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EXTRAORDINARY DIMENSION OF MAPS

A"CHIGOGIDZH AND V. VALOV

ABSTRACT. We establish a characterization of the extraordinary dimension
of perfect maps between metrizable spaces.

1. INTRODUCTION

The paper deals with extensional dimension of maps, specially, with the ex-
traordinary dimension introduced recently by Scepin [10] and studied by the
first author in [1]. If L is a C'W-complex and X a metrizable space, we write
e-dimX < L provided L is an absolute extensor for X (in such a case we say
that the extensional dimension of X is < L, see [3], [4]). The extraordinary
dimension of X generated by a complex L, notation dim; X, is the smallest
integer n such that e-dimX < X"L, where X" L is the n-th iterated suspension
of L (by ¥°L we always denote the complex L itself). If L is the 0-dimensional
sphere S, then dimj, coincides with the covering dimension dim. We also write
dimy, f < n, where f: X — Y is a given map, provided dimy, f~!(y) < n for
every y € Y. Next is our main result.

Theorem 1.1. Let f: X — Y be a o-perfect map of metrizable spaces, let L be
a CW -complex and n > 1. Consider the following properties:
(1) dimy, f < n;
(2) There exists an F, subset A of X such that dim;p A < n — 1 and the
restriction map f|(X\A) is of dimension dimy, f|(X\A) = 0;
(3) There exists a dense and Gg subset G of C(X,I") with the source limi-
tation topology such that dimp(f x g) = 0 for every g € G;
(3") There ezists a map g: X — 1" is such that dim(f x g) = 0.
Then (3) = (3') = (1) and (3") = (2). Moreover, (1) = (3) provided Y is a
C-space and L is countable.
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Here, f: X — Y is o-perfect if X is the union of countably many closed sets
X; such that f(X;) C Y are closed and the restriction maps f|X; are perfect.

Theorem 1.1 is inspired by the following result of M. Levin and W. Lewis [7,
Theorem 1.8]: If X and Y are metrizable compacta then (3) = (3') = (1) and
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(3) = (2) = (1), where (2') is obtained from our condition (2) by replacing
dimy, f|(X\A) <0 with dim f|(X\A) < 0. Moreover, the implication (1) = (3)
was also established in [7] for a finite-dimensional compactum Y and a countable
CW-complex L.

Therefore, we have the following characterization of extraordinary dimension
of perfect maps between metrizable spaces:

Corollary 1.2. Let f: X — Y be a perfect surjection between metrizable spaces
with Y being a C-space. If L is a countable CW -complex, then the following
conditions are equivalent:
(1) dimy, f < n;
(2) There exists a dense and Gs subset G of C(X,I") with the source limi-
tation topology such that dimp(f x g) <0 for every g € G;
(3) There exists a map g: X — 1" is such that dimp(f x g) <O0.

If, in addition, X is compact, then each of the above three conditions is equiva-
lent to the following one:

(4) There exists an F, set A C X such that dimp A < n—1 and the restric-
tion map fl(X\A) is of dimension dim f|(X\A) < 0.

The equivalence of the first three conditions follow from Theorem 1.1. More
precisely, by Theorem 1.1 we have the following implications: (2) = (3) =
(1) = (2). When X is compact, the result of Levin-Lewis which was mentioned
above yields that (2) = (4) = (1). Therefore, combining the last two chains of
implications, we can obtain the compact version of Corollary 1.2.

Corollary 1.2 is a parametric version of [1, Theorem 4.9]. For the cover-
ing dimension dim such a characterization was obtained by Pasynkov [9] and
Toruriczyk [11] in the realm of finite-dimensional compact metric spaces and ex-
tended in [12] to perfect maps between metrizable C-spaces. Since the class of
C-spaces contains the class of finite-dimensional ones as a proper subclass (see
[5]), the compact version of Corollary 1.2 is more general than the Levin-Lewis
result [7, Theorem 1.8]. It is interesting to know whether all the conditions (1)-
(4) in Corollary 1.2 remain equivalent without the compactness requirement on
X and Y.

