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Social desirability bias (SDB) is defined as a tendency in people to present

themselves in a more socially acceptable light, when faced with sensitive questions.

People with a higher degree of SDB tend to give answers that will make them look

good rather than those that are accurate. Randomized Response Technique (RRT)

is one of several techniques used by researchers to circumvent social desirability bias

in personal interview surveys. Starting from the pioneering work of Warner (1965),

many versions of RRT have been developed that can deal with both categorical and

quantitative responses. In this thesis we will focus only on those RRT models that

are useful for quantitative responses. We will discuss a variety of quantitative RRT

models including full, partial and optional RRT models. However, our primary

focus in this thesis will be on optional RRT models. Specifically we will compare

one-stage optional RRT models with two-stage optional RRT models.

For optional RRT models, both additive and multiplicative RRT models have

been used in the literature. However, survey respondents with minimal or no math-

ematical background may find additive models easier to handle. In this thesis we

will discuss some other advantages of using additive optional RRT models as op-

posed to multiplicative optional RRT models. We will develop unbiased estimators

for both the mean and the sensitivity level of a quantitative response sensitive ques-

tion. We will also try to validate the proposed estimators by way of a simulation

study. Throughout this thesis, we will use only the simple random sampling with

replacement (SRSWR) design. However, the results can also be extended to other

sampling designs.
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CHAPTER I

INTRODUCTION

1.1 Background

One of the classic problems encountered in behavioral and social sciences is estimat-

ing the prevalence of a sensitive or delicate behavior. For example, researchers may

want to find out the proportion of people that have cheated on a test in high school,

or may want to estimate the number of alcoholic drinks people consume per week. A

method that is widely used in the estimation of this type of sensitive behavior often

involves conducting some form of a survey. But before the investigators can assert

the validity of responses in their survey, they need to overcome a major obstacle: a

condition known as “Social Desirability Response Bias.”

In brief, Social Desirability Bias (SDB) can be defined as the bias created due

to a person’s desire to be viewed favorably by others. Specifically, individuals have

a natural inclination to present themselves in a more positive or socially acceptable

manner to their interviewers, due to their perceived fear of negative consequences.

These negative consequences may be concrete punitive actions or something intan-

gible like embarrassment, depending on the type of sensitive question being asked.

For example, if a sensitive question involves admitting to an illegal behavior, respon-

dents may genuinely be afraid of repercussions from the law. By the same token,

if the sensitive question entails answering personal health questions, respondents

may be embarrassed to reveal their true behavior in fear of negative judgments by

the interviewer. Regardless, researchers end up dealing with fabricated or distorted
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responses, thus leading to inaccurate or invalid estimates of the sensitive behaviors

they are studying. SDB usually presents itself in relation to external environmental

situations or internal individual characteristics. External situations may include

the effect of who is administering the survey or an item characteristic in terms of

“perceived desirability of behavior.” For example, a person may not want to admit

to having called in sick to work without being sick. Internal individual attribute

relates to differences between individual personality traits in terms of “impression

management” or “self-deception” (Randall and Fernandes, 1991). For example, a

person may be reluctant to admit that he has a drinking problem, perhaps even to

himself, even though clinically he would be diagnosed as an alcoholic.

1.2 Circumventing Social Desirability Response Bias

There have been several techniques explored in the past to cope with SDB. We will

briefly outline some of these techniques which include guaranteeing confidentiality,

employing the SDB scale, and using the Bogus Pipe Line (BPL) method. Finally,

we will describe in detail our chosen method of dealing with SDB: the Randomized

Response Technique (RRT).

One of the best ways to elicit truthful responses, and thus minimize SDB,

is to guarantee confidentiality. This may not be as simple as the researchers ver-

bally assuring the respondents that “your data will only be analyzed in aggregate

form, and you cannot be individually identified.” To ensure that respondents will

provide the most truthful responses possible, they have to believe that “complete

anonymity” from everyone involved in the process actually exists. This is best

achieved via a completely anonymous survey, like a mail-in questionnaire with no

identifying data, where there is no respondent-to-researcher contact whatsoever.

Unfortunately, mail-in surveys have abysmal response rates, thus leading to a dif-
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ferent set of problems. Not only will the low response rate affect the precision of

results, but the non-responders may fit into their own distinct categories, creating

a non-response bias in its own right. On the flipside, in-person surveys have the

highest response rates, undoubtedly because it is much more difficult for the respon-

dents to refuse participation in a face-to-face situation with the interviewers. But

this same face-to-face interaction also makes it more awkward for the respondents to

be completely candid with their responses to sensitive questions. In-person studies

having the most direct respondent-to-researcher contact, not surprisingly, tend to

markedly accentuate SDB and produce the least reliable results.

The method just outlined tries to decrease SDB, where as other methods

aim to measure and account for its severity, and then try to make adjustments

accordingly during analysis. One such method uses a “SDB scale.” Crowne and

Marlowe (1960), developed the Crowne-Marlowe Social Desirability Bias (MCSDB)

scale which measures individual SDB levels. A survey which lists 33 personal at-

titude type statements is administered to the subjects. The subjects are asked

if each statement is true or false for them personally. Each statement has a so-

cially accepted or morally “correct” answer, and depending on how the statement

is worded, that could be “true” or “false (see example below). A socially correct

answer is scored as one point, while an incorrect answer is scored as zero points.

Thus the higher the SDB score for the whole survey, the greater the tendency of the

individual to give socially desirable responses (or inflate SDB.) Although useful, the

MCSDB scale measurement can add significantly to the respondent burden which

can lead to lower response rates. To this end, Reynolds (1982) developed compara-

ble 11, 12, and 13 item condensed versions of the test. The 13 item version yielded

the best results in approximating the original MCSDB scale, and is shown in Table

1.1 below. The socially appropriate or correct answer is listed in parentheses next
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to each item. These SDB scores can be used in conjunction with the other ques-

tions under investigation to see if there is a significant impact on how individuals

answer other questions. If so, the SDB scores can be used as a covariate during the

analysis phase of the study, to adjust the means for the sensitive question(s) under

investigation.

Table 1.1: Reynolds 13-Point SDB Questionnaire with socially
desirable responses shown in parentheses

1 It is sometimes hard for me to go on with my work if I am not
encouraged. (F)

2 I sometimes feel resentful when I don’t get my way. (F)
3 On a few occasions, I have given up doing something because I
thought too little of my ability. (F)

4 There have been times when I felt like rebelling against people
in authority even though I knew they were right. (F)

5 No matter who I’m talking to, I’m always a good listener. (T)
6 There have been occasions when I took advantage of someone.
(F)

7 I’m always willing to admit it when I make a mistake. (T)
8 I sometimes try to get even, rather than forgive and forget. (F)
9 I am always courteous, even to people who are disagreeable. (T)
10 I have never been irked when people expressed ideas very differ-

ent from my own. (T)
11 There have been times when I was quite jealous of the good

fortune of others. (F)
12 I am sometimes irritated by people who ask favors of me. (F)
13 I have never deliberately said something that hurt someone’s

feelings. (T)

Another novel strategy for circumventing SDB is using an experimental

method known as the Bogus Pipe Line (BPL) method. Developed by Jones and

Sigall (1977), it may be best described as a “fake lie detector test”. Respondents

are hooked up to electrodes that supposedly send signals to a device which can

detect if the respondent is being truthful or not. During the initial phase of the

experiment, respondents are asked to answer some questions, the answers for which
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are already known to the investigators. They are encouraged to give some truthful

responses, and some that are fabricated, so that the investigators can “prove” to

the respondents that the device to which they are attached actually works. Every

time an untruthful response is provided, the interviewer presses a hidden buzzer

indicating that an untruthful response has been detected. This technique can be

quite successful in reducing SDB, since many if not most of the respondents do end

up believing that the device is legitimate (Roese, and Jamieson, 1993). However, as

with the SDB scale method described earlier, and even more so with this method, a

major drawback is that it is extremely resource intensive, not only for the respon-

dents, but also for the investigators. A great deal of time and money need to be

invested in setting up and running the rather complex experimental conditions and

physical machinery. Also, the method is obviously not portable. This method may

be best used when the benefits of usage outweigh the large costs involved. Another

pertinent philosophical criticism posed against this technique is that the researcher

may not be acting in a truly ethical manner in conducting the study, as the re-

searcher is essentially deceiving the subject as to the capabilities of the machine

used.

One important note about the nature of SDB must be stressed. All the

methods that we list in this thesis cannot completely circumvent SDB, they just try

to mitigate it. As described earlier, people also have an internal “self-deception”

mechanism continually at work, which tries improve their self-esteem. This results

in people subconsciously putting themselves in a more positive light without being

aware of it.



6

1.3 Randomized Response Technique

Now we will describe another method for coping with SDB, which will be the main

focus of discussion in this thesis. This resourceful method was devised by Warner

(1965) to decrease SDB and is called the Randomized Response Technique (RRT).

Broadly speaking, while employing this technique, the respondent is asked to ran-

domize or “scramble” the response to a sensitive or threatening question. This

“scrambling” is based on some preset randomization device. The key point to take

notice of here is that the subject’s reported response is based on chance. That is

to say, it is based on the outcome of the randomization device, and as a result, the

respondent’s “public” answer is “cloaked”. The respondent is convinced that the

unscrambling can be done only at the group level and not at the individual level.

This allows the respondent to have the anonymity needed to be able to answer freely

in a face-to-face situation, thereby helping decrease SDB.

A quick example of a typical RRT set-up will help clarify the technique better.

Let’s say we are interested in estimating the “average number of alcoholic drinks

consumed daily” in a population. In a regular in-person survey, the interviewer

would directly ask the respondent: “how many alcoholic drinks do you consume on a

typical day?” This question would make some respondents feel quite uncomfortable,

especially in a face-to-face situation with the interviewer, and therefore pressure

them into understating or distorting their “true responses.” But in the RRT realm,

for the same question, the scenario would be somewhat different. Let’s say we have

chosen our randomization device to be a standard deck of cards, with the face cards

discarded. The respondent would be given the deck of cards, asked to pick a card,

then without letting the interviewer see that card, simply report the sum of the

“number listed on the card” and the “true response” back to the interviewer.

