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Abstract. Winter mixed layer characteristics in the North
Pacific Ocean are examined and compared between Argo
floats in 2006 and the World Ocean Atlas 2001 (WOA01)
climatology for a series of named water masses, North Pa-
cific Tropical Water (NPTW), Eastern Subtropical Mode
Water (ESTMW), North Pacific Subtropical Mode Water
(NPSTMW), Light Central Mode Water (LCMW) and Dense
Central Mode Water (DCMW). The WOA01 is found to be
in good agreement with the Argo data in terms of water mass
volumes, average temperature-salinity (T-S) properties, and
outcrop areas. The exception to this conclusion is for the
central mode waters, DCMW and LCMW, whose outcrop-
ping is shown to be much more intermittent than is apparent
in the WOA01 and whose T-S properties vary from what is
shown in the WOA01. Distributions of mixed layer T-S prop-
erties measured by floats are examined within the outcrop-
ping areas defined by the WOA01 and show some shifting
of T-S characteristics within the confines of the named water
masses. In 2006, all the water masses were warmer than cli-
matology on average, with a magnitude of about 0.5◦C. The
NPTW, NPSTMW and LCMW were saltier than climatol-
ogy and the ESTMW and DCMW fresher, with magnitudes
of about 0.05. In order to put these results into context, dif-
ferences between Argo and WOA01 were examined over the
North Pacific between 20 and 45◦N. A large-scsale warming
and freshening is seen throughout this area, except for the
western North Pacific, where results were more mixed.

Correspondence to:F. M. Bingham
(bigkahuna@fredbingham.com)

1 Introduction

Since the time of Iselin (1939), ocean scientists have been
seeking to connect the distribution of water properties at the
surface of the ocean to those found in the interior. Iselin
noticed that interior properties were similar in temperature-
salinity (T-S) characteristics to those found at the surface.
The work of Stommel (1979), Marshall et al. (1993), Huang
and Qiu (1994) and Qiu and Huang (1995) and many others
have laid the foundation for understanding the subduction of
water from the surface ocean to where it might be observed
underneath the surface sometime later. The basic result of
this analysis is a subduction rate, which combines Ekman
pumping and lateral induction to give a vertical mass trans-
port into the ocean interior. While knowledge of the subduc-
tion rate can indicate how rapidly a particular water mass gets
into the interior, the amount of water subducted will depend
on the volume of a given water mass available, and the T-S
properties of water observed in the interior depend on those
at the surface when the water is subducted (Bingham et al.,
2002).

Mode waters have been observed in every world ocean ex-
cept the North Indian (Hanawa and Talley, 2001). They were
originally given that name because they represent a mode in
a volumetric census of waters classified by temperature and
salinity (Masuzawa, 1969), but more recently have come to
be identified by vertical minima in potential vorticity or tem-
perature or density gradient. Mode waters are among the
most important subducted water masses because they can
carry climate anomalies from the surface into the interior
to resurface later (Sugimoto and Hanawa, 2005). They thus
provide the ocean with a memory of wintertime conditions at
the surface.
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Figure 1.

Fig. 1. Locations of 4997 Argo profiles in the indicated area in
winter (January–March) 2006.

In the North Pacific, there are several varieties of mode
waters (Hanawa and Talley, 2001), each with its own dynam-
ics and formation processes. North Pacific Subtropical Mode
Water (NPSTMW) is formed by strong cooling in the winter
offshore of the Kuroshio and KuroshioExtension front (Bing-
ham, 1992). North Pacific Central Mode Water has two va-
rieties, Dense Central Mode Water (DCMW) and Light Cen-
tral Mode Water (LCMW) (Oka and Suga, 2005). These wa-
ters are formed between the Kuroshio and Subpolar fronts
and probably in association with eddies and other mesoscale
variability (Oka and Suga, 2005; Saito, personal communica-
tion). Eastern Subtropical Mode Water (ESTMW) has tem-
perature and salinity characteristics similar to NPSTMW, but
is formed in the eastern North Pacific as a result not of strong
wintertime cooling, but due to weak summer heating, and a
consequent weak seasonal pycnocline (Hautala and Roem-
mich, 1998; Ladd and Thompson, 2000).