The source limitation topology on C'(X, M), where (M, d) is a metric space,
can be described as follows: a subset U C C(X, M) is open if for every g € U
there exists a continuous function a: X — (0, 00) such that B(g,«) C U. Here,
B(g, o) denotes the set {h € C(X, M) : d(g(z), h(z)) < a(x) for each z € X}.
The source limitation topology doesn’t depend on the metric d if X is paracom-
pact and C (X, M) with this topology has the Baire property provided (M, d) is
a complete metric space. Moreover, if X is compact, then the source limitation
topology coincides with the uniform convergence topology generated by d.
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All function spaces in this paper, if not explicitely stated otherwise, are
equipped with the source limitation topology.

2. SOME PRELIMINARY RESULTS

Throughout this section K is a closed and convex subset of a given Banach
space E and f: X — Y a perfect map with X and Y paracompact spaces.
Suppose that for every y € Y we are given a property P(y) of maps h: f~(y) —
K and let P = {P(y) : y € Y}. By Cp(X|H, K) we denote the set of all
bounded maps g: X — K such that g|f~!(y) has the property P(y) for every
y € H, where H C Y. We also consider the set-valued map ¢p: Y — 90" (XE),
defined by the formula ¥p(y) = C*(X, K)\Cp(X|{y}, K), where C*(X, K) is
the space of bounded maps from X into K.

Lemma 2.1. Suppose that P = {P(y) }yev is a family of properties satisfying
the following conditions:
(a) Cp(X|H, K) 1s open in C*(X, K) with respect to the source limitation
topology for every closed H C Y;
(b) g € Cp(X|{y}, K) implies g € Cp(X|U, K) for some neighborhood U of
yinY.
Then the map ¥p has a closed graph provided C*(X, K) is equipped with the
uniform convergence topology.

Proof. The proof of this lemma follows the arguments from the proof of [12,
Lemma 2.6]. O

Recall that a closed subset F of the metrizable apace M is said to be a Z,,,-set
in M, if the set C'(I"™, M\F) is dense in C(I"™, M) with respect to the uniform
convergence topology, where I is the m-dimensional cube. If F'is a Z,,-set in
M for every m € N, we say that F'is a Z-set in M.

Lemma 2.2. Suppose y € Y and P(y) satisfy the following condition:

e For every m € N the set of all maps h € C(I™ x f~Y(y), K) with each
hl({z} x fXy)), z € T, having the property P(y) (as a map from
7 (y) into K) is dense in C(I"™ x f~'(y), K) with respect to the uniform
convergence topology.

Then, for every a: X — (0,00) and g € C*(X, K), ¥p(y) N B(g, @) is a Z-set
in B(g,a) provided B(g,«) is considered as subset of C*(X, K) equipped with
the uniform convergence topology and ¥p(y) C C*(X, K) is closed.

Proof. See the proof of [12, Lemma 2.§] O

Proposition 2.3. Let Y be a C-space and P = {P(y)}yey such that:
(a) the map ¥p has a closed graph;
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(b) ¥p(y)NB(g, @) is a Z-set in B(g, ) for any continuous function o: X —
(0,00), y €Y and g € C*(X, K), where B(g, «) is considered as a sub-
space of C*(X, K) with the uniform convergence topology.

Then the set {g € C*(X,K) : g € Cp(X|{y}, K) for every y € Y} is dense in
C*(X, K) with respect to the source limitation topology.

Proof. Let G = {9 € C*(X,K) : g € Cp(X|{y}, K) for every y € Y}. It suf-
fices to show that, for fixed g9 € C*(X, K) and a positive continuous func-
tion a: X — (0,00), there exists g € B(go,a) N G. We equip C*(X, K) with
the uniform convergence topology and consider the constant (and hence, lower
semi-continuous) convex-valued map ¢: Y — 2" XK 6(y) = B(go, ay), where
ap(z) = min{a(z),1}. Because of the conditions (a) and (b), we can apply
the selection theorem [6, Theorem 1.1] to obtain a continuous map h: Y —
C*(X, K) such that h(y) € ¢(y)\¢p(y) for every y € Y. Observe that h is a
map from Y into B(go, ;) such that h(y) € Cp(X|{y}, K) for every y € Y.
Then g(z) = h(f(z))(x), x € X, defines a bounded map g € B(go, @) such that
9l (y) = h(y)|f~'(y), y € Y. Therefore, g € Op(X|{y}, K) for all y € Y,
ie., g€ B(go,a)NG. O

3. PROOF OF THEOREM 1.1

(1) = (3) Suppose that L is countable and Y is a C-space. Let X; be closed
subsets of X such that each f; = f|X;: X; — Y; = f(X;) is a perfect map and
Y; is closed in Y. Then all Y;’s are C-spaces, and since the restriction maps
m: C(X,I") — C(X;,I"), m(g) = g|X;, are open, the proof of this implication
is reduced to the case when f is a perfect map. Consequently, we may assume
that f is perfect.

