecal Coliforms

-35.0
-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0

10.0

120 130 140 150 160 170 180 190

Live Oyster Density (m-2)

%
 c

ha
ng

e 
in

 fe
ca

l 
co

lif
or

m
 c

on
ce

nt
ra

tio
n

 
b. 
 

TSS

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

120 130 140 150 160 170 180 190

Live Oyster Density (m-2)

%
 c

ha
ng

e 
in

 T
SS

 
c. 

Figure 4.  Water column constituents as related to live oyster density, Spring, 2003: 
Percent changes in a) chlorophyll a; b) fecal coliforms; and c) TSS.  Negative numbers 
represent a lower concentration downstream of the reef than upstream. 
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high-shell and low-shell cover reefs of similar live oyster density did not show 

significantly different patterns of fecal coliform removal in spring (p=0.155). 

 TSS did not exhibit a significant pattern with respect to the variables examined in 

spring.  Out of 12 comparisons, downstream TSS concentrations were higher 7 times, 

lower 3 times, and unchanged twice.  There was not a significant overall reef effect on 

TSS concentration changes (p=0.291).  TSS concentrations were higher downstream once 

over the mudflat, and remained unchanged during the other spring sampling period.  The 

observed changes in TSS concentrations were not correlated with live oyster density (Fig. 

4c), water flow speed upstream of the reefs or changes in flow (Table 5).  Percent 

removal of TSS was not significantly different between high shell and low shell cover 

reefs of the same live oyster density (p=0.540). 

 

Overall 

 During the warm seasons of summer and spring, chlorophyll a was significantly 

lower downstream of reefs than upstream a total of 13 times (out of 24 observations).  

Only once was it significantly higher.  In summer, chlorophyll a concentrations were 

significantly lower downstream of oyster reefs than upstream (p=0.002) overall.  In 

spring, however, there was no significant reef effect.  Fecal coliforms were reduced the 

majority of the time during the warm seasons (18 of 24 comparisons), but only 4 of these 

decreases were statistically significant.  In summer, this overall reef effect was not 

statistically significant, but it was significant in spring (p=0.009). 

Chlorophyll a concentrations were significantly and inversely related to TSS 

concentrations in spring and across all seasons.  In winter, there was no significant  
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relationship between the two (Fig. 5).  In spring, as well as across all seasons, chlorophyll 

a showed a significant positive relationship with turbidity (Fig. 6).  Fecal coliform counts  

showed a significant negative relationship to TSS in both spring and winter, but across all 

seasons, there was a weak but significant positive relationship (Fig. 7).  In summer, fecal 

coliform concentrations were significantly and positively related to turbidity and in 

spring there was a weak but significant positive relationship (Fig. 8).  For all seasons 

combined, there was not a significant relationship (Fig. 8).  Concentrations of all water 

column constituents were higher during the first spring sampling period than the second, 

perhaps due to the effects of rain in the days preceding sampling.   

 Water flow varied somewhat from reef to reef.  The lowest observed flow over 

the parts of the reef from which samples were taken was 6 cm s-1.  Flow velocity reached 

22 cm s-1 over the other reefs.  The three-dimensional current study showed increases in 

flow speed over the crest of three of the reefs, and decreases over the other three.  

However, differences in flow speeds between reefs were not correlated with changes in 

the water column constituents.  Vertical complexity was approximately equal over the 

reefs (Table 1).  Over five of the six reefs, downstream sediments showed a larger 

amount of coarse sediment than upstream (by 8-12%; Table 6).  The mudflat did not 

exhibit the same distribution of sediment texture.
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Figure 5.  Chlorophyll a concentrations as related to TSS concentrations 
 during: a) Summer; b) Spring; c) Winter; and d) All seasons combined. 
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Figure 6.  Chlorophyll a as related to turbidity during: 
a) Summer; b) Spring; and c) All seasons combined. 
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Figure 7.  Fecal coliform concentrations as related to TSS concentrations 
 during: a) Summer; b) Spring; c) Winter; and d) All seasons combined. 
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Figure 8.  Fecal coliform concentrations as related to turbidity during:
a) Summer; b) Spring; and c) All seasons combined. 
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Table 6.  Sediment composition, as % fine sediment (defined as less than 
63.41 µm diameter), upstream and downstream of the oyster reefs. 