Another important North Pacific water mass is the North
Pacific Tropical Water (NPTW; Suga et al., 2000). This wa-
ter mass (which partially overlaps the ESTMW) is associated
with high salinity at the surface and Ekman convergence in
the middle of the subtropical gyre. It is also seen in the
interior as a subsurface salinity maximum (Bingham et al.,
2002).

Recently, the Argo program (Argo Science Team, 2001)
has developed the ability to measure the wintertime mixed
layer of the ocean to an unprecedented degree. Argo floats
can profile and measure the properties at times when surface
ships cannot make such measurements. Ohno et al. (2004)
examined winter mixed layer depth (MLD) using Argo float
data. They found that the World Ocean Atlas 2001 (WOA01;
Conkright et al., 2002) MLDs generally agreed with those
measured by floats, except in the northwest Pacific where the

WOA01 underestimated the MLD south of the Kuroshio Ex-
tension front and overestimated the MLD north of the front.
Ohno et al. (2004) attributed the disagreement to smoothing
across either the temperature/salinity front or the mixed layer
front in the WOA01 as suggested by Suga et al. (2004).

Water mass formation is a crucial process in understanding
and modeling ocean circulation (e.g. Xie et al., 2000) and a
continuing challenge to ocean modelers (e.g. Tsujino and Ya-
suda, 2004; Qu et al., 2002). One of the most critical aspects
of models is proper depiction of the surface mixed layer. Of-
ten, the mixed layer boundary condition relaxes to that given
in some version of the World Ocean Atlas, the most cur-
rent version of which was released in 2001 (Conkright et al.,
2002). An important issue for ocean models is to understand
how well the WOA01 and other such climatologies represent
the mixed layer in terms of T-S characteristics, geographic
areas and water mass volumes. Only if models have proper
surface boundary conditions can the water mass formation
and subduction process be accurately simulated. For that rea-
son, the main question to be addressed in this paper is: How
well does the WOA01 depict the T-S properties and outcrop-
ping regions of some of the important water masses in the
North Pacific? This question will be examined by comparing
the wintertime mixed layer measured by Argo floats and that
depicted in the WOA01. Given the heavy smoothing done in
creating the WOA01, one would expect some discrepancies
as shown by Ohno et al. (2004). This study extends that of
Ohno et al.. (2004) by examining water mass volumes, out-
crop areas and T-S properties of several different water mass
formation areas. Overall, the conclusion we will come to is
that the mixed layer is depicted pretty well with respect to
subtropical water masses, but less so with the central mode
waters outcropping north of the Kuroshio extension.

2 Data and methods

Data for this study come from two sources, Argo profiles and
the WOA01.

The Argo profiles we used were collected during the win-
ter months of January–March 2006 (Fig. 1). We also ex-
amined Argo profiles from 2004 and 2005, but the data dis-
tribution is sparser. Results from these years were similar to
those presented here. Each float spends 10 days between pro-
files. The 4997 profiles from January–March 2006 represent
returns from 589 separate floats. The spatial coverage is rel-
atively even, except for heavier sampling near the Kuroshio
and some poorly sampled regions in the northwestern and
western tropical Pacific. Initial data processing and quality
control, described by Oka et al. (2006)1, consist mainly of
Argo’s real-time quality control plus visual inspection for
suspect data. MLD was calculated for each profile as the

1Oka, E., Talley, L. D., and Suga, T.: Temporal Variability of
Winter Mixed Layer in the Mid- to High-Latitude North Pacific, J.
Oceanogr., in review, 2006.
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Table 1. Winter mixed layer temperature-salinity characteristics and volumes of given water masses.

Name Reference Sigma-t Temperature Salinity WOA01 Volume Argo 2006 Volume
Range Range (◦C) Range (X 1014m3) (X 1014m3)

NPTW Suga et al. (2000) 23.6–25.1 20.0–24.0 34.9–35.5 3.8 3.7±0.2
NPSTMW* Oka et al. (2006)1 24.5–25.9 15.4–19.7 34.6–35.0 3.5 4.5±0.2
ESTMW* Suga et al. (2004) 23.9–26.1 16.0–22.0 34.6–35.4 3.9 3.7±0.2
LCMW Oka et al. (2006)1 25.5–26.3 12.0–14.5 34.3–34.6 2.0 0.9±0.1
DCMW Oka et al. (2006)1 25.9–26.9 6.0–10.0 33.7–34.2 1.5 1.4±0.1

