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 Remotely sensed image classification techniques are very useful to 

understand vegetation patterns and species combination in the vast and 

mostly inaccessible arctic region. Previous researches that were done for 

mapping of land-cover and vegetation in the remote areas of northern Alaska 

have considerably low accuracies compared to other biomes. The unique 

arctic tundra environment with short growing season length, cloud cover, low 

sun angles, snow and ice cover hinders the effectiveness of remote sensing 

studies. The majority of image classification research done in this area as 

reported in the literature used traditional unsupervised clustering technique 

with Landsat MSS data. It was also emphasized by previous researchers that 

SPOT/HRV-XS data lacked the spectral resolution to identify the small arctic 

tundra vegetation parcels. Thus, there is a motivation and research need to 

apply a new classification technique to develop an updated, detailed and 

accurate vegetation map at a higher spatial resolution i.e. SPOT-5 data. 

 Traditional classification techniques in remotely sensed image 

interpretation are based on spectral reflectance values with an assumption of 

the training data being normally distributed. Hence it is difficult to add ancillary 

data in classification procedures to improve accuracy. The purpose of this 

dissertation was to develop a hybrid image classification approach that 



effectively integrates ancillary information into the classification process and 

combines ISODATA clustering, rule-based classifier and the Multilayer 

Perceptron (MLP) classifier which uses artificial neural network (ANN). The 

main goal was to find out the best possible combination or sequence of 

classifiers for typically classifying tundra type vegetation that yields higher 

accuracy than the existing classified vegetation map from SPOT data. 

Unsupervised ISODATA clustering and rule-based classification 

techniques were combined to produce an intermediate classified map which 

was used as an input to a Multilayer Perceptron (MLP) classifier. The result 

from the MLP classifier was compared to the previous classified map and for 

the pixels where there was a disagreement for the class allocations, the class 

having a higher kappa value was assigned to the pixel in the final classified 

map. The results were compared to standard classification techniques: simple 

unsupervised clustering technique and supervised classification with Feature 

Analyst. The results indicated higher classification accuracy (75.6%, with 

kappa value of .6840) for the proposed hybrid classification method than the 

standard classification techniques: unsupervised clustering technique (68.3%, 

with kappa value of 0.5904) and supervised classification with Feature 

Analyst (62.44%, with kappa value of 0.5418). The results were statistically 

significant at 95% confidence level. 

Keywords: Arctic tundra, hybrid classification, artificial neural network, kappa 

analysis. 
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CHAPTER I 
 
 

INTRODUCTION 
 
 
 

1.1. Overview 

 Arctic ecosystems are considered to be particularly sensitive to 

disturbances in the form of a change either in vegetation or the underlying 

substrate caused by some external factors which range from localized events, 

such as energy exploration or lightning induced fires, to global climate change 

(Walker, 1996). Walker et al. (1991) pointed out that although most 

anthropogenic disturbances are microscale (10-7 – 10 km2) phenomenon, but 

cumulatively they can cause mesoscale (10 – 104 km2) disturbances which in 

turn can affect the tundra ecosystems in the macroscale (104 – 106 km2) level. 

The arctic provides a test bed to provide a better understanding and evaluation 

the effects of threshold changes in regional system dynamics (Chapin et al. 

2005). Thus it is very important to understand the consequences of global 

climate change on the mesoscale patterns of the arctic ecosystem. Shifts in 

arctic tundra ecosystem functioning due to global climate change are likely to be 

expressed through changing vegetation phenology and species combinations, 

since vegetation will respond most rapidly to climatic change (Epstein et al. 2004; 

Calef et al. 2005, Vierling et al. 1997). 
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1.2. Remotely Sensed Image Classification and the Arctic Tundra 

 Remote sensing is the best tool for looking at vast areas of the Earth’s 

surface to analyze, map, and monitor ecosystem patterns and processes (Gould, 

2000). Several researchers have used remote sensing image classification 

techniques to understand the vegetation pattern in the arctic region (Walker, 

1999; Stow et al. 1993; Shippert et al. 1995). The use of optical remote sensing 

systems in arctic regions faces a number of challenges, including frequent cloud 

cover (Stow et al. 1998, 2004; Hope et al. 1995).  

 Noyle (1999) pointed out several studies showing considerably low 

classification accuracies for mapping of land-cover and vegetation in remote 

areas of northern Alaska (Fleming, 1998; Stow et al. 1989; Pacific Meridian 

Resources, 1995; Felix et al. 1989).  The only exception to this was Muller et al. 

(1998) who performed an accuracy assessment on a land-cover map (Auerbach 

et al. 1997b) derived from a Landsat MSS data (50 meter spatial resolution, 

resampled) of the Kuparuk river basin and achieved considerably high accuracy 

results. Geographical remoteness of the area and cold climate hinders ground 

truth data collection for post-classification accuracy assessments of vegetation 

classification studies in Alaska.  
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1.3. Traditional (Spectral Based) Classification Techniques 

 Traditional image classification techniques in remote sensing involve the 

acquisition and interpretation of spectral based remote measurements to obtain 

information about the Earth’s surface. The classification process assigns each 

pixel in a number of spectral bands of an image to a particular class of interest, 

such as water, barren, vegetated, urban etc. The resulting image is referred to as 

a classified or thematic map. Many different approaches have been proposed for 

performing the classification task.  

 There are many existing standard classification techniques and 

algorithms. Classes may be specified a priori by an analyst (supervised 

classification) or automatically clustered (unsupervised classification) into 

number of information classes, where the number of desired classes is specified 

by the analyst. In all the existing traditional image classification procedures, 

spectral brightness values of the different spectral bands are used as the 

numerical basis for classification. All these classification algorithms are based on 

the assumption that objects on the Earth’s surface will have unique spectral 

values and hence belong to one of the several distinct and exclusive spectral 

classes concerned. But in reality, the spectral responses of surface features in an 

image are dependant on many other factors including terrain, slope, aspect, soil 

type and moisture content, and atmospheric conditions. Thus, multi-spectral 

image information by itself has sometimes proven insufficient for differentiating 
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land-cover classes in a satellite image (Carpenter et al. 1997).  As a result 

spectral based classifications will not be able to capture the complexities of the 

Earth’s surface. For example, Stow et al. (1989) pointed out maps generated by 

classifying spectral data of SPOT/HRV-XS data alone are unsuitably inaccurate 

for mapping arctic tundra vegetation types. 

1.4. Non-Traditional Image Classification Techniques 

  To help differentiate land-cover classes that are not easily separated using 

spectral brightness values, ancillary data have often been used. Ancillary data 

such as elevation, slope, aspect, soil, and hydrology have been incorporated 

directly into modern classification algorithms such as expert systems (knowledge 

based and rule based) and neural networks. Parametric methods such as 

unsupervised cluster busting and maximum likelihood classifier (MLC), 

nonparametric methods such as nearest-neighbor classifiers, fuzzy classifier and 

neural network and non-metric methods such as rule-based decision tree 

classifiers are widely being used by recent remote sensing researchers (Duda et 

al. 2001, Liu et al. 2002, Skidmore et al. 1997; Jensen et al. 2001, Stow et al. 

2003). Availability of spatial databases and incorporation of data mining 

techniques have opened several new opportunities to improve traditional 

classifiers and develop new classification systems that can incorporate these 

spatial databases into the decision process.  
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1.5. Problem Definition 

The unique arctic tundra environment with short growing season, cloud 

cover, snow and ice cover hinders effectiveness of remote sensing studies (Hope 

et al. 1995). As pointed out by Noyle, (1999) the classification accuracy of arctic 

biomes falls below the accuracy of other biomes of the world. Although, a 

vegetation map made from a Landsat MSS Image (resampled to 50m pixel) 

classification map by, gave an accuracy measure of 87.1% (Auerbach et al. 

1997b, Muller et al. 1998). On the other hand Stow et al. (1989) emphasized the 

fact that SPOT/HRV-XS data were not fine enough to identify the small arctic 

tundra vegetation parcels while the panchromatic band of SPOT/HRV could 

resolve spatially most of the vegetation parcels but lacked enough spectral 

resolution to discriminate the vegetation types. This research is motivated and 

guided by the research need to apply a new classification technique to develop 

an accurate vegetation map at a higher spatial resolution i.e. SPOT-5, which will 

be very useful for scientific researchers in the area. 

1.6. Research Objectives 

The purpose of this dissertation was to develop a hybrid image 

classification approach that effectively integrates ancillary information into the 

classification process. The proposed classification approach combines ISODATA 

clustering (unsupervised), expert classifier (rule-based) and the Multilayer 

Perceptron (MLP) classifier that uses artificial neural network (ANN). The main 
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goal was to examine the best possible combination or sequence of classifiers for 

typically classifying tundra type vegetation in the SPOT-5 satellite image. The 

proposed classification approach aims to produce higher accuracy than the 

existing classified vegetation map of the arctic tundra made from SPOT-5 data 

using traditional classification techniques.  

The specific objectives include: (1) application of data mining techniques 

with geo-spatial and spectral knowledge in SPOT-5 satellite image data to 

develop a new hybrid classification technique for unique tundra vegetation in 

Alaska, and (2) compare and contrast the image classification performance 

between the proposed classification and the standard (spectral) classification 

techniques: unsupervised ISODATA clustering and supervised classification with 

Feature Analyst for the arctic tundra vegetation environment with accuracy 

measures.  

1.7. Research Questions 

� How to extract spatial and spectral knowledge for the unique arctic tundra 

vegetation type that can be utilized for expert classification? 

� How can a hybrid classifier be used to classify SPOT-5 data (resampled to 

5 meter pixel) to achieve higher classification accuracy than traditional 

classification techniques used using actual ground truth data? 
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�  What are the statistical significances of the classification accuracy 

obtained from the proposed method as compared to traditional spectral 

classifiers used in that area? 

This research used a hybrid classification technique that combined three 

classifiers, namely, unsupervised (ISODATA) clustering, rule-based classifier, 

and a Multilayer Perceptron (MLP) classifier.  Unsupervised (ISODATA) 

clustering and rule-based classifiers were used to produce an intermediate 

classified map which was used as an input to the Multilayer Perceptron (MLP) 

classifier. The result from the MLP classifier was compared to the classified map 

obtained in the previous step (combination of the rule-based and ISODATA 

clustering) and for the pixels where there was a disagreement for the class 

allocations, the class having a higher kappa value was assigned to the pixel in 

the final classified map. The results were compared to standard classification 

techniques: unsupervised clustering technique and supervised classification with 

Feature Analyst for accuracy measures with ground truth data. The results 

indicated higher classification accuracy (75.6%, with kappa value of .6840) for 

the proposed hybrid classification method than the standard classification 

techniques: unsupervised clustering technique (68.3%, with kappa value of 

0.5904) and supervised classification with Feature Analyst (62.44%, with kappa 

value of 0.5418). The results were statistically significant at 95% confidence 

level. 
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1.8. Dissertation Structure 

 This dissertation is divided into 5 chapters explaining literature review and 

the background, the data preparation steps, the methods and concepts used, the 

methods used and the results of the research, related discussions, conclusions 

and future research probabilities. The contents of the rest of the chapters are 

outlined below. 

 Chapter 2 describes the background literature review and concepts of 

image classification, remote sensing in Alaska and applied traditional 

classification methods and problems, incorporation of spatial data in image 

classification, knowledge (rule) based classifiers, data mining techniques in 

classification including ANN, Decision Tree and Hybrid Classifiers. 

 Chapter 3 explains the methods applied in this research with the 

information about the image data and the ancillary data used. The chapter 

elaborates the geometric correction of the image, cloud and shadow pixel 

removal, classification scheme, data collection procedures, unsupervised 

ISODATA clustering, classification with Feature Analyst, the proposed hybrid 

classifier with rule-based classification and MLP classifier and finally post-

processing of the area under the haze. 

 Chapter 4 discusses the results of the research. The classification 

accuracies of the classified images from the three different classifiers are 
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presented and comparison between them is explained with statistical 

significance. This chapter also points out the research limitations and concerns.  

 Conclusions of the results of the dissertation, and future research 

recommendations are presented in chapter 5. 
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CHAPTER II 
 
 

LITERATURE REVIEW 
 
 
 

2.1. Traditional Classification Methods 

The use of spectral or pixel-based classifiers with multi-spectral data 

began in the 1970s (Anderson et al. 1976). Both traditional unsupervised and 

supervised classification techniques often applied to remotely sensed data, are 

spectral based approaches, to match the spectral classes in the data to the 

information classes of interest. Rarely a simple one-is-to-one match is found in 

the real world between pixel groups and concerned information classes and 

traditional techniques neglect the spatial arrangement of the pixels. In reality, 

either unique spectral classes not corresponding to any information class of 

interest, or, one broad information class (e.g. cultivated field) containing a 

number of sub-classes with unique spectral signatures can be found. For 

example in a cultivated field, spectral sub-classes may be formed due to 

variations in age, species, and water content, shadowing or variations in scene 

illumination due to different sun-angle (Canada Centre for Remote Sensing, n.d.). 

Supervised image classification is a method of classification in which the 

analyst defines small homogenous areas, known as training sites which 
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represents each land-cover category of interest. This delineation of training areas 

representative of an information class is most effective when an analyst has 

sufficient knowledge of the geography of the region and experience with the 

spectral properties of the cover classes concerned (Skidmore, 1989). The analyst 

then trains the software used to recognize spectral signatures associated with 

the training sites. The software then uses those defined signatures for each land-

cover category for to classify the remaining pixels (ERDAS field guide, 2005).  

Unsupervised image classification is a method in which the analyst uses 

the software to separate the image into X number of classes (or clusters). No 

prior information is needed from the analyst regarding the information classes.  

Once this process is completed, the analyst identifies and relabels the land-cover 

type for each class (cluster) based on image interpretation, ground truth data, 

previous maps and field reports to combine the spectral clusters into information 

classes. (ERDAS field guide, 2005) 

2.2. Remote Sensing with Satellite Imagery and Traditional Classification  
  Techniques Applied in the Arctic Tundra  

 The history of remote sensing in the arctic with digital image goes back in 

1973 when Anderson et al. used Landsat 1 (ERTS -1) for land conservation and 

mapping in Alaska. Morrissey et al. (1981) used 10 Landsat scenes to map over 

23 million acres of vegetation within the National Petroleum Reserve in Alaska. In 

the mid eighties, several other private and government agencies used remote 

sensing to map vegetation maps in vast expanses of land in Alaska e.g. Alaska 
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Bureau of Land Management (BLM), NASA, USGS (Shasby et al. (1986), Walker 

et al. (1985), Markon (1992; 1995). 

 Besides vegetation mapping, remote sensing is potentially used to identify 

ecosystem changes, changes in land-cover, structure, phenological growth 

characteristics, and ecotones (boundaries) (Stow et al. 2004).  A normalized 

difference vegetation index (NDVI) in biophysical remote sensing studies was 

used for arctic tundra regions at different geographic scales in order to measure 

phytomass in bioclimate subzones and vegetation units (Hope et al. 1993, 

McMichael et al. 1999, Shippert et al. 1995). Not only Landsat data but data from 

other sensors were equally useful in other biological interests in the region. 

Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensor data were used to characterize 

changes in the phenological growth characteristics of Arctic vegetation (Zhou et 

al. 2001; Markon et al. 1995). Remote sensing was also used in the arctic region 

to identify land-cover change and vegetation characteristics using time-series 

NDVI data, to study intra-seasonal dynamics on arctic vegetation, inter-annual 

growth dynamics with NDVI, biotic controls over spectral reflectance of arctic 

tundra vegetation, and primary productivity, spatial variation in carbon dioxide 

flux (Stow et al. 2003; Jia et al. 2004; Hope et al. 2005; Riedel et al. 2005; 

Williams et al. 2001; Vourlitis et al. 2000). 
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Satellite image classification and mapping are necessary in order to study 

the large expanses of arctic tundra lands which are difficult to access and are 

seldom covered by suitable aerial photos (Walker et al. 1995). The first 

vegetation analysis and description of plant communities according to the Braun- 

Blanquet approach in the tundra landscape of the Toolik region in the northern 

slope of Brooks Range in Alaska, was done by Walker et al. (1994). Several 

researchers worked with Landsat MSS and SPOT multi-spectral (XS) data in the 

arctic region and used traditional image classification techniques (Walker et al. 

1987; Shasby et al. 1986; Stow, 1989) 

Markon et al. (1994) used a mosaic of three SPOT MSS satellite scenes 

to apply clustering techniques to develop statistical parameters by which the 

SPOT data were spectrally classified to map Tundra vegetation in the Teshekpuk 

Lake area of the Alaskan Arctic Coastal Plain. A maximum likelihood algorithm 

that correlated spectral classes with land-cover types was applied to the SPOT 

data. Field data were used to assist in spectral class labeling and vegetation 

descriptions. In the next year, Walker et al. (1995) used twelve land-cover 

classes which were spectrally identified and mapped using both supervised and 

unsupervised clustering techniques. In their research Walker et al. (1995) 

developed standardized systems of arctic vegetation classification and used 

classification techniques which exploited moderate resolution satellite data from 

Landsat Multi-Spectral scanner (MSS).  
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Muller et al. (1998) classified a Landsat MSS mosaic using a K-means 

unsupervised algorithm. Forty three cluster classes were initially generated which 

were later merged into eight land-cover classes. Using first-hand experience with 

the area and other local areas maps from the North Slope each cluster was 

interpreted and grouped into eight land-cover categories (Walker et al. 1987; 

Walker et al. 1991; 1996). The overall map accuracy was 71%, from error matrix 

analysis done in 2000.  

Stow et al. (2000) determined the optimal spectral radiometric and 

temporal features derived from single-date and seasonal time series AVHRR 

imagery for classifying three arctic tundra functional types: acidic tundra, moist 

non-acid tundra and wet sedge tundra. Both supervised classification and 

unsupervised classification techniques were compared. An ISODATA clustering 

routine was used with 30 cluster classes, with a maximum likelihood decision rule 

and interactive cluster labeling to identify the spectral classes. A single-date, 

three-band (VIS, NIR and NDVI) input yielded a map with the highest agreement 

(86.1% for supervised and 87.8% for unsupervised approaches) compared to the 

reference map made by Auerbach et al. (1997b). However, the wet sedge tundra 

class for the different AVHRR inputs varied the most and were least similar to the 

reference data, in other words, had the least accuracy.  

Vegetation map of the Hood River region of the Central Canadian Arctic 

was prepared by Gould (2000) which was derived from Landsat Thematic 
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Mapper (TM) bands 1–5 and 7, using a maximum likelihood algorithm for 

supervised classification. Training sites for the supervised classification were 

chosen from homogeneous areas for which detailed vegetation descriptions were 

available (Gould et al. 1999). However the accuracy assessment was yet to be 

accomplished for the produced vegetation map. 

2.3. Problems in Remote Sensing and Traditional Image Classification 
 Techniques with SPOT Satellite Image in Alaska 

Among all the satellite image classification studies done so far in this 

region, only few researchers have tested the accuracy of the classified map with 

quantitative accuracy assessments from actual ground truth data (Fleming, 1988; 

Felix and Binney 1989; Stow et al. 1989; Kempka et al. 1995; Muller et al. 1998). 