 
Reef 

% fine  
upstream 

% fine 
downstream 

   
1 40 32 
2 38 21 
3 72 70 
4 85 78 
5 41 30 
6 64 51 

Mudflat 40 41 
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DISCUSSION 

In summer, oyster reefs caused significant reductions in chlorophyll a 

concentrations in Hewletts Creek.  In spring, these effects were not as strong.  However, 

the effect of reef presence on of fecal coliform counts was stronger in spring than 

summer.  TSS did not show any clear effects. 

Haven and Morales-Alamo (1970) found that, by doubling the number of oysters 

in an experimental tank, removal rates of particulate matter approximately doubled.  

Changes in suspended particulate concentrations, then, should be significantly related to 

live oyster density if oyster feeding is the main factor in particulate removal.  In this 

study, such a relationship was not observed.  One possible explanation for this 

observation is a threshold effect, some critical density of live oysters at which a 

measurable effect can be detected.  Alternatively, the relationship between changes in 

seston and live oyster densities could exist on a larger scale.  The oyster reefs used in this 

study provided only a small range of live oyster densities, especially after a large spatfall 

in summer 2002 (Posey and Alphin, unpublished data).  Thus, the examined range of live 

oyster densities may have been too narrow for a density relationship to be detected.  

Further, because the changes in concentrations of the studied water column constituents 

were not significantly related to flow speeds or changes in flow speed across the reefs, it 

is unlikely that the observed changes were due solely to flow speed.   

Live oyster lengths near the study site averaged 65 mm (Harwell, Posey and 

Alphin, unpublished data).   Using the methods of Dame (1972), the mean dry weight for 

these oysters was calculated to be 1.33 g.  Newell’s (1988) estimate of oyster clearance 

rates of 5 L hr-1 g-1 were used to calculate the potential volume of water that could be 
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cleared by each oyster reef in this study.  In summer, flow velocities upstream of the 

oyster reefs ranged from 6-21 cm s-1, and the reefs could only clear 5-15% of the water 

moving over them.  Many of the observed chlorophyll a differences in summer were 

greater than the potential filtration capacity of the oysters on the reefs based on these 

estimates (up to 30% removal), suggesting that either oyster feeding rates are higher than 

Newell’s (1988) estimate or that factors other than oyster feeding (i.e. other filter feeders 

or physical effects) are important in particulate removal.   

Calculations of approximate clearance rates, assuming 100% efficiency of particle 

removal, were made using the observed summer decreases in chlorophyll a 

concentrations.  These rates ranged from 3-18 L hr-1 g-1 across the reefs.  The mean was 

10 L hr-1 g-1, which is consistent with Jordan’s (1987) laboratory estimate.  Oysters do 

not remove all particles from water with 100% efficiency, however, so this estimate may 

be conservative.  Efficiency of particle removal increases with increasing particle size 

(Haven and Morales-Alamo 1970; Riisgard 1988), and feeding effects are further 

complicated by oyster selectivity.  Oysters are able to feed preferentially on high-quality 

food particles (Loosanoff 1949; Newell and Jordan 1983; Wetz et al. 2002).   

Other filter feeders, such as mussels, were not abundant on these oyster reefs and 

therefore cannot account for the larger than expected effects.  Even though flow 

velocities did not decrease downstream of the reefs, particle trapping within the reef crest 

may have occurred in shadow zones between oyster culms.  This explanation is consistent 

with chlorophyll a and fecal coliform data in that the reefs that consistently showed 

significant decreases in chlorophyll a and fecal coliform concentrations were the reefs 

with low shell cover (i.e. low areas floored by mud).  These were also the reefs with the 
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lowest flow velocities (approximately 8 cm s-1).  Dame et al. (1985) and Dame (1987) 

found that most material uptake over an oyster reef in North Inlet occurred when flow 

was less than 15 cm s-1 and attributed this to a combination of biofiltration and 

sedimentation.  Above this velocity, resuspension occurred.  Lower flow speeds could 

contribute to removal of particles by increasing the time water is in contact with the 

oysters and thus increasing their ability to filter particulates; it could also be that particles 

settled out of the water at these lower speeds. 