* ESTMW and NPSTMW overlap in characteristics, but are distinguished by geographic location. NPSTMW is taken to be west of the
dateline, while ESTMW is east of it (Oka et al., 20061).

depth where sigma-t exceeds that at 10 m depth by 0.125.
This criterion is less strict than that recommended by de
Boyer Montegut et al. (2004) (who used a criterion of 0.03
sigma-t), but similar to that determined by Kara et al. (2000)
(who used a more complex criterion that approximates an
isothermal depth of 0.8◦C). The 0.125 criterion is standard
for use with the WOA01 data (e.g. Sugimoto and Hanawa,
2005) and we wished to handle the calculation of MLD con-
sistently between the datasets we used.

We are using average MLD calculated by two different
methods here. One method (method 1) uses individual Argo
floats, calculates MLD from each float and then averages the
MLDs. The other (method 2) takes averaged hydrographic
profiles (the WOA) and calculates the MLD from those av-
eraged profiles. De Boyer Montegut et al. (2004) have care-
fully considered these different methods, showing one exam-
ple of how the average MLD calculated by method 2 can be
less than that from method 1. They find that globally the
method 1 MLDs are 25% greater than method 2. They also
suggest that method 1 may result in overestimation of the
MLD when using large difference criteria like the one we
use.

Mixed layer temperature (MLT) and salinity (MLS) were
given for each profile as the temperature and salinity at 10 m
depth. We present results using January–March data all
treated in the same way and averaged together. There is some
indication (Oka et al., 20061) that the MLD reaches a maxi-
mum in different areas of the ocean at different times of the
winter. To make sure our results were not biased due to av-
eraging the entire winter together, we re-ran all calculations
in this paper using March-only Argo profiles and the March
WOA01 average. The results were very similar, but with less
certainty due to a smaller number of data.

In order to calculate water mass volumes, Argo MLD,
MLT and MLS were interpolated onto one degree squares
in the North Pacific. For a given 1 degree latitude-longitude
grid point, we searched for profiles within 2 degrees of the
grid point. If no profiles were found, the search radius was
increased to 3 degrees, and so on up to 10 degrees. Once
one or more profiles were found within a given radius, MLD,

MLT and MLS values were averaged together using a Gaus-
sian weighting function with a 1.5 degree e-folding scale.
The full 10 degree search radius was rarely used. 90% of
the one degree squares had profiles within 4 degrees latitude-
longitude distance of the grid point.

The WOA01 comes already averaged onto a 1 degree grid
(Stephens et al., 2002; Boyer et al., 2002). We used the win-
ter seasonal gridded profiles from the North Pacific Basin
(Conkright et al., 2002), which are averaged over January–
March. MLT and MLS were given as the values at 10 m
depth. MLD was calculated using the criterion mentioned
above. This is the same calculation as that done by Suga et
al. (2004).

Volumes were calculated by temperature-salinity (T-S)
class in ranges of (0.5◦C, 0.05). For each one degree square
with a particular value of temperature and salinity, the vol-
ume of that water was calculated as the surface area of the
one degree square times the MLD. The total volumes for
each T-S class were added up with the results presented as
two dimensional volumetric censuses for both Argo 2006 and
WOA01 (Fig. 2).

In the pictures of Fig. 2, what is shown is the volume as-
suming the T-S properties of the water are constant through-
out the mixed layer. This assumption is probably true for
the most part in the real ocean, where the mixed layer ends
at the top of the thermocline and sigma-t increases abruptly
by more than the 0.125 criterion. However, this is a some-
what problematic assumption for this calculation using the
WOA01, because the mixed layer by definition changes in
density between the surface and the base. It would probably
be more accurate to do this volume calculation for the entire
depth of the mixed layer taking vertical T-S variation into ac-
count. This problem is resolved somewhat by the choice of
bin width in Figs. 2a and b, 0.5◦C and 0.05. These values
give a sigma-t difference across the bin of about the same
size as the mixed layer criterion of 0.125, depending on the
temperature and salinity value. Thus it is unlikely that the
considerably more painstaking and error-prone calculation
described would yield significantly different results.