This  may be due to the factors that are mostly unique to Arctic tundra 

environments which limit the effectiveness of remote sensing studies in general, 

specifically  multi-temporal optical sensing: (1) short growing season (2) 

persistent cloud cover, (3) solar geometry, (4) standing water and shallow lakes, 

and (5) snow and ice cover (Hope et al. 1995). Besides, the effects of roadside 

disturbance on the substrate and vegetation properties might be a cause of lower 

classification accuracy rate (Auerbach et. al., 1997; Walker et. al. 1987; Forbes 

et. al. 1999). 

Fleming (1988) used a unsupervised clustering technique with Landsat 

MSS data (50 meter resampled) and ancillary data DEM, slope, and aspect to 

map broad land-cover (1:125,000 scale) in large inaccessible areas in Alaska.  
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The classification had 13 preliminary classes: open spruce forest, closed mixed 

forest, open birch forest, closed birch forest, open tall shrub, closed tall shrub, 

dwarf shrub/graminoid tussock, prostrate dwarf shrub tundra, closed dwarf shrub 

tundra, aquatic forb marsh, water, cloud shadow, and cloud/snow. The overall 

accuracy achieved was 78.2%, with a kappa value of 57.2. 

Felix et al. (1989) did an accuracy assessment study with 126 sites for 

ground truth data collection, for a vegetation map based on Landsat MSS data 

for coastal plain and foothills of north east Alaska. The 13 classes in 

consideration were clear water, offshore water, shallow water, very wet 

graminoid tundra, wet graminoid tundra, moist/wet tundra, moist prostrate dwarf 

scrub, moist graminoid tussock, mesic erect dwarf scrub, alluvial deciduous 

scrub, dry prostrate dwarf scrub, scarcely veg. floodplain, and barren floodplain. 

The overall accuracy was 37% and classes with least accuracies were very wet 

graminoid tundra, wet graminoid tundra, and moist/wet tundra.   

 Stow et al. (1989) pointed out that the unique characteristics of the 

landscape in the Foothills of Alaska affects the interpretation of the SPOT/ High 

Resolution Visible (HRV) multispectral image (XS) images. Firstly, the micro-

relief of the dominant vegetation, tussock tundra, causes shadowing and 

bidirectional reflectance properties. Secondly, images acquired at this location 

are mostly associated with solar elevations less than 45 degrees, which is 

generally considered insufficient quantitative image analysis. Thirdly, the short 
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season of acceptable illumination and snow free conditions (June-August) and 

the infrequent clear sky conditions make satellite-based remote sensing studies 

difficult.  The research also emphasized on the fact that SPOT/HRV-XS with its 

20m spatial solution was not fine enough to identify the small arctic tundra 

vegetation parcels while, the 10 m spatial resolution panchromatic band 

SPOT/HRV could resolve spatially most of the vegetation parcels but lacked 

enough spectral resolution to discriminating the vegetation types.  The overall 

accuracy of the classification for this study by Stow et al. (1989) was about 56%.  

 The study done by Kempka et al. (1995), in the national petroleum reserve 

area, in North Slope of Alaska involved the use of two Landsat TM images for 

classification. The 7 major classes mapped were: water, aquatic, flooded tundra, 

wet tundra, moist tundra, shrub, and barren ground. The overall accuracy 

achieved was 50.72%.  

 The only exception was, Muller et al. (1998) who studied the accuracy 

assessment of a vegetation map made from a mosaiced Landsat MSS image 

(resampled to 50m pixel) by Auerbach et al. (1997b). Unsupervised ISODATA 

clustering approach was applied for the classification and the initial 40 spectral 

clusters were identified into eight land-cover classes using first hand field 

knowledge, geobotanical and other Landsat derived maps of the area. The 

classes were: barren, moist acidic tundra, moist non-acidic tundra, shrublands, 

wet tundra, water, clouds and ice, shadows.  A post-classification sorting was 
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applied with ancillary data to get the final classified map. For the accuracy 

assessment, 3 X 3 homogenous pixel blocks were used for sampling in 178 sites 

and an overall accuracy measure of 87.1% was achieved. 

2.4. Incorporation of Spatial Data in Classification 

 The spectral response of thematic classes is dependent on many factors 

including terrain, slope, aspect, soil type, and atmospheric conditions present 

during the image acquisition. Spectral data alone cannot be used to classify a 

satellite image to get accurate image classification. Strahler et al. (1978) showed 

that accuracies of computer classification of species-specific forest cover types 

from Landsat imagery can be improved by 27% or more through the 

incorporation of topographic information from digital terrain tapes registered to 

multidate Landsat imagery. Thus, it is possible to exploit the knowledge derived 

from ancillary spatial data to improve the classification accuracies (Vatsavai et al. 

2005).  

 In a study by Gerçek (2002), an approach for integrating topographic data 

including elevation, slope and aspect in land-cover classification was 

implemented. Training sets were used to perform standard maximum likelihood 

classification of spectral data together with topographical raster data. The results 

conveyed that procedure provided an improvement of 10% in overall accuracy for 

the classification with the integration of topographical data over spectral data 

only. 



 19 

 In the light of traditional spectral based classification techniques, Visual 

Learning Systems, Inc. (VLS), of Missoula, Montana, has developed a 

commercial software application called Feature Analyst which utilizes multiple 

spatial attributes (size, shape, texture, pattern, and spatial association) with 

spectral information and incorporates advanced machine learning techniques to 

supply higher levels of accuracy in feature extraction (O’ Brien, 2003). The 

benefit of this machine learning approach over standard supervised image 

classification techniques, such as the maximum likelihood method, lies in the 

ability to improve feature classification using inductive learning techniques (Kader 

et al. 2002). It is quite evident that with the consequent improvement in existing 

technologies, researchers are trying to improve remote sensing classification 

techniques.  

 A similar data mining environment for interactive exploration and analysis 

of remotely sensed data was suggested by Koperski et al. (2001) who described 

the usage of DEM data and DEM derived information such as aspect and slope 

with the system for data mining and statistical analysis of remotely sensed 

imagery. Aksoy et al. (2005) suggested the used of statistical summaries of 

spectral, textural and shape properties of pixels to model clusters and assigned 

memberships to those clusters in multiple resolution levels are used to classify 

the corresponding pixels into land-cover/land-use categories using decision tree 

classifiers. This research using region based spatial information was proved to 
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be effective over traditional spectral based techniques in terms of overall 

accuracy.   

2.5. Knowledge (rule) Based Classification 

 Skidmore (1989) defined an expert system as a computer system that 

attempts to solve complex real-world problems by reasoning. The expert’s 

knowledge about the slope, aspect, geomorphology, geology etc. of the area 

under consideration can be used in the classification procedures along with the 

spectral knowledge. The knowledge can be aggregated into hierarchical rules (IF 

– THEN) to classify image data. The knowledge base is represented as a tree 

diagram consisting of final and intermediate class definitions (hypotheses), rules 

(conditional statements concerning variables), and variables (raster, vector, or 

scalar). Such classification is known as knowledge (or rule) based classification. 

The gathered knowledge can then be repeated by someone who may not be an 

expert consistently producing reliable and repeatable analysis results (ERDAS 

Field Guide, 2005). Avci et al. (2004) reassured the importance of using 

additional spectral and spatial knowledge in order to improve the classification 

accuracy and used a knowledge based hierarchical approach to classify and 

detect forest types in the Ömerli Dam Lake Region. Hazarika et al. (n.d.) used 

the rule-based classification technique to identify rhino habitats in India where 

several GIS data and remote sensing data were integrated to develop the 

knowledge base.  
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 However, the disadvantages of using knowledge base classifier is the 

difficulty faced in the creation of the knowledge base , availability of reliable 

training data , and knowledge acquisition bottleneck (Gonzalez et al., 1993; Avci 

et al. 2004; Huang et al. 1997). Several other researchers have successfully 

used rule-based classification techniques, integrating GIS and remote sensing 

data (Jensen, 1978; Hansen et al. 2000; Stow et al. 2003). 

2.6. Data Mining Techniques in Remotely Sensed Image Classification 

 Classification and clustering are two of the most common operations 

associated with classical data mining. Classification refers to a learning function 

that maps data into one or more predefined classes of interest. Data clustering 

(unsupervised learning) arrange data into clusters based on some attributes 

which minimizes the interclass similarity and maximizes the intraclass similarity. 

Traditional land-use/land-cover classification techniques which are applied to 

multi-spectral remotely sensed data for extraction of information classes are 

based on statistical pattern recognition techniques (Narumalani et al. 2002). But 

there is an essential difference between classical statistical methods and data 

mining. 

2.6.1. Classical Data Mining and Spatial Data Mining 

 Hand (1998) pointed out that data mining techniques can handle large 

sets of data, contaminated or “dirty” data (i.e. anomalies in the data), selection 
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bias, dependent observations, find interesting patterns (patterns having high 

conditional probability as well as reasonably large marginal probabilities for the 

conditioning variables), and  non-numeric data, which are not possible by 

traditional statistical techniques. Thus data mining can be defined as a technique 

that draws on techniques from machine-learning, database management, and 

statistics to rapidly search for patterns, and which allows researchers to discover 

potentially interesting, useful and unexpected patterns of information embedded 

in a large database (Shekhar et al. 2003). There is, however, a major difference 

between classical data mining and spatial data mining. Shekhar et al. (2003) 

pointed out that classical data mining fundamentally assumes that the data are 

independent but spatial data shows high degrees of spatial autocorrelation. 

Therefore many classical data mining algorithms often perform inadequately 

when applied to spatial data sets.  

2.6.2. Spatial Data Mining and Knowledge Discovery 

 Several recent research studies have focused on incorporating spatial 

data mining techniques in remote sensing image classification with the help of 

ancillary data, e.g. DEM, slope, soil, and hydrology (Soh et al. 1998; Carpenter et 

al. 1997; Quinlan, 2000). Spatial data mining has been acknowledged as a useful 

technique in analyzing large volumes of geo-spatial data and remotely sensed 

imagery to identify patterns and their respective attributes in an image (Soh et al. 

1998). Spatial data mining and knowledge discovery (SDMKD) can be defined as 
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the extraction of implicit, interesting spatial or non-spatial patterns and general 

characteristics. Spatial data mining is used in: 1) intelligent analysis of GIS data, 

and 2) knowledge driven interpretation and analysis of imagery. SDMKD thus 

provides a new method of knowledge acquisition for remotely sensed image 

classification. Li et al. (2004) pointed out that most existing remote sensing 

image retrieval systems use only simple queries based on sensor, location, and 

date of image capture. In this paper, Li et al. (2004) introduced an integrated 

approach to retrieving spectral and spatial patterns from remotely sensed 

imagery using state-of-the-art data mining and advanced database technologies 

allowing spatial queries that permit efficient retrieval of useful hidden information 

from large image databases.  

2.6.3. Artificial Neural Networks 

 Neural networks simulate the thinking process of human beings, with 

interconnected neurons processing incoming information (Jensen et al. 1999; 

Hengl, 2002). Neural networks can improve classification accuracy by 10-30% 

compared to traditional classification techniques (Carpenter et al. 1997). Several 

researchers have applied neural network techniques in remote sensing image 

classification (Benidicktsson et al. 1993; Foody et al. 1995; Skidmore, 1988; Roli 

et al. 1996). These studies show that neural network classifiers make no a priori 

assumptions on the data probability distribution and are able to learn from 

nonlinear and discontinuous data samples. Moreover, neural networks can 
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readily accommodate ancillary data and are proven to be more accurate than 

traditional classifiers having a flexible architecture which can adapt to improve 

classification performance in particular situations (Carpenter et al. 1997). Being 

introduced in the 1970s, Adaptive Resonance Theory (ART) based on human 

cognitive information processing, paved the way for application of neural network 

models for unsupervised and supervised category learning and pattern 

recognition (Grossberg, 1976). ARTMAP systems, a supervised network 

architecture, self-organize arbitrary mappings from input vectors representing 

features such as pixel brightness values and ancillary data, to output vectors 

representing predicted information classes of interests. 

 Carpenter et al. (1997) developed new methodology for automatic 

mapping from Landsat TM and terrain data, based on the fuzzy ARTMAP neural 

network.  Results were compared to those of maximum likelihood classifiers, as 

well as back propagation neural networks and k-nearest-neighbor (kNN) 

algorithms. ARTMAP dynamics are fast, stable, and scalable, overcoming 

common limitations of back propagation. Best results were obtained using a 

hybrid system based on a convex combination of fuzzy ARTMAP and maximum 

likelihood predictions. The research showed how the network automatically 

constructs a minimal number of recognition categories to meet accuracy criteria.  
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2.6.4. Decision Trees 

 In machine learning, the process of inductive learning can be viewed as a 

heuristic search through a space of symbolic descriptions for plausible general 

descriptions, or concepts, that explain the input training data and are useful for 

predicting new data (Jensen, 2005). There are a number of inductive learning 

algorithms among which C5.0 (a system that extracts informative patterns from 

data) and its predecessor C4.5 are mostly commonly used in image classification 

techniques (Quinlan, 1993; 2000). C5.0 is flexible (has no dependence on the 

probability distribution of the attributes) and is based on a decision-tree algorithm 

that is one of the most efficient forms of inductive learning. The three basic steps 

of applying this inductive algorithm to build a knowledge base system for image 

analysis with the incorporation of GIS data are: 1) training, 2) generating the 

decision-tree, and 3) creating production rules. Several researchers employed 

this inductive learning technique of decision-tree classifier to incorporate ancillary 

GIS data for multi-spectral image classification (Eklund et al. 1998; Huang, et al. 

1997; Zhang et al. 2005).  

 Di et al. (2000) studied data mining techniques to discover knowledge 

from GIS database and remote sensing image data in order to improve land-use 

classification. The approach was to combine inductive learning with conventional 

image classification methods (Bayes classification) in the Beijing area using 

SPOT multi-spectral image and GIS data. A C5.0 inductive learning algorithm 
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was used to discover rules about spatial distribution patterns and shape features. 

Comparing with the result produced only by Bayes classification, the overall 

accuracy increased to11 percent, thus indicating that inductive learning can 

resolve the problem of spectral confusion to a great extent. Combining Bayes 

method with inductive learning also extended the classification by subdivision of 

some classes with the discovered knowledge.  

2.6.5. Hybrid Classification Techniques 

 Kanellopoulos et al. (1993) combined a MLC with two neural network 

classifier to get an enhanced performance where the second neural net was 

used to train those pixels which were mismatch between classes produced by 

the MLC and the first neural net. Brown et al. (1998) suggested the highest sum 

of the class membership values for each class derived from two different 

classification methods could be assigned the class to the pixel. Liu et al. (2002) 

pointed out that it is also possible that an expert system could be used in 

combination with a neural network and cited (Caudill, 1990; Wilkinson et al. 

1992) to bolster the fact that the concept of integration of neural network and 

expert system already existed outside and within the remote sensing field.  In 

their research, Liu et al. (2002) also used a consensus builder to adjust 

classification output in the case of disagreement in classification between 

maximum likelihood classifier, expert system classifier and neural network 

classifier.  
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 Vatsavai et al. (2001) presented a new classification approach which 

combines knowledge based (KB) systems and maximum likelihood classifier 

(MLC) utilizing knowledge derived from ancillary spatial databases. This 

approach claimed to minimize the limitation of KB by simplifying the rule-base. In 

this simplified approach, the rule-base is used to stratify the image into 

homogeneous regions rather than classifying individual pixels. The stratified 

regions minimized the overlap among the classes and thus provided a robust 

environment for MLC. A semi-automated learning process was used to acquire 

training samples in each of the stratified regions, and classification was 

performed using standard MLC. This classification fusion approach yielded an 

overall accuracy of 85% for classes like water, high density urban, hardwood 

confers, and crop land but accuracy was low for lowland conifer, wetland, and 

low density urban because of high spectral overlap among these classes.  

 In line with this research, Vatsavai et al. (2002) proposed an efficient 

hybrid classification technique, based on statistical and knowledge based 

classifiers for mining remote sensing images. A traditional unsupervised 

technique based on the C-means clustering algorithm was applied to extract 

spectral clusters which were later classified into information classes using a 

decision-tree classifier made from ancillary geo-spatial data. The initial results of 

this research showed more efficient and accurate results than traditional MLC or 

decision-tree classifier.  
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 All of these studies with implementation of spatial data mining techniques 

are in the early stage of experimentation and needs improvements. Also these 

studies address the research need of implement and test these techniques in 

different geographic environments (Vatsavai et al. 2001; 2002). This research  

focused on implementing the hybrid approach of image classification as 

suggested by Vatasavai et al. (2001; 2002) and Liu et al. (2002), using spectral 

and spatial knowledge, implementing  data mining techniques  to classifying the 

arctic tundra land-cover in a SPOT-5 imagery. The methodology combined 

together the two different approaches stated by Liu et al. (2002): 1) using a 

classified map obtained from one classifier (rule-based) as an input to a neural 

network classifier, and 2) the use of a consensus builder to improve classification 

accuracy. Specifically, spectral and spatial knowledge was gathered and 

implemented in a knowledge base of a rule based classifier to classify the SPOT- 

5 image. Pixels that were not classified by the rule based classifier were 

classified by unsupervised clustering (ISODATA) technique. The resulting 

classified image along with the available spectral and spatial data layers were fed 

into a MLP (neural network) classifier. Finally a consensus builder was used to 

choose the pixels having higher kappa values between the two classified images 

obtained from the MLP classifier and the rule-based classifier. 

 

 

 



 29 

 
 
 

CHAPTER III 
 
 

METHODOLOGY 
 
 
 

3.1. Data and Study Area 

A SPOT-5 image acquired in July, 2005, was used for the research. The 

image covers an area of about 650 square km near Lake Toolik. The research 

was conducted in the Toolik Lake region (68.63 oN/ 149.6 oW), foothills of the 

Brooks Range in the northern or arctic slope, Alaska. The area is a younger 

landscape glaciated during the late Pleistocene era and is a heterogenous area 

with small glacial lakes, kames and moraines including large areas from the 

Itkillik I (60000 years) and Itkillik II (10000 years) glacial drifts (Walker et al. 

1994). The area has a rolling topography with an elevation range of 400 meters 

to 1300 meters, covered with mostly, acidic loamy soil with poorly drained 

surface layer (Walker et al. 1989). Typically, being in the north slope of the 

Brook’s Range, only the surface (active layer, about 0.6 to 4 meters deep) of the 

tundra thaws each summer, while most of the soil remains permanently frozen 

i.e. the permafrost.  The average yearly precipitation (1989 - 1999) is 

approximately 318 mm, while the average temperatures in July and December 

are around 10 degree Celsius and -25 degree Celsius respectively (Arctic LTER 

website; http://ecosystems.mbl.edu/ARC/).  
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A portion of this research was funded by the National Science Foundation 

for GIS and remote sensing applications in geomorphic-trophic hypothesis (GTH) 

research for benthic-pelagic coupling in arctic lakes study. The image area 

contains many of the GTH lakes where scientific research related with 

vegetation, topographic factors and water composition (e.g. primary productivity) 

of the arctic lakes are being carried out (Figure 1). 
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Figure 1: General location of the research area around Lake Toolik, in Alaska. 