It is important to reiterate that another reason RRT convinces respondents



7

give more truthful responses without embarrassment (albeit scrambled responses), is

that they can easily see that the interviewers do not know which card they personally

picked, and thus cannot know their true responses on an individual level. But an

even more interesting aspect about using this method is that, even without knowing

the true individual level responses, researchers can calculate group level estimates

for the sensitive behavior being studied. This is done using the known distribution

properties of the randomization device being employed and other mathematical

techniques.

Most RRT models are some variant of the example described above. But all

have two things in common: one is the “randomization” feature and the other is the

“anonymity” feature — especially in front of the interviewer. This is where the choice

of randomization devices becomes important. Randomization devices theoretically

can take various forms, for example, a coin, a pair of dice, a deck of cards, a random

number generator, or even a roulette wheel. But practically speaking, a randomiza-

tion device that is portable, easy to understand and handle for respondents in any

RRT experimental environment, would be preferable. More importantly, a random-

ization device that easily allows the respondent to hide the outcome of the device

from the interviewer would be ideal. A standard or appropriately modified deck of

cards fits all the above criteria. Thus in most of the models described in this thesis

we will use a deck of cards as our preferred randomization device.

Many types of RRT models have been developed in the past, and they can be

categorized as two major types: binary and quantitative. Binary response models

are used to estimate the proportion of some behavior or occurrence in a population,

and elicit a binary response during the RRT process. For example, to estimate

the “proportion of people who drank coffee today” we could list statements: “I

drank coffee today” and “I did not drink coffee today” on the cards in a deck.
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The respondent would randomly pick a card, and simply respond “true” or “false”

to the statement listed on the card. Thus the respondent is not stating explicitly

whether or not he drank coffee, he is simply responding to the statement shown on

the randomly drawn card. Quantitative response models are used to estimate the

mean value of some behavior in a population. They can be further sub-classified as

either additive models or multiplicative models. For example, to estimate “average

number of cups of coffee consumed daily” we could use a standard deck of cards.

The respondent would pick a card, and for the additive model, would respond with

the sum of the card value and his true response; while for the multiplicative model,

he would respond with the product of the card value and his true response.

RRT models can also be categorized by how the respondents are instructed

to randomize. If all respondents are asked to randomize their response, the model is

characterized as a “full randomization model.” If some of respondents are instructed

to randomize their response, the model is characterized as a “partial randomization

model” or a “two-stage model.” And finally, if respondents are given an option to

randomize their response, it is characterized as an “optional randomization model.”

In connection with the “optional randomization model,” another key concept of

“question sensitivity level” needs introduction. “Sensitivity” is defined as the

proportion of respondents who think the question is sensitive and hence choose

to randomize their responses. Earlier we had specified that in quantitative RRT

models, we estimate the mean value for a sensitive behavior. But in an optional

randomization model, we end up estimating two parameters: the mean value of the

sensitive behavior and the “sensitivity” level of that behavior. RRT models can

also be classified as one-stage and two-stage (as indicated above, with the “partial

randomization model”. One-stage specifies respondents to follow either the full

randomization or optional randomization route in one phase. On the other hand,
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“partial randomization models” are like two-stage models, because a proportion of

respondents (based on some randomization device) is asked to answer truthfully,

while the rest are asked to randomize (again based on some randomization device.)

1.4 Goals

In general, each model described above in progression is better than the one previ-

ous to it, in terms of a balance between the model’s relative efficiency (decreased

variance) and model’s ease of use in conjunction with the respondent’s perceived

anonymity level. Previously, a one-stage optional additive model using two inde-

pendent samples (Gupta et al., 2006) and a two-stage optional multiplicative model

using one sample (Gupta and Shabbir, 2007) have been specified. Both have their

own distinct advantages and disadvantages. We aim to use these two models as

a basis, and propose a “two-stage additive optional model using two independent

samples” which would optimize the benefits of each, and produce a model with

greater efficiency.

In Chapter 2, we will start with the theoretical framework of RRT and de-

scribe the methodology involved in various previous models that are relevant for

the development of our current models. Namely, we will begin by outlining the

basic binary and quantitative response models. In Chapter 3, we will introduce

the optional RRT model. We will also compare and contrast the differences among

full, partial, and optional quantitative randomization models. Moreover, we will

discuss the shortcomings and benefits of additive versus multiplicative models in

conjunction with one-stage and two-stage studies. In Chapter 4, we will specify

in detail our proposed “two-stage optional additive RRT model using two indepen-

dent samples.” In Chapter 5, we will provide simulation results for this model in

comparison to other models and also provide some concluding remarks.
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We would like to note that there are many other types of RRT models that

exist in the literature. However, our focus in this thesis will be on variations of

Warner’s (1965) binary response RRT model and the Eichhorn and Hayre (1983)

quantitative response model.
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CHAPTER II

ONE AND TWO-STAGE RANDOMIZED RESPONSE MODELS

In this chapter we will introduce both binary response and quantitative re-

sponse RRT models. First we will outline some binary response models, since they

form the historical backbone of RRT research. But after that we will concentrate

mainly on the quantitative models, since they form the basis of the proposed models

in this thesis.

As briefly introduced earlier, binary response models are used in estimating

the proportion of some behavior or occurrence in the population. As the name im-

plies, there are two mutually exclusive responses possible (‘yes/no”, “agree/disagree”,

“true/false” etc.) On the other hand, quantitative response models involve numeric

responses. Thus, if we want to estimate the mean of a random variable that de-

scribes some behavior or occurrence, we would use a quantitative response model.

In the following sections, we will describe in detail the early models developed for

these two situations. In conjunction, we will also define and explain the differences

between full and partial randomization models, which will come into play when

later defining our proposed models.

2.1 Binary Randomized Response Models

2.1.1 Full Binary RRT Model

Most of the RRT models are based on the pioneering work done by Stanley Warner

in 1965. Warner’s model is used to estimate the proportion of subjects with a
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sensitive behavior or characteristic. In order to estimate this proportion, a ran-

domization device such as a deck of flash cards is employed, whereby all subjects

are asked to randomize their responses based on the deck of cards. The sampling

scheme considered here and throughout this thesis is simple random sampling with

replacement. Since all subjects are asked to scramble their responses, the model is

called a “full randomization” model. Two types of statements are written on the

cards: a certain proportion of cards state “I have characteristic A;” the remaining

proportion of the cards state “I do not have characteristic A.” If the subject agrees

with the statement on the card that he happens to pick, the response would be

“yes.” Conversely, if the subject disagrees with the statement, the response would

be “no.” It is important to note, that the interviewer has not seen the card that the

respondent has picked, and thus does not know which question is being answered.

The interviewer simply records the “yes” or “no” responses.

So mathematically, letting π be the true proportion of the subjects with the

sensitive characteristic, and p be the proportion of cards with “I have characteristic

A” written on them, the probability of a “yes” response, py, would be

py = pπ + (1− p) (1− π) . (2.1)

Solving for π , we get

π =
py − (1− p)
2p− 1 , p 6= .5 (2.2)

Using the sample data leads to Warner’s unbiased estimator for π given by

bπw = bpy − (1− p)
2p− 1 . (2.3)

Note the proportion of “yes” responses is estimated by

bpy = n1
n
, (2.4)
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where n is the sample size and n1 is the number of “yes” responses.

From the fact that

V ar(bpy) = py (1− py)
n

, (2.5)

it can be verified that the variance for the estimator bπw is:
V ar (bπw) = π (1− π)

n
+

p (1− p)
n (2p− 1)2

. (2.6)

The second term in the above equation
³
p(1−p)
n(2p−1)2

´
is the penalty for using the RRT

model. Note that this penalty is minimized when p ≈ 0 or p ≈ 1.

For example, if we were interested in estimating the proportion of people

who have ever tried cocaine, the following display shows the four possible outcomes

for this RRT process. The respondent’s reported response, which is listed in the

cells, is based on two factors: his “true cocaine user status” and the “card the

respondent he happens to pick”. The “true cocaine user status” is specified in the

left margin column, while the “card picked” is specified in the header row. The

proportions for each of the two types of cards and the proportions for each of the

two types of user status are shown in parentheses

True Status Card Picked

I have tried cocaine(p) I have never tried cocaine(1− p)
User(π) yes no

Non-User(1− π) no yes

Each individual participant would simply answer “yes” or “no” truthfully,

based on the card he happens to pick. So if a person who has tried cocaine before

picks the “I have tried cocaine” card, he would agree with that statement, so he

would simply answer “yes.” On the other hand, if a person who has tried cocaine
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picks the “I have never tried cocaine” card, he would disagree with that statement,

so he would answer “no.” Using the display, it’s easy to verify the specification

for proportion of “yes” responses listed in equation (2.1) above. Note that the

proportions p and 1 − p are known, as are the number of “yes” responses n1 and

the sample size n, hence we can calculate the values of bπw and V ar (bπw).
2.1.2 Partial Binary RRT Model

Building on Warner’s original model, Mangat and Singh (1990) proposed a slightly

different model to increase the efficiency of Warner’s estimator. Rather than having

all subjects scramble their response, they proposed a two-stage model. In stage

1, some proportion of the subjects would respond truthfully, while the rest would

go to stage 2, whereby they scramble their response (i.e., stage 2 subjects would

follow Warner’s model.) Which subjects go to stage 2 is based on a “stage 1

randomization device”. For instance, the “stage 1 randomization device” could be

a deck of cards, with a known proportion (T ) of cards asking the subject to answer

the “I have characteristic A” question truthfully; the remaining proportion (1− T )

of cards ask the subject to use the “stage 2 randomization device” to answer the

question. All subjects relegated to stage 2 scramble their responses, exactly as they

would have with Warner’s full randomization model. Again, the interviewer does

not know which question you answered or if you answered in stage 1 or stage 2; he

merely records the “yes” or “no” responses.

Updating Warner’s model above, let π be the true proportion of subjects with

the sensitive characteristic, T be the proportion of subjects answering truthfully in

stage 1, and p be the proportion of cards in stage 2 with “I have characteristic A”

written on them, then the probability of a “yes” response, py, becomes

py = Tπ + (1− T ) {pπ + (1− p) (1− π)} . (2.7)
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Using the sample data leads to the Mangat and Singh unbiased estimator for the

proportion of sensitive characteristic, given by

bπms = bpy − (1− T ) (1− p)
(2p− 1) + 2T (1− p) , (2.8)

where bpy = n1
n
, n is the sample size, and n1 is the number of “yes” responses.