By [13, Theorem 1.1] (see also [8]), there exists a map ¢ from X into the
Hilbert cube @ such that f x ¢: X — Y x Q is an embedding. Let {W;}.
be a countable finitely-additive base for (). For every ¢ we choose a sequence of
mappings h;;: W; — L, representing all the homotopy classes of mappings from
W, to L (this is possible because L is a countable CW-complex). Following the
notations from Section 2, for fixed 4, j and y € Y we say that a map g € C(X,1")
has the property P;;(y) provided

the map h;; 0 q: q Y(W;) — L can be continuously extended to a map over the
set ¢ (W) U (f ' (y) Ng~'(t)) for every t € g(f}(y)).

Let Pi; = {Py(y) : y € Y} and for every H C Y we denote Cp,, (X|H,1")
by Cy;j(X|H,1"). Hence, C;;(X|H,I") consists of all g € C(X,I") having the
property C;;(y) for every y € H. Let ¢;;: Y — 201" he the set-valued map
Vii(y) = C(X, IN\Cy (X {y ), T).
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Lemma 3.1. Let g € C;;j(X|{y},I"). Then, there exist a neighborhood U, of y
in'Y and a neighbourhood V, C I" of each t € g(f~(y)) such that hi; o q can be
extended to a map from ¢~ '(W;) U (f~1(U,) Ng=*(V;)) into L.

Proof. Since g € Ci;(X|{y},I"), hijoq can be extended to a map from ¢~ (W;)U
(f~Yy) N g7'(t)) into L for every ¢ € g(f~'(y)). Because L is an absolute
neighborhood extensor for X, there exists and open set G; C X containing
fHy) Ng~Y(t) and a map h;: ¢"1(W;) U Gy — L extending hy; o . Using
that f x g is a closed map, we can find a neighborhood U} x V; of (y,t) in
Y x I" such that Sy = (f x g)~"(U}, x V;) C G;. Next, choose finitely many
points t(k), k = 1,2,.,m, with f~}(y) C Uiign Sik) and a neighbothood U,
of y in Y such that U, ¢ (="0p™ and f4(U,) c U= Syky (this can
be done since f is perfect). If t € g(f~(y)), then ¢t € Vi for some k and
F7HU,) N g™ (Vi) C Sewy. Since , Sy C Gy, the map hypy is an extension
of hij o q over the set ¢~(W;) U (f(U,) N g~ (Viwy)) O
Lemma 3.2. The set C;;j(X|H,I") is open in C(X,I") for any i,j and closed
HCY.

Proof. We follow the proof of [12, Lemma 2.5]. For a fixed gy € C;;(X|H,I") we
are going to find a function a: X — (0, 00) such that B(go, ) C Ci;(X|H,T").
By Lemma 3.1, for every z = (y,t) € (f X go)((f~*(H)) there exists a neigh-
borhood U, in Y x I" such that

(1) hi; o q can be extended to a map from ¢~ (W;) U (f X go)~*(U.) into L.

Obviously, K = (f X go)((f7*(H)) is closed in Y x I", so there exists open
GCYxI"withKcGCGcU=|J{U.:2€ K}. Thenv={U,:z¢€
K}U{(Y x I")\G} is an open cover of Y x I". Let « be an open locally finite
cover of Y x I" such that the family

(2) {St(W,~): W € ~} refines v and St(W,~) C G provided W N K # ().