 
 
 

The SPOT image in consideration has a spatial resolution of 5m X 5m 

which is originally resampled from the original (10m X 10m) multi-spectral Band 

1, Band 2 , Band 3 of SPOT-5 by a resolution merge technique with the 

panchromatic band (2.5m X 2.5m). Lastly, the radiometric resolution of the 
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imagery is 8 bit and it was geo-referenced to Universal Transverse Mercator 

(UTM) projection in zone 6.  

 
 

Table 1: Description of the image data properties. 

 

Acquisition date July-25th- 2005 

Radiometric resolution 8 bits 

Spatial resolution 5m X 5m, resampled 

Spectral resolution Band1(Green): 500-590 nm 

 Band2(Red): 610-680 nm 

 Band3(NIR): 780-890 nm 

Projection UTM, Zone 6 

 
 
 

Table 1 above describes the relevant sensor characteristics of the image 

data and following sections describes ancillary data used and the pre-

classification image processing techniques applied. However, due to the lesser 

extent of the DEM data and also to restrict the ground sample collection sites and 

number of accuracy assessment sites to be used later, instead of using the entire 

available SPOT-5 image, a subset of the image (Figure 2) was used to test the 

proposed classification technique. 
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Figure 2: The subset of SPOT image (cloud and shadow pixels removed) used and the 
subset on the entire image in the inset (RGB 3, 2, 1). 
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3.1.1. Ancillary Data 

 Remotely sensed data are often used essentially for vegetation 

classification along with the integration of ancillary data into classification 

because classes are not always separable in the spectral feature space. The 

ancillary data used are Normalized difference vegetation index (NDVI), Slope, 

Aspect, and texture (variance) layers for each of the three spectral bands used 

as well as the NDVI layer. 

3.1.2. Normalized Difference Vegetation Index (NDVI) 

 The normalized difference of the vegetation index (NDVI) is a non-linear 

transformation of the visible (red) and near-infrared bands of satellite information. 

NDVI is defined as the ratio of the difference between the visible (red) and near-

infrared (NIR) bands, to the sum of the visible (red) and near-infrared (NIR) 

bands (Huete et al. 2002). The NDVI ratioing reduces many forms of 

multiplicative noise (e.g. Sun illumination, cloud shadows, topographic variation) 

and is an alternative measure of vegetation amount and condition (Jensen, 

2005). It is associated with vegetation canopy characteristics such as biomass, 

leaf area index and percentage of vegetation cover. For SPOT data, it is given 

by: 

   23

23

Re

Re

BandBand

BandBand
OR

dNIR

dNIR
NDVI

+

−

+

−
=   



 35 

 NDVI values varies between -1.0 and +1.0  and the brighter pixels 

represent higher NDVI values which in turn is a representative of higher biomass 

under normal circumstances (Figure 3). Higher NDVI values also indicate greater 

and healthier plant cover (vegetation density) in an area. NDVI values are also 

used as spatial context for measurements of carbon flux. 

 

Figure 3: NDVI Image used (cloud and shadow pixels removed). 
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3.1.3. Slope and Aspect  

 Slope is expressed as the change in elevation (rise) over a certain 

distance (run). In this case of the raster data, the certain distance is the size of 

the pixel. The slope function in ArcGIS 9.2 uses a 3 x 3 cell neighborhood around 

the processing (center) cell in elevation raster applying the average maximum 

technique (Burrough et al. 1998; ESRI, 2007). The lower the slope value, the 

flatter the terrain; the higher the slope value, the steeper the terrain. Slope is 

most often expressed as a percentage, but can also be calculated in degrees. In 

this research, slope data (Figure 4) was calculated from the DEM (5m X 5m) data 

available and was expressed in degrees (ERDAS, 2005). Here higher (brighter) 

values of pixels represents higher slope.  
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Figure 4: Slope map for the image area (cloud and shadow pixels removed). 

 

An aspect image data (Figure 5) which is gray scale coded according to 

the prevailing direction of the slope at each pixel. Aspect can be considered as 

the slope direction and is expressed in degrees from north, clockwise, from 0 to 

360. Due north is 0 degrees. A value of 90 degrees is due east, 180 degrees is 
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due south, and 270 degrees is due west. Aspect was calculated in ArcGIS 9.2 

which uses the aspect function to fit a plane to the elevation values in a 3 x 3 cell 

neighborhood around the processing cell (ESRI, 2007). The direction the plane 

faces is the aspect for the processing cell. A value of 361 degrees is used to 

identify flat surfaces such as water bodies (ERDAS, 2005).  

 

Figure 5: Aspect map for the image area (cloud and shadow pixels removed). 
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3.1.4. Texture  

 Texture is a simple contextual measure that may be extracted from an n X 

n window and incorporated in the classification process. When a small area of 

the image (e.g. 3 X 3 pixel area) has wide variation of discrete tonal features, the 

dominant property of that area is texture. Among the several different 

approaches, variance, a first order statistics in the spatial domain is chosen to 

make the texture layers for each of the three spectral bands and the NDVI layer 

(Figures 6 - 9).  

 Variance = 
n

meanBVik∑ − 2)(
  

 Where BVik is the brightness value of a pixel at i
th row and kth column of the 

raster value table and mean is the overall mean of brightness value and n is the 

number of pixels for the particular band under consideration (Jensen, 2005). 
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Figure 6: Band 1 texture (cloud and shadow pixels removed). 
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Figure 7: Band 2 texture (cloud and shadow pixels removed). 
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Figure 8: Band 3 texture (cloud and shadow pixels removed). 
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Figure 9: NDVI texture (cloud and shadow pixels removed). 
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3.2. Software Used 

 The different software used in this research are: ArcGIS 9.2, ERDAS 

Imagine 9.1, IDRISI Andes, GPS Pathfinder Office 3.1 

3.3. Geometric Correction  

 Remotely sensed image data are representations of the irregular surface 

of the Earth and have both systematic and non-systematic geometric errors. 

Systematic errors are well documented, and are primarily related to the sensor 

functionality e.g. scan skew, panoramic distortion, platform velocity, earth rotation 

etc. while non-systematic errors are caused by the position and attitude angles of 

the satellite platform (Jenson, 2005). Non-systematic errors can be corrected in 

image-to-map rectification or image-to-image registration with the use of Ground 

Control Points (GCP). Geometric correction is applied to remove the geometric 

distortion so that the individual pixels of the corrected imagery will have the 

correct positions (x, y) on a planimetric map. The GPS locations of the training 

sites collected in summer 2006 showed that the SPOT-5 image used here is no 

exception and did have some non-systematic errors in the form of distortions or 

shifts (Figure 10). Hence there was a need for geometric correction that would 

minimize the positional errors in the image pixels in order to use the training data 

as well as to allow meaningful incorporation of accuracy assessment. 
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3.3.1. Collection of Ground Control Points   

 GCPs were collected in summer of 2007 in order to carry out the 

geometric correction of the image in the study area. The SPOT imagery of the 

field site was used for preliminary on site assessment of the ability to choose and 

interpret the position of each GCP on the image and surrounding ground 

features. Collection of GCPs was done using a Trimble Geo-Explorer CE GPS 

unit (using WGS 84 ellipsoid and the Universal Transverse Mercator (UTM)) 

projection system which provided a spatial accuracy of less than 1 meter. A 

minimum of  5 coordinates for each point were logged to achieve a confident 

level of accuracy (low Position Dilution of Precision (PDOP)) which depends on 

factors such as atmospheric conditions, satellite coverage, line of sight  and 

geometry of the visible satellites. Several points, lines and polygons (Figure 10) 

were collected from ground features that were available as ground references for 

check points having large spectral difference or a target with high contrast, 

mostly in the form of man made features such as road intersections in the Dalton 

Highway, airstrip runways, and the Alaskan pipeline. More than 70 GCPs were 

collected.  

 This is worth mentioning here that the SPOT scene used in this region 

lacks enough ground references that can be used for collecting GCPs because of 

obvious less anthropogenic developments. This was a limitation for collecting 

enough GCPs which lead to a non-uniform geometry or spatial distribution of the  
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Figure 10: Collection of ground control points in the study area 
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GCPs used. Most of the GCPs were clustered along the Dalton Highway and 

around Lake Toolik in the central part of the image while the northwest and 

southern corners lacked GCPs.  Also several GCPs had to be discarded due to 

high RMS errors (greater than 12m) to keep the total Root Mean Square (RMS) 

error below 5m (1 pixel).  

RMS error is given by: 

RMSE = 22 ) Yj - (Yi  ) Xj - ((Xi +   

where i, j are the position of the point on the image and the ground respectively; 

X and  Y  are the easting and northing of the points.  

3.3.2. Post-processed Differential Correction  

 Differential correction is used to increase the accuracy of collected GPS 

positions by reducing errors in GPS data by using a base station receiver whose 

position is accurately known. In postprocessed differential GPS, the base station 

receiver records the correction for each satellite directly to a file which is used 

and processed in the GPS processing software and the output is differentially 

corrected roving GPS data.   

 Toolik field station GPS base is a Trimble NetRS (survey grade) which 

supports mapping and survey grade corrections. Base data were available in the 

Toolik Field Station website 
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(http://www.uaf.edu/toolik/gis/TFS_GIS_gps_base.html) and was downloaded for 

postprocessed differential correction using GPS Pathfinder office software, 

Version 3.1. However, poor accuracy results due to high PDOP and excessively 

weak signals could not be improved with differential correction and were then 

manually discarded. A total of 64 GCPs were used in the image correction 

process.  

3.3.3. Geometric Correction model 

 Geometric correction models are based on the empirical positional 

relationship between points on a satellite image and GCPs using conventional 

polynomials. Polynomial transformation approach applies separate single 

equations for x and y coordinates respectively across the whole image to adjust 

pixel locations. First order polynomial transformation allows translation, rotation, 

and scaling correction in both the x and y axes of an image. Higher order 

polynomials keep in consideration the correction of larger and non-linear 

distortions (Bannari, 1995).  

 A first order polynomial transformation (affine) was applied for the 

geometric correction. The equation for the transformation can be written as 

follows(Jensen, 2005): 

  xpredict =a0 + a1x + a2y; ypredict = b0 + b1x + b2y 

where a0  and b0 are coefficients that control shifting (translation), a1  and b2 are 

coefficients that control scale changes, and a2  and b1 are coefficients that control 
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rotation (shear). A total of 64 collected GCPs were used in the correction in order 

to get a total RMS error of 4.99969 meters which is less than a pixel (5m). Ideally 

an RMS error of 0.5 pixels is preferred but due to lack enough GCPs with uniform 

spatial distribution as discussed in the previous section this was taken as the 

acceptable accuracy for geometric correction. A Nearest Neighborhood algorithm 

resampling was executed as it preserves the spectral integrity of the image pixels 

(Lillisand, 2000). Table 2 below shows the descriptive statistics for the X 

residuals ( (Xpredicted – Xoriginal)
2 ) and Y residuals ( (Ypredicted – Yoriginal)

2 ) and 

the RMS errors (RMSE). 

 

Table 2: Statistics for residual and RMS errors 

 

 

  

 

Figure 11 shows the comparison between the image before and after correction. 

 X Residual Y Residual RMSE 

Min -8.12 -8.17 1.09 

Max 10.24 10.32 11.68 

Mean 0.00 0.00 4.18 

S.D. 3.98 3.91 2.76 
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Figure 11: Example of geometric distortion of the SPOT-5 image.  

Note: Image to the left shows location before rectification and to the right shows location 
after rectification of two points. Above is a road intersection and below a sample point 
which was shown in the lake before rectification. 
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3.4. Cloud and Shadow pixels removal  

 Clouds and shadow pixel contamination is a continuous problem for 

remote sensing studies. There were several cloud patches, their corresponding 

shadows on the ground, and shadows of the uplifted land patches due to the low 

sun angle (22 degrees). Cloud pixels in several cases had spectral similarity with 

barren, scarcely vegetated land-cover while shadow pixels had similarity with 

water pixels (Figure 12 - 13).  

 

 

Figure 12: Spectral profile for barren (brown) and cloud (white) pixels showing the spectral 
similarity between the two. 

 

 

 
Cloud 

 

 

Barren 
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Figure 13: Spectral profile for water (blue) and shadow (black) pixels showing the spectral 
similarity between the two. 

 

 Since the clouds boundaries are diffused and so are the corresponding 

shadow boundaries it is difficult to detect all cloud pixels and shadow pixels and 

differentiate them from the similar barren pixels or water pixels respectively.  

Creation of the most approximate land surface reflectance from multi- temporal 

observations is a practice among remote sensing researchers to solve this 

problem (Holben, 1986). However due to the absence of a second SPOT image 

from a different date (temporal resolution) approximation of surface reflectance 

could not be achieved in this study. Instead, the cloud and shadow pixels were 

identified manually and then removed by masking. Then the DEM shadow map 

 
   Shadow 

 

 

     Water 
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(Figure 14) was prepared in ATCOR 3.0, an extension in ERDAS Imagine 9.1 in 

order to identify the shadow pixels formed by the landform and low sun angle. 

These shadow pixels were also removed by masking. This process of removing 

clouds and shadow pixels reduce the amount and spectral variations of pixels in 

the classification process, thus optimizing the satellite dataset to only include 

pixels of interest for obtaining the land-cover classes. 
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Figure 14: Figure showing the shadow cast (black) by the terrain due to the sun angle 
estimated by ATCOR in ERDAS Imagine 9.1 

3.5. Classification scheme 

Classes developed by Auerbach et al. (1997b), Muller et al. (1998) and 

Walker et al. (1994), were followed for the overall vegetation class guidelines 

following the Braun-Blanquet approach, which is a worldwide used standard 
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hierarchical system of vegetation classification based on plant-community 

floristics. (Westhoff et al. 1978). The data were classified into the following seven 

vegetation complexes:  

1. Moist Low-Shrub Tundra and other Shrublands: Tussock tundra dominated 

by low shrubs (more than 50%). Willow dominated uplands areas dominated by 

dwarf and low shrubs mainly on interfluve areas with well developed moss 

carpets. Common on lower hillslopes, in association with water-track complexes, 

and some floodplain areas. Areas dominated by willows along watertracks, 

streams and rivers ( riparian shrubs) which includes willow communities in water 

tracks: Eriophorum angustifolium-Salix pulchra,  Salix alaxensis-Salix 

richardsoni,  Salix glauca-Alnus crispa, Salix lanata- Betula nana, Salix pulchra-

Calamagrostis canadensis. (Appendix A, 1) 

2. Water and aquatic complex:  Marshes and aquatic vegetation with  Carex 

aquatilis , Hippuris vulgaris with > than 50% standing water Arctophila fulva- 

Eriophorum angustifolium. (Appendix A, 2) 

3.Barren complex: Roads, disturbed (anthropogenic) and re-vegetated gravel 

mines, construction pads, lichen-covered Cetraria nigricans-Rhizocarpon 

geographicum, and partially vegetated (<50%) exposed rocks in foothills and 

mountains, barren and partially vegetated river  alluvium) (Appendix A, 3). 
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4. Snowbed complex: Generally, north facing areas with gentle slope where the 

snow cover stays longer than the adjoining areas, dominated by Cassiope 

tetragona, and other dwarf shrubs (Ledum decumbens and Diapensia lapponica 

in acidic sites and Dryas integrifolia, Salix reticulata and Salix rotundifolia in 

nonacidic sites) and fruticose lichens (Cladina spp. Cetraria spp., Nephroma 

arctica); Carici microchaetae-Cassiopetum, Dryas integrifolia-Cassiope tetragona 

(Appendix A, 4). 

5. Moist Dwarf-shrub, Tussock-Graminoid Tundra complex: This the typical 

tussock tundra alos known as moist acidic tundra (MAT) found in moist acidic 

hillslopes and moderately drained terrain with (pH<5.5) dominated by tussock-

sedges, nontussock sedges, dwarf shrubs and mosses; Sphagno-Eriophoretum 

vaginati (AppendixA, 5). 

6. Wet Graminoid Tundra: Rich fens on wetland areas with organic soils (pH > 

4.5) dominated by sedges and mosses. Poor fens in wetland areas with organic 

soils (pH < 4.5) and dominated by sedges. Lawns of Sphagnum ssp. and sedges 

are common around the margins of basins of poor fens and some watertracks 

and foothills: Carex chordorrhiza, Carex aquatilis , Carex aquatilis-Eriophorum 

angustifolium, with Carex. aquatilis-Carex chordorrhiza , Dryado integrifolia -

Caricetum bigelowii (Appendix A, 6). 
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7. Moist Graminoid, Prostrate-shrub Tundra complex:  

a.  Typically also known as moist non-acidic tundra (MNT) found in moist 

nonacidic hillslopes and moderately well-drained surfaces (pH> 5.5) dominated 

by non-tussock sedges, prostrate and dwarf shrubs mosses; Dryado integrifolia-

Caricetum bigelowii , Astragalus umbellatus-Dryas integrifolia. 

b.  Dry nonacidic river terraces and gravelly well-drained slopes (pH> 5.5) 

dominated by Dryas integrifollia and other prostrate and dwarf shrubs, mat and 

cushion plants and lichens; Oxytropis bryophila-Dryas integrifolia  

c.  Dry acidic tundra on hill crests, moraines and kames with (pH< 5.5), 

typically found on dry glacial tills and outwash deposits, steep south facing 

slopes and alpine areas on the mountains, dominated by prostrate and dwarf 

shrubs;  Astragalus umbellatus-Dryas integrifolia -Dryadetum octopetalae, Salici 

phlybophyllae-Arctoetum alpinae, Hierochloe alpina-Betula nana, Juncus 

biglumis-Saxifraga oppositifolia. 

 The last two types (b, and c) are although compositionally different from 

MNT are spectrally similar to MNT and not separable by spectral means. Thus 

these two classes were merged into the class MNT as it was done by other 

researchers (Auerbach et al. 1997b; Muller et al. 1998; Walker et al. 1994). 

(Appendix A, 7) 
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3.6. Collection of sample data for training and accuracy (testing) 
assessment. 

 The SPOT image was first classified with an ISODATA clustering method 

into 60 classes. The classes were preliminarily identified with the help using the 

classified map by Walker et al. 1994 as a reference. Then, a stratified random 

sampling method was used to create more than 500 points on the SPOT image 

around Lake Toolik and in selected watersheds as required by the GTH 

researchers. This was done to optimize helicopter-hours cost, since most of the 

areas in the image are not accessible without a helicopter which in turn was 

extremely costly in terms of research budget. In summer 2006 and 2007, ground 

truth data were collected after visiting the created random points as well as 

additional training samples were collected by digitizing homogenous patches of 

pixels in the form of points, polygons and line, using Trimble Geo-Explorer CE 

GPS unit (Figure 15). Appendix B shows example of two field forms used to 

document the data collection. These collected data were corrected by post-

processed differential correction and then used for making the training and 

testing data sets. Although, all the points created could not be visited due to 

shortage of helicopter hours and bad weather, a total of 349 points were visited 

and finally selected as representative pixels for the seven classes concerned. 