The variance for this estimator is given by

V ar (bπms) = π (1− π)

n
+
(1− T ) (1− p) [1− (1− T ) (1− p)]

n [(2p− 1) + 2T (1− p)]2
. (2.9)

The second term in the equation is the penalty for using this model. Note that

when T = 0 this model reduces to Warner’s full RRT model specified above.

So if we use the same example of estimating the proportion of people who

have ever tried cocaine, the following display shows all the possible reported re-

sponses using the partial RRT model:

True

Status

Stage 1

Card (T )
Stage 2

Card (1− T )
Reported

Response

User (π)
Tell the truth

go to S2

go to S2

N/A

I’ve tried cocaine

I’ve never tried cocaine

YES

YES

NO

Non-User

(1− π)
Tell the truth

go to S2

go to S2

N/A

I’ve tried cocaine

I’ve never tried cocaine

NO

NO

YES

Note that the Mangat and Singh partial RRT estimator bπms is more efficient
than Warner’s full RRT estimator bπw for fixed sample size if

T >
1− 2p
1− p ,

which is always true when p > .5.
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2.2 Quantitative Additive Randomized Response Models

While the previously described binary response RRT models form a good basis for

explaining the intricacies of how RRT models function, we will devote the rest of the

thesis to quantitative response RRT models. For quantitative response RRT models

we want to estimate the mean prevalence of some sensitive behavior. We will outline

the additive models first, since they are easier to comprehend for the respondents

and also, mathematically easier to analyze. For the additive quantitative model,

subjects would be asked to scramble their responses using a randomization device

like a deck of cards. Now, each of the cards in the deck would have a number listed

on it, where the numbers in the deck follow a known probability distribution. The

subject would be asked to add his “true response” to the “number listed on card”

he picked, and then report only the sum to the interviewer. The interviewer cannot

see the card picked and would simply record a number.

2.2.1 Full Additive RRT Model

The quantitative additive version of Warner’s binary full randomization model is

specified below (Warner, 1971). Again, since it’s a full randomization model, all

subjects are instructed to randomize their responses based on a outcome of the

randomization device with known mean and variance.

Mathematically, for the additive model, if we let Y be the reported response,

X be the true sensitive variable of interest with unknown mean μx and unknown

variance σ2x, and S be the scrambling variable (independent of X) with known true

mean μs (E(S) = μs) and known variance σ
2
s , then

Y = X + S. (2.10)
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The expected response is given by

E(Y ) = E(X) +E(S)

= μx + μs. (2.11)

Estimating E(Y ) by the sample mean Y of the reported responses, we get the

unbiased estimator for the mean of the sensitive variable, given by

bμx = Y − μs. (2.12)

The variance for this estimator is given by

V ar (bμx) = V ar
³
Y
´
=

σ2y
n

=
σ2x
n
+

σ2s
n
. (2.13)

In equation (2.13), σ2s
n
represents the penalty for using a RRT model.

For example, if researching the average weekly alcohol consumption rate, we

may ask the subjects “how many alcoholic drinks do you typically consume per

week?” We would ask them to add their true response to the numeric card they

pick from the deck. The cards in the deck we created list the numbers 5, 6, 7, 8,

and 9 with corresponding frequencies of 6, 10, 16, 10, and 6, respectively. Thus, the

frequency distribution of the card values have a mean μs = 7 and variance of 1.42.

If we get the following experimental result corresponding to a sample of size 5,

TRUE # of drinks Card Picked Reported Response

5 9 14

0 7 7

7 5 12

6 6 12

3 6 9

Y= 10.8bμx=Y−μs= 10.8− 7 = 3.8
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then our estimate for μx would be 3.8.

2.2.2 Partial Additive RRT Model

Building upon the quantitative full additive RRT model, Gupta and Thornton

(2004) have described a partial (two-stage) quantitative randomization model. Sim-

ilar to the binary version of the partial randomization model, some known propor-

tion (T ) of cards in the deck ask subjects to respond truthfully (stage 1), while the

remaining proportion (1−T ) of cards ask the respondents to report the sum of the

number listed on the card and their true response (stage 2).

Let T be the proportion of cards asking respondents to answer truthfully, Y

be the reported response, be the sensitive variable of interest with unknown mean

μx and unknown variance σ
2
x, and S be the scrambling variable (independent of X)

with known true mean μs (E(S) = μs) and variance σ
2
s , then

Y =

(
X with probability T
X + S with probability (1− T ). (2.14)

Expected response is given by

E(Y ) = (T )E(X) + (1− T )E(X + S)

= (T )μx + (1− T )(μx + μs)

= μx + (1− T )μs. (2.15)

Substituting the sample mean Y of the reported responses for E(Y ), we get the

unbiased estimator for the mean of the sensitive variable given by

bμx = Y − (1− T )μs. (2.16)

The variance for this estimator is given by

V ar (bμx) =
σ2x
n
+
(1− T )(σ2s + Tμ2s)

n
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=
1

n
[σ2x + (1− T )(σ2s + Tμ2s)]. (2.17)

Using our previous example of “how many alcoholic drinks do you typically

consume per week?”, we now change it to a two-stage model, where 20% (T = .2)

are asked to answer truthfully (stage 1). The rest, 80% (1 − T = .8) are asked

to randomize their response (stage 2). The cards in the second part of the deck

list the numbers 5, 6, 7, 8,and 9 with corresponding frequencies of 6, 10, 16, 10, and

6, respectively Thus, the frequency distribution of the card values have a mean

μs = 7 and variance of 1.42. If we get following experimental result corresponding

to a sample of size 5, then our estimate for μx would be 4.

T = .2 (1− T ) = .8
True # of drinks Stage 1 Stage 2 Reported Response

5 go to S2 9 14

0 go to S2 7 7

7 go to S2 5 12

6 Tell Truth N/A 6

3 go to S2 6 9

Y= 9.6bμx=Y−(1− T )μs= 9.6− (.8)7 = 4

Gupta and Thornton (2002) noted that for a quantitative response, the vari-

ance using the partial randomization model is less than the variance of the full

randomization model if

T >
μ2s − σ2s

μ2s
= 1− CVs2,

where CVs is the coefficient of variation of S.
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2.3 Quantitative Multiplicative Randomized Response Models

Similar to the additive quantitative RRT models, multiplicative models also esti-

mate the mean prevalence of a sensitive behavior. Again, a deck of cards with

known probability distribution is employed, but now when the subjects scramble

their responses, they are asked to report the product of the “true response” and the

“number listed on the card” picked. Of course, the interviewer simply records a

number and cannot see the card picked.

2.3.1 Full Multiplicative RRT Model

The full randomization model was developed by Eichhorn and Hayre (1983). It is

analogous to the full randomization additive model.

For the multiplicative model, let Y be the reported response, X be the true

sensitive variable of interest with unknownmean μx and unknown variance σ
2
x, and S

be the scrambling variable (independent ofX) with known true meanE(S) = μs = θ

and known variance σ2s , the respondent is asked to report

Y =
XS

θ
. (2.18)

Expected response is given by

E(Y ) =
E(X)E(S)

θ
= μx. (2.19)

Estimating μx using the sample mean of the reported responses Y , we get the

unbiased estimator for the mean of the sensitive variable, given by

bμx = Y . (2.20)

The variance of this estimator is given by

V ar (bμx) = 1

n

"
σ2x +

σ2s
θ2

³
σ2x + μ2x

´#
. (2.21)
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2.3.2 Partial Multiplicative RRT Model

Similar to the additive partial randomization model, some known proportion (T ) of

cards in the deck ask subjects to respond truthfully (stage 1), while the remaining

proportion (1−T ) of cards ask the respondents to report the product of the number

listed on the card and their true response (stage 2) divided by θ.

Mathematically, for the multiplicative model, let Y be the reported response,

X be the sensitive variable of interest with unknown mean μx and unknown variance

σ2x, and S be the scrambling variable (independent of X) with known true mean

E(S) = μs = θ and variance σ2s , then

Y =

(
X with probability T
XS
θ

with probability (1− T ). (2.22)

Expected response is given by

E(Y ) = (T )E(X) + (1− T )E(X)E(S)
θ

= (T )μx + (1− T )μx

= μx. (2.23)

Estimating μx using the sample mean of the reported responses Y , we get the

unbiased estimator for the mean of the sensitive variable, given by

bμx = Y . (2.24)

To calculate the variance for this estimator bμx, we must first calculate V ar (Y ) since
V ar (bμx) = V ar ³Y ´ = V ar µY

n

¶
. (2.25)

Noting that

E(X2) = σ2x + μ2x (2.26)
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and

E(S2) = σ2s + θ2, (2.27)

we get

V ar (Y ) = E(Y 2)− [E(Y )]2

=

"
(T )E(X2) + (1− T )E(X

2)E(S2)

θ2

#
− μ2x

= (T )(σ2x + μ2x) + (1− T )
(σ2x + μ2x)(σ

2
s + θ2)

θ2
− μ2x

= σ2x + (1− T )
σ2s
θ2

³
σ2x + μ2x

´
. (2.28)

Finally, via equation (2.25) we can calculate V ar (bμx):
V ar (bμx) = 1

n

"
σ2x + (1− T )

σ2s
θ2

³
σ2x + μ2x

´#
. (2.29)

If we compare the variance of the partial multiplicative and full multiplicative RRT

models, the partial RRT model variance given by equation (2.29) will be lower than

full RRT model variance given by equation (2.21),

if
1

n

"
σ2x + (1− T )

σ2s
θ2

³
σ2x + μ2x

´#
<

1

n

"
σ2x +

σ2s
θ2

³
σ2x + μ2x

´#

or if 1− T < 1.

