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Abstract: 

Control of the trunk segment in landing has been implicated as a contributing factor to the higher 

incidence of anterior cruciate ligament injuries in females than in males. Investigating the sex-

specific abdominal activation strategies during landing lends insight into mechanisms 

contributing to control of the trunk segment. To examine the abdominal activation strategies used 

by males and females during a landing task. Mixed-model (between-subjects and within-

subjects) design. Laboratory. Healthy, recreationally active males (n = 20, age = 23 ± 4.8 years, 

height = 1.8 ± 0.1 m, mass = 79.6 ± 9.9 kg, body mass index = 24.8 ± 2.7 kg/ m^sup 2^) and 

females (n = 22, age = 20.8 ± 4.8 years, height = 1.7 ± 0.1 m, mass = 64.1 ± 9.2 kg, body mass 

index = 22.9 ± 2.6 kg/m^sup 2^). Subjects performed 5 double-leg landings from a box height of 

60 cm. Male and female activation amplitudes for the rectus abdominis (RA), external oblique 

(EO), and transversus abdominis and lower fibers of the internal oblique (TrA-IO) muscles 

during preactivation (150-millisecond interval just before landing) and after impact (150-

millisecond interval immediately after ground contact). Males had greater TrA-IO activation than 

females (P < .05). Males preferentially activated the TrA-IO muscles relative to the RA and EO, 

whereas females demonstrated no significant muscle differences. Males and females also 

differed by phase, with males having more TrA-IO activation than females during the 

preactivation landing phase (P < .05) but not during the postimpact phase. The TrA-IO was the 

only muscle to significantly differ by landing phase, decreasing from preactivation to postimpact 

(P < .05). Males used different abdominal muscle activation strategies than females in landing. 

The efficacy of these muscle activation strategies to control the trunk should be assessed through 

trunk kinematic and kinetic measures in future studies. 

 

Article: 

The incidence of anterior cruciate ligament (ACL) injuries is higher in females than males, and 

the direct economic cost associated with ACL tears exceeds 1 billion dollars annually.1-4 The 

sex discrepancy in ACL injuries and the injury's associated economic costs and long-term 

complications (eg, osteoarthritis5) have collectively led to research investigating sex differences 

in lower extremity landing mechanics.6-8 The "position of no return" describes a collective 

posture of foot pronation, tibial external rotation, femoral internal rotation, and an awkward or 

excessively anteriorly flexed trunk position that theoretically result in an ACL injury.9 Although 

authors have examined lower extremity biomechanical and neuromuscular strategies inherent to 

males and females in landing,6,10,11 research on factors contributing to trunk control in landing 

has been limited. The head, arms, and trunk segment comprise more than 60% of the body's 

mass,12 and the position and orientation of all segments in the kinetic chain influence the ground 

reaction force and, thus, the forces and moments placed on the lower extremity joints.13 Thus, 

investigations to determine the sex-specific neuromuscular strategies to control the trunk during 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149229305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


landing seem warranted, as these may ultimately help to clarify factors contributing to trunk 

control and the position of no return. 

 

Muscles contributing to trunk control during dynamic motion can be separated into local and 

global muscles depending on their anatomical orientation and function.14 The local abdominal 

muscles, the transversus abdominis (TrA) and lower fibers of the internal oblique (IO), are key 

dynamic stabilizing muscles of the spine, lumbopelvic region, and whole trunkpelvis segment, 

collectively comprising the "core." 15~19 Their stabilizing role has been demonstrated during 

reaction-based tasks involving rapid arm and leg movements,15,16 during walking and 

running,20,21 lifting and lowering,22 and landing.17 The local abdominal muscles activate to 

increase intraabdominal pressure, which enhances lumbar spine and sacroiliac joint stiffness, 

resulting in true lumbopelvic and trunk control.18,19 The local abdominal muscles stabilize the 

spine and trunk as a whole, whereas the rectus abdominis (RA), external obliques (EO), and 

erector spinae (ES), also known as the global trunk muscles, counteract any perturbations to the 

body's center of mass and, thus, primarily control trunk position relative to the body's base of 

support.15,23 Further, the local abdominal and ES muscles are augmented in situations requiring 

increased trunk support, such as during squatting on an unstable surface.24 This finding 

demonstrates the adaptability of the neuromuscular system in stabilizing the trunk when 

enhanced support is needed.24 The global and local abdominal muscles have independent but 

equally important functions to stabilize the trunk, so it would seem that people who cannot 

adequately stabilize the trunk may also have underlying abdominal muscle activation 

deficiencies. 