Consider the metric p = d + d; on Y x I", where d is a metric on Y and d;
the usual metric on I", and define the function a: X — (0,00) by «a(z) =
27 sup{p((f x go)(z), (Y x I")\W) : W € ~}. Let show that B(go,) C
Ci;(X|H,I"). Take g € B(go,), y € H and t € g(f~*(y)). Then, (y,t) =
(f x g)(x) for some z € f~1(y). Since g is a-close to gy, there exists W € v
such that W N K # () and W contains both (f x ¢)(z) and (f x go)(x). It
follows from (2) that (f x g)"*(W) C (f X go)"*(U.) for some z € K. In
particular, f~!'(y) N g '(t) C (f x go)"*(U,). Consequently, by (1), hi;j o g
is extendable to a map from ¢~ '(W;) U (f~'(y) N ¢7'(t)) into L. Therefore,
B(go, a) C Cij(X|{y},I") for every y € H which completes the proof. O



6 A. Chigogidze and V. Valov

Because of Lemma 3.1 and Lemma 3.2, we can apply Lemma 2.1 to obtain
the following corollary.

Corollary 3.3. For any i and j the map 1;; has a closed graph.

Lemma 3.4. Let g € C(X,I"), a: X — (0,00) and y € Y. Then, for any i, j,
Yii(y) N B(g, @) is a Z-set in B(g, ) provided B(g, «) is considered as a subset
of C(X,I") with the uniform convergence topology.

Proof. 1t follows from [7, Theorem 1.8, (1) = (3)] that if m € N, then all maps
g: T™ x f'(y) — I" such that e-dim(({z} x f~(y)) Ng~'(t)) < L for every
z € I™ and t € I", form a dense subset G of C(I"™ x f~!(y)) with the uniform
convergence topology. It is clear that, for every g € G' and z € 1™, the restriction
gl({z} x f~X(y)), considered as a map on f~'(y), has the following property:
hi;j o q can be extended to a map from ¢~ '(W;) U (f~'(y) Ng~'(¢)) into L for
any ¢t € I". Hence, we can apply Lemma 2.2 to conclude that ;;(y) N B(g, a)
is a Z-set in B(g, ). O

Now, we can finish the proof of this implication. Because of Corollary 3.3
and Lemma 3.4, we can apply Proposition 2.3 to obtain that the set C;; =
Ci;(X|Y,I") is dense in C(X,I") for every i,j. Since, by Lemma 3.2, all Cj;
are also open, their intersection G is dense and G5 in C(X,1"). Let show that
dimz(f x g) < 0 for every g € G, i.e., edim(f x g) < L. We fix y € Y and
t € I" and consider the fiber (f x g)~(y,t) = f~(y) N g~(t). Take a closed
set AC f~Hy)Ng'(t) and a map h: A — L. Because the map g, = q|f~'(y)
is a homeomorphism, h' = ho q, L q(A) — L is well defined. Next, extend
A’ to a map from a neighborhood W of ¢(A) (in Q) into L and find W; with
q(A) ¢ W; ¢ W; € W. Therefore, there exists a map h" : W; — L extending A’
Then A" is homotopy equivalent to some hi;, so are h" oq and hijoq (considered
as maps from ¢~ *(W;) into L). Since h;; o ¢ can be extended to a map from
g *W)U (f(y)Ng~*(¢)) into L, by the Homotopy Extension Theorem, there
exists a map h: ¢7'(W;) U (f~'(y) N g~'(t)) — L extending A" o g. Obviously,
A (f~'(y)Ng~'(t)) extends h. Hence, e-dim(f~(y) N g*(¢)) < L.

(3) = (3') = (1) The implication (3) = (3') is trivial. It is easily seen that in
the proof of (3') = (1) we can assume f is perfect. Let g: X — I" be such
that dimz(f x g) <0 and y € Y. Then the restriction g|f~*(y): f~*(y) — I"
is a pefect map with all of its fibers having extensional dimension e-dim < L.
Hence, by [2, Corollary], e-dimf~!(y) < "L, i.e, dim, f < n.

(3') = (2) Because of the countable sum theorem, we can suppose that f is
perfect. We fix a map ¢g: X — I" such that dim,(f x ¢g) < 0. According to [12,
Lemma 4.1], there exists an F,, subset B C Y x I" such that dim B < n—1 and
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dim({y} x I")\ B < 0 for every y € Y. Then, applying again [2, Corollary], we
conclude that the set A = (f x g)~(B) is as required.
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