It should be noted that 1− T < 1 is always true, since 0 ≤ T ≤ 1.
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CHAPTER III

OPTIONAL RANDOMIZED RESPONSE MODELS

The key difference between the RRT models outlined thus far and the Op-

tional RRT models we will discuss next is that now, the respondent gets to decide

if he wants to give the true response or a scrambled response. The respondent is

asked to answer truthfully if he considers the question non-sensitive, otherwise the

respondent is instructed to provide a scrambled response. In earlier models, the

subject was not given a choice on how to respond — either he was asked to give

a true response or he was asked to give a scrambled response (although that was

still dependent on chance). This choice gives the respondents an even higher sense

of security with respect to the anonymity issue, thus encouraging more truthful

responses.

3.1 One-stage Optional Randomized Response Models

One-stage optional RRT models are characterized by the fact that all subjects are

allowed to choose whether they want to scramble their response or answer truthfully.

3.1.1 One-stage Multiplicative Optional RRT Model using One Sample

Gupta et al. (2002) developed a model in which the respondents are given the

following two options:
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a) Report a truthful response if you do not consider the
question to be sensitive

b) Report a multiplicatively scrambled response if you
consider the question to be sensitive

Based on this model, they called the proportion of subjects that scramble

the response the “sensitivity level” of the behavioral question being studied. Note,

now we have two parameters that need estimation — the usual sensitive question

mean (μx) and the newly added sensitivity level (W ).

Thus, let W (0 ≤ W ≤ 1) be the sensitivity level (i.e., the proportion of

respondents in the population who consider the question to be sensitive) and Y be

a random variable where

Y =

(
1 if response is scrambled
0 if response not scrambled.

Note that Y ∼ Bernoulli(W ) and

E(Y ) =W. (3.1)

Now the mathematical optional RRT model can be fully specified. Let X be the

true response variable, and S be the scrambling variable (independent of X ) with

known true mean E(S) = μs = 1, then the reported response Z is given by

Z = SYX. (3.2)

Thus

E(Z) = E(SYX)

= E
h
SYX|Y = 1

i
P (Y = 1) +E

h
SYX|Y = 0

i
P (Y = 0)

= E(S)E(X)P (Y = 1) +E [X]P (Y = 0)

= μxW + μx(1−W ), since E [S] = 1

= μx. (3.3)
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Estimating E(Z) using the sample mean of the reported responses 1
n

Pn
i=1 Zi = Z,

we get the unbiased estimator for the mean of the sensitive variable given by

bμx = Z. (3.4)

The variance for this estimator is given by

V ar (bμx) = V ar ³Z´ = 1

n

h
σ2x +Wσ2s

³
σ2x + μ2x

´i
. (3.5)

Note that V ar (bμx) increases as W increases from 0 to 1. This makes sense since

W represents the sensitivity of the question, and the greater the proportion of

respondents that scramble their response, the smaller the number that answer the

sensitive question truthfully, thus decreasing the estimation efficiency. Finally, in

comparison to Eichhorn and Hayre’s (1983) full multiplicative RRT model, where

the variance equation (2.21) is given by

V ar (bμ) = 1

n

"
σ2x +

σ2s
θ2

³
σ2x + μ2x

´#
,

the relative efficiency of the optional RRT model (if θ = 1) is given by:

RE =
σ2x + σ2s (σ

2
x + μ2x)

σ2x +Wσ2s (σ
2
x + μ2x)

. (3.6)

Note that RE ≥ 1 since 0 ≤W ≤ 1.

The second parameter (W ) can be estimated as follows. Starting with the

optional RRT model Z = SYX, we get

ln(Z) = Y ln(S) + ln(X)

E{ln(Z)} = E(Y )E{ln(S)}+E{ln(X)}

E{ln(Z)} ≈ W ·E{ln(S)}+ ln{E(X)}

W ≈ E{ln(Z)}− ln {μx}
E{ln(S)} (3.7)
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This leads to the following estimator

cW =
1
n

Pn
i=1 ln(Zi)− ln

n
1
n

Pn
i=1 Zi

o
δ

. (3.8)

where δ = E{ln(S)} is the known expected value of the log of the scrambling

variable. Note that the above estimate is based on the first order Taylor’s approxi-

mation of E[ln(X)] in the sense that E[ln(X)]is approximated by ln[E(X)]. Gupta

and Shabbir (2007) use a second order approximation in the two-stage optional RRT

model (discussed later.)

3.1.2 One-stage Multiplicative Optional RRT Model using Two Independent Sam-

ples

One possible drawback of the Gupta et al. (2002) model is that it cannot work

with qualitative response variables. Thus Gupta and Shabbir (2004) developed a

model to overcome this issue. Using a design similar to the Greenberg et al. (1969)

unrelated question model they have used two independent samples.

Let X be the sensitive variable with mean μx and variance σ
2
x, and W be the

sensitivity level. Furthermore, we use two independent random samples of sizes

ni (i = 1, 2), where sample members in the ith sample use randomization device

Ri. The two randomization devices follow different probability distributions with

different means θi and different variances σ
2
Si. As with the one sample model, the

respondent is given a choice to scramble or not. Namely, the respondent is asked

to provide the truthful response if the question posed is not considered sensitive,

otherwise the respondent is asked tomultiply the true response with the output from

the randomization device and report the final scrambled response. The reported
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response Zi (i = 1, 2) for the ith sample, would be

Zi =

(
X with probability (1−W )
SiX with probability W

where X is the true response, Si (i = 1, 2) is the scrambling variable corresponding

to scrambling device Ri. We assume X, S1, and S2 to be mutually independent.

Noting that E(Si) = θi, we get

E(Zi) = E(X)(1−W ) +E(SiX)W

= μx[1 +W (θi − 1)], i = 1, 2.

Then solving these two equations simultaneously leads to the following estimators:

bμx = Z1(θ2 − 1)− Z2(θ1 − 1)
θ2 − θ1

, θ1 6= θ2 (3.9)

and

cW =
Z2 − Z1

Z1(θ2 − 1)− Z2(1− θ1)
, (3.10)

where E(Zi) is estimated by the usual sample mean of the reported responses of

the ith sample (Zi).

Gupta and Shabbir (2004) derived the variances for the above estimators.

The variance of bμx is
V ar (bμx) = 1

(θ2 − θ1)2

"
(θ2 − 1)2

Ã
σ2Z1
n1

!
+ (θ1 − 1)2

Ã
σ2Z2
n2

!#
, (3.11)

where

σ2Zi = (σ
2
x + μ2x)[1−W +W (θ2i + σ2Si)]− μ2x[θiW + (1−W )]2, (3.12)

and the variance for estimator cW is given by

V ar(cW ) ≈ 1

(θ2−θ1)2μ2x

"
[1 +W (θ2−1)]2

Ã
σ2Z1
n1

!
+[1 +W (θ1−1)]2

Ã
σ2Z2
n2

!#
. (3.13)
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3.1.3 One-stage Additive Optional RRT Model using Two Independent Samples

To help resolve the problem of approximation used in calculating the V ar(cW ) above,
Gupta et al. (2006) developed another optional RRT model using two independent

samples, but this time using an additive scrambling model rather than a multiplica-

tive one.

As with the previous model, let X be the sensitive variable with mean μx

and variance σ2x and W be the sensitivity level. We select two independent random

samples, of sizes ni (i = 1, 2), where the ith sample uses randomization device

Ri, with mean θi and variance σ2Si. Again, the respondent is given a choice of

scrambling the response if the question is considered sensitive. This time, rather

than the product, the respondent who scrambles the response is asked to add the

true response with the output from the randomization device and report the final

scrambled response.

The reported response Zi (i = 1, 2) for the ith sample, would be

Zi =

(
X with probability (1−W )
X + Si with probability W

where X is the true response, Si (i = 1, 2) is the variable value picked using scram-

bling device Ri and W is the sensitivity. We assume X, S1, and S2 to be mutually

independent.

Note that

E(Zi) = μx + θi(W ) i = 1, 2.

Solving these two equations simultaneously leads to the estimators

bμx = Z1θ2 − Z2θ1
θ2 − θ1

, θ1 6= θ2, (3.14)
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and

cW =
Z2 − Z1
θ2 − θ1

. (3.15)

It can be verified that bμx and cW are unbiased estimators of the true population

mean μx and the true population sensitivity W , respectively.

Variances of these estimators are given by

V ar (bμx) = 1

(θ2 − θ1)2

"
θ22

Ã
σ2Z1
n1

!
+ θ21

Ã
σ2Z2
n2

!#
(3.16)

and

V ar(cW ) = 1

(θ2 − θ1)2

"
σ2Z1
n1

+
σ2Z2
n2

#
. (3.17)

As compared to the multiplicative model, notice that the V ar
³cW´

is not based on

an approximation, since cW in equation (3.15) is no longer a ratio of two random

variables, as was the case in equation (3.10).

Optimum sample sizes were also calculated that would minimize the sum of

the estimator variances
h
V ar (bμx) + V ar(cW )i. These optimal values are given by

n1 =
nσZ1

q
θ22 + 1

σZ1

q
θ22 + 1 + σZ2

q
θ21 + 1

(3.18)

and

n2 =
nσZ2

q
θ21 + 1

σZ1

q
θ22 + 1 + σZ2

q
θ21 + 1

. (3.19)

In addition to being able to provide an exact expression for V ar(cW ), this
model affords the respondents a much more user friendly calculation (Singhal, 2004).
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3.2 Two-stage Optional Randomized Response Models

As described earlier, a partial RRT model, where a known proportion of the re-

spondents are asked to answer truthfully, generally leads to a better estimate for

the mean of the sensitive question. We also learned that optional models help in

respondent confidence of anonymity of the survey since they leave the scrambling at

the discretion of the respondent. Using these two facts lead to the development of

a “two-stage optional model.” A two-stage optional RRT model is a combination

of partial RRT model and optional RRT model. In “stage 1” a certain proportion

of people are asked to respond truthfully; the rest go to “stage 2” where they follow

the one-stage optional RRT model outlined above (i.e., they may scramble if they

find the question to be sensitive enough.)

3.2.1 Attempted Two-stage Multiplicative Optional RRTModel using One Sample

To this end Ryu et al. (2006) outlined a model with the aim of producing a two-

stage optional multiplicative RRT model. They have stipulated that in Stage 1, a

randomly selected proportion of respondents (T ) reply truthfully. The remaining

respondents go to stage 2. In stage 2, a proportion P of these respondents again

reply truthfully, the remaining respondents report the multiplicatively scrambled

response: SX. In this model P is assumed to be known, thus only μx is being

estimated. Nevertheless, Ryu et al. (2006) assume that their proportion, (1− P ),

is the same as the W referenced in the Gupta et al. (2002) one-stage multiplicative

RRT model.