 Oyster reefs have been shown to play a role in nutrient cycling in tidal creeks by 

releasing NH4
+ (Dame et al. 1984; Dame et al. 1985; Dame et al. 1989; Dame and 

Dankers 1988; Nelson 2003).  As such, it could be argued that chlorophyll a 

concentrations should actually be higher downstream of reefs than upstream.  

Ammonium released by bivalves can be taken up by phytoplankton and lead to increased 

phytoplankton biomass.  Asmus and Asmus (1991) made this argument for systems 

impacted by a mussel bed, though their field study showed significant decreases in 

phytoplankton biomass across the bed.  Increased phytoplankton production due to 

nutrient release is also a possibility for oyster reefs.  However, there is a lag time of a few 

hours before the ammonium shows up as primary production in the water column, and 

any increased production may be appearing further downstream of the reefs than the 

location of sample collection for this study.  In terms of the parameters examined by this 

study, the only change that would be immediate enough to detect as water flows over the 

oyster reefs is particle removal. 

Fecal coliform concentrations were often lower downstream of reefs than 

upstream, but the differences were rarely significant.  The overall reef effect of decreased 
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fecal coliform concentrations was significant in spring but not summer, the opposite of 

the effect for chlorophyll a.  Fecal coliform counts are extremely variable, necessitating 

large changes before a significant effect can be detected.  In spring, tests were slightly 

more powerful (with a power of 0.56 rather than 0.24, where 0.80 is desirable), most 

likely due to larger concentrations of fecal coliforms.  Counts were higher in spring than 

in summer, possibly because runoff in summer was limited due to a severe drought.   

C. virginica filters unattached bacteria with an efficiency of only 5% (Langdon 

and Newell 1990).  However, fecal coliforms have been associated with turbidity and 

suspended sediments in the water column (Sayler et al. 1975; Pommepuy et al. 1992; 

Mallin et al. 2000) and may be removed with suspended particulate matter through either 

filtration or settling.  In this study, fecal coliform counts did not have consistent 

relationships with either turbidity or TSS.  However, this project was not designed to test 

these relationships and these were ancillary data comparisons.  As such, the range of 

concentrations may not have been large enough to accurately indicate a relationship (or 

lack thereof) between fecal coliforms and either turbidity or TSS.  This may also be the 

reason changes in fecal coliform concentrations were different from changes in TSS 

concentrations.  Changes in fecal coliform concentrations were not significantly related to 

live oyster density, flow speeds or changes in flow speed across the reefs.  None of these 

factors is readily apparent as the most influential one, and changes in fecal coliform 

concentrations are likely due to a combination of factors. 

Changes in TSS concentrations did not exhibit any significant patterns relative to 

the variables examined in this study.  Due to a lack of replication, statistical tests could 

not be used to determine whether changes across a reef were significant.  However, tests 
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could be run to detect an overall reef effect within a season, and none of these were 

significant for TSS.  Changes in TSS were not consistently positive or negative in any 

season.   

Water temperature in winter was 4o C, lower than the minimum temperature (5o C) 

at which oysters typically feed (Galtsoff 1928; Loosanoff 1953, 1958, 1965; in Shumway 

1996).  Chlorophyll a and fecal coliforms were consistently decreased in the warm 

seasons of summer and spring, but neither showed a consistent effect in winter.  Feeding 

effects are suggested by a lack of consistent change in water column constituents during 

winter, even when concentrations were high enough to detect a difference (after the rain 

event).   

Flow conditions may also have contributed to changes in water column 

constituents; particles may have settled over the crest of the reefs (also suggested by 

Dame 1987).  Sediments were finer on the side of the reefs that were upstream during ebb 

tide.  Flow could be faster on ebb tide than on flood tide, leading to more deposition of 

fine particles during flood tide than ebb (Dame 1987). Under these conditions, the 

particles would be deposited downstream during flood tide, which is the upstream side of 

the reef during ebb tide.  This study did not examine effects of oyster reefs during flood 

tides chlorophyll a and fecal coliform concentrations are highest during ebb tides (Mallin 

et al. 1999). 