 

The functional importance of the global and local abdominal muscle groups when increased 

demands are placed on the trunk has been well demonstrated.25-27 Further, these trunk muscle 

activation characteristics have been shown to be sex specific: in preparing for a sudden trunk 

load, females augment the RA and EO muscles more than males.25 This result indicates that 

females may use a trunk stabilization strategy that depends more on the global abdominal 

muscles than do males. Research is therefore needed to determine if sex-specific abdominal 

activation strategies occur during landing, a task requiring abdominal recruitment to control the 

momentum of the trunk segment at impact. Thus, our specific aim was to investigate the sex-

specific abdominal muscle activation strategies during the time intervals just before 

(preactivation) and immediately after (postimpact) landing. Based on previous 

findings,17,18,20,25 we hypothesized that although the local abdominals would be the primary 

abdominal muscle group activated during landing, females would have significantly higher 

global abdominal activation (RA and EO) than males during landing. 

 

METHODS 

Design and Setting 

We followed a mixed-model, repeated-measures design in which males and females were 

compared with regard to each of the abdominal muscles across preactivation and postimpact 

landing intervals. All testing procedures were approved by the University Institutional Review 

Board for the Protection of Human Subjects. Testing was performed in a laboratory setting. 

Dependent variables were muscle amplitudes for the RA, EO, and TrA-IO during preactivation 

and postimpact. The independent variables were sex (male, female) and landing phase 

(preactivation, postimpact). 



 

Subjects 

Forty-two subjects, 20 males (age = 23 ± 4.8 years, height = 1.8 ± 0.1 m, mass = 79.6 ± 9.9 kg, 

body mass index = 24.8 ± 2.7 kg/m^sup 2^) and 22 females (age = 20.8 ± 4.8 years, height = 1.7 

± 0.1 m, mass = 64.1 ± 9.2 kg, body mass index = 22.9 ± 2.6 kg/m^sup 2^), participated in the 

study. Subjects qualified as being recreationalIy active if they engaged in physical activity for a 

minimum of 30 minutes at least 3 times a week. In addition, all subjects had prior recreational 

experience in jumping and landing activities, including basketball, volleyball, and gymnastics. 

All subjects were apparently healthy individuals who reported no current injuries or history of 

surgery to the lower extremity or low back. Additional exclusionary criteria included a past 

history of receiving any treatment for low back pain. Screening for previous low back conditions 

(through verbal communication) was essential, as disrupted and compensatory abdominal 

activation patterns are associated with low back injuries.28,29 

 

Instrumentation 

Surface electromyography (EMG) of the abdominal muscles was acquired using a Myopac 2000 

system (Run Technologies, Mission Viejo, CA), and the subsequent signal was stored, 

processed, and analyzed with DATAPAC 2k2 lab application software (Run Technologies). All 

surface EMG data were sampled at 1000 Hz. This EMG system has a frequency bandwidth of 10 

to 1000 Hz, common mode rejection ratio of 90 dB, and an internal sampling rate of 8 KHz. Two 

forceplates (model 4060-nonconducting; Bertec Corp, Columbus, OH) acquired ground reaction 

forces for both limbs. A separate computer sampled the forceplate data at 1000 Hz (Motion 

Monitor Software; Innovative Sports Training, Chicago, IL). The vertical ground reaction signal 

was then interfaced with the DATAPAC software to trigger data acquisition and to indicate the 

time of ground contact (Figure 1 ). A ground reaction force of 40 N triggered data acquisition for 

each landing trial, and surface EMG data were recorded for 500 milliseconds before and 1000 

milliseconds after initial contact with the forceplate. 

 

Procedures 

Upon arrival at the laboratory for data collection, all subjects first gave written informed consent. 