Specifically, let Z be the reported response, X be the sensitive variable of

interest with unknown mean μx and unknown variance σ
2
x, and S be the scrambling

variable (independent of X). They show that the expected value of the reported
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response Z is given by

E(Z) = E(X),

and an unbiased estimator of μx is given by

bμx = 1

n

nX
i=1

Zi.

The variance of this estimator is given by

V ar(bμx) = 1

n

h
σ2x + (1− T ) (1− P )σ2s

³
σ2x + μ2x

´i
.

Recalling that (1− P ) in their model is the same as W in the Gupta et al. (2002)

model, they claim superiority of their estimator, since their V ar(bμx) is clearly less
than or equal to the variance in the one-stage model given by

V ar(bμx) = 1

n

h
σ2x +Wσ2s

³
σ2x + μ2x

´i
.

The problem is that this model assumes that W (or (1 − P ) in this model) is a

known quantity. This would not be a true two-stage optional RRT model, since

only one unknown μx is being estimated (sensitivity level W or (1−P ) is not being

estimated), and the whole point of an optional model is that the respondent makes

a decision as to the sensitivity of the question posed. If he deems the question to

be non-sensitive, he will answer truthfully in stage 2; if he deems the question to

be sensitive, he will scramble the response. Predetermining who will tell the truth

in stage 2 does not give this choice to the respondent.

3.2.2 True Two-stage Multiplicative Optional RRT Model using one sample

In response to the Ryu et al. (2006) model, Gupta and Shabbir (2007) developed

a true “two-stage multiplicative optional RRT model with one sample” in which
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two parameters are being estimated: the mean of the sensitive question μx and the

sensitivity levelW (i.e., the proportion of respondents who choose to scramble their

reported response when given a choice.) For this model, some known proportion

(T ) of cards in the deck ask subjects to respond truthfully (stage 1), while the

remaining cards ask respondents to follow the optional multiplicative RRT model.

That is, the respondent is asked to provide the truthful response if he considers the

question posed as non-sensitive. If he considers the question to be sensitive, he is

asked to report the product of the number listed on the card and his true response.

Mathematically, for the two-stage multiplicative optional RRT model, we let

Z be the reported response, X be the sensitive variable of interest with unknown

mean μx and unknown variance σ
2
x, and S be the scrambling variable (independent

of X) with known true mean E(S) = μs = 1 and variance σ2s , then the reported

response Z would be

Z =

(
X with probability T + (1− T ) (1−W )
SX with probability (1− T )W. (3.20)

If V ∼ Bernoulli(T ), and U ∼ Bernoulli(W ), then reported response can be

written as

Z =
n
XV

on
XSU

o1−V
. (3.21)

Taking expected values on both sides

E(Z) = E(X).P (V = 1) +E(X.SU).P (V = 0)

= E(X).P (V = 1) +E(X). {E (S)P (U = 1) + P (U = 0)}P (V = 0)

= E(X)P (V = 1) +E(X)P (V = 0) since E(S) = 1

= E(X).
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Hence the mean of the sensitive variable can be estimated by

bμx = Pn
i=1 Zi
n

. (3.22)

The variance of the estimator bμx is given by
V ar (bμx) = V ar(Z) = 1

n

h
σ2x + (1− T ) (W )σ2s

³
σ2x + μ2x

´i
. (3.23)

The sensitivity level is estimated in a similar manner as in the Gupta et al. (2002)

one-stage multiplicative model using a single sample, except that a second order

Taylor’s approximation is used here rather than first order. Taking the natural log

of both sides in equation (3.21), we get

ln (Z) = V. ln(X) + (1− V ){ln(X) + U ln(S)}.

= ln(X) + (1− V ).U. ln(S). (3.24)

Taking the expected values of both sides, we get

E[ln(Z)] = E[ln(X)] +E(1− V ).E(U).E[ln(S)]

= E[ln(X)] + (1− T )(W )δ, (3.25)

where δ = E[ln(S)].

Solving for W we get

W =
E[ln(Z)]−E[ln(X)]

(1− T )δ . (3.26)

Now the first term in the numerator, E[ln(Z)], can be estimated by

1

n

nX
i=1

ln(Zi)
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and for the second term, E[ln(X)], we need to use the second order Taylor’s ap-

proximation, whereby

ln(X) ≈ ln(μx) + (X − μx)
1

μx
− (X − μx)

2

2μ2x
. (3.27)

Then taking the expected values on both sides we get

E[ln(X)] ≈ ln(μx)−
1

2

V ar(X)

μ2x
. (3.28)

For μx we can use the estimator bμx = Pn

i=1
Zi

n
. Also V ar(X), can be approximated

by V ar(Z) since

E(Z) = E(X), (3.29)

and using equation (3.20), it can be verified that

E(Z2) = E(X2)[1− (1− T )W{1−E(S2)}]

≈ E(X2). (3.30)

Note that (1−T )W is expected to be small, being product of two fractions, especially

for large values of T . Now equation (3.28) becomes

E[ln(X)] ≈ ln (μx)−
1

2

V ar(Z)

μ2x
. (3.31)

Finally substituting equation (3.31) into equation (3.26) leads to an estimator ofW

given by

cWG2 ≈
1
n

Pn
i=1 ln(Zi)− ln

³
1
n

Pn
i=1 Zi

´
+
bV (Z)
2(Z)2

(1− T )δ . (3.32)

Because of the term (1− T ) in the denominator, the estimate for sensitivity

level (W ) in the two-stage version may be larger than the one-stage version, but

there will be a gain in estimating the mean of the sensitive question (μx) since some

of the respondents are forced to tell the truth
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CHAPTER IV

PROPOSED TWO-STAGE OPTIONAL RRT MODELS

As indicated in Chapter 3, the two-stage optional RRT models proposed so

far are not completely functional. The Ryu et al. (2006) model is not a true two-

stage optional RRT model. The Gupta and Shabbir (2007) two-stage multiplicative

optional RRT model using a single sample has an approximation drawback in es-

timating the sensitivity level W . In the current chapter, we try to address these

issues.

4.1 Proposed Model 1: Two-stage Multiplicative Optional RRT Model

using Two Independent Samples

4.1.1 Model Framework

Updating the two-stage multiplicative optional RRT model using a single sample to

using two independent samples will at least give us an exact expression for W. As

with the previous two-stage optional RRT model, a certain preset proportion (T )

of respondents is instructed to answer truthfully (stage 1). The rest are instructed

to answer truthfully if they consider the question to be non-sensitive, otherwise

multiplicatively scramble their response using a scrambling device (stage 2.) But

with this model, we will employ two different independent samples using two ran-

domization devices with different distributions. This will allow us to get estimates

for both μx and W simultaneously.

Thus specifying the mathematical model, we let X be the sensitive variable

with unknown mean μx and unknown variance σ2x, and let W be the sensitivity
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level. We select two independent random samples, of sizes ni (i = 1, 2), where ith

sample uses randomization device Ri. The two randomization devices have different

probability distributions with means θi and variances σ
2
Si. In each sample, a certain

proportion (T ) of the respondents is asked to answer truthfully (stage 1); and the

rest asked to multiply the true response with the output of the randomization device

and report the product as the final response.

Under this model the reported response Zi (i = 1, 2) for the ith sample,

would be

Zi =

(
X with probability T + (1− T )(1−W )
SiX with probability (1− T )W

where X is the true response, Si (i = 1, 2) is the scrambling variable and W is the

sensitivity level. We assume X, S1,and S2 to be mutually independent.

Assuming E(X) = μx and E(Si) = θi, one can calculate the expected value

of the reported response (Zi) as shown below.

E(Zi) = E(X)[T + (1− T )(1−W )] +E(Si)E(X)[(1− T )W ]

= μx[T + (1− T )(1−W )] + θiμx(1− T )W

= μx[T + (1− T )(1−W ) + θi(1− T )W ]

= μx[(θiW (1− T ) + (1−W +WT )]

= μx[(θiW (1− T ) + (1−W (1− T )], i = 1, 2. (4.1)

Thus our two expected values for Z1 and Z2 are

E(Z1) = μx[(θ1W (1− T ) + (1−W (1− T )] (4.2)

and

E(Z2) = μx[(θ2W (1− T ) + (1−W (1− T )]. (4.3)
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Solving simultaneously for W and μx we get

μx =
E(Z2)(θ1 − 1)−E(Z1)(θ2 − 1)

(θ1 − θ2)
, θ1 6= θ2, (4.4)

and

W =
E(Z2)−E(Z1)

[E(Z1)(θ2 − 1)−E(Z2)(θ1 − 1)] (1− T )
. (4.5)

Now, estimating E(Zi) by Zi, we get

bμx = Z2(θ1 − 1)− Z1(θ2 − 1)
(θ1 − θ2)

, θ1 6= θ2, (4.6)

and

cW =
Z2 − Z1h

Z1(θ2 − 1)− Z2(θ1 − 1)
i
(1− T )

. (4.7)

While this approach provides us an exact estimate of W (unlike the Gupta

and Shabbir (2007) model) it still represents cW as a ratio of two random variables.

Hence some approximation will be needed in order to define variance properties of

cW . Hence we decided to not pursue this approach any further.
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4.2 Proposed Model 2: Two-stage Additive Optional RRT Model using

Two Independent Samples

4.2.1 Model Framework

To eliminate the approximation problems involved in deriving expressions for cW
and V ar(cW ) using the two-stage multiplicative optional RRT models (one sample
or two sample versions,) we propose an additive version of the two-stage optional

RRT model using two independent samples. This model allows for exact expressions

for estimators, bμx and cW , and their variances, as well as providing an added bonus
of making it much more user friendly for the respondents.

As with the multiplicative model described above, there are “two stages”.