www.ocean-sci.net/2/61/2006/ Ocean Sci., 2, 61–70, 2006
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Figure 2 

 

Fig. 2. (a)and(b) Distribution of water volume in the mixed layer by temperature and salinity class. Temperature and salinity are summed
over ranges of 0.5◦C and 0.05 respectively. (a) WOA01. (b) Argo 2006.(c) T-S diagram showing the boundaries of the water masses
discussed in the text and shown in Table 1. Also show in are medians and standard deviations of T-S properties for Argo 2005, cases 2 and 3
in the text. The median is indicated by letters: T – NPTW; E – ESTMW; N – NPSTMW; L – LCMW; D - DCMW. Standard deviations are
indicated by bars. Potential density countours are shown in panel (c).(d) Color scale for panels (a) and (b).
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Fig. 3. Distribution of floats and various water masses in 2006. Blue (green) symbols are where floats measured properties at 10 m within
(outside of) the range of the water mass as indicated in Table 1. Gray shaded areas are the where the 10 m T-S properties given in the WOA01
match the criteria for the given water mass in Table 1.(a) NPTW. (b) ESTMW. (c) NPSTMW. (d) LCMW. (e) DCMW. Note panels have
different axis scaling to emphasize each water mass separately.

Another issue in Fig. 2 and Table 1 is the significance of
the calculated numbers. We adopted the following proce-
dure for calculating the significance of the volumes in Fig. 2.
Since the numbers are weighted averages, we used weighted
standard deviations for each one-degree square to compute a
standard error, the standard deviation divided by the square
root of the number of observations. Generally these stan-
dard errors were very small. If presented on the same scale
as Fig. 2b, the plot would be completely white. These stan-
dard errors were added up in a “square root of the sum of the
squares” sense to get total errors for the Argo 2006 volumes
shown in Table 1. No such calculation could be done for the
WOA01 data.

3 Results

The distribution of mixed layer volume from the WOA01
(Fig. 2a) reflects in part the distribution of water in the main
thermocline in the subtropics, especially in the temperature
range of 10 to 20◦C. A mode in volume is seen with T and
S range 18–20◦C and 34.75–34.85. This water is the surface
expression of NPSTMW. This density is somewhat lighter
than classically defined NPSTMW (Masuzawa, 1969) which
has characteristics of sigma-t 25.4, 16.5–17.5◦C and salinity
34.7–34.8.

There is a slight mode in volume at the density of the
LCMW (14◦C, 34.5; Fig. 2a) and very little indication of
DCMW as a maximum in volume at (10◦C, 34.1). There is a

www.ocean-sci.net/2/61/2006/ Ocean Sci., 2, 61–70, 2006
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23

31 2

Figure 4 
Fig. 4. Venn diagram illustrating the comparison made in Fig. 3 and
Table 2. The shaded oval represents the set of floats that surfaced
within the shaded areas of Fig. 3. The blue oval represents the set of
floats in Fig. 3 that are colored blue, i.e. had the T-S characteristics
of the given water mass. Cases as indicated in the text are shown
with numbers.

small ridge representing NPTW at salinity 35.3 between 20
and 24◦C, with a small maximum at 20◦C. Not shown in this
figure, but clearly visible as a mode in the T-S histogram is
the dichothermal water with T<5◦C (Miura et al., 2002; En-
doh et al., 2004). It is formed in the Bering Sea and adjacent
northwestern North Pacific and characterized by a subsurface
temperature minimum.

The Argo 2006 data show clear delineations of most of the
major water masses (Fig. 2b) with stronger and clearer peaks.
NPSTMW is the most apparent peak, centered at 18–19◦C,
34.8–34.9. There are also peaks for NPTW (24◦C, 35.2–
35.3) and ESTMW (20◦C, 35.2) . There is a peak at (15-
16◦C, 34.5–34.6) that may be either light LCMW or dense
NSPTWM. It does not fit exactly in the range of either as de-
fined in Table 1. There is a volume mode that corresponds
to DCMW (9.5–11◦C, 34.2–34.3), but is saltier and warmer
than usual (Oka and Suga, 2005; Oka et al., 20061).