The primary investigator then demonstrated the double-leg landing from a 60-cm-high box, and 

subjects practiced until they were comfortable with the task. Instructions to every subject 

included the following: hold the hands at the sides of hips with the thumbs on top of the hips and 

fingers pointing downward at all times; start with both feet at the edge of the box; reach straight 

out with the preferred leg and shift the weight of the hips forward off the box; and land on both 

feet at the same time and return to a normal standing position all in one smooth and natural 

manner. The subject's preferred leg was determined by observing which foot was most 

frequently used in practicing the task. Subjects were specifically instructed not to jump up or out 

from the box or lower the body down. After the subjects were comfortable performing the task, 

preparation for surface EMG followed. We chose a drop landing task instead of a drop jumping 

task based on the goals of our study. Although both tasks require a change in vertical momentum 

to decelerate the body's center of mass, the drop jumping task is usually goal oriented in that 

subjects jump for maximal height, whereas the goal of the drop landing task is to land in a 

smooth and coordinated manner. We believed that the drop jumping task would hinder the 

interpretation of our results because jumping for maximal height (ie, the effort put forth by the 

subjects) might vary and further confound our sex comparisons. 



 

Surface EMG preparation consisted of scrubbing the skin with an alcohol pad to enhance surface 

contact with the electrode, followed by placement of pairs of bipolar Ag-AgCl electrodes (Blue 

Sensor NF-00-S; Ambu Products, Friedberg, Germany) at 3 abdominal sites. Electrode 

placement for the TrA-IO muscles was 2 cm medial and inferior to the anterior superior iliac 

spine.30,31 This location has been used to assess activation profiles of the TrA-IO and has been 

viewed as the best surface location for evaluating TrA function.30,31 Electrode placement for 

the RA was 2 cm lateral to the umbilicus, whereas EO electrode placement was 12 cm lateral to 

the umbilicus at an oblique angle of 45° to coincide with the muscle's fiber orientation.30 All 

electrodes had an interelectrode distance of 1 cm. A reference electrode was placed on the right 

tibia. All electrode wires and electrodes were secured to the abdomen with athletic tape to 

minimize wire and electrode movement artifact upon impact. Submaximal voluntary isometric 

contractions (SMVICs) of all 3 abdominal muscles were used to normalize the EMG data. 

Subjects were positioned supine with the hips flexed to 45° and feet flat on the floor. They were 

required to lift the feet off the floor approximately 2.5 cm and hold for 3 seconds. Three trials 

were performed, and the average of these trials was used to normalize the landing EMG. Visual 

inspection during all SMVICs confirmed a consistent signal from each muscle. This procedure 

was chosen to normalize the EMG data because it provides excellent reliability for activation of 

all abdominal muscles in both healthy and injured populations.32 In addition, we evaluated the 

internal consistency of the abdominal surface EMG on a trial-by-trial basis. Intraclass correlation 

coefficients (ICC[2,1]) computed on each of the abdominal variables were good (r = .82 to .92), 

thereby justifying our data collection methods. 

 

Following the SMVIC procedure, all subjects were then instructed to drop from a 60-cm-high 

box and land "as naturally" as they could, with the feet landing on separate, side-by-side 

forceplates. Subjects performed 5 double-leg drop landing trials. 

 

Data Processing and Reduction 

All surface EMG signals (SMVIC and trial data) were band-pass filtered between 10 and 350 Hz 

using a fourth-order, zero-lag digital Butterworth filter and were then full-wave rectified. For the 

landing trials, the signals were then integrated for 2 time windows of interest: (1) preactivity, 

defined as the 150-millisecond time interval just before ground contact, and (2) postimpact 

activity, defined as the 150-millisecond time interval immediately after initial contact with the 

forceplate. To account for heartbeat artifact, integrated abdominal signals acquired with the 

subject in a quiet, supine position for 150 milliseconds were subtracted from the integrated 

surface EMG trial data (using the same 150-millisecond time intervals) for each muscle. After 

initial band-pass filtering and rectification, the middle 150 milliseconds of each of the 3 SMVIC 

trials were used to compute a mean SMVIC with the same time constant as the landing data 

(preactivity and postimpact). All EMG data were then imported into a spreadsheet program and 

normalized to the SMVIC. 

 

Statistical Analyses 

Means of the 5 landing trials were entered for statistical analysis. We computed a 3 (muscle) × 2 

(phase of landing) × 2 (sex) mixed-model analysis of variance to compare muscle activation 

(RA, EO, TrA-IO) and phase of landing (preactivity and postimpact) between the sexes. To 



further analyze significant interactions, we calculated post hoc Tukey Honestly Significant 

Difference tests. Alpha levels were set a priori at .05 for all analyses. 