Rather than having two separate decks of cards for each stage, both stages are

specified within the same deck. This reduces the respondent and interviewer bur-

den, and as a practical matter, makes it much easier to handle in an experimental

environment. Essentially, the randomization device (deck of cards) contains a cer-

tain known proportion of “truth” cards (this represents stage 1) and the rest of the

cards list some numbers on them (this represents stage 2.) These numbers follow

a known probability distribution. If the respondent picks the “truth” card, he is

asked to answer the sensitive question truthfully. But if the respondent picks a

numeric card, he is asked to answer truthfully if he does not believe the question

is “sensitive” If the respondent does believe the question is sensitive, he is asked

to give a scrambled response, by adding the number listed on the card picked to

the true answer, and reporting the final response. As usual, the interviewer does

not know if the respondent answered truthfully in stage one or, if relegated to stage

two, then provided a scrambled response (based on his own sensitivity classification.)

The interviewer simply records one numeric response.
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4.2.2 Specific Model using two independent samples

Since there are two parameters that need estimation, two independent random sam-

ples with sample sizes n1 and n2 are employed. Sample i uses the randomization

device Ri (i = 1, 2). In each sample, a proportion (T ) of respondents is instructed

to answer truthfully. The rest of the subjects in sample i use randomization device

Ri and provide an optionally scrambled response using the additive model. The

two randomization devices have known means θi and known variances σ
2
i .

As usual, X is the sensitive question variable with unknown mean μx and

unknown variance σ2x. Si (i = 1, 2) is the scrambling variable corresponding to the

randomization device Ri (i = 1, 2) and W is the sensitivity level. We assume X,

S1, and S2 to be mutually independent.

Under this model, the reported response Zi (i = 1, 2) for the ith sample,

would be

Zi =

(
X with probability T + (1− T )(1−W )
X + Si with probability (1− T )W.

Note that

E(Zi) = E(X)[T + (1− T )(1−W )] +E(X + Si)[(1− T )(W )]

= E(X)T +E(X)(1− T )(1−W )

+E(X)(1− T )(W ) +E(Si)(1− T )(W )

= E(X)T +E(X)(1− T ) +E(Si)(1− T )(W )

−E(X)(1− T )W +E(X)(1− T )(W )

= E(X)T − E(X)(T ) +E(X) +E(Si)(1− T )(W )

= μx + θiW (1− T ), i = 1, 2. (4.8)

Similarly

E(Z2i ) = E
³
X2

´
[T + (1− T )(1−W )] +E

h
(X + Si)

2
i
[(1− T )(W )]



40

= E
³
X2

´
T +E

³
X2

´
(1− T )(1−W )

+E
³
X2 + 2XSi + S

2
i

´
(1− T )(W )

= E
³
X2

´
T +E

³
X2

´
(1− T )(1−W ) +E(X2)(1− T )(W )

+2E(X)E(Si)(1− T )(W ) +E(S2i )(1− T )(W )

= E
³
X2

´
+
h
2E(X)E(Si) +E(S

2
i )
i
W (1− T )

= σ2x + μ2x + (2μxθi + σ2si + θ2i )W (1− T ), i = 1, 2. (4.9)

Thus

σ2zi = E(Z2i )− [E(Zi)]2

= σ2x + μ2x + (2μxθi + σ2si + θ2i )W (1− T )

−[μx + θi(W )(1− T )]2

= σ2x + σ2SiW (1− T ) + θ2iW (1− T )[1−W (1− T )]. (4.10)

Hence

σ2Z1 = σ2x + σ2S1W (1− T ) + θ21W (1− T )[1−W (1− T )] (4.11)

and

σ2Z2 = σ2x + σ2S2W (1− T ) + θ22W (1− T )[1−W (1− T )], (4.12)

where σ2x is the variance of true response variable X and σ2Si is the (known) variance

of the ith scrambling device Si (i = 1, 2).

Solving (4.8) simultaneously for μx and W we get

μx =
E(Z1)θ2 −E(Z2)θ1

θ2 − θ1
, θ1 6= θ2,

and

W =
E(Z2)−E(Z1)
(θ2 − θ1)(1− T )

, θ1 6= θ2.
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Now, estimating E(Zi) by Zi we get the following estimators for our proposed

model:

bμx = Z1θ2 − Z2θ1
θ2 − θ1

, θ1 6= θ2, (4.13)

and

cW =
Z2 − Z1

(θ2 − θ1)(1− T )
, θ1 6= θ2. (4.14)

It is easily verified that these estimators (bμx and cW ) are unbiased estimators
of the true population mean μx and the true population sensitivityW , respectively,

as shown below.

E (bμx) = E

Ã
Z1θ2 − Z2θ1

θ2 − θ1

!

=
1

(θ2 − θ1)
E(Z1θ2 − Z2θ1)

=
1

(θ2 − θ1)

h
E(Z1θ2)−E(Z2θ1)

i

=
1

(θ2 − θ1)

h
θ2E(Z1)− θ1E(Z2)

i

=
1

(θ2 − θ1)
[θ2E(Z1)− θ1E(Z2)]

=
1

(θ2 − θ1)
[θ2 {μx + θ1W (1− T )}− θ1 {μx + θ2W (1− T )}]

=
1

(θ2 − θ1)
(θ2 − θ1)μx

= μx,

and

E
³cW´

= E

Ã
Z2 − Z1

(θ2 − θ1)(1− T )

!
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=
1

(θ2 − θ1)(1− T )
E(Z2 − Z1)

=
1

(θ2 − θ1)(1− T )
[E(Z2)− E(Z1)]

=
1

(θ2 − θ1)(1− T )
[E(Z2)−E(Z1)]

=
1

(θ2 − θ1)(1− T )
[{μx + θ2W (1− T )}− {μx + θ1W (1− T )}]

=
1

(θ2 − θ1)(1− T )
[μx + θ2W (1− T )− μx − θ1W (1− T )]

=
1

(θ2 − θ1)(1− T )
(θ2 − θ1)(1− T )W

= W.

Furthermore

V ar (bμx) = V ar

Ã
Z1θ2 − Z2θ1

θ2 − θ1

!

=
1

(θ2 − θ1)2
V ar(Z1θ2 − Z2θ1)

=
1

(θ2 − θ1)2
[θ22V ar(Z1) + V ar(θ

2
1Z2)]

=
1

(θ2 − θ1)2

"
θ22

Ã
σ2Z1
n1

!
+ θ21

Ã
σ2Z2
n2

!#
. (4.15)

Similarly

V ar
³cW´

= V ar

Ã
Z2 − Z1

(θ2 − θ1)(1− T )

!

=
1

(θ2 − θ1)2(1− T )2
V ar(Z2 − Z1)

=
1

(θ2 − θ1)2(1− T )2

"
σ2Z1
n1

+
σ2Z2
n2

#
. (4.16)
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Note that σ2Zi was calculated in (4.10). Both V ar (bμx) and V ar ³cW´
can be esti-

mated by their corresponding sample variances. The key advantage in using this

approach is that we get exact expressions for our estimates and their means and

variances, as compared to the previously introduced multiplicative model.

Using our previous example of “how many alcoholic drinks do you typically

consume per week?” to demonstrate the procedural details of the two-stage additive

optional RRT model, we could choose two independent subsamples of 5 members

each. The two subsamples would be given different decks, but 20% (T = .2) of

both decks would ask the respondents to answer truthfully. The remaining numeric

portions of each of the two decks would have different scrambling distributions,

with means (variances) θ1 = 7 (σ
2
S1 = 1.42) and θ2 = 3 (σ

2
S1 = 1.92), respectively.

Suppose after collecting the experimental data we find that the sample means of

the reported responses are as follows:

Sample 1 θ1 = 7, σ
2
S1 = 1.42

T = .2 (1− T ) = .8
True # of drinks Stage 1 Stage 2 Sensitive? Reported Response

5 go to S2 9 Y 14

1 go to S2 7 n 1

7 go to S2 5 Y 12

6 Tell Truth N/A (y) 6

3 go to S2 6 n 3

Z1= 7.2

Sample 2 θ2 = 3, σ
2
S2 = 1.92

T = .2 (1− T ) = .8
True # of drinks Stage 1 Stage 2 Sensitive? Reported Response

10 go to S2 4 n 10

2 Tell Truth N/A n 2

3 go to S2 5 n 3

7 go to S2 1 Y 8

5 go to S2 3 n 5

Z2= 5.6
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Then we would calculate the estimates for μx and W using equations (4.13) and

(4.14) as

bμx = Z1θ2 − Z2θ1
θ2 − θ1

=
7.2(3)− 5.6(7)

(3− 7) = 4.4,

and

cW =
Z2 − Z1

(θ2 − θ1)(1− T )
=

5.6− 7.2
(3− 7)(1− .2) = .5.

Providing another example, now employing a larger sample size of n = 100,

we may choose two independent subsamples of 50 members each and ask them to

follow the two-stage additive optional model in answering a potentially sensitive

question. The two subsamples would be given different decks, but 10% (T = .1) of

both decks would ask the respondents to answer truthfully. The remaining numeric

portions of each of the two decks would have different scrambling distributions, with

means θ1 = 2 and θ2 = 5, respectively. Suppose after collecting the experimental

data we find that the sample means of the reported responses are Z1 = 4.46 and

Z2 = 5.64, respectively. The sample variances of Z1 and Z2 are 7.2739 and 10.7249,

respectively. Using equations (4.13) and (4.14), we calculate the estimates for μx

and W as

bμx = 5(4.46)− 2(5.64)
(5− 2) = 3.673,

and

cW =
(5.64− 4.46)
(5− 2)(1− .1) = .437.

Furthermore, using our sample variances of Z1 and Z2 as estimates of σ
2
Z1

and σ2Z2, respectively, we use equations (4.15) and (4.16) to get

bV ar(bμx) = 1

(5− 2)2
∙
25
µ
7.2739

50

¶
+ 4

µ
10.7249

50

¶¸
= .4994,
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and

bV ar(cW ) = 1

(5− 2)2(1− .1)2
∙
7.2739

50
+
10.7249

50

¸
= .0444.