The most striking contrast between the WOA01 and Argo
2006 volume distributions is the water found to the fresh side
of the main thermocline in the WOA01. The signal of this
water is weaker in the Argo data. It reflects a tongue of cold,
fresh water close the the west coast of North America (see
e.g. Suga et al., 2004, Fig. 3g). In the WOA01, this tongue
is spread into the interior by the averaging process and in-
creased in volume beyond what is apparent in the Argo data.

The North Pacific Hydrobase mixed layer climatology
(Suga et al., 2004) was examined in the same way, with vol-
ume calculated. It showed a distribution similar to that of
the WOA01, so results are not displayed here. This implies
that the Hydrobase suffers the influence of smoothing even
though the purpose was to minimize this type of problem.

We now focus on some named water masses from the
North Pacific, NPTW, NPSTMW, ESTMW, LCMW and
DCMW. A summary of the T-S classifications and calculated
total winter mixed layer volumes for each water mass are pre-
sented in Table 1 and water mass T-S boundaries are shown
in Fig. 2c. In general the mixed layer volumes of the various

water masses are remarkably similar between the WOA01
and Argo. This indicates that the WOA01 does a good job
of depicting the volume of each water mass, but spreads that
volume out somewhat in T-S space. Some discrepancies ex-
ist. For example, the NPSTMW volume is larger for Argo
than for the WOA01 perhaps because Argo mixed layers are
deeper for NPSTMW (Ohno et al., 2004). The LCMW vol-
ume is about 100% larger in the WOA01 than in Argo.

Given the randomized nature of the Argo sampling, it
makes sense to compare outcrop areas derived from individ-
ual profile T-S properties with those in the WOA01 for the
various water masses. This is done in Fig. 3. The NPTW dis-
tribution (Fig. 3a) shows that the Argo float characteristics
generally match in location with the WOA01 with the blue
symbols matching the gray areas. There are some discrepan-
cies, especially in the northwest and southeast corners of the
WOA01 outcrop area and along the southern edge.

The other water masses also show general agreement be-
tween Argo and WOA outcrop areas. The water masses
where the WOA01 and Argo data are most at odds are both
the LCMW and DCMW (Figs. 3d and e). From Argo data,
there appears to be no area of pure central mode water
(CMW) outcrop. Non-CMW floats mixed up with CMW
floats both inside and outside the gray areas. This is likely
a result of the nature of DCMW and LCMW formation
(Saito, personal communication). These water masses do not
have consistent outcrops, but appear within the context of
mesoscale features spun off from the Kuroshio and Oyashio
extensions.

There are two types of discrepancies between float data
and the WOA01 in Figs. 3a–e. One is where the float mea-
sured T-S characteristics of a particular water mass at 10 m,
but was outside of the area given by the WOA01 (case 1;
blue symbol outside of gray area in Fig. 3). The other is
where a float measures water properties outside that of the
given water mass, but is within the area where that water
mass is shown by the WOA01 (case 2; green symbol inside
gray area). Finally, there is the matching case where a float
is within the characteristics of a given water mass and is also
within the area shown by the WOA01 (case 3; blue symbol
inside gray area). These cases are more easily visualized by
use of a Venn diagram in Fig. 4. Inside the oval on the right
(left) is the set of floats which match the geographic area (T-
S characteristics) of a particular water mass. The intersection
of the two ovals is the set of floats that match both.

To give an idea of how well the floats measure the area
of the various water masses, the ratios of numbers of float
profiles is shown in Table 2. In general, the floats came
up with the predicted characteristics most of the time in the
subtropical water masses, especially for the NPSTMW and
ESTMW. The results matched less well for the central mode
waters. A float measuring DCMW (LCMW) had a 49%
(46%) chance of surfacing outside of the outcrop area as
defined by the WOA01. 46% (44%) of the floats surfac-
ing within the outcrop area did not have DCMW (LCMW)

Ocean Sci., 2, 61–70, 2006 www.ocean-sci.net/2/61/2006/
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Table 2. Columns 2 and 3 represent discrepancies between numbers of floats in 2006 and water properties given by the WOA01, as described
in the text. Column 4 represents the matching case, the percentage of floats which matched in both geographic area and T-S characteristics.