The pixels collected by random sampling were divided into two subsets, one of 

which was used for training (128 points) along with the field collected sample 

data, and the other for testing (221 points) the classification accuracy to avoid 
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any bias resulting from the use of the same set of pixels for both training and 

testing (Figure 16). 

 

 

Figure 15: Training sites from field knowledge and sample sites collected in the form of 
lines and polygons. 
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Figure 16: Overall distribution of training and testing (accuracy) sample points in the study 
area. 

 

3.7. Unsupervised Classification (ISODATA clustering) 

 Unsupervised classification, also know as clustering, is a classification 

technique where the analyst needs no prior knowledge before performing the 
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classification.  The computer arrange data into clusters by grouping similar 

spectral characteristics into unique clusters based on some statistically 

determined criteria (Jensen, 2005) which minimizes interclass similarity and 

maximizes intraclass similarity. Later on the clusters are relabeled and combined 

into information classes of interest.  

 Iterative Self-Organizing Data Analysis Technique (ISODATA) is one of 

the most common unsupervised classification techniques. It is iterative because it 

repeatedly performs the entire classification and recalculates statistics. It is "Self-

Organizing" as it refers to the locating the clusters that are inherent in the data. 

The ISODATA clustering method uses the minimum spectral euclidean distance 

formula to form clusters and it begins with either arbitrary cluster means or 

means of an existing signature set, and each time the clustering repeats, the 

means of these clusters are shifted which are then used for the next iteration. 

The two stopping criterions that are set by the analyst are: 1) a maximum number 

of iterations have been performed; 2) a maximum percentage of unchanged 

pixels have been reached between two iterations (ERDAS, 2005). 

 The 3 bands of the SPOT image and the NDVI band (with clouds and 

shadow pixels removed) were stacked together to form a single image data for 

the unsupervised classification. First 60 unique clusters were formed using the 

four bands of the image data, each of which were assigned to one of the seven 

land-cover classes concerned using the training data set.  The number of 
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iterations was set to 20 and the convergence threshold to 0.95. Pixels with zero 

values (no data, clouds or shadow) are excluded from the classification process. 

Each cluster was identified by using the maximum number of the training pixels 

belonging to the corresponding majority class. For few clusters that did not have 

any reference data, were assigned class values using the field knowledge of the 

area with careful inspection. Some clusters representing barren in the Brooks 

Range or representing shallow water were obvious but for other clusters spatially 

adjacent clusters were considered and help of areal photos, Landsat Image from 

2000 and classified map by Walker et al. (1994) were considered before 

assigning the class values. Interestingly, for these clusters there were no testing 

data points (for accuracy) since these clusters represented relatively inaccessible 

areas in the far eastern and south-eastern corners of the study area. Finally all 

these clusters were grouped into the seven concerned land-cover classes and 

recoded in order to have the final image (Figure 17). 
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Figure 17: Classified Image for unsupervised ISOADATA clustering. 
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3.8. Classification (supervised) with Feature Analyst 

Both traditional unsupervised and supervised spectral based approaches 

are routinely applied to remotely sensed data relying entirely upon the spectral 

information in an image, while neglecting the spatial arrangement of the pixels. 

Feature Analyst ( a commercial software application by Visual Learning Systems, 

Inc. (VLS), of Missoula, Montana) utilizes multiple spatial attributes (size, shape, 

texture, pattern, spatial association) with spectral information to collect geospatial 

features and incorporates advanced inductive machine learning techniques  to 

classify high resolution satellite imagery (O’ Brien, 2003; Al-AbdulKader, et al. , 

2002). Previous studies showed that Feature analyst works better than standard 

spectral based classification techniques in extracting urban features such as 

roads, houses etc from high resolution imagery (O'Brien, 2003; Jackson et al. 

2005). Feature Analyst was used in this research to classify the SPOT image and 

indentify the typical arctic tundra type vegetation in Alaska and the results were 

compared to the unsupervised clustering and the proposed hybrid classification 

technique. 

 Feature Analyst is similar to a standard supervised classification in the 

sense that the analyst needs to provide training sites of each feature of interest 

which the software uses to find pixels in the image that are similar.   After the first 

pass, in order to assist in refinement, Feature Analyst allows the user to define 

examples of "correct", "incorrect", and "missed" areas for each map produced 
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(Figure 18). These new examples are then used in the next pass to produce a 

new output which is, in most cases, more refined than the previous one. This 

process can be repeated until the analyst is satisfied to achieve the best results.  

 

 

Figure 18: Showing the general work flow of the Feature Analyst  

 

 There are several steps involved in using Feature Analyst software. For 

the learner settings, appropriate input feature (land-cover) and spatial resolution 

(5m) was selected. One important characteristic of the Feature Analyst software 
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is the ‘Input Representation’. Input Representation is the pattern that Feature 

Analyst uses to classify each pixel in the image to determine if it is part of the 

target feature. It is possible to uniquely define the shape of the area to be 

sampled for feature extraction via the ‘Input Representation’ input representation’ 

as the learner not only looks for the single pixel but also surrounding pixels 

selected by the user in order to more accurately extract features.  For this project 

the ‘Foveal’ representation (with pattern width 3) seems to give the most 

consistent results for extracting features in the lake (shoals or shallow aquatic) 

from all other reflective surfaces (Figure 19 a - c). However for the other classes 

the manhattan representation gave more or less similar results. 
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a)  b)  c)   

              

Figure 19: Comparing extraction of the features in the Toolik Lake with the different input 
representations. 
 
Note: a) Manhattan, b) Bull’s Eye 4, c) Foveal 3x3. The graphical representations of the 
three different input representations are given below each extraction. 

 
 
 
  The same image data consisting the three bands of the SPOT image, 

stacked with the NDVI as the fourth band was used for classification. Numerous 

polygons were digitized for each class represented in the area using the training 

data set. Careful attention was needed to digitizing features of interest (i.e. 

different vegetation classes) in a variety of locations and with a variety of spectral 

reflectance. Then a multilayered classification scheme was prepared and all the 

selected classes were used as input. To create a wall-to-wall classification, 

training sites for each feature need to be selected—multiple examples were 
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selected for each feature and then combined for use in classifying the whole 

image. After the first pass, each of the classes was split out for further clutter 

removals and corrections (Figure 20). Then after the corrections, they were 

combined to be used for the final supervised classification (Figure 21) and the 

desired output format was chosen as raster (.img) (Figure22).  

 
 

 

Figure 20: Figure showing the accepted, incorrect, correct and current signatures for 
snowbed complex. 
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Figure 21: Flow chart showing the work flow for supervised classified image with Feature 
Analyst. 
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Figure 22: Classified Image (Supervised) with Feature Analyst. 
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3.9. Hybrid Classification 

3.9.1. Hybrid Methodology 

 The methodology for the hybrid classification considered three different 

classifiers that are commonly used in remote sensing image classification i.e. 

knowledge based (expert) classification, unsupervised clustering (ISODATA), 

and a non- parametric classifier, multi-layer perceptron (MLP) that utilizes 

artificial neural network. The approach was to combine the three classifiers to 

classify the SPOT image data with ancillary geo-spatial data and form a multiple 

classifier system which combined the relative strengths from the different 

classifiers and applied them in a sequence in such a way that the overall 

accuracy was the maximized. First, a knowledge based classification was applied 

after gathering knowledge in the form of heirchical rule set. Then, the pixels that 

were not being classified by the rules were masked out and an ISODATA 

clustering was applied to classify those pixels and then they were merged with 

the previous classified pixels. A MLP classifier with two hidden layers was 

applied which took the three bands of SPOT image, NDVI, slope, aspect, and the 

output of the rule-based classifier as input layers. Finally those classes of each 

classifier having higher kappa values were merged together to get the final 

classified image (Figure 23).  
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Figure 23: Flowchart for proposed hybrid classification methodology. 
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3.9.2. Knowledge Based (Expert) Classification 

3.9.2.1. Expert Classifier in ERDAS Imagine 

 A rule can be defined as a list of conditional statements that determine the 

informational contents of a scientific hypothesis. The Expert Classifier in ERDAS 

Imagine implements multiple rules and hypothesis that are linked together into a 

hierarchy that describes a final set of target informational class. An Expert 

Classifier has two major components, the Knowledge Engineer and the 

Knowledge Classifier. The Knowledge Engineer (Figure 24) in the Expert 

Classifier provides a graphical user interface to build a knowledge base which is 

represented as a tree diagram consisting of final and intermediate class 

definitions (hypotheses), rules (conditional statements concerning variables), and 

variables (raster, vector, or scalar). The Knowledge Classifier provides an 

interface to implement the developed knowledge base in classifying an image.  
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Figure 24: Snapshot of the Expert Classifier of the Expert Classifier in ERDAS Imagine. 

 

3.9.2.2. Advantages and Disadvantages of Expert Classification 

 Knowledge may be defined as a deterministic collection of related and 

useful information. The set of rules formed in the knowledge engineering process 

are stored and turned into information which in turn is used as “knowledge” and 

thus can be reused for any similar data set for an unseen geographical region. A 

knowledge based (expert system) classifier is very useful in classifying high-
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resolution imagery since traditional classifiers (such as Maximum Likelihood 

supervised classification or ISODATA unsupervised classification) cannot 

incorporate spatial association among the pixels of interest. Uncertainties is 

handled by placing confidence in each rule and as multiple rules are triggered 

within a tree, the Knowledge Classifier combines the confidences and when 

several rules are true at a particular pixel – the rule with the highest confidence is 

assigned to be the class for that pixel (ERDAS, 2005). 

 Acquisition of knowledge is a biggest disadvantage for knowledge based 

classifier. A vivid knowledge about the study area and the class composition is 

required for the analyst before assigning the rules for the individual classes in the 

Knowledge Engineer.  The second problem is known as the “knowledge 

acquisition bottleneck” which refers to the problem of inefficient formulating of the 

gathered knowledge in a systematic, correct, and completely usable format for 

quantitative analysis (Huang et al 1997).  

3.9.2.3. Preliminary Classification Rules 

 Three bands of the SPOT image, and the ancillary data consisting of 

NDVI, slope, and aspect were used for the process of making rules. 

Representative sites for each class form the training data set were selected on 

the image. Hypothesis for each class was derived based on spectral properties of 

these sites and the related secondary data. Output of each class was saved and 

then whenever necessary was used as a constraint in deriving the final output of 
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the informational classes. A buffer of 2 pixels were created around water class, 

and was called shallow fen since in most obvious cases these pixels represented 

shallow fen type vegetation and those pixels were assigned to the Wet 

Graminoid Tundra complex. Classes Snowbed complex and Wet Graminoid 

Tundra complex had severe interclass spectral mixing and had to be masked out. 

The masked out pixels were stacked with NDVI and the result was classified into 

8 clusters, in a file named snowbed-WST. These clusters were identified and 

used in the rules. There were total 7 rules formed as follows: 

Rule for Moist Low-Shrub Tundra and other Shrublands:  

 (IF Band1 >= 86 AND Band1 <= 106, Band2 >= 86 AND Band2<= 101, 

Band3>= 140 AND Band3<= 163, NDVI >= 0.182 AND NDVI <= 0.293, NOT in 

Moist Dwarf-shrub, Tussock-Graminoid Tundra complex)  

OR  

 (IF Band1 >= 75 AND Band1 <= 120, Band3>= 90 AND Band3<= 187, 

NDVI >= 0.205 AND NDVI <= 0.4447, NOT IN class Moist Dwarf-shrub, Tussock-

Graminoid Tundra complex)  

� Moist Low-Shrub Tundra and other Shrublands complex 
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Rule for water and aquatic complex:  

(IF Band1 > 0 AND Band1 <= 88, Band2 > 0 AND Band2 <= 76, Band3 > 0 AND 

Band3 <= 82, NDVI >= -0.111 AND NDVI <= 0.101)  

OR  

(IF Band1 > 0 AND Band1 <= 88, Band2 > 0 AND Band2 <= 76, Band3 > 0 AND 

Band3 <= 82, NDVI <= -0.314902)  

OR 

 (IF Band1 >= 97 AND Band1 <= 127, Band2 >= 75 AND Band2 <= 106, Band3 

>= 22 AND Band3 <= 50, NDVI <= -0. 0.314902)  

OR  

(IF Band1 < 88, Band2 <= 95, Band3 >= 18 AND Band3 <= 64, NDVI <= -0.111, 

NOT IN Mountainshadow region)  

� Water and aquatic complex. 

Rule for Barren complex:  

(IF Band1 >= 105, Band2>= 90, Band3 >= 45 and Band 3 <= 145, NDVI >= -

0.349087 AND NDVI <= 0.0725263, NOT IN shallowwater, NOT IN class Moist 

Graminoid, Prostrate-shrub Tundra complex)  

OR  

(IF NDVI > -0.328 AND NDVI < -0.033826, DEM > 1034, NOT IN water and 

aquatic complex)  

OR  
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(IF Band1 >= 90 AND Band1 <= 111, Band2>= 80, Band3 >= 45 and Band 3 <= 

161, NDVI >= -0.349087 AND NDVI <= 0.0725263, NOT IN shallowwater, DEM 

>= 947.569 AND DEM <= 1024.41, IN lowelevation region)  

OR  

(IF Band1 >= 88, Band2> 75, Band3 >= 54, NDVI <= -0.025, NOT IN water and 

aquatic complex)  

� Barren complex 

Rule for Snowbed complex:  

(If Band1 >= 85 AND Band1 <= 97, Band2 >= 72 AND Band2 <= 88, Band3 >= 

78 AND Band 3 <= 100, NDVI <= 0.064 AND NDVI <= 0.101, (aspect > 0 AND 

aspect < 90) or (aspect > 270 AND aspect < 360), slope < 16, NOT IN water and 

aquatic complex, NOT IN shallow fen, Slope < 16)  

OR  

(snowbedWST = 4, (aspect > 0 AND aspect < 90) or (aspect > 270 AND aspect < 

360), slope < 16, NOT IN water and aquatic complex, NOT IN shallow fen, Slope 

< 16)  

OR  

(snowbedWST = 5, (aspect > 0 AND aspect < 90) or (aspect > 270 AND aspect < 

360), slope < 16, NOT IN water and aquatic complex, NOT IN shallow fen, Slope 

< 16)  

� Snowbed complex. 



 79 

Rule for Moist Dwarf-shrub, Tussock-Graminoid Tundra complex: 

(If Band1 >= 85 AND Band1 <=100, Band2 >=77 AND Band2<=97, Band3 >=107 

and Band3 <=147, NDVI >= 0.077 AND NDVI <=0.244, NOT IN Moist Graminoid, 

Prostrate-shrub Tundra complex)  

� Moist Dwarf-shrub, Tussock-Graminoid Tundra complex 

Rule for Wet Graminoid Tundra 

(If Band1 >= 74 AND Band1 <= 97, Band2 >= 62 AND Band2 <= 99, Band3 >= 

60 AND Band3 <= 114, NDVI >= -0.105 AND NDVI <= 0.062, NOT IN water and 

aquatic complex, NOT IN snowbed complex)  

� Wet Graminoid Tundra 

Rule for Moist Graminoid, Prostrate-shrub Tundra complex 

(If Band1 >= 89 AND Band1 <= 114, Band2 >= 89 AND Band2 <= 106, Band3 >= 

96 AND Band3 <= 126, NDVI >= 0.004 AND NDVI <= 0.126)  

� Moist Graminoid, Prostrate-shrub Tundra complex 

 The rules were run all together from the knowledge classifier and it was 

found that the rules could not exhaustively classify all the pixels in the image and 

the 19.2% of the pixels remained unclassified. The pixels that were classified 
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were separated from those that were unclassified (Figure 25) and a partially 

classified map was formed (Figure 26).  

 

Figure 25: Pixels unclassified from the Expert classifier.  
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Figure 26: Partially classified image by Expert classifier. 
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3.9.3. ISODATA clustering of the remaining pixels  

 Interestingly, the pixels that were not classified comprised mostly of the 

same areas in that were left out in the ISODATA clustering as clusters that 

lacked reference data located relatively in accessible areas in the far eastern and 

south-eastern corners of the study area separately using unsupervised ISODATA 

clustering method. The remaining pixels were layer stacked with the NDVI band, 

added as a fourth band and then they were classified into 60 spectral classes 

which were identified into one of the seven classes (Figure 27) with the help of 

field knowledge, classes represented by spatially adjacent clusters, aerial photos, 

Landsat TM Image from year 2000, and previously classified map by Walker et 

al. (1994) as done in the ISODATA clustering for the entire image. Then these 

identified clusters were recoded into the seven concerned land-cover classes.  
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Figure 27: Unclassified pixels from Expert Classifier, classified and recoded 
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3.9.4. Final Classification rules 

 The results were merged with the partially classified map resulting from 

the knowledge based classifier by adding new rules to the knowledge base that 

would now consider these recoded pixels to derive the complete classified image 

(Figure 28). The modified set of rules (See Appendix C for rule diagrams) that 

classifies the whole image is as follows: 

Rule for Moist Low-Shrub Tundra and other Shrublands:  

(IF Band1 >= 86 AND Band1 <= 106, Band2 >= 86 AND Band2<= 101, Band3>= 

140 AND Band3<= 163, NDVI >= 0.182 AND NDVI <= 0.293, NOT IN Moist 

Dwarf-shrub, Tussock-Graminoid Tundra complex)  

OR  

(IF Band1 >= 75 AND Band1 <= 120, Band3>= 90 AND Band3<= 187, NDVI >= 

0.205 AND NDVI <= 0.4447, NOT IN class Moist Dwarf-shrub, Tussock-

Graminoid Tundra complex)  

OR  

(Restclassified = 1)  

� Moist Low-Shrub Tundra and other Shrublands complex 
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Rule for water and aquatic complex:  

(IF Band1 > 0 AND Band1 <= 88, Band2 > 0 AND Band2 <= 76, Band3 > 0 AND 

Band3 <= 82, NDVI >= -0.111 AND NDVI <= 0.101)  

OR 

(IF Band1 > 0 AND Band1 <= 88, Band2 > 0 AND Band2 <= 76, Band3 > 0 AND 

Band3 <= 82, NDVI <= -0.314902)  

OR  

(IF Band1 >= 97 AND Band1 <= 127, Band2 >= 75 AND Band2 <= 106, Band3 

>= 22 AND Band3 <= 50, NDVI <= -0. 0.314902)  

OR  

(IF Band1 < 88, Band2 <= 95, Band3 >= 18 AND Band3 <= 64, NDVI <= -0.111, 

NOT IN Mountainshadow region)  

� Water and aquatic complex. 