 

RESULTS 

The Table displays the means and standard deviations for all dependent variables used in the 

mixed-model analysis of variance. A significant sex-by-muscle interaction (F^sub 2,80^ = 3.76, 

P < .05, η^sup 2^ = .086, 1 - β = .67; Figure 2) demonstrated that males produced higher TrA-IO 

than RA and EO amplitudes, whereas females showed no differences among muscles. In 

addition, females had significantly lower TrA-IO activation amplitudes than males. Males and 

females also differed by phase (F^sub 1,40^ = 5.53, P < .05, η^sup 2^ = .121, 1 - β = .63; Figure 

3), with males producing significantly higher preactivation amplitudes than females. The males 

then showed decreased muscle activation amplitudes from preactivation to postimpact, resulting 

in values that were not significantly different than those of the females. Females showed no 

change in muscle activation from preactivation to postimpact. Finally, a muscle-by-phase 

interaction (F^sub 2,80^ = 9.90, P < .05, η^sup 2^ = .198, 1 - β = .98; Figure 4) demonstrated 

that although activation of the TrA-IO was greater than that of the RA and EO during both 

preactivation and postimpact, a significant decrease in TrA-IO from preactivation to postimpact 

was evident, whereas no change was noted across phase of landing for the RA or EO. No 

significant sex-by-muscle-by-phase interaction (F^sub 2,80^ = .62, P = .54, η^sup 2^ = .015, 1 - 

β = .15) and no main effect for sex (F^sub 1,40^ = .52, P = .48, η^sup 2^ = .013, 1 - β = .11) 

were seen. 

 

DISCUSSION 

Our primary findings were that males recruited higher TrA-IO amplitudes than females, but no 

sex differences were demonstrated in activation of the RA and EO muscles. This sex difference 

in TrA-IO amplitude was largely due to greater activation of the TrA-IO in males relative to 

females in preparation for landing but not postimpact. These findings collectively reveal that 

males preferentially activated the local abdominals (TrA-IO) over the RA and EO muscles in 

preparation for landing, whereas females showed no preferential abdominal muscle recruitment. 

In the landing task, no differences were noted in global muscle activation (RA or EO) across 

phase of landing or between the sexes. This is contrary to the findings of Granata et al,25 who 

showed that females recruited significantly higher RA and EO amplitudes than males in 

preparation for a sudden trunk load (ie, a sudden weight was applied to the hands, mimicking 

lifting conditions). During postimpact, we did see a trend toward higher RA recruitment in 

females than in males, although these differences were not statistically significant, most likely 

because of the large SDs present in the females (P > .05, Cohen D effect size = .90; Table). 

Based on the statistical findings of our study, we cannot support our initial hypothesis that 

females would recruit higher RA and EO amplitudes than males. 

 

The larger TrA-IO amplitudes relative to the RA and EO support the role of the local abdominals 

as dynamic trunk stabilizers and partially confirm our hypothesis. However, this finding was 

only evident in the male subjects. The local abdominal muscles are the primary abdominal 

muscles responsible for modulating intra-abdominal pressure (IAP).17,22 As a result, we 

expected large TrA-IO preactivation amplitudes (coinciding with IAP development) in 

preparation for impact with the ground. Although we did not directly measure IAP, Cresswell 

and Thorstensson18 showed that IAP develops before ground contact in preparation for landing. 



The functional importance of local abdominal activation and IAP development in controlling the 

trunk has been demonstrated during various reaction-based tasks as well as during walking and 

running.20,21,33 Our findings also support the importance of local abdominal activation as a 

dynamic stabilizer of the spine, lumbopelvic, and trunk segments in landing. Our initial 

hypothesis that the local abdominals would be the primary abdominal muscles recruited relative 

to the RA and EO is, therefore, rejected, because this was only evident in the male subjects 

during the preactivation phase of landing. 

 

The activation strategies we observed in the female subjects indicate that they employed an 

abdominal recruitment strategy that similarly activated the global and local muscles. This 

activation strategy may indicate a reduced ability to stabilize the trunk in landing. Previous 

authors showed that activation of the local abdominals to achieve adequate levels of IAP and to 

stabilize the lumbar spine and trunk are essential in tasks such as walking and running20,21 and 

in landing.17 Without appropriate activation of the local abdominals, the global abdominal 

muscles must compensate in order to provide adequate control of trunk motion.29 As these 

compensatory activation strategies occur, the heightened global activation strategy may 

compromise the person's ability to stabilize the trunk, especially if fatigue becomes a factor, such 

as over the course of repeated trunk loading episodes.25,27 A trunk loading stress occurs every 

time a person lands from a jump; thus, the female athlete may not be able to adequately meet 

these demands over the course of a game as a result of the activation strategies employed. In 

addition, as the global abdominals are instrumental in controlling the trunk segment in the 

presence of an external load34 and/or during a reaction-based situation,15,16 their ability to react 

and stabilize the trunk may be compromised if their activation levels are already elevated as a 

result of inadequate local abdominal activation. 