Name case1/(case1+case3) (%) case2/(case2+case3) (%) case3/(case1 + case2 + case3) (%)

NPTW 42 38 43
NPSTMW 19 22 73
ESTMW 11 20 66
LCMW 60 44 30
DCMW 49 46 35

characteristics. This tendency is mirrored in the set of match-
ing cases in the fourth column of Table 2 showing a low
percentage of matches for LCMW and DCMW, but a high
percentage for ESTMW and NPSTMW. These discrepancies
highlight the extremely intermittent nature of CMW forma-
tion. They are in good agreement with the results of Qu et
al. (2002) who found CMW formation to be strongly asso-
ciated with eddies. These central mode waters could be said
not to outcrop in a particular area, but to surface from time
to time in a large and ill-defined region of the northwestern
North Pacific. The NPTW also has a large number of dis-
crepancies and low number of matches. This may have to do
with a general warming of the basin observed in the floats
relative to the WOA01 as will be discussed below. We did
a basin-wide average and found that, over the entire North
Pacific, the floats were warmer than the WOA01 by about
0.5◦C. Most of the discrepancies of the number 2 type were
because the observation was warmer than the WOA01.

Because surfacing floats may have properties different
from the WOA01, it is worthwhile to examine the medians
and standard deviations of T-S properties of floats within a
given area. This will tell us if the floats are measuring char-
acteristics very different from the WOA01. This is done in
Fig. 2c, where the medians are shown for each water mass
with standard deviation bars. These are the medians and stan-
dard deviations for all floats surfacing in the area defined for
a particular water mass by the WOA01 (gray areas in Fig. 3,
cases 2 and 3 in the previous paragraph). The distributions
fall well within the range stated in Table 1 for the warmer wa-
ter masses. The LCMW and DCMW standard deviation bars
extend well outside the range, but the medians are inside.

Despite the fact that the various water masses are gener-
ally found within the outcrop areas predicted by the WOA01,
there is significant T-S variability between the floats and the
WOA01. To highlight this point we did the following analy-
sis. For each float that surfaced in a water mass region (gray
areas in Fig. 3), we took the difference between the float and
the value taken from the WOA01 where the float surfaced. In
other words, if the float surfaced and measured a mixed layer
temperature of, say, 10◦C, while the value of the WOA01 at
the same one degree square was 9◦C, we recorded the tem-
perature difference as 1◦C. A similar analysis was done for

salinity. Histograms of those temperature and salinity differ-
ences are displayed in Figs. 5a–b.

The temperatures of the various water masses in 2006
are generally biased high, with the floats measuring warmer
temperatures than indicated by the WOA01 (Fig. 5a). The
DCMW histogram appears closest to being symmetric about
zero, but is still biased somewhat warm.

The 2006 salinity histograms are more mixed (Fig. 5b).
Two water masses are fresher than indicated by the WOA01
(DCMW and ESTMW) and the rest are saltier.

To put the Fig. 5 results into context we did a similar anal-
ysis for the entire North Pacific (Fig. 6). For the tempera-
ture, this shows that Argo floats were warmer than climatol-
ogy over a broad swath of the tropical North Pacific for 2006
(Fig. 6a). The mode water formation areas of the northwest-
ern North Pacific are a special case. There we see a mixture
of cold and warm floats, blue and red symbols in close prox-
imity. In this view, it is difficult to see the same trend in
temperature in the mode water formation areas that we saw
in Fig. 5a. The ESTMW and NPTW areas are more central
and clearly warmer than climatology as shown in Figs. 5a
and 6a.

For salinity, the North Pacific is fresher than climatol-
ogy for a large area south of about 25◦ N, wrapping around
into the northeastern and northwestern basins(Fig. 6b). This
matches the freshening of the ESTMW seen in Fig. 5b. An
area of the central North Pacific, centered around 30◦ N,
160◦ E is saltier than the WOA01. This salinification of the
NPSTMW formation area is consistent with curve of Fig. 5b.

4 Discussion

Overall, the WOA01 and 2006 Argo floats show the outcrop
areas of some major North Pacific water masses to be very
similar, except for the central mode waters (Fig. 3). The vol-
umes of the water masses agree well between the two data
sets (Table 1) as do the T-S characteristics (Fig. 2c), again
with the exception of the Central Mode waters.

www.ocean-sci.net/2/61/2006/ Ocean Sci., 2, 61–70, 2006
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Figure 5 Fig. 5. Histograms of the difference between float measurements
and the WOA01 for various named water masses (Table 1). Wa-
ter masses are indicated by different colored lines, with keys in the
figures. Results are presented as relative frequencies summed up
within a temperature (salinity) range of 0.5◦C (0.05).(a) Tempera-
ture 2006.(b) Salinity 2006.