Rule for Barren complex:  

(IF Band1 >= 105, Band2>= 90, Band3 >= 45 and Band 3 <= 145, NDVI >= -

0.349087 AND NDVI <= 0.0725263, NOT IN shallowwater, NOT IN class Moist 

Graminoid, Prostrate-shrub Tundra complex)  

OR  
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(IF NDVI > -0.328 AND NDVI < -0.033826, DEM > 1034, NOT IN water and 

aquatic complex)  

OR  

(IF Band1 >= 90 AND Band1 <= 111, Band2>= 80, Band3 >= 45 and Band 3 <= 

161, NDVI >= -0.349087 AND NDVI <= 0.0725263, NOT IN shallowwater, DEM 

>= 947.569 AND DEM <= 1024.41, IN lowelevation region)  

OR  

(IF Band1 >= 88, Band2> 75, Band3 >= 54, NDVI <= -0.025, NOT IN water and 

aquatic complex) OR (Restclassified = 3)  

� Barren complex 

Rule for Snowbed complex:  

(If Band1 >= 85 AND Band1 <= 97, Band2 >= 72 AND Band2 <= 88, Band3 >= 

78 AND Band 3 <= 100, NDVI <= 0.064 AND NDVI <= 0.101, (aspect > 0 AND 

aspect < 90) or (aspect > 270 AND aspect < 360), slope < 16, NOT IN water and 

aquatic complex, NOT IN shallow fen, Slope < 16)  

OR  

(snowbedWST = 4, (aspect > 0 AND aspect < 90) or (aspect > 270 AND aspect < 

360), slope < 16, NOT IN water and aquatic complex, NOT IN shallow fen, Slope 

< 16)  

OR  
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(snowbedWST = 5, (aspect > 0 AND aspect < 90) or (aspect > 270 AND aspect < 

360), slope < 16, NOT IN water and aquatic complex, NOT IN shallow fen, Slope 

< 16)  

OR  

(Restclassified = 4, NOT IN shallowfen)  

� Snowbed complex. 

Rule for Moist Dwarf-shrub, Tussock-Graminoid Tundra complex: 

(If Band1 >= 85 AND Band1 <=100, Band2 >=77 AND Band2<=97, Band3 >=107 

and Band3 <=147, NDVI >= 0.077 AND NDVI <=0.244, NOT IN Moist Graminoid, 

Prostrate-shrub Tundra complex)  

OR  

(Restclassified = 5, NOT IN Moist Graminoid, Prostrate-shrub Tundra complex) 

� Moist Dwarf-shrub, Tussock-Graminoid Tundra complex 

Rule for Wet Graminoid Tundra 

(If Band1 >= 74 AND Band1 <= 97, Band2 >= 62 AND Band2 <= 99, Band3 >= 

60 AND Band3 <= 114, NDVI >= -0.105 AND NDVI <= 0.062, NOT IN water and 

aquatic complex, NOT IN snowbed complex)  

OR  

(Restclassified = 6)  
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OR  

(Restclassified = 4, shallowfen = 1)  

� Wet Graminoid Tundra 

Rule for Moist Graminoid, Prostrate-shrub Tundra complex 

(If Band1 >= 89 AND Band1 <= 114, Band2 >= 89 AND Band2 <= 106, Band3 >= 

96 AND Band3 <= 126, NDVI >= 0.004 AND NDVI <= 0.126)  

OR  

(Restclassified = 7) 

� Moist Graminoid, Prostrate-shrub Tundra complex. 
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Figure 28: Classified Image from Expert Classifier. 
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3.9.5. MLP Classifier  

3.9.5.1. Artificial Neural Network and its advantages 

Artificial neural network is a data mining tool, developed to emulate the 

brain’s interconnected system of neurons to imitate the brain’s ability to sort 

patterns and acquire knowledge through from trial and error learning process. 

Neural nets typically consist of many simple processing units, called nodes which 

are connected together in a complex communication network. Interneuron 

connection strengths known as synaptic weights are used to store the 

knowledge.  

Neural networks are different from statistical or algorithm based models in 

several respects (Skapura, 1996). Firstly, neural networks do not require formal 

mathematical specification and the weights derived between inputs, hidden 

nodes and the output(s) through the iterative processes performed by the 

computer are not directly interpretable. Secondly, unlike statistical models, neural 

networks are not highly sensitive to noise in data; statistical or mathematical 

algorithms treat noise in data similar to data of high quality. Thirdly, information 

developed by neural networks can be transferable by saving the weight files and 

implement them on the unseen data set (Pijanowski et al. 2001). 

ANNs have been employed to process classification of multispectral 

remote sensing imagery and often achieve improved accuracies (Benediktsson 
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et al. 1990, Pijanowski et al. 1997, Jensen et al. 1999). The advantages of an 

ANN as depicted by (Jensen, 2005) are: 

1. ANNs can readily accommodate ancillary data in the classification 

technique. 

2. ANNs makes no a priori assumptions of normal and linear distribution 

due to its nonparametric operation. 

3. ANNs are able to learn from existing non-linear empirical examples 

adaptively instead of “prespecified” by an analyst which makes the classification 

objective. 

4. Neural network can handle noisy information inevitably included in the 

examples with the ability to generalize thus making it more robust than other 

mining methods. Individual bias in training and incorrect or incomplete 

information are excluded from the knowledge acquisition process unlike decision 

trees. 

5. In decision trees knowledge is represented by logical rules made up of 

binary predicates. Numerical attributes have to be converted to binary true/false 

statements which may cause a loss of large amount of information. Whereas, 

ANN can accept all data formats as long as data is converted to a numeric 

representation. 

6. ANNs are good at generalizing both discrete and continuous data and 

have a capability to interpolate or adapt to the patterns never seen in training 

process and attempts to find the best fit for input patterns. Decision trees on the 
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other hand, fail to generalize a predictable inference if an appropriate match with 

the perfect rules cannot be found. 

7. Neural networks continuously adjust the weights as more training data 

are provided and capable to learn continuously.  

3.9.5.2. The Multilayer Perceptron  

 The most widely used neural network model in classifying remotely 

sensed imagery is the multilayer perceptron (MLP), a feed-forward artificial 

neural network model. An MLP, consists of three types layers, the input, hidden 

and output layers, each consisting of processing nodes that are interconnected to 

each other, but there are no interconnections between nodes within the same 

layer. An MLP in general comprises one input layer, one or two hidden layers 

and one output layer. The input layer nodes correspond to individual data 

sources, such as the different bands of imagery, ancillary data etc. Hidden layers 

are used for computations, and the values associated with each node are 

calculated from the input node values and weights of the links connected to that 

node. The output layer includes a set of codes to represent the informational 

classes to be classified by the analyst (Figure 29). 
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Figure 29: An Artificial Neural Network with single hidden layer.  

 

MLP uses an algorithm, called the generalized delta rule, which is an 

iterative gradient descent training procedure based on error-correction learning 

rule that is carried out in two stages. First, once the random network weights 

have been initialized, the input data are propagated forward to estimate the 

output value for each training pattern set. In the next stage, the difference (error) 

between known and estimated output is fed backward through the network, and 

the weights associated with the nodes are changed in such a way that the 
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differences between the actual and the desired outputs is minimized. The whole 

process is repeated, with weights being recalculated at every iteration, until the 

total error (RMSE) is minimal, or else either the number of iterations or the RMSE 

is lower than a given threshold value provided by the analyst (Kavzolgu et 

al.2003). 

Each node in the network may include a nonlinear transfer function at the 

output end. Being initialized with all the synaptic weights and thresholds set to 

small arbitrary numbers, the network is provided with the training sample 

patterns. In the forward pass, the input parameter to a node in an MLP network is 

the weighted sum of the outputs from the layer below or previous layer. The net 

input to the jth neuron, netj,is given by  

 netj = ∑
i

w ij oi  

where wij is the weight between node i and node j, oi  being the output 

from node i. The corresponding output from node j is given by  

  oj = 
)exp(1

1

jjnet θ+−+
 ( using sigmoidal transfer function) 

 
or 
  oj = m tan h ))(( jnetk   (using hyperbolic tangent) 

 
where jθ , m and k are constants. The difference between the output activation  
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and the desired response of node j at the output layer is called the error which is  
 
then propagated backward with weights for relevant connections corrected by  
 
 the delta rule in the backward pass and the weights are updated during training.  
 
The delta rule can be stated as the following equation: 
  
  ( )1+∆ nw ji = ( )

ijo∂η  + ( )nw ji∆α  

 
where η is the learning rate, α  is the momentum factor, and ∂  is the computed  

 
error with respect to the output from node j, ( )1+∆ nw ji   is the change of a weight  

 
connecting nodes i and j , in two successive layers, at the (n+1) th iteration  

(Jensen, 2005; Kanellopoulos et al. 1997; IDRISI Andes Manual, 2007). 

3.9.5.3. Neural Network Architecture and Parameters 

 A trial-and-error strategy was employed to find out appropriate values for 

the different important parameters in the MLP that influences the performance of 

the learning algorithm and produces highest classification accuracy.  The basic 

architecture to start with was constructed according to the guidelines suggested 

by Kavzolgu et al. (2003) and Kanellopoulos et al. (1997) using IDRISI Andes 

image processing software (Figure 31). The important parameters are discussed 

below. 
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Number of input nodes 

 Various combinations of input layers were run in the trial runs (Appendix 

D). It was found that the inclusions of the texture layers for the SPOT-5 bands 

and the NDVI did not improve the classification accuracies. Also various other 

transformations of the SPOT-5 bands were applied as trial inputs. The final input 

layer in the final neural network contained 8 nodes, each representing the 

different input layers consisting of the 3 bands (green, red and IR) of SPOT 

image, slope, aspect, NDVI, tundra index (discussed later in this chapter in 

section 3.8.6), and the output of the rule-based classifier.  

Number of output nodes 

 The output layer consisted of eight nodes, seven of them representing the 

different tundra land-cover classes and the eighth one being the unclassified or 

undefined pixels that consisted of the background pixels and the masked out 

pixels in shadow and cloud regions in the image. 

Input Image Normalization or Scaling 

 Values of the individual pixels of all the eight different input layers were 

normalized or scaled from 0.0 to 1.0 by using a script in ERDAS Imagine (Figure 

30) to ensure that the network’s iterative weight adjustment fits within the 

numerical range of the activation function’s range thus preventing early 

saturation effects that causes the network to ‘stall’ (Kanellopoulos et al. 1997). 
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Figure 30: Script in ERDAS Imagine used for scaling the input raster. 

 

Training and Validation Pixels 

 In each iteration, for the seven land-cover classes concerned, 300 pixels 

were randomly selected for training the network, and 100 pixels were randomly 

selected for testing the trained networks. Thus, from the training site layer, for 

each iteration, number of training and test datasets was 2400 and 800 random 

pixels in total, respectively. As suggested by Kavzolgu et al. (2003) the sample 

sizes should range between 30 * Ni *(Ni + 1) and 60 * Ni *(Ni + 1) depending on 

COMMENT "Script for normalization of raster layers"; 
# 
# set cell size for the model 
# 
SET CELLSIZE MIN; 
# 
# set window for the model 
# 
SET WINDOW UNION; 
# 
# set area of interest for the model 
# 
SET AOI NONE; 
# 
# declarations 
# 
Float RASTER n1_SPOTband1 FILE OLD NEAREST NEIGHBOR AOI NONE 
"f:/work/research/final data/SPOTband1.img"; 
Float RASTER n4_dem0 FILE NEW IGNORE 0 ATHEMATIC FLOAT SINGLE 
"f:/work/research/idrisi/Band10-1.img"; 
# 
# function definitions 
# 
#define n2_memory Float ($n1_SPOTband1) 
n4_dem0 = (($n2_memory - GLOBAL MIN ($n2_memory)) / (GLOBAL MAX 
($n2_memory) - GLOBAL MIN ($n2_memory))) * 1; 
QUIT; 
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the difficulty of the problem under consideration, where Ni is the number of input 

features or nodes. In this case, the minimum number of training pixels required 

was 2160 while the optimum number is 4320.  

Number of hidden layers and hidden nodes 

 Determination of the optimum number of hidden nodes in a neural network 

classification technique is a serious concern in order to avoid overfitting or 

underfitting and produce lower classification accuracies. Overfitting is a state 

which occurs when the network is too large and become overspecific to the 

training data while underfitting occurs when the network is too small and thus is 

unable to identify the internal structure of the data. The optimum number of 

nodes in a hidden layer is between 2Ni to 3Ni (Kanellopoulos et al. 1997; Hush, 

1989; Hecht-Nielsen, 1987).  

 In this research, the thumb rule followed for the number of nodes in the 

first hidden layer was n1 = ceiling (2.5 * Ni), where Ni is number of nodes in the 

input layer. For example, Ni being 8, the number of nodes in the first hidden layer 

was calculated be 20.  It was found from the trial runs (Appendix D) that the use 

of two hidden layers did have significant effect on network classification 

performance. The thumb rule followed for the number of nodes in the second 

hidden layer was n2 = ceiling (2.5 * No) where No  is the number of nodes in the 

output layer, being a constant = 8 in this research. As suggested by 

Kanellopoulos et al. (1997), for the trial runs, if a single hidden layer was used, 
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the higher of the two cases (n1 and n2) considered was applied for the number of 

nodes in the hidden layer. 

Learning rate, momentum and sigmoid constant 

 In order to optimize the speed and efficiency of the learning process, the 

learning rate and momentum term are very important considerations. The 

momentum term determines the direction of search for the global minimum of the 

error using the previous weight configurations. The learning rate is used to 

update the inter-node weights (Kavzolgu et al. 2003).  

 An automatic learning with dynamic learning rate was opted for the trial 

runs in IDRISI Andes image processing software with learning rate being 0.01 

and the end learning rate being 0.001. With the automatic learning option, the 

MLP automatically adjust the learning rate, and if adjustments are made to the 

learning rate, the iteration process starts again. The dynamic learning option 

enables the MLP, to decrease the learning rate towards the minimum learning 

rate (IDRISI Andes Manual, 2007). All these adjustments and reiterations occur 

until the learning process becomes stable. The momentum factor used was 0.5 

and the sigmoid constant chosen was 1.0. 

Stopping criterion 

 A stopping criterion for the MLP learning process has to be established as 

it is generally impossible to train neural networks at an accuracy rate of 100%. 
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Three different stopping criterions were used in this research are, the RMS error 

(0.0001) which is the error associated with the learning of the network, the 

number of iterations (10000), and the accuracy rate percent (100%). Any of these 

criterions reached first would terminate the learning process. 

 

 

Figure 31: The MLP classifier interface in IDRISI Andes. 

 

 Appendix D shows a table with the trial runs, and the different parameters 

used for the neural network classifier. The best combination of input layers 

consists of Bands 1, 2, 3 from the SPOT image, NDVI, slope, aspect, tundra 
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index, and the output classified image of the rule-based classifier. The average 

training accuracy and corresponding kappa value for this combination was 

96.0433 and .9901 respectively. Addition of the NDVI layer to the SPOT bands 

improved the training accuracy from 83.54% to 92.50% for a double layered 

Inclusion of the texture layers for SPOT bands did not have any improvement in 

the training process in terms of accuracy and kappa. Also two different 

transformations of the tundra index were tried as input: square of tundra index 

and log of tundra index; both of these transformations did not contribute to any 

further improvement in the training accuracy.  

3.9.6. The Tundra Index 

 The tundra index is a new calculated spectral index (Figure 34) which is a 

non-linear transformation of the spectral values of the SPOT bands given by:  

 Tundra index =
Red) Green  (  IR*2

Red) Green  (  -IR*2

++

+
  

 It was found that the two major classes, Moist Dwarf-shrub, Tussock-

Graminoid Tundra complex and Moist Graminoid, Prostrate-shrub Tundra 

complex which consisted of the major land-cover for the study area had spectral 

mixing effect in them and it was hard to separate the two classes when they had 

heterogeneous occurrence in contiguous pixels. The spectral profile (Figure 33) 

created from homogenous occurrence of five sample pixels for each of the two 
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classes explains that for Moist Dwarf-shrub, Tussock-Graminoid Tundra 

complex, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Script in ERDAS Imagine for modeling the tundra index. 

 
 

(referred to as MAT in the figure) the values for Band1 and Band2 of the SPOT-5 

image is lower than Moist Graminoid, Prostrate-shrub Tundra complex (referred 

COMMENT "Model for tundra index"; 
# 
# set cell size for the model 
# 
SET CELLSIZE MIN; 
# 
# set window for the model 
# 
SET WINDOW UNION; 
# 
# set area of interest for the model 
# 
SET AOI NONE; 
# 
# declarations 
# 
Integer RASTER n1_SPOTimage FILE OLD NEAREST NEIGHBOR AOI NONE 
"f:/work/research/final data/SPOTimage.img"; 
Float RASTER n2_myindex FILE DELETE_IF_EXISTING IGNORE 0 
ATHEMATIC FLOAT SINGLE "f:/work/research/final 
data/tundraindex.img"; 
# 
# function definitions 
# 
#define n10_memory Float($n1_SPOTimage(3) + $n1_SPOTimage(1)) 
#define n9_memory Float($n1_SPOTimage(3) + $n1_SPOTimage(2)) 
#define n8_memory Float($n1_SPOTimage(3) - $n1_SPOTimage(1)) 
#define n7_memory Float($n1_SPOTimage(3) - $n1_SPOTimage(2)) 
n2_myindex =  EITHER 0.0 IF ( $n9_memory == 0.0 AND $n10_memory 
== 0.0 ) OR ($n7_memory + $n8_memory) / ($n9_memory + 
$n10_memory) OTHERWISE; 
QUIT; 
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to as MNT in the figure), while it is the vice versa for Band3. Thus a non-linear 

transformation was applied to the SPOT-5 raster bands, which involved all the 

three bands, instead of only Band3 and Band2 in NDVI, which would magnify the 

differences for the two classes. This transformation was applied along with the 

NDVI, as another input node in the input layer of the MLP classifier.  

 The inclusion of the tundra index in the MLP layer improved the average 

training accuracy from 90.79% to 93.75%, average training kappa values from 

0.95 to 0.97 in single hidden layer architecture. While in a two hidden layer 

scenario, the improvements were not so significant (Table 3). Figure 35 shows 

the classified image from the MLP classifier.  