4.2.3 Sample Size Optimization

Although one can pick two independent samples n1 and n2 of equal sizes, this may

have an effect of inflating the variances of estimators bμx and cW . Picking optimal
combination of sample sizes can help minimize the variance. Thus, taking both

variances into account, one can try to find n1 and n2 that minimize [V ar (bμx) +
V ar(cW )]. We do this by taking partial derivatives with respect to n1 and n2,

respectively, setting the derivatives to zero, then solving for n1 and n2 to find specific

optimal sample sizes. The optimal sample sizes subject to n1 + n2 = n, are

n1 =
nσZ1

q
(1− T )2θ22 + 1

σZ1
q
(1− T )2θ22 + 1 + σZ2

q
(1− T )2θ21 + 1

(4.17)

and

n2 =
nσZ2

q
(1− T )2θ21 + 1

σZ1
q
(1− T )2θ22 + 1 + σZ2

q
(1− T )2θ21 + 1

. (4.18)

Table 4.1 below shows a comparison of variances V ar (bμx) and V ar(cW ) when
using equal sample sizes and optimal sample sizes. Note that V ar (bμx) decreases
quite a bit when n1 and n2 are chosen optimally as compared to equal sample sizes,

but V ar(cW ) goes up slightly.
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Table 4.1: Comparison of V (bμx) and V (cW ) for equal and optimal sample
sizes (optimized to minimize {V (bμx) + V (cW )}) for μx = 4, σ2x = 4,
θ1 = 2, σ

2
S1 = 2, θ2 = 5, σ

2
S2 = 5, T = .3

n1 = n2 optimum n1, n2
n W V (bμx) V (cW ) n1 n2 V (bμx) V (cW )
100 0.1 0.2976 0.0471 64 36 0.2648 0.0532

0.2 0.3331 0.0566 62 38 0.3035 0.0634
0.3 0.3642 0.0648 61 39 0.3363 0.0724
0.4 0.3909 0.0717 60 40 0.3644 0.0795
0.5 0.4133 0.0773 60 40 0.3868 0.0860
0.6 0.4314 0.0817 59 41 0.4059 0.0898
0.7 0.4451 0.0847 59 41 0.4192 0.0932
0.8 0.4544 0.0865 59 41 0.4279 0.0951
0.9 0.4594 0.0869 59 41 0.4322 0.0956
1 0.4600 0.0861 60 40 0.4306 0.0959

500 0.1 0.0595 0.0094 322 178 0.0529 0.0107
0.2 0.0666 0.0113 312 188 0.0606 0.0128
0.3 0.0728 0.0130 306 194 0.0672 0.0145
0.4 0.0782 0.0143 301 199 0.0728 0.0159
0.5 0.0827 0.0155 299 201 0.0774 0.0172
0.6 0.0863 0.0163 297 203 0.0811 0.0181
0.7 0.0890 0.0169 296 204 0.0838 0.0187
0.8 0.0909 0.0173 296 204 0.0855 0.0191
0.9 0.0919 0.0174 297 203 0.0863 0.0192
1 0.0920 0.0172 298 202 0.0862 0.0191

1000 0.1 0.0298 0.0047 645 355 0.0264 0.0054
0.2 0.0333 0.0057 624 376 0.0303 0.0064
0.3 0.0364 0.0065 611 389 0.0336 0.0072
0.4 0.0391 0.0072 603 397 0.0364 0.0080
0.5 0.0413 0.0077 597 403 0.0387 0.0086
0.6 0.0431 0.0082 594 406 0.0405 0.0090
0.7 0.0445 0.0085 592 408 0.0419 0.0093
0.8 0.0454 0.0086 592 408 0.0428 0.0095
0.9 0.0459 0.0087 594 406 0.0432 0.0096
1 0.0460 0.0086 597 403 0.0431 0.0095
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CHAPTER V

SIMULATION STUDY AND CONCLUSIONS

In this chapter we present results of a simulation study and provide some

concluding remarks. The simulations are carried out using SAS (Windows version

9.1). The SAS code is provided in Section 5.4 of this chapter. For all simulations,

the sensitive variable X is chosen to be a Poisson variable with mean μx = 4.

Although one could use any distribution for the simulations, we have chosen the

Poisson distribution because it has been used in other comparable studies, and also

it is a reasonable distribution when dealing with rare behaviors, in the sense that

not everyone engages in these behaviors. The scrambling variables are also chosen

to be Poisson for similar reasons: comparability with other studies and agreement

with the parent distribution of the sensitive variable X. The scrambling variables

S1 and S2 are specified to have means θ1 = 2 and θ2 = 5, respectively. These

particular values for the means have been used in previous studies, thus allowing

for reasonable comparison of our proposed model with earlier models. The results

are averaged over 1000 simulation runs each with a sample size of n = 100, n = 500,

and n = 1000. Simulations using optimal sample sizes and equal sample sizes

(n1 = n2) were run, as appropriate. The goals of these simulations are threefold.

We want to verify that our simulated estimates agree with the correct values for μx

and W . Similarly, we want to make sure that the simulated variances are also in

agreement with our theoretical variances. Finally, we want to verify that as values

of n, T , and/or W change, expected trends can be seen in simulated results.
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5.1 Quantitative Additive Optional RRT Models with Optimal Sample

Selection

We would like to point out that the partial RRT models generally have the smallest

variance and the optional models (both one-stage and two-stage) have much higher

values for V ar(bμx). However, one should keep in mind that the partial RRT models
estimate only one parameter (μx), while the optional RRT models also estimate the

sensitivity level (W). Hence, comparing a partial RRT model to an optional RRT

model would be unreasonable. So our simulation study will focus on how well

a two-stage optional RRT model performs in comparison to a one-stage optional

RRT model.

Tables 5.1, 5.2 and 5.3 that follow show the true parameter values and the

corresponding simulated values for the one-stage additive optional RRT model (T =

0) and two-stage additive optional RRT models (T = .1 and T = .3) using optimum

choices of n1 and n2. Note that there is hardly any bias in the estimation of μx and

W . For example, in Table 5.2 (T = .1), at n = 500, the bias in estimation of μx = 4

ranges from a low of .00469 to a high of .01691. More specifically, note that bμx is
approximately N [μx, V ar(bμx)] at large n1 and n2. Also, looking at an example in
Table 5.2, at n = 500 and W = .3, notice that our estimate of μx based on 1000

simulations is 4.0125 and bV (bμx) is .07495. Then the 95% confidence interval for

μx in this case would be 4.0125± (1.96)(
√
.07495/

√
1000) = 4.0125± .01699. This

overlaps our true μx = 4. The same is true for all other scenarios of bμx and cW .
This was clearly expected given that both bμx and cW are unbiased. Also notice that

for both bμx and cW , theoretical variances are in good agreement with simulated
variances, even for small sample sizes. Another observation is that the estimation

gets better (smaller variance) as the sample size increases. For example, in Table

5.2, for W = .4, bV (bμx) = .39563 at n = 100, it drops to bV (bμx) = .07896 at n = 500,
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and further drops to bV (bμx) = .03760 at n = 1000.
One can also note an interesting trend as W increases from W = .1 to

W = 1.0. Note that for a given value of n and T , both V ar(bμx) and V ar(cW )
increase until reaching some peak, and then start decreasing. This is because we

have “optimized” the choices of n1 and n2 in such a manner as to minimize the sum

of the two variances (V (bμx) + V (cW )). This continual optimization of n1 and n2

has a significant impact on the variance calculations. In fact, the shift in variances

from an increasing pattern to a decreasing pattern occurs at about the same time as

the shift in n1 from decreasing to increasing values. Thus, to do a better compar-

ison of estimators, recreating these tables with equal n0s (n1 = n2) would be more

appropriate. This is what we will do in the next section.
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Table 5.1: Simulation results for T = 0 (one stage additive optional RRT
model) at various levels of n and W using optimum choices of n1 and n2 that

minimize {V (bμx) + V (cW )} for μx = 4, σ2x = 4, θ1 = 2, σ2S1 = 2, θ2 = 5, σ2S2 = 5
n n1 n2 W cW bμx V (bμx) bV (bμx) V (cW ) bV (cW )
100 65 35 0.1 0.09264 4.02745 0.28059 0.27909 0.02922 0.02842
100 63 37 0.2 0.19055 4.03332 0.33033 0.33159 0.03592 0.03653
100 62 38 0.3 0.29276 4.02768 0.36946 0.37025 0.04118 0.04086
100 61 39 0.4 0.39582 4.02240 0.39905 0.40601 0.04468 0.04521
100 61 39 0.5 0.49914 3.99301 0.41852 0.38996 0.04725 0.04410
100 61 39 0.6 0.59768 3.99794 0.42866 0.39377 0.04826 0.04529
100 61 39 0.7 0.70046 3.99275 0.42945 0.41703 0.04769 0.04779
100 62 38 0.8 0.80334 3.98522 0.41992 0.41346 0.04627 0.04697
100 63 37 0.9 0.89739 4.00220 0.40073 0.39366 0.04315 0.04369
100 65 35 1 0.99113 4.01813 0.37070 0.37084 0.03883 0.03819

500 326 174 0.1 0.09595 4.01302 0.05610 0.05509 0.00586 0.00590
500 315 185 0.2 0.19620 4.01316 0.06607 0.06805 0.00718 0.00769
500 309 191 0.3 0.29566 4.01355 0.07392 0.07720 0.00821 0.00886
500 306 194 0.4 0.39471 4.01477 0.07978 0.08053 0.00896 0.00909
500 305 195 0.5 0.50038 4.00485 0.08370 0.08352 0.00945 0.00911
500 305 195 0.6 0.59933 4.00680 0.08573 0.08266 0.00965 0.00903
500 307 193 0.7 0.69915 4.00541 0.08582 0.08312 0.00960 0.00926
500 311 189 0.8 0.79892 4.00482 0.08395 0.08373 0.00928 0.00903
500 317 183 0.9 0.89811 4.00750 0.08009 0.07899 0.00869 0.00847
500 325 175 1 0.99403 4.01794 0.07414 0.07655 0.00777 0.00792