Suga et al. (2006)2 computed a subduction transport as a
function of temperature and salinity class, similar to Fig. 2a
for the WOA01. That is, they calculated the subduction rate
at each one degree square, multiplied it by the surface area,
and summed the transport up for each T-S class. The result is
a calculation of water mass volume subducted in a year. The
amount of water subducted in a year in a one degree square
should be equal to a fraction of the depth of the late winter
mixed layer, multiplied by the surface area. That is, once the
winter is over, one would expect some fraction (1/2?, 2/3?)

2Suga, T., Aoki, Y., Saito, H., and Hanawa, K.: Ventilation of
the North Pacific subtropical pycnocline and mode water formation,
Prog. Oceanogr., in review, 2006.

25

a b

Figure 6 
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Figure 6 Fig. 6. Difference between Argo float and local WOA01 values at
10 m depth.(a) 2006 Temperature.(b) 2006 Salinity. At bottom are
color scales for (a–b).

of the water in the mixed layer at the end of winter to be
inducted into the interior circulation depending on the sub-
duction rate, meridional slope of the mixed layer base, the
depth of the spring seasonal thermocline, etc. Comparison
of Suga et al.’s (2006)2 results and what is presented here
is consistent with this expectation. Our water mass volumes
are generally larger than their subduction volumes but by less
than an order of magnitude. This gives confidence in both the
present study and in their more complicated calculation.

The formation of NPSTMW, ESTMW and NPTW is well-
represented in most eddy-resolving general circulation mod-
els (e.g. Tsujino and Yasuda, 2004) but simulating the for-
mation of central mode waters has been more difficult. One
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reason suggested for this is that restoring models to observed
SSS and SST is that it double counts the heat and salt trans-
port by western boundary currents and their extensions lead-
ing to warm biases in the western and central mode water
formation areas (Qu et al., 2002). The present study can give
a clue as to why it has been difficult to simulate the formation
of central mode waters. The reliance on relaxation back to
the WOA01 or other climatology could introduce problems
into a model due to the difference between climatological
mixed layer and what is actually present. The formation pro-
cess of central mode waters is fundamentally different from
the other water masses discussed here in that it occurs inter-
mittently in space and time (Saito, personal communication).
The isopycnals on which these water masses circulate are not
open to the atmosphere on a regular basis over a well-defined
region like the other water masses studied.

Figure 6 indicates that as a whole in 2006 the North Pacific
mixed layer was fresher and warmer than average. These
changes encompassed the vast majority of the tropics and
eastern and northeastern basins. On the other hand, the
mode water formation areas were much less clear as shown
in Figs. 5 and 6. This illustrates the fundamentally different
nature of surface processes in these areas in winter. Surface
properties in the mixed layer are controlled by wintertime
heat loss and subsequent convection. The mode water forma-
tion areas have a number of fronts within them, which makes
the determination of the float sampling a matter of geogra-
phy. Whether a float measures warmer or cooler (or fresher
or saltier) than climatology depends mostly on which side of
a local front the float happens to surface on. This makes de-
termination of interannual variability of the T-S properties of
mode water formation areas trickier than other regions. In-
terannual variations may be much more in the nature of shifts
in the positions of fronts than changes in T-S properties.

We can only speculate here on the reasons for the T-S dif-
ferences between WOA01 and Argo shown in Fig. 6. Most
likely, they are due to interannual variability. That is, surface
waters in 2006 happened to be particularly fresh and warm
over much of the North Pacific. Similar results were obtained
but not shown for 2004 and 2005. Though this is the obvious
explanation, there are others possible. Differences could be
a result of spatial or temporal sampling biases in the way the
floats surfaced. This is most likely a problem for the DCMW
and LCMW formation areas, which were not well-sampled
by floats in 2006 (Fig. 3e). Another potential issue is biases
introduced into the WOA01 in the smoothing and averaging
process. Whatever the reasons for the observed differences,
the WOA01 will be used in the future as a benchmark against
which changes can be measured.
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