Table 3: Iterations showing the improvements in training accuracies and kappa values with the inclusion of the tundra index in 
the MLP classifier 

 

Input 
 Layers** 

Iterations SLR
* 

ELR* n1 * n2* 
Training 
RMS* 

Testing 
RMS* 

Training 
Accuracy 

Training 
Kappa 

Average 
Accuracy 

Average 
Kappa 

 1 0.00015 0.0003   0.00103 0.0019 90.75 0.954     

A 2 0.00138 0.0003 20 0 0.00109 0.00189 90.25 0.952 90.7933 0.9544 

 3 0.00238 0.0003   0.00097 0.00168 91.38 0.957     

 1 0.00488 0.0005   0.00085 0.00147 93.88 0.964     

B 2 0.00488 0.0005 20 0 0.00082 0.00144 94.25 0.974 93.7533 0.9663 

 3 0.00181 0.0003   0.00099 0.00171 93.13 0.96     

 1 0.00203 0.0003   0.00078 0.00135 93.75 0.976   

A 2 0.00213 0.0003 16 20 0.0008 0.00137 94.13 0.976 93.7100 0.9741 

 3 0.00198 0.0003   0.00082 0.0014 93.25 0.971   

 1 0.00085 0.0001   0.00083 0.00144 92.88 0.976   

B 2 0.00238 0.0003 18 20 0.00072 0.00123 95.38 0.98 93.7533 0.9752 

 3 0.00075 0.0001   0.00085 0.00148 93.00 0.97   

 
 Notes:  
           ** Input Layer A: SPOT-5 Bands (1, 2, 3), NDVI, Slope, Aspect 
   Input Layer B: SPOT-5 Bands (1, 2, 3), NDVI, Slope, Aspect, tundra index 
           * n1: No. of nodes in Hidden Layer1 
  n2: No. of nodes in Hidden Layer2 
  RMS: Root mean square error  
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Figure 33: Spectral profile for MAT and MNT in the SPOT-5 image. 
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Figure 34: The tundra index layer (with cloud and shadow pixels removed). 
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Figure 35: The classified image from the MLP classifier 
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3.9.7. Integration of the two classifiers: rule-based and MLP 

 Liu et al. (2002) suggested that different classifiers have complementary 

capabilities and integrating the results from individual classifiers improves 

classification accuracy. In their study, Liu et al. (2002) used a consensus builder 

approach to adjust classification output in the case of disagreement in 

classification between three different classifiers where, if the output classes for 

each individual pixel differed, the producer accuracies for each class were 

compared and the class with the highest producer accuracy was assigned to the 

pixel of the final classified image (map) output.  

 Following the same principle (Liu et al. 2002), in this research, the output 

classified images from the two classifiers, namely the rule-based and MLP, were 

compared. For pixels where there was a disagreement for class values, instead 

of the producer accuracies as suggested by (Liu et al. 2002), kappa values for 

the classes of each individual pixel were compared and the class with the highest 

kappa value was assigned to the pixel for the final classified map output. The 

classes having higher kappa values were extracted in ArcGIS 9.2 with the 

extraction (by attributes) tool in the spatial analyst extension and saved as a 

raster (.img format). This raster was used as a decision zone (Figure 36) to 

assign the pixel values (classes) of the final classified map output for the hybrid 

classifier, using the outputs of the rule-based and MLP classifiers. 
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Figure 36: Script in ERDAS Imagine for modeling the tundra index 

   

3.10. Post-processing of the classified images for the area under haze 

 A section of the image towards the north-west corner was covered by a 

haze probably caused by a very low cloud or mist that could not be identified 

during the cloud pixels removal due to its amorphous presence in the image. Due 

to this, the area had unusual spectral reflectance from the land-cover and the 

COMMENT "Model for integrating the two classifiers; rule-based and 
MLP"; 
# 
# set cell size for the model 
# 
SET CELLSIZE MIN; 
# 
# set window for the model 
# 
SET WINDOW UNION; 
# 
# set area of interest for the model 
# 
SET AOI NONE; 
# 
# declarations 
# 
Integer RASTER n1_rule FILE OLD NEAREST NEIGHBOR AOI NONE 
"e:/research/idrisi/finaltest/rule-based.img"; 
Integer RASTER n2_MLP FILE OLD NEAREST NEIGHBOR AOI NONE 
"e:/research/idrisi/finaltest/MLP.img"; 
Integer RASTER n3_higher FILE OLD NEAREST NEIGHBOR AOI NONE 
"e:/research/idrisi/finaltest/higherkappa.img"; 
Integer RASTER n7_hybrid FILE NEW IGNORE 0 THEMATIC BIN DIRECT 
DEFAULT 8 BIT UNSIGNED INTEGER 
"e:/research/idrisi/finaltest/hybrid.img"; 
# 
# function definitions 
# 
#define n5_memory Integer(EITHER $n1_expert IF ( $n3_nn == 0) OR 
$n2_nn02232 OTHERWISE ) 
n7_hybrid = $n5_memory; 
QUIT; 
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classes produced by the different classification techniques in this haze area were 

identified to be incorrect from field knowledge and observation. For example 

most of the area in this region was assigned to the class Moist Graminoid, 

Prostrate-shrub Tundra complex where in reality it should be Moist Dwarf-shrub, 

Tussock-Graminoid Tundra complex. This can be explained by the brighter 

appearance of the pixels due to the haze, especially in band1 and band 2 (Figure 

37, RGB 3, 2, 1).  

 A specific field inspection for ground truth data for this area was done in 

this area in order to ascertain the classes properly. The area was clipped out and 

an ISODATA clustering was applied to obtain 20 clusters. These clusters were 

identified using the ground truth data and field knowledge into the seven land-

cover classes concerned. The clustered image was recoded and merged (Figure 

37) into each of the three classified images obtained previously from the three 

classifiers. 
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Figure 37: The area under haze (top) and the clipped area reclassified and recoded 
(bottom). 
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Figure 38: Script in ERDAS Imagine for model merging of the recoded haze area 
classification into the output of the MLP classifier. 
 

 

 

 

 

 

 

COMMENT "Model used to merge the recoded haze area classification into 
the output of the MLP classifier"; 
# 
# set cell size for the model 
# 
SET CELLSIZE MIN; 
# 
# set window for the model 
# 
SET WINDOW UNION; 
# 
# set area of interest for the model 
# 
SET AOI NONE; 
# 
# declarations 
# 
Integer RASTER n1_MLP FILE OLD NEAREST NEIGHBOR AOI NONE 
"e:/research/idrisi/finaltest/MLP.img"; 
Integer RASTER n3_recodehaze20 FILE OLD NEAREST NEIGHBOR AOI NONE 
"f:/work/research/final data/test/recodehaze20.img"; 
Integer RASTER n7_finalMLP FILE DELETE_IF_EXISTING IGNORE 0 THEMATIC 
BIN DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 
"e:/research/idrisi/finaltest/finalMLP.img"; 
# 
# function definitions 
# 
#define n5_memory Integer(EITHER $n1_MLP IF ( $n3_recodehaze20 == 0 ) 
OR $n3_recodehaze20 OTHERWISE ) 
n7_finalMLP = $n5_memory; 
QUIT; 
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CHAPTER IV 

 
 

RESULTS AND DISCUSSIONS 
 
 
 

4.1. Results 

4.1.1. Accuracy Assessment 

 It is necessary to check the accuracy of the land-cover classification with 

ground truth data before it can be used in scientific investigations and decision 

making policies (Jensen, 2005). Errors in a thematic map from a classification 

process can be introduced from several sources like data acquisition (sensor 

error), radiometric resampling, geometric registration, data conversion and 

misclassification by the analyst or by the classification model. A design-based 

inference which is most commonly applied in remote sensing studies involving 

statistical measurements including overall accuracy, producer’s error, 

consumer’s error and the Kappa coefficient was applied in this study (Congalton 

et al.1999). The results of the accuracy assessments were used to compare the 

results of the different classification techniques.   

A stratified random sampling technique was applied for collecting the 

ground truth data for accuracy assessment. In this technique a minimum number 
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of samples are selected from each class and samples are allocated to all the 

classes for accuracy assessment without depending on the proportion of each 

individual class in the entire study area. As mentioned in section 3.5, the data 

(pixels) collected were divided into two subsets, one of which was used for 

training (128 points) and the other for testing (221 points) the classification 

accuracy to avoid any bias resulting from the use of the same set of pixels for 

both training and testing.  

4.1.1.1. Error Matrix  

An error matrix is an effective technique involving a square matrix that 

presents the overall accuracy of the classification, the producer and user 

accuracy of each class.  The columns contain the reference data (from the 

ground truth data), while the rows represent data from the classifications. Values 

of each row and column represent a unique combination of classified data and 

accuracy assessment data. The major diagonal of the matrix reflect the sites 

correctly classified while the cell values in the off-diagonal positions express 

disagreement between the classified and the reference data.  From the error 

matrix (Table 4 - 6) various descriptive evaluations for accuracies can be derived 

as explained in following sections. 
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Table 4: Error Matrix for unsupervised ISODATA clustering 

Reference Data 

Classified 
Data shrub water barren Snowbed MAT

**
 WST

**
 MNT

**
 

Row 
Total 

shrub 17 0 0 2 5 2 2 28 

water 0 30 0 0 0 0 0 30 

barren 0 0 11 0 0 1 1 13 

Snowbed 0 0 0 2 1 2 0 5 

MAT
** 2 0 0 0 55 5 21 83 

WST
**
 1 0 1 0 0 3 1 6 

MNT
**
 1 0 1 4 11 5 34 56 

Column Total 21 30 13 8 72 18 59 221 

 

Table 5: Error Matrix for supervised classification with Feature Analyst 

Reference Data 

Classified 
Data shrub water barren Snowbed MAT

**
 WST

**
 MNT

**
 

Row 
Total 

shrub 14 0 0 0 4 4 2 24 

water 0 30 1 0 1 1 2 35 

barren 1 0 11 0 1 1 4 18 

Snowbed 4 0 0 8 5 3 9 29 

MAT
** 1 0 0 0 45 1 10 57 

WST
**
 1 0 1 0 0 7 9 18 

MNT
**
 0 0 0 0 16 1 23 40 

Column Total 21 30 13 8 72 18 59 221 

 

Table 6: Error Matrix for hybrid classification  

Reference Data 

Classified 
Data shrub water barren Snowbed MAT

**
 WST

**
 MNT

**
 

Row 
Total 

shrub 12 0 0 0 2 2 2 18 

water 0 30 0 0 0 0 0 30 

barren 0 0 11 0 1 1 0 13 

Snowbed 0 0 0 8 1 2 2 13 

MAT
** 8 0 0 0 62 6 15 91 

WST
**
 1 0 1 0 0 5 1 8 

MNT
**
 0 0 1 0 6 2 39 48 

Column Total 21 30 13 8 72 18 59 221 

 
Notes (Table 4, 5, 6) 

MAT** 
referred to as Moist Dwarf-shrub, Tussock-graminoid Tundra complex

 

WST** 
referred to as Wet graminoid Tundra complex

 

MNT** 
referred to as Moist Graminoid, Prostrate-shrub Tundra complex 
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4.1.1. 2. Overall Accuracy 

 The overall accuracy is determined by the sum of all samples on the 

diagonal (total correct pixels) divided by the total number of samples. However, 

the overall accuracy (or percentage classified correctly) gives no insight into how 

well the classifier is performing for each of the individual classes and also it does 

not consider the case of particular classes that covers large proportion of the test 

data and offers a bias to the overall accuracy. Table 7 shows the overall 

accuracies for each of the three different classifiers. 

 
Table 7: Comparison of overall accuracies for the three different classifiers 

Classifiers Total number of 
pixels 

Number of correct 
pixels 

Overall 
accuracy% 

Unsupervised ISODATA 
clustering 

221 151 68.33 

Supervised classification with 
Feature Analyst 

221 138 62.44 

Proposed Hybrid Classifier 221 167 75.57 

 
 
 

4.1.1. 3. User’s and Producer’s Accuracy 

 The two most important descriptive accuracy measures derived from the 

error matrix are: user’s accuracy (also known as error of commission or 

reliability) and producer’s accuracy (also known as error of omission).  
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 User’s accuracy is the probability for a pixel classified as a particular 

information class on the classified map actually represents that particular class 

on the ground. It is obtained by dividing the total number of correct pixels in a 

category by the total number of pixels actually classified in that category (Jensen, 

2005). 

Producer’s accuracy is the probability of a reference pixel being correctly 

classified as a particular information class on the classified map. It is obtained by 

dividing the total number of correct pixels in a category by the total number of 

pixels of that category (reference data column total) (Jensen, 2005).   

Tables 8 - 10, show the user’s and producer’s accuracies for the three 

different classifiers. 

 

 

Table 8: User's and Producer's accuracies for unsupervised ISODATA clustering 

Class names 
Reference 
Totals 

Classified 
Totals 

Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy 

Shrub complex 21 28 17 80.95% 60.71% 

Aquatic complex 30 30 30 100.00% 100.00% 

Barren complex 13 12 10 76.92% 83.33% 

Snowbed complex 8 5 2 25.00% 40.00% 

MAT
**
 complex 72 83 55 76.39% 66.27% 

WST
**
 complex 18 6 3 16.67% 50.00% 

MNT
**
 complex 59 56 34 57.63% 60.71% 
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Table 9: User's and Producer's accuracies for supervised classification with Feature 
Analyst 

Class names 
Reference 
Totals 

Classified 
Totals 

Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy 

Shrub complex 21 24 14 66.67% 58.33% 

Aquatic complex 30 35 30 100.00% 85.71% 

Barren complex 13 18 11 84.62% 61.11% 

Snowbed complex 8 29 8 100.00% 27.59% 

MAT
**
 complex 72 57 45 62.50% 78.95% 

WST
**
 complex 18 18 7 38.89% 38.89% 

MNT
**
 complex 59 40 23 38.98% 57.50% 

 

 

Table 10: User's and Producer's accuracies for proposed hybrid classifier 

Class names 
Reference 
Totals 

Classified 
Totals 

Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy 

Shrub complex 21 18 12 57.14% 66.67% 

Aquatic complex 30 30 30 100.00% 100.00% 

Barren complex 13 13 11 84.62% 84.62% 

Snowbed complex 8 13 8 100.00% 61.54% 

MAT
**
 complex 72 91 62 86.11% 68.13% 

WST
**
 complex 18 8 5 27.78% 62.50% 

MNT
**
 complex 59 48 39 66.10% 81.25% 

 
Notes (Table 8, 9, 10) 

MAT** referred to as Moist Dwarf-shrub, Tussock-graminoid Tundra complex 

WST** referred to as Wet graminoid Tundra complex 

MNT** referred to as Moist Graminoid, Prostrate-shrub Tundra complex 
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4.1.1.4. The Kappa Statistic 

Kappa analysis is a discrete multivariate technique used in accuracy 

assessment which uses Khat statistic as a measure of agreement or accuracy 

between classified map and reference data (Jensen, 2005). Khat uses the major 

diagonal elements of the error matrix and the chance agreement indicated by the 

row and column totals (marginals), thus considering interclass agreement. The 

Kappa analysis tests if a land-use or land-cover map is significantly better than if 

the map had been generated by (random) chance (Congalton, 1996). Khat 

statistic is computed as (Jensen, 2005, Congalton, 1991):  
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 where k is the number of rows in the matrix, xii  is the number of observation in 

row i and column i, and xi+ and x+I  are the marginal totals for row i and column i, 

respectively, and N is the total number of observations.  

Typically, Kappa coefficient lies between 0 and 1 scale, where 1 indicates 

complete agreement. Kappa values are also characterized into 3 groups in 

general: a value > 0.80 (80%) represents strong agreement, a value between 
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0.40 and 0.80 (40 to 80%) represents moderate agreement, and a value < 0.40 

(40%) represents poor agreement (Congalton, 1996; Jensen, 2005).  

Table 11 shows the comparison of the different kappa values for each 

individual class for the three classifiers in consideration and the corresponding 

overall kappa values.  

 
 

Table 11: Comparison of the kappa values for the three classifiers 

Class names 

 Unsupervised 
ISODATA 
clustering 

Supervised 
classification with 
Feature Analyst 

Proposed Hybrid 
Classification 

Shrub complex 0.5659 0.5396 0.6317 

Aquatic complex 1.0000 0.8347 1.0000 

Barren complex 0.8229 0.5868 0.8365 

Snowbed complex 0.3775 0.2487 0.6009 

MAT
**
 complex 0.4996 0.6877 0.5273 

WST
**
 complex 0.4557 0.3347 0.5917 

MNT
**
 complex 0.4641 0.4202 0.7442 

OVERALL 0.5904 0.5418 0.6840 
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Figure 39: Showing the comparison of the accuracy values for the three classifiers 

 
 

4.1.2. Statistical Significance of the Accuracy Assessment  

 To compare the performance of the proposed hybrid classifier with two 

other standard classification techniques: unsupervised ISODATA clustering and 

supervised classification with Feature Analyst, a comparison between three 

different kappa values was performed.  Estimated variance for the three different 

kappa values from their respective error matrices was calculated using SAS 9.1 

(Figure 40) (Congalton 1999; Fleiss 1969; Shine et al. 1999). 
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Figure 40: SAS Program to calculate kappa variance from error matrix for hybrid classifier 

 

data accuracy; 
input observed $ predicted $ count; 
datalines; 
shrub shrub 12 
shrub water 0 
shrub barren 0 
shrub snowbed 0 
shrub MAT 2 
shrub wst 2 
shrub mnt 2 
water shrub 0 
water water 30 
water barren 0 
water snowbed 0 
water MAT 0 
water wst 0 
water mnt 0 
barren shrub 0 
barren water 0 
barren barren 11 
barren snowbed 0 
barren MAT 1 
barren wst 1 
barren mnt 0 
snowbed shrub 0 
snowbed water 0 
snowbed barren 0 
snowbed snowbed 8 
snowbed MAT 1 
snowbed wst 2 
snowbed mnt 2 
MAT shrub 8 
MAT water 0 
MAT barren 0 
MAT snowbed 0 
MAT MAT 62 
MAT wst 6 
MAT mnt 15 
wst shrub 1 
wst water 0 
wst barren 1 
wst snowbed 0 
wst MAT 0 
wst wst 5 
wst mnt 1 
mnt shrub 0 
mnt water 0 
mnt barren 1 
mnt snowbed 0 
mnt MAT 6 
mnt wst 2 
mnt mnt 39 
; 
proc freq data=accuracy order=data; 
      weight count; 
      tables observed*predicted / agree norow nocol; 
      test kappa wtkap ; 
run; 
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 Let K1 is the estimated kappa for unsupervised ISODATA clustering, 

var(K1) is its estimated variance, K2 is the estimated  kappa for supervised 

classification with Feature Analyst and var(K2) is its estimated variance, K3 is the 

estimated  kappa for proposed hybrid classification and var(K3) is its estimated 

variance. To test the hybrid classifier with each of the standard classification 

procedures, a standardized normal variable Z was used, and the null hypothesis 

(H0) that the two kappa values concerned are equal versus the alternative (HA) 

that they are not equal.  Z is given by: 

 
))var()(var( 13

13

KK

KK
Z

+

−
= , for comparing unsupervised ISODATA clustering 

and the proposed hybrid classification (Table 12) and, 

 
))var()(var( 23

23

KK

KK
Z

+

−
= , for comparing supervised classification with 

Feature Analyst and the proposed hybrid classification (Table 13). 

 Z was compared against normal distribution functions and rejected if |Z| 

was greater than 1.96 at a 95% significance level (Shine et al. 1999).  
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Table 12: Statistical significance between hybrid classifier and unsupervised classification  
with ISODATA clustering 

 
 Proposed Hybrid 

Classifier 
Unsupervised 

Classification with 
ISODATA clustering 

KAPPA 0.6840 0.5904 

KAPPA VARIANCE 0.00059049 0.00064009 

KAPPA STD ERROR 0.0243 0.0253 

Z VALUE 2.6682 
**SIGNIFICANTLY DIFFERENT 

 

Table 13: Statistical significance between hybrid classifier and supervised classification  
with Feature Analyst 

 
 Proposed Hybrid 

Classifier 
Supervised Classification 

with Feature Analyst 

KAPPA 0.6840 0.5418 

KAPPA VARIANCE 0.00059049 0.00071824 

KAPPA STD ERROR 0.0243 0.0268 

Z VALUE 3.9307 
**SIGNIFICANTLY DIFFERENT 
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4.2. Discussions 

 Eight land-cover classes were identified from image classification process 

from the SPOT-5 data using the three different techniques. Figure 41 shows the 

comparison of the three final maps obtained from the three different techniques.  