While there was never a significant difference in changes of chlorophyll a, fecal 

coliform, or TSS concentrations between high-shell cover and low-shell cover reefs, the 

reefs themselves showed different patterns of significance.  The reefs with low-shell 

cover were also the reefs with lowest flow velocities and showed consistent removal of 
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fecal coliforms in spring, whereas the other reefs did not.  Vertical complexity was 

approximately equal between all reefs, and complexity may be a more important 

component in flow effects than the presence of shell itself.  

Multiple factors could be responsible for the observed effects on chlorophyll a, 

fecal coliform and TSS concentrations.  Filtration by oysters and flow patterns over 

oyster reefs could both contribute to particle removal in tidal creek ecosystems.  

 

CONCLUSIONS 

 Significant changes in concentrations of chlorophyll a and fecal coliform bacteria 

were detected during warm seasons, even when effects on total suspended solid 

concentrations were not observed.  None of the examined variables were significantly 

related to live oyster density, flow speed, or change in flow speed across reefs, suggesting 

possible threshold effects.  Oyster reefs do have detectable effects on chlorophyll a and 

fecal coliform concentrations under field conditions, though effects vary temporally.  The 

degree of removal suggests physical mechanisms for removal in addition to filtration 

effects.  
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Reef Dens Loc flow turb chl_a FC TSS 
   cm s-1 NTU µg ml-1 CFU 100 ml-1 mg l-1 

  up . . 3.9 50.3 20.4 
  up . . 3.8 29.7 20.6 
  down . . 3.8 48.0 15.2 
1 79 down .  3.7 48.7 11.0 
 Summer up . 12 2.9 9.0 . 
  up . 12 2.8 7.7 . 
  down . 11 2.3 3.5 . 
  down . 10 2.4 5.3 . 
  up . . 3.0 35.0 11.4 
  up . . 3.3 23.3 18.0 
  down . . 2.6 32.0 9.8 
2 113 down . . 2.5 27.0 12.6 
 Summer up . 11 2.3 9.0 . 
  up . 10 2.3 8.3 . 
  down . 8 2.2 6.3 . 
  down . 11 2.8 6.0 . 
  up . 8.3 . 20.0 24.1 
  up . 9.4 5.0 24.0 26.2 
  down . 7.6 3.9 20.0 14.6 
3 114 down . 8.2 4.0 19.0 16.8 
 Summer up . 10 4.2 1.0 . 
  up . 10 4.3 2.7 . 
  down . 10 3.5 1.0 . 
  down . 10 3.4 1.7 . 
  up . 5 3.7 42.0 12.2 
  up . 8 3.5 63.3 11.2 
  down . 6 3.2 46.7 12.9 
4 116 down . 5 3.4 42.0 16.4 
 Summer up . 21 5.7 8.3 . 
  up . 22 6.2 9.7 . 
  down . 22 4.1 8.0 . 
  down . 20 4.3 8.3 . 
  up . 4.5 4.3 58.3 11.8 
  up . 5 4.4 43.7 12.0 
  down . 4 3.6 62.0 18.4 
5 129 down . 4 3.5 42.0 15.6 
 Summer up . 15 3.0 21.0 . 
  up . 12 3.1 16.0 . 
  down . 8.5 2.3 11.0 . 
  down . 9 2.4 15.7 . 

Appendix: Flow velocity, turbidity, and mean concentrations of chlorophyll a, fecal 
coliforms, and TSS at upstream and downstream locations on oyster reefs.  Two 
upstream and two downstream locations showed for each sampling period (two 
sampling periods in summer and spring, one in winter). 
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Appendix continued. 
 
 