 

The final 2 discussion points are centered on alternative muscle activation strategies in landing 

and represent possible explanations for the sex discrepancies noted in our study. Although we are 

only speculating at this time because we did not acquire data from other muscles, these theoretic 

explanations are based on the current evidence from the literature. The sex discrepancy in local 

abdominal activation may be explained by the idea that females use alternative muscle activation 

strategies by other trunk and pelvic muscles to modulate the IAP and control the trunk. Our 

findings are limited to the local and global abdominal muscles, but the pelvic floor and 

diaphragm are also instrumental in modulating the IAP, along with the local abdominals; thus, 

females may have selectively recruited the pelvic floor muscles to develop and maintain IAP 

during landing.35 Although the local abdominal muscles contribute to the development of IAP 

and, in turn, the trunk extensor moment,18,36,37 females may also have preferentially activated 

the ES muscles to control the forward momentum of the trunk during landing. Given the 

kinesiologic function of the ES in extending the trunk, this factor may also help to explain why 

males experienced a significant decrease in local abdominal activation across phase of landing. It 

is quite possible that the local abdominal muscles preactivate to develop a functional level of 

IAP before landing,17 whereas after impact, the ES primarily controls forward trunk flexion. To 

assess the efficacy of different muscle activation strategies in controlling the trunk during 

landing, future researchers should investigate how sex-specific abdominal and back muscle 

activation patterns relate to trunk and pelvis kinematic and kinetic function. 

 

Limitations 



The use of surface EMG to represent local abdominal activation includes contributions of the 

lower fibers of the IO, and, therefore, results cannot be attributed to the contributions of the TrA 

alone. At 2 cm medial and inferior to the anterior superior iliac spine, the TrA and IO are 

horizontally oriented and superficial to the skin,38 and in some cadavers, these muscles are fused 

at this location.31,38 As a result, these muscles cannot be completely isolated from one another. 

The use of surface EMG to represent deep abdominal activation profiles may also be considered 

a limitation of our study. However, McGill et al30 compared surface EMG with intramuscular 

EMG and demonstrated that surface electrodes placed 2 cm medial and inferior to the anterior 

superior iliac spine provided a valid representation of the activation profiles of the deep TrA. 

Others have also used this location to detect TrA onset timing relative to upper limb 

movement.31 Although intramuscular EMG might have provided more appropriate information 

specific to the TrA and not the IO, we believe the highly dynamic nature of the landing task 

would have caused errant movement of the needle electrode. In addition, by using surface EMG 

in the current study, the trial-by-trial reliability of each of the abdominal variables was good (r = 

.82 to .92). Therefore, we believe that use of surface EMG to represent TrA-IO activation was 

justified given our highly dynamic task, our variables of interest, the established reliability of our 

measures, and our hypothesis. 

 

CONCLUSIONS 

Abdominal muscle activation strategies used by males and females during landing demonstrate 

that males preferentially activated the local abdominal muscles (TrA-IO) in preparation for 

landing, whereas females showed no significant differences in abdominal activation during 

preactivation or postimpact. The dominant local abdominal activation strategy used by males in 

landing is consistent with previous findings highlighting the local abdominal muscles as trunk 

stabilizers. Although females did not preferentially activate the local abdominal muscles, we 

cannot determine from the current study whether this reflects an inability to control the trunk, as 

alternative muscle activation strategies to stabilize the trunk may have been employed. Future 

researchers will need to investigate both the abdominal and back muscle activation strategies 

inherent in landing and test the efficacy of these sex-specific trunk muscle activation patterns 

through trunk kinematic and kinetic measurements. Once an "optimal" abdominal muscle 

activation pattern to control the trunk in landing is identified, clinicians may then begin using the 

evidence to guide exercise prescription and, thus, ultimately to minimize the chances of ACL 

injuries occurring in the female athlete. 
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