4.2.1. Comparison of classification performance for each class: error 
matrices, producer’s and user’s accuracies, and kappa values. 

The results obtained for the different classes and their interpretations in 

context of the three different classifiers are described as follows:  

Moist Low-Shrub Tundra and other Shrublands complex had a highest 

producer’s accuracy (80.95%) in the unsupervised classification  ISODATA 

clustering but the user’s accuracy was low (60.71%) due to the fact that it was 

over estimating the class and most of the confusion was with Moist Dwarf-shrub, 

Tussock-graminoid Tundra complex class. Hybrid classification had the highest 

user’s accuracy (66.67%), producer’s accuracy (57.14%) lower than ISODATA 

clustering and highest kappa value (0.6317) for this class. Supervised 

classification with Feature Analyst had a higher producer’s accuracy (66.67%) 

than the hybrid classifier but lower than ISODATA clustering, lowest user’s 

accuracy (58.33%) and lowest kappa value (0.5396). 

 



 

Figure 41: Comparison of the three classified images. 

1
2
6
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Water and aquatic complex was classified with an accuracy of 100%, 

(both producer’s and user’s) by both ISODATA clustering and the hybrid 

classification technique. Supervised classification with Feature Analyst had a 

producer’s accuracy of 100% but the user’s accuracy was lower than the other 

two classifiers (85.71%). 

Barren complex had a highest producer’s accuracy (84.62%) and user’s 

accuracy (84.62%) by the hybrid classifier, where as supervised classification 

with Feature Analyst had a higher producer’s accuracy (84.62%) than 

unsupervised ISODATA clustering (76.92%), but a lower user’s accuracy 

(61.11%) compared to unsupervised ISODATA clustering (83.33%). Hybrid 

classifier had the highest kappa value of 0.8365, followed by ISODATA clustering 

(0.8229), supervised classification with Feature Analyst being the lowest 

(0.5868). 

Snowbed complex had a highest producer’s accuracy (100.00%) and 

user’s accuracy (61.54%) by the hybrid classifier, where as supervised 

classification with Feature Analyst also had a producer’s accuracy (100.00%) but 

the user’s accuracy was very low (27.59%). Unsupervised ISODATA clustering 

had a poor user’s (40.00%) and producer’s (25.00%) accuracy for this class. 

Hybrid classifier had the highest kappa value of 0.6009, followed by ISODATA 

clustering (0.3775), supervised classification with Feature Analyst being the 
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lowest (0.2487). This class had the most confusion with Wet Graminoid Tundra 

complex especially those around the lake and shallow water margins. 

Moist Dwarf-shrub, Tussock-graminoid Tundra complex is the class that is 

most extensive in coverage area and had a highest producer’s accuracy 

(86.11%) by the hybrid classifier, followed by unsupervised ISODATA clustering 

(76.39%) and supervised classification with Feature Analyst (62.50%). In terms 

of user’s accuracy, supervised classification with Feature Analyst (78.95%) was 

the highest for this class, followed by the hybrid classifier (68.13%) and 

unsupervised ISODATA clustering (66.27%). The most confusion for this class 

was with Moist Graminoid, Prostrate-shrub Tundra complex. Supervised 

classification with Feature Analyst had the highest kappa value of 0.6877, 

followed by the hybrid classifier (0.5273), unsupervised ISODATA clustering 

being the lowest (0.4996). 

Wet Graminoid Tundra complex was the class that a very low accuracy 

rate for all the classifiers. The highest producer’s accuracy (38.89%) was 

achieved by supervised classification with Feature Analyst, where as the hybrid 

classifier had a producer’s accuracy of 27.78% and unsupervised ISODATA 

clustering had 16.67% for the same. The hybrid classifier had the highest user’s 

accuracy (62.50%), followed by unsupervised ISODATA clustering (50.00%), and 

supervised classification with Feature Analyst (38.89%).  This class had major 

confusions with Moist Graminoid, Prostrate-shrub Tundra complex and Snowbed 
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complex. In terms of kappa values, the hybrid classifier was the highest with a 

value of 0.5917, followed by ISODATA clustering (0.4557), and supervised 

classification with Feature Analyst (0.3347). 

Moist Graminoid, Prostrate-shrub Tundra complex had both the highest 

producer’s (66.10%) and user’s (81.25%) accuracy achieved by the hybrid 

classifier. Unsupervised ISODATA clustering had the next highest value for both 

producer’s (57.63%) and user’s (60.71%) accuracy, followed by supervised 

classification with Feature Analyst  with producer’s (38.98%) and user’s (57.50%) 

accuracy (38.98%) being the lowest for this class. This class being the second 

biggest class in terms of area, had major confusions with Moist Dwarf-shrub, 

Tussock-graminoid Tundra complex. In terms of kappa values, the hybrid 

classifier was the highest with a value of 0.7442, followed by unsupervised 

ISODATA clustering (0.4641), and supervised classification with Feature Analyst 

(0.4202). 

4.2.2. Overall Accuracy and Statistical Significance 

As evident from table 6, the hybrid classifier had the highest overall 

accuracy rate of 75.57% (167 correct pixels out of 221) in comparison to 

unsupervised ISODATA clustering (68.33%; 151 out of 221) technique, which is 

the most used image classification technique used in the area so far, and 

supervised classification with Feature Analyst (62.44%; 138 out of 221), having 

the lowest overall accuracy.  
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Table 9(i-ii), shows that the improvement of the hybrid classifier in terms of 

accuracy is significantly different statistically from the other two classifiers: 

unsupervised ISODATA clustering and supervised classification with Feature 

Analyst. A Z statistic value of 2.6682 (> 1.96) indicates that the null hypothesis 

(H0) stating that the results from the hybrid classifier and the unsupervised 

ISODATA clustering are the same, can be rejected at a significance level of 95%. 

Similarly, with a Z-value of 3.9307 (> 1.96) indicates that results from the hybrid 

classifier and supervised classification with Feature Analyst are different, at a 

significance level of 95%. 

4.2.3. Confusion between vegetation classes  

Except for the water class, there was confusion between the vegetation 

types on the classified maps. This section specifically discusses the interclass 

confusions in the classified map made by the hybrid classifier.  As evident from 

the error matrix, (Table 5-iii), most of the confusions involved Moist Dwarf-shrub, 

Tussock-graminoid Tundra and Moist Graminoid, Prostrate-shrub Tundra 

complex, Moist Dwarf-shrub, Tussock-graminoid Tundra and Moist Low-Shrub 

Tundra and other Shrublands complex.  

Moist Dwarf-shrub, Tussock-graminoid Tundra and Moist Graminoid, 

Prostrate-shrub Tundra complexes were the two most extensive vegetation 

classes in terms of area of coverage. About 16.5% of the pixels that were, 

classified as Moist Dwarf-shrub, Tussock-graminoid Tundra (typical moist acidic 
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tundra) were misclassified as Moist Graminoid, Prostrate-shrub Tundra (mostly 

moist non-acidic tundra), where as, about 13% of the pixels that were classified 

as Moist Graminoid, Prostrate-shrub Tundra  were misclassified as Moist Dwarf-

shrub, Tussock-graminoid Tundra. The transition zone between moist acidic 

tundra and moist non-acidic tundra where spatial extent of one class ends and 

the other begins, represents the shift between non-tussock sedge, erect dwarf-

shrub, moss tundra and tussock sedge, dwarf-shrub, moss tundra. The moist 

acidic side of the transition is dominated by vegetation species like Betula nana, 

Salix spp., Eriophorum vaginatum, Carex bigelowii, and Sphagnum spp. etc., 

while, the non-acidic side rarely has Betula nana, more Carex bigelowii and 

Sphagnum spp. are absent. (Jia et al. 2002). This suggests that there was a lot 

of spectral intermixing between the two classes and most of these intermixing 

were present in the transition region.  

Research by Gough et al. (2000) suggest that there are no strict spatial 

boundary between acidic (pH < 5.5) soil and non-acidic (pH > 5.5) soil due to old 

and new geologic sites respectively in a local scale at 5m pixel spatial resolution 

(as opposed to in a regional scale and 50m pixel resolution (Walker et al. 1995; 

Jia et al. 2002)), species found in acidic sites were also found in non-acidic sites. 

Thus there were ample number of sites found in this research where occurrence 

of moist acidic tundra being dominated by moist non-acidic tundra and vice versa 

in the transition zones. In these situations it was not impossible to differentiate 

between the two at a 5m pixel level and spectral resolution of SPOT-5 satellite.  
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Moist Dwarf-shrub, Tussock-graminoid Tundra and Moist Low-Shrub 

Tundra and other Shrublands complex were spectrally similar in many instances 

when the domination of low shrub canopy (Salix pulchra, Betula nana, Salix 

glauca) over tussock tundra (Sphagno-Eriophoretum vaginati) changes in height 

and complexity in some occasions. The boundary between these two classes 

occurred as irregular and intermittent patches that represents the shift from 

tussock sedge, dwarf-shrub, moss tundra to either erect dwarf-shrub tundra or 

low shrub tundra shows gradual increases in the abundance and biomass of 

deciduous dwarf birch (Betula nana L.) and willow (Salix pulchra Cham.) shrubs 

(Jia et al. 2002). This gradual transition might have caused spectral mixing that 

might have contributed to low accuracy results. Moist Low-Shrub Tundra and 

other Shrublands complex is more accurately identified in cases of willow 

dominated uplands areas dominated by dwarf and low shrubs mainly on 

interfluvial areas, water-track complexes, streams and rivers (riparian shrubs), 

and some floodplain areas.  

Besides, the classes discussed above, the most problematic vegetation 

class to identify, evidently having lowest accuracy rate and kappa value was Wet 

graminoid tundra complex. Other researchers also found low accuracy for similar 

species combination (wet sedge tundra) (Markon, 1994; Stow et al. 2000; Hope 

et al. 1999). This class consisting of fens, dominated by sedges and mosses is 

mostly found in wetland areas, margins of lake basins, watertracks and foothills. 

In most cases misrepresentation occurred in isolated occurrences of low centre 
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polygon areas, where the centers containing sedges in wet to flooded conditions 

and the wide rims were dominated by Moist Low-Shrub Tundra and other 

Shrublands (Eriophorum angustifolium-Salix pulchra and Salix pulchra-

Calamagrostis Canadensis), or Moist Dwarf-shrub, Tussock-graminoid Tundra 

(typical moist acidic tundra) type vegetation. In some cases, Wet graminoid 

tundra complex (specifically rich fen; Carex chordorrhiza, Carex aquatilis, 

Eriophorum angustifolium) was misidentified as Moist Low-Shrub Tundra and 

other Shrublands (riparian shrubs, specifically) due to the high spectral 

reflectance in band 3 of the SPOT image (Figure 42). In some cases when the 

occurrences were less wet than average, it was often confused with Moist Dwarf-

shrub, Tussock-graminoid Tundra (dry acidic/non-acidic tundra; occurrences of 

Dryado integrifolia-Caricetum bigelowii and Juncus biglumis-Saxifraga 

oppositifolia).  Also, in few cases, there were some confusion with snowbed 

complex, specially occurring in gentle slopes and shadowy areas. This class was 

found to be more accurate when located adjacent to lake basins and extensive 

gently sloping low lands draining into lakes.  
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Figure 42: Spectral similarity between shrubs (riparian) on the left and wet graminoid 
tundra complex (rich fen) on the right. 
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4.2.4. Solutions to the research questions  

 This research, SPOT-5  image classification of the Toolik area, is first time 

time when a SPOT image resampled to 5 meter pixel have been used in land-

cover classification of this area. It shows more recent and detailed vegetation 

cover than the existing Walker et al (1994) map made from Landsat MSS data. 

This section answers the specifc research questions framed towards the end of 

the first chapeter in this dissertation. 

� How to extract spatial and spectral knowledge for the unique arctic tundra 
vegetation type that can be utilized for expert classification? 

 The set of rules that were developed to build the knowledge base for the 

rule-based classification, as a part of the hybrid classification process showed 

that both spatial and spectral knowledge can be efficiently extracted and be used 

in expert classification process. The set of rules developed can be generalized 

and used in other parts of the SPOT image that were outside in the study area. 

Use of spatial (slope and aspect) and spectral (SPOT bands, NDVI etc.) 

knowledge together, in the form of if-then rules in the rule-based classifier 

enabled the extraction and classification of relatively complex classes like 

snowbed complex with considerable better efficiency than the other traditional 

classifiers used.  
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� How can a hybrid classifier be used to classify SPOT-5 data (resampled to 
5 meter pixel) to achieve higher classification accuracy than traditional 
classification techniques used using actual ground truth data? 

 
 This research showed that using the proposed hybrid classification 

technique to classify SPOT-5 data to achieve higher classification accuracy than 

traditional classification techniques used in this area. The hybrid classifier 

produced an overall accuracy of 75.57%, in comparison of 68.33% from 

unsupervised ISODATA clustering and 62.44% from supervised classification 

with Feature Analyst (Table 6). The overall kappa values (Table 8) also suggest 

that the proposed hybrid classifier (0.6840) is superior to unsupervised ISODATA 

clustering (0.5904) and supervised classification with Feature Analyst (0.5418). 

For the individual classes, except for Moist Dwarf-shrub, Tussock-graminoid 

Tundra all the other classes have higher individual kappa values in the classified 

map by the hybrid classifier than the other two classification techniques (Figure 

43). The overall accuracy obtained was found to be greater than the existing 

classification of the arctic tundra from a SPOT-4 satellite by Stow et al. (1989), 

having overall accuracy of about 56%. 
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Comparison of indiviual kappa values
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Figure 43: Comparison of the three classifiers in terms of individual kappa values of the 
classes. 

 
 
 

�  What are the statistical significances of the classification accuracy 
obtained from the proposed method as compared to traditional spectral 
classifiers used in that area? 

The error matrices from the three different classifiers were compared 

statistically to determine whether results of the hybrid classifier was significantly 

different  of the results obtained from the other two classification techniques. A Z-

statistic value greater than > 1.96 in both the cases, indicates that results from 

the hybrid classifier and the two other traditional classification techniques are 

different, at a significance level of 95%. 
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This research meets the stated research objectives to develop a hybrid 

image classification approach that effectively integrated ancillary information 

(slope, aspect, NDVI etc) into the classification process and combined 

unsupervised ISODATA clustering, rule-based classifier and the Multilayer 

Perceptron (MLP) classifier in a sequence that typically classified arctic tundra 

type vegetation in SPOT-5 (resampled at 5m spatial resolution) satellite image 

that yields higher accuracy than the existing classification techniques applied on 

SPOT data in this region. Application of data mining tool (MLP classifier that 

implements artificial neural network)  with geo-spatial and spectral knowledge 

(developed knowledge base for the rule-based classifier) for hybrid classification 

technique produced better results in classifying unique arctic tundra vegetation in 

Alaska. Comparing and contrasting the proposed hybrid image classification with 

the standard (spectral) classification techniques: unsupervised ISODATA 

clustering and supervised classification with Feature Analyst, showed that the 

hybrid classification technique produces better results. 

 Of particular importance was the identification of the snowbed complex 

that was not identifiable on the existing resampled 50 m Landsat data 

classification (Auerbach et al. 1997b; Muller et al. 1998). Instead of five 

vegegation classes in the classified map from Landsat data, this research 

extarcted six major vegetation classes. The 5m spatial resolution of SPOT-5 data 

allowed identification of smaller and isolated parcels of typical tundra vegetation 

and the unique snowbed which was not detectable on the Landsat data 
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resampled to 50 m resolution. Also this research depicted the formulation of a 

new spectral index: the tundra index. The use of the tundra index with commonly 

used NDVI, produced better results in the training of the neural network of the 

MLP classifier (Table 3).  

4.2.5. Research Concerns and Limitations 

 According to Anderson (1976) and Congalton et al. (1999), a classified 

map with an 85% overall accuracy and kappa value greater than 0.70 is 

considered valid and acceptable to be applied toward other scientific 

applications. The classified map from the proposed hybrid classifier (75.57% 

overall accuracy and kappa 0.6840) in this research, still needs improvements to 

meet this goal of using this classified map in other scientific investigations and 

ecological applications. Several factors may have had a significant influence that 

affected the accuracy results of the hybrid classification are discussed below.  

 The use of SPOT-5 imagery may be an important factor that influenced 

the accuracy results of the classified map. Although the spatial resolution (5m 

resampled) was very inviting to discriminate the small heterogeneous vegetation 

parcels of typical arctic tundra vegetations, SPOT-5 offers very limited spectral 

resolution in the green, red and near-infrared portion of the electromagnetic 

spectrum which limits separation of vegetation in this very heterogeneous 

landscape. The existing Landsat MSS classification by Auerbach et al. (1997b) 

was based on homogeneity of 3X3 pixels at 50m pixel level which depicts a 
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generalized classification of the area because it is hard to find a homogenous 

extent of a vegetation cover even at a 5m pixel level except for the two classes: 

Moist Dwarf-shrub, Tussock-graminoid Tundra complex and Moist Graminoid, 

Prostrate-shrub Tundra complex. The use of SPOT-5 imagery at 5m pixel level in 

this research focused on the heterogeneity of the tundra landscape in general. 

 DEM creation is an inherently inaccurate process that always inevitably 

incorporates some errors. The ancillary data used, specifically slope and aspect 

in the hybrid classification was derived from a DEM data (Intermap Technologies 

Corporation STAR-3i) at a 5m resolution level with RMSE of 2.5m horizontal 

accuracy. Although slope and aspect data being used as ancillary data helped 

the classification process, since the DEM data was not fully accurate, the derived 

information slope and aspect were having some inaccuracies. The NDVI data 

used was derived from the resampled SPOT-5 (band 3 and band2) data, which 

might not have reflected the true NDVI values for the vegetation under 

consideration. These factors might have contributed towards the lower accuracy 

than expected for the hybrid classification. 

 The SPOT-5 to begin with had severe georectification errors (Figure 10). 

The image was georectified with 64 ground control points with an RMSE error of 

4.99m. Ideally the rectification RMSE should be less than 2.5m (half a pixel) in 

order to be successfully used in a scientific image classification (Jensen, 2005). 

The major problem faced in this research with georectification is the absence of 
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proper locations like road intersections, urban features that are prominently and 

precisely identifiable on the image during the image registration process. The 

Dalton Highway, the pipeline and the Toolik field station provides some GCP 

locations but that covers only the central and NE portion of the image. In order to 

have proper georectification process there is a need of uniform distribution of the 

GCPs through out the image, which is a major limitation in this study that might 

have contributed towards the low accuracy results. 