Reef Dens Loc flow turb chl_a FC TSS 
   cm s-1 NTU µg ml-1 CFU 100 ml-1 mg l-1 

  up . 6.8 11.6 43.3 16.6 
  up . 7.6 9.6 43.0 19.8 
  down . 6.7 8.6 20.3 11.4 
6 167 down . 8 9.0 30.7 26.0 
 Summer up . 21 4.7 8.7 . 
  up . 21 4.4 11.7 . 
  down . 21 4.4 13.0 . 
  down . 22 3.7 13.5 . 
  up 3 2.4 0.2 2.0 4.6 
1 132 up 8 1.9 0.6 3.3 5.0 
 Winter down 7 2.6 0.6 1.0 7.5 
  down 5 2.3 0.6 0.7 4.8 
  up 20 2.76 0.7 0.0 6.4 
2 129 up 28 2.04 0.7 0.7 6.0 
 Winter down 20 1.59 0.7 0.3 6.2 
  down 7 2.04 0.7 0.0 5.6 
  up . 3 1.4 5.7 3.2 
3 150 up 16 3 1.4 5.0 3.8 
 Winter down 8 2.9 1.3 4.3 5.0 
  down 2 3.13 1.4 1.0 3.8 
  up 8 3 1.4 1.7 5.3 
4 163 up 4 3 1.6 2.0 4.2 
 Winter down 11 3 1.2 3.7 4.0 
  down 7 5 1.3 3.3 4.6 
  up 15 1.95 0.7 2.7 3.2 
5 176 up 11 2.17 0.7 5.0 1.8 
 Winter down 14 2.06 0.7 2.0 4.4 
  down 8 1.91 0.7 5.3 2.4 
  up 15 2.8 0.6 7.3 4.8 
  up 12 2.9 0.8 8.7 4.0 
  down 11 2.25 0.6 3.3 4.0 
6 183 down 6 2.3 0.6 6.3 4.7 
 Winter up . 3 1.8 1.0 5.3 
  up . 3 1.6 2.3 4.3 
  down 20 3 1.8 1.7 4.4 
  down . 3 1.7 2.7 5.2 
  up 26 7.56 1.7 24.7 46.8 
  up . 7.63 1.7 32.7 48.8 
  down 6 7.34 1.5 23.3 49.0 
1 132 down 18 7.51 1.6 22.7 51.0 
 Spring up 16 7.01 3.5 69.0 32.6 
  up 17 6.94 3.3 101.0 34.2 
  down 20 6.59 3.4 71.0 34.4 
  down 19 6.96 3.4 78.0 32.6 
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Appendix continued. 
 
 

Reef Dens Loc flow turb chl_a FC TSS 
   cm s-1 NTU µg ml-1 CFU 100 ml-1 mg l-1 

  up 12 6.40 1.4 9.3 49.0 
  up 14 7.02 1.5 21.3 51.0 
  down 16 5.80 1.3 10.7 49.8 
2 129 down 17 6.80 1.4 16.7 50.8 
 Spring up 10 5.56 2.6 52.0 32.6 
  up 15 6.58 2.5 54.7 31.8 
  down 15 5.64 2.6 52.3 32.8 
  down 16 5.56 2.6 59.0 35.6 
  up 8 8.47 7.1 65.7 19.0 
  up 9 7.50 7.2 60.3 14.0 
  down 13 6.92 3.2 46.0 22.0 
3 150 down . 7.25 3.9 51.7 13.4 
 Spring up 13 7.14 3.3 90.3 32.0 
  up 14 7.65 2.9 90.7 30.4 
  down 18 6.74 2.7 73.0 32.8 
  down 15 7.10 2.9 72.0 31.8 
  up 12 7.10 3.8 163.7 16.2 
  up . 8.59 4.5 205.0 14.2 
  down 11 6.78 3.2 163.3 11.0 
4 163 down . 6.78 3.8 158.7 15.4 
 Spring up 23 8.13 1.7 108.0 47.8 
  up . 7.82 1.7 154.0 47.8 
  down 28 7.10 1.8 136.0 49.0 
  down 24 7.42 1.8 107.3 44.2 
  up 16 7.84 2.5 171.0 18.6 
  up . 8.65 2.7 165.3 15.1 
  down 11 8.41 2.7 131.3 15.0 
5 176 down . 7.60 2.8 159.0 20.8 
 Spring up 22 7.91 1.7 124.0 49.6 
  up . 7.08 1.8 146.7 50.2 
  down 22 7.83 1.7 128.0 48.6 
  down 19 7.62 1.7 141.3 47.2 
  up 6 9.77 5.2 137.0 17.8 
  up 21 9.77 8.5 169.7 19.6 
  down 14 9.62 4.7 99.7 19.8 
6 183 down 20 9.60 8.3 111.0 21.8 
 Spring up 12 8.18 4.7 21.3 46.4 
  up . 8.48 3.6 16.0 46.8 
  down 16 7.83 4.0 17.3 46.2 
  down 15 9.85 4.3 14.7 48.8 

 
 
 