 Considering the heterogeneity of the typical arctic tundra vegetations there 

was a major problem regarding having several sample sites and testing sites on 

transition edges or boundaries between one vegetation class and another. These 

sample locations had spectral mixing effect in the pixels which could have 

contributed in assignment of different class. Also while classifying the two major 

classes Moist Dwarf-shrub, Tussock-graminoid Tundra and Moist Graminoid, 

Prostrate-shrub Tundra complex, it was very difficult to differentiate and interpret 

the dominant one in the transition boundary zone (Figure 44). Also Wet 

graminoid tundra complex (specifically rich fen; Carex chordorrhiza, Carex 

aquatilis, Eriophorum angustifolium) was misidentified as Moist Low-Shrub 

Tundra and other Shrublands (riparian shrubs, specifically) due to the high 

spectral reflectance in band 3 of the SPOT image (Figure 42). Overall, it was 

hard to find homogenous sample locations for the classes in the heterogeneous 

landscape of the study area.  Thus it could be the case when the training sample 
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sites had spectral mixing or the identification of the clusters from ISODATA 

clustering of the hybrid classifier was wrong, using those sample points.  

 

 

 

Figure 44: Spectral mixing in the transition zones: the effect of heterogeneity in the area. 
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 According to Congalton et al. (1999), for less than, 10 land-cover classes, 

a good rule of thumb is to collect a minimum of 50 samples for each land-cover 

class to reach a confidence of 95% in the accuracy assessment. This means the 

total number of sample points should be 350, for the seven land-cover classes 

for this study. But the total number of points collected through the stratified 

random sampling technique and used for the accuracy assessment in this study 

was only 221 which is a limitation of this research. Only two classes, Moist 

Dwarf-shrub, Tussock-graminoid Tundra and Moist Low-Shrub Tundra and other 

Shrublands complex which had greatest spatial extent in the study area had 

more than 50 sample points for the accuracy assessment. The overall distribution 

of the sample points were more clustered around Lake Toolik and the Dalton 

Highway in the central and north eastern portion of the image. Also, in the MLP 

classifier the number of training pixels used was 2400, which is more than the 

minimum requirement, but less than the optimum number of training pixels which 

is 4320. All of the above mentioned limitation can be explained by the 

inaccessibility of the terrain, limited helicopter hours and research budget, and 

bad weather in which sometimes it was not possible to fly. In addition to this, 45 

sample points were discarded since they were within the 300m buffer around the 

Dalton Highway (Figure 45). Previous research suggests that the ecological 

effects of road and road dust disturbances due to the Dalton highway, causes 

pronounced effects on the substrate and vegetation properties in the arctic 

tundra (Auerbach et. al., 1997a; Walker et. al. 1987; Forbes et. al. 1999). As a 
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result of this, the spectral properties of the vegetation are affected very 

prominently (overall accuracy of the classification of this section was lowered to 

50% and thus the collected points within 300m around the Dalton Highway had to 

be discarded.  
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Figure 45: Sample points discarded which were collected within 300m (buffer) from the 
Dalton road. 

  
 

 Texture (variance) of the different bands of the SPOT image and the NDVI 

layer were used as input layers of the MLP classifier during the trial runs. It was 

observed that the inclusions of the texture did not improve the training accuracy 
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of the neural network. This might be explained by the fact that the SPOT data 

being pan-sharpened (resampled with the help of high resolution panchromatic 

band) to 5m pixel in order to increase the spatial resolution, the original 

reflectance (spectral) values of the pixels was not retained. As a result the 

texture layers might not be representing the true texture values of the pixels. 

Thus addition of the texture layers as input did not improve the training accuracy 

of the neural network classifier and hence were not considered in the final set of 

input layers. 

 It was found that there was no strict spatial boundary between moist acidic 

tundra and non-acidic tundra at a 5m pixel level in this heterogeneous landscape. 

However it was evident at a larger spatial resolution (50m pixel level) and 

regional scale as suggested by Walker et al. (1995) and Jia et al. (2002). An 

additional geology layer in this study would have been very useful in the data 

mining analysis of the MLP classifier used as part of the hybrid classifier. 

Unfortunately lack of geological data with suitable resolution spatial for this 

research, prevented the use of geology as an additional ancillary data layer to 

acquire better results in terms of accuracy.  
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CHAPTER V 
 
 

CONCLUSIONS 
 
 
 

 Detailed and accurately classified map for land-cover map of the arctic 

tundra landscape in this region is a research need for many scientists all over the 

world. Use of SPOT-5 satellite imagery resampled at 5m pixel spatial resolution 

in this research has been a unique venture in order to extract more detailed 

classification of the heterogeneous landscape. The previous satellite 

classifications in this area mostly used Landsat data (at a spatial resolution of 

80m to 50m, resampled), thus neglecting the detail and heterogeneity of the 

typical arctic tundra landscape. 

 The general objective of this research was to develop a hybrid image 

classification technique combining ISODATA clustering (unsupervised), expert 

classifier (rule-based) and the Multilayer Perceptron (MLP) classifier that 

effectively integrates data mining techniques with geo-spatial and spectral 

knowledge, and ancillary information into the classification process. The main 

goal was to find out the best possible combination or sequence of these 

classifiers for typically classifying tundra type vegetation in the SPOT-5 satellite 

image that yields higher accuracy than the existing classified vegetation map at 

the 5 meter spatial resolution level. The objectives also included comparing and 



 148 

contrasting the image classification performance between the proposed hybrid 

classification and the standard (spectral) classification techniques: unsupervised 

ISODATA clustering and supervised classification with Feature Analyst. The 

main emphasis here was to explain the detailed heterogeneity of the tundra 

vegetation cover at a 5m scale, rather than the homogeneity of landscape as 

emphasized by the earlier studies. The conclusions of this dissertation and the 

recommendations for future research studies are given in this section. 

5.1. Conclusions 

This research showed the efficient use of a set of rules extracting both 

spatial and spectral knowledge to develop a knowledge base for the rule-based 

classification of arctic vegetation, as a part of the hybrid classification process. 

Use of spatial (slope and aspect) and spectral (SPOT bands, NDVI etc.) 

knowledge together, in the form of if-then rules in the rule-based classifier 

enabled the extraction and classification of relatively complex classes like 

snowbed complex with considerable better efficiency than the other traditional 

classifiers used.  

The methodology uniquely combines together the two different 

approaches stated by Liu et al. (2002) to produce the hybrid classifier, and used 

the kappa values, in the consensus building step in order to improve the 

classification accuracies. It can be concluded from this research that hybrid 

classification technique to classify SPOT-5 data is more appropriate than 
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traditional classification techniques used in this area, in previous research 

studies. The hybrid classifier that combined ISODATA clustering (unsupervised), 

rule-based classifier and the Multilayer Perceptron (MLP) classifier, was found to 

be superior both in terms of overall accuracy and kappa analysis to the use of 

only unsupervised ISODATA clustering or supervised classification with Feature 

Analyst. The proposed hybrid classifier was able to extract all the individual 

classes, except for Moist Dwarf-shrub, Tussock-graminoid Tundra better than 

other two classifiers. The overall accuracy assessed was found to be greater 

than existing classification of the arctic tundra from a SPOT-4 satellite by Stow et 

al. (1988), which had an overall accuracy of about 56%. 

It can also be concluded from this research that results of the accuracy 

assessment of the hybrid classifier were significantly better than that of the two 

other classifiers, at a confidence level of 95%.  

Besides the above conclusions there are several other important 

outcomes of this research. Firstly, the hybrid classifier, using if-then rules and the 

artificial neural network, is nonparametric nature and it is easy to add ancillary 

layers to it than. It also doesn’t require any statistical assumption about the 

distribution of the training sets such as normal distribution as required by 

standard ISODATA clustering. It requires much more effort and time to build the 

set of rules and train the neural network of the hybrid classifier. However, once 

the rules are made finally, the knowledge base of the rule-based classifier and 
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the weights obtained from the neural network learning iterations can be saved 

and used in other parts of the SPOT image that the classifier have not seen; in 

other words the knowledge can be transferred.  

 This research showed the use of a new spectral index called tundra index 

which was specifically formulated to help the differentiation of moist acidic and 

moist acidic tundra. It is a linear transformation of the spectral values of the 

SPOT bands given by  

    
Red) Green  (  IR*2

Red) Green  (  -IR*2

++

+
 

It was observed that the inclusion of the tundra index as one of input 

layers in the MLP classifier improved the average training accuracy from 90.79% 

to 93.75%, and average training kappa values from 0.95 to 0.97 in a single 

hidden layer architecture.  

 None of the satellite image classifications done so far in this region stated 

in the literature have used this hybrid technique. Although the final classified still 

map needs some improvement in terms of accuracy measures before it can be 

used in other scientific researches, the proposed hybrid classification technique 

showed a major improvement than the traditional classifiers. With those 

improvements, the classified map will be important to studies pertaining to 

biogeochemical cycling, landscape ecology, wildlife habitat, ecosystems, 
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hydrology, and general resource management applications in the arctic.  An 

improved understanding of the vegetation species distribution may therefore 

provide insight into the effect of a changing environment on vegetation and 

ecosystem change. With the use of SPOT satellite data, this research provided 

yet another great opportunity to utilize the scope of remote sensing toward an 

enhanced and updated understanding of arctic tundra vegetation distribution in 

study area with constantly changing landforms and land-cover types.  

5.2. Future Research Recommendations 

 In future, application of hyperspectral data (e.g. Advanced Land Imager 

(ALI), Hyperion) instead of SPOT imagery may be a very interesting research 

that might offset the low spectral resolution of SPOT. The classes having spectral 

mixing effect like Moist Dwarf-shrub, Tussock-graminoid Tundra complex and 

Moist Graminoid, Prostrate-shrub Tundra complex may be extracted with better 

accuracy.  Although a resampling technique might be applied to obtain optimum 

spatial resolution to discriminate heterogeneous parcels of tundra vegetation. 

Also the greater number of spectral bands from the hyperspectral data, as input 

layers to the artificial neural network could provide a better data mining 

opportunity for MLP classifier used in the hybrid classification. 

 Using DEM data with better horizontal and vertical accuracy might be 

good improvisation from this research. As result of more accurate DEM data, the 

derived slope and aspect would be expected to be more accurate than that used 
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in this research. A better accuracy estimate can be obtained with these improved 

set of ancillary data. NDVI data produced from hyperspectral data might also 

have a better use as ancillary date to produce better accuracy results. 

 There is a severe research need of creation of ground control points for 

georectification of satellite imagery in this region of Alaska. Since, as stated in 

this research, there is lack of proper locations like road intersections, urban 

features that are prominently and precisely identifiable on the image and used as 

ground control points during the image registration process. The Dalton road, the 

pipeline and the Toolik field station provides some GCP locations but they are 

clustered and located only in the central and eastern portion of the area. To have 

accurate georectification process there is a need of uniform distribution of the 

GCPs through out the image area.   

 Future additions to this research will involve collection of more ground 

truth samples in the form of points, lines and polygons from areas that were not 

possible to visit during the last two summers. The collected points would be used 

to increase both the number of training points as well as the number of points 

used for accuracy assessments. Also the new sample points collected in 

homogenous pixels will be used to replace the training points having spectral 

mixing effects in the transition zones between vegetation classes to ensure better 

training.  Addition of more points for accuracy assessment, distributed evenly in 

the study area would offset the research limitation of not having optimum number 
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of points for accuracy assessment and thus provide better insight of the accuracy 

assessment of the proposed hybrid classification technique.  

In future a glacial geology map with appropriate spatial resolution could be 

added as an input layer to neural network. Incorporation of geology could be very 

useful to differentiate acidic and non-acidic vegetation. Also using a 

geomorphology layer with hyperspectral data might be proved useful to 

differentiate and extract moist non-acidic tundra, dry non-acidic tundra and dry 

acidic tundra classes which in this research were categorized as a single class: 

Moist Graminoid, Prostrate-shrub Tundra complex.  

For the hybrid technique applied, it can be experimented with some or all 

of the following research alternatives: 1) kNN clustering technique replacing the 

ISODATA (C-means ) clustering in the first stage of the hybrid classification,2) 

the neural network (MLP) can be replaced with a decision tree classifier (C 5.0), 

3) incorporation of NHD plus hydrographic data (stream flowline, waterbodies) to 

extract out the riparian shrubs as a separate class from the shrub complex, and 

4) fuzzifying the output of the MLP classifier and bringing in another rule-base 

classifier from fuzzy output. 
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APPENDIX A: FIELD PHOTOS COLLECTED ILLUSTRATING THE   
     DIFFERENT LAND-COVER CLASSES 

1: Moist Low-Shrub Tundra and other Shrublands 
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2: Water and aquatic complex  
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3: Barren complex  
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4: Snowbed complex  
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5: Moist Dwarf-shrub, Tussock-graminoid Tundra complex  
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6: Wet Graminoid Tundra  
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7: Moist Graminoid, Prostrate-shrub Tundra complex  

 

    

 



 173 

APPENDIX B: EXAMPLE OF FIELD FORMS AND FIELD DATA COLLECTION 
    METHODOLOGY  
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APPENDIX C: FIGURE SHOWING THE DIFFERENT RULES OF THE RULE- 
     BASED CLASSIFIER 
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Rule for Moist Dwarf-shrub, Tussock-Graminoid Tundra complex 
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Rule for Wet Graminoid Tundra 
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Rule for Moist Graminoid, Prostrate-shrub Tundra complex 

 

 

 

 

 

 

 

 

 



 

APPENDIX D: TABLE SHOWING THE TRIAL RUNS FOR THE MLP CLASSIFIER WITH DIFFERENT INPUT LAYERS  
     AND NUMBER OF NODES IN THE HIDDEN LAYERS VALUES TO FINALIZE THE NETWORK   
     ARCHITECTURE. The most optimum values are marked in bold (Iteration 6). 

Iterations InputBands SLR ELR 
No. of nodes 
in Hidden 
Layer1 

No. of nodes 
in Hidden 
Layer2 

Training 
RMS 

Testing RMS 
Training 
Accuracy 

Training 
Kappa 

Average 
Accuracy 

Average 
Kappa 

1ai Band1, Band2, Band3 0.00238 0.000235     0.001038 0.003103 86.13 0.9523     

1aii Band1, Band2, Band3 0.00233 0.00025 20 0 0.001031 0.003082 90.13 0..9555 81.4633 0.5734 

1aiii Band1, Band2, Band3 0.00488 0.0005     0.001112 0.003346 68.13 0.1945     

1bi Band1, Band2, Band3 0.00238 0.00025   0.000914 0.002729 78.88 0.2463   

1bii Band1, Band2, Band3 0.00194 0.00194 8 20 0.000898 0.001548 92.75 0.965 83.5433 0.4861 

1biii Band1, Band2, Band3 0.00238 0.00025   0.000948 0.002841 79.00 0.247   

2ai   0.00158 0.00025     0.001024 0.001897 90.63 0.9603     

2aii 1+NDVI 0.00145 0.00025 20 0 0.001033 0.001899 90.63 0.9608 91.2133 0.9639 

2aiii   0.00488 0.0005     0.000489 0.001605 92.38 0.9705     

2bi  0.00074 0.00012   0.000911 0.001713 91.38 0.9647   

2bii 1+NDVI 0.00208 0.00025 10 20 0.000771 0.001478 93.25 0.9768 92.5033 0.9724 

2biii  0.00208 0.00025   0.000784 0.001505 92.88 0.9757   

3ai   0.000154 0.00025     0.001028 0.001901 90.75 0.9544     

3aii 2+Slope+Aspect 0.00138 0.00025 20 0 0.001088 0.001885 90.25 0.9522 90.7933 0.9544 

3aiii   0.00238 0.00025     0.000968 0.001679 91.38 0.9566     

3bi  0.00203 0.00025   0.000782 0.001351 93.75 0.9757   

3bii 2+Slope+Aspect 0.00213 0.00025 16 20 0.000797 0.001366 94.13 0.9759 93.7100 0.9741 

3biii  0.00198 0.00025   0.000823 0.001399 93.25 0.9707   

4ai   0.00181 0.00025     0.000952 0.001671 92.75 0.9689     

4aii 3+textures band 1,2,3, NDVI 0.00099 0.00025 25 0 0.001088 0.001892 91.63 0.9613 91.0433 0.9617 

4aiii   0.00072 0.00012     0.001241 0.002141 88.75 0.9548     

4bi  0.00082 0.00012   0.00087 0.001586 91.63 0.9709   

4bii 3+textures band 1,2,3, NDVI 0.00082 0.00012 25 20 0.000875 0.001588 91.38 0.9709 91.5033 0.9713 

4biii  0.00087 0.00012   0.000865 0.001581 91.50 0.9722   

5ai   0.00488 0.0005     0.000847 0.001465 93.88 0.9644     

5aii 
SPOT+NDVI+Slope+Aspect+ 

tundra index 
0.00488 0.0005 20 0 0.000823 0.001437 94.25 0.974 93.7533 0.9663 

5aiii   0.00181 0.00025     0.000986 0.001711 93.13 0.9604     

 5bi  0.00085 0.00012   0.000828 0.00144 92.88 0.976   

1
8
1
 



 

5bii 
SPOT+NDVI+Slope+Aspect+ 

tundra index 
0.00238 0.00025 18 20 0.00072 0.001231 95.38 0.9798 93.7533 0.9752 

Iterations InputBands SLR ELR 
No. of nodes 
in Hidden 
Layer1 

No. of nodes 
in Hidden 
Layer2 

Training 
RMS 

Testing RMS 
Training 
Accuracy 

Training 
Kappa 

Avg 
Accuracy 

Avg Kappa 

5biii  0.00075 0.00012   0.000848 0.001478 93.00 0.9697   

6ai  0.00036 0.00025   0.000888 0.001543 94.63 0.9702   

6aii 5+irule
** 

0.00046 0.00025 20 0 0.00087 0.001508 95.34 0.9731 95.2833 0.9779 

6aiii  0.00185 0.00025   0.000677 0.001288 95.88 0.9903   

6bi   0.00238 0.00025     0.000623 0.001201 96.00 0.9917     

6bii 5+irule
** 

0.00079 0.00012 20 20 0.000702 0.001285 95.63 0.9855 96.0433 0.9901 

6biii   0.00406 0.0005     0.000637 0.001113 96.50 0.9932     

7ai  0.00076 0.000125   0.000741 0.001366 94.88 0.9811   

7aii 3+logmyindex+irule
** 

0.00046 0.00025 20 20 0.00087 0.001508 95.50 0.9916 95.2100 0.9887 

7aiii  0.0008 0.000125   0.000701 0.001317 95.25 0.9934   

8bi   0.00488 0.0005     0.000626 0.001329 94.63 0.9913     

8bii 3+sqrmyindex+irule
** 

0.00488 0.0005 20 20 0.000624 0.001315 94.88 0.9935 94.9200 0.9929 

8biii   0.00488 0.0005     0.000627 0.001317 95.25 0.994     

 irule
**
 represents the classified image from the rule-based classifier. 
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