1000 652 348 0.1 0.09868 4.00459 0.02805 0.02811 0.00293 0.00279
1000 631 369 0.2 0.19626 4.00997 0.03303 0.03283 0.00360 0.00348
1000 619 381 0.3 0.29641 4.01002 0.03695 0.03614 0.00411 0.00399
1000 612 388 0.4 0.39659 4.00834 0.03989 0.03967 0.00448 0.00436
1000 610 390 0.5 0.50152 3.99816 0.04185 0.04026 0.00473 0.00452
1000 611 389 0.6 0.60150 3.99721 0.04286 0.04127 0.00483 0.00456
1000 615 385 0.7 0.70076 3.99855 0.04290 0.04131 0.00481 0.00467
1000 622 378 0.8 0.80037 3.99988 0.04198 0.03949 0.00464 0.00445
1000 633 367 0.9 0.89804 4.00488 0.04005 0.03726 0.00434 0.00411
1000 651 349 1 1.00147 3.99423 0.03706 0.03807 0.00389 0.00398
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Table 5.2: Simulation results for T = .1 (two stage additive optional RRT
model) at various levels of n and W using optimum choices of n1 and n2 that

minimize {V (bμx) + V (cW )} for μx = 4, σ2x = 4, θ1 = 2, σ2S1 = 2, θ2 = 5, σ2S2 = 5
n n1 n2 W cW bμx V (bμx) bV (bμx) V (cW ) bV (cW )
100 65 35 0.1 0.09076 4.02909 0.27514 0.27429 0.03498 0.03389
100 63 37 0.2 0.18754 4.03548 0.32145 0.32411 0.04263 0.04325
100 62 38 0.3 0.29087 4.03358 0.35893 0.36049 0.04889 0.04743
100 61 39 0.4 0.39462 4.02384 0.38864 0.39563 0.05335 0.05371
100 61 39 0.5 0.49265 4.02822 0.40995 0.41574 0.05699 0.05777
100 61 39 0.6 0.59940 3.99356 0.42370 0.39887 0.05907 0.05593
100 61 39 0.7 0.69657 3.99825 0.42988 0.39911 0.05957 0.05736
100 61 39 0.8 0.80103 3.98799 0.42849 0.40625 0.05851 0.05655
100 62 38 0.9 0.90455 3.98354 0.41852 0.40787 0.05674 0.05726
100 63 37 1 0.99710 4.00220 0.40073 0.39366 0.05327 0.05393

500 325 175 0.1 0.09442 4.01529 0.05503 0.05416 0.00700 0.00702
500 315 185 0.2 0.19596 4.01272 0.06429 0.06408 0.00853 0.00890
500 309 191 0.3 0.29588 4.01250 0.07182 0.07495 0.00975 0.01054
500 305 195 0.4 0.39328 4.01691 0.07773 0.07896 0.01067 0.01111
500 303 197 0.5 0.49317 4.01633 0.08206 0.08155 0.01133 0.01135
500 303 197 0.6 0.59890 4.00778 0.08481 0.08389 0.01174 0.01126
500 304 196 0.7 0.69886 4.00638 0.08601 0.08425 0.01188 0.01134
500 306 194 0.8 0.79823 4.00622 0.08566 0.08251 0.01174 0.01121
500 309 191 0.9 0.89873 4.00469 0.08374 0.08420 0.01131 0.01111
500 314 186 1 0.99845 4.00615 0.08018 0.08006 0.01062 0.01050

1000 651 349 0.1 0.09792 4.00602 0.02751 0.02755 0.00350 0.00334
1000 630 370 0.2 0.19619 4.00935 0.03215 0.03158 0.00426 0.00402
1000 617 383 0.3 0.29598 4.01011 0.03592 0.03553 0.00487 0.00473
1000 610 390 0.4 0.39627 4.00833 0.03886 0.03760 0.00533 0.00502
1000 606 394 0.5 0.49768 4.00326 0.04103 0.04055 0.00566 0.00549
1000 606 394 0.6 0.60130 3.99896 0.04240 0.04100 0.00587 0.00556
1000 607 393 0.7 0.70176 3.99604 0.04301 0.04228 0.00593 0.00576
1000 611 389 0.8 0.80140 3.99641 0.04284 0.04124 0.00586 0.00573
1000 618 382 0.9 0.90022 4.00018 0.04187 0.03950 0.00566 0.00539
1000 629 371 1 0.99844 4.00333 0.04008 0.03766 0.00532 0.00508

.
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Table 5.3: Simulation results for T = .3 (two stage additive optional RRT
model) at various levels of n and W using optimum choices of n1 and n2 that

minimize {V (bμx) + V (cW )} for μx = 4, σ2x = 4, θ1 = 2, σ2S1 = 2, θ2 = 5, σ2S2 = 5
n n1 n2 W cW bμx V (bμx) bV (bμx) V (cW ) bV (cW )
100 64 36 0.1 0.09075 4.02284 0.26479 0.25858 0.05324 0.05037
100 62 38 0.2 0.18747 4.02654 0.30351 0.30902 0.06342 0.06287
100 61 39 0.3 0.28603 4.03424 0.33631 0.34433 0.07237 0.07522
100 60 40 0.4 0.38856 4.03447 0.36444 0.36952 0.07946 0.08043
100 60 40 0.5 0.49173 4.02614 0.38681 0.40040 0.08604 0.08995
100 59 41 0.6 0.59059 4.03085 0.40589 0.41913 0.08977 0.09244
100 59 41 0.7 0.68601 4.03728 0.41917 0.43281 0.09321 0.09604
100 59 41 0.8 0.79560 4.00127 0.42795 0.41528 0.09514 0.09290
100 59 41 0.9 0.89180 4.00665 0.43222 0.41713 0.09557 0.09536
100 60 40 1 0.99782 3.99889 0.43056 0.42338 0.09586 0.09707

500 322 178 0.1 0.09462 4.01136 0.05289 0.05174 0.01071 0.01060
500 312 188 0.2 0.19407 4.01388 0.06062 0.05922 0.01276 0.01293
500 306 194 0.3 0.29524 4.01184 0.06722 0.06842 0.01452 0.01521
500 301 199 0.4 0.39447 4.01406 0.07284 0.07394 0.01594 0.01670
500 299 201 0.5 0.49331 4.01442 0.07741 0.07798 0.01716 0.01774
500 297 203 0.6 0.59285 4.01445 0.08107 0.07900 0.01806 0.01781
500 296 204 0.7 0.69116 4.01653 0.08378 0.07941 0.01869 0.01797
500 296 204 0.8 0.79823 4.00898 0.08553 0.08492 0.01908 0.01864
500 297 203 0.9 0.89806 4.00740 0.08633 0.08498 0.01922 0.01850
500 298 202 1 0.99752 4.00793 0.08622 0.08234 0.01906 0.01819

1000 645 355 0.1 0.09763 4.00507 0.02643 0.02708 0.00537 0.00526
1000 624 376 0.2 0.19684 4.00682 0.03031 0.03036 0.00638 0.00614
1000 611 389 0.3 0.29507 4.00911 0.03362 0.03316 0.00725 0.00692
1000 603 397 0.4 0.39594 4.00810 0.03641 0.03611 0.00798 0.00782
1000 597 403 0.5 0.49466 4.01000 0.03872 0.03777 0.00857 0.00820
1000 594 406 0.6 0.59487 4.00868 0.04053 0.04054 0.00903 0.00896
1000 592 408 0.7 0.69451 4.00846 0.04189 0.04188 0.00935 0.00918
1000 592 408 0.8 0.80113 4.00034 0.04277 0.04120 0.00954 0.00906
1000 594 406 0.9 0.90208 3.99661 0.04316 0.04204 0.00961 0.00935
1000 597 403 1 1.00252 3.99563 0.04310 0.04196 0.00954 0.00949
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5.2 Simulation Results based on Equal Sample Sizes

Similar to Section 5.1, the following three Tables (5.4, 5.5 and 5.6) show the true

parameter values and corresponding simulated values for the one-stage additive

optional RRT model (T = 0) and two-stage additive optional RRT models (T = .1

and T = .3) but this time using equal sample sizes (n1 = n2).

Once again we observe that the simulated values are all in good agreement

with theoretical values. For example, in Table 5.5, for n = 500 and W = .2, the

true V (bμx) = .07028, while the simulated bV (bμx) = .07052. We also note, as in

the case of optimal sample sizes, that both V ar(bμx) and V ar(cW ) increase as W
increases, but only up to a certain value of W . After that, these values begin to

drop. Note that V ar(bμx) and V ar(cW ) peak for different values of W . On further
examination, an explanation can be identified. It is presented after Table 5.6.
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Table 5.4: Simulation results for T = 0 (one stage additive optional RRT
model) at various levels of n and W using equal n1 and n2 with μx = 4, σ

2
x = 4,

θ1 = 2, σ
2
S1 = 2, θ2 = 5, σ

2
S2 = 5

n n1 n2 W cW bμx V (bμx) bV (bμx) V (cW ) bV (cW )
100 50 50 0.1 0.09018 4.03966 0.31333 0.31203 0.02513 0.02478
100 50 50 0.2 0.18740 4.04798 0.36000 0.35814 0.03120 0.03155
100 50 50 0.3 0.28839 4.04603 0.39778 0.39283 0.03598 0.03571
100 50 50 0.4 0.38764 4.05074 0.42667 0.41028 0.03947 0.03787
100 50 50 0.5 0.49669 4.00273 0.44667 0.43499 0.04167 0.04055
100 50 50 0.6 0.59471 4.01015 0.45778 0.45201 0.04258 0.04208
100 50 50 0.7 0.69395 4.01485 0.46000 0.45704 0.04220 0.04212
100 50 50 0.8 0.79495 4.01291 0.45333 0.45536 0.04053 0.04097
100 50 50 0.9 0.89217 4.02123 0.43778 0.44233 0.03758 0.03822
100 50 50 1 0.99209 4.01937 0.41333 0.42782 0.03333 0.03414

500 250 250 0.1 0.09688 4.01302 0.06267 0.06182 0.00503 0.00490
500 250 250 0.2 0.19700 4.01303 0.07200 0.07414 0.00624 0.00650
500 250 250 0.3 0.29696 4.01181 0.07956 0.08060 0.00720 0.00729
500 250 250 0.4 0.39625 4.01206 0.08533 0.08462 0.00789 0.00765
500 250 250 0.5 0.49818 4.01210 0.08933 0.09532 0.00833 0.00854
500 250 250 0.6 0.59668 4.01561 0.09156 0.09125 0.00852 0.00821
500 250 250 0.7 0.69597 4.01586 0.09200 0.09054 0.00844 0.00816
500 250 250 0.8 0.79593 4.01464 0.09067 0.09278 0.00811 0.00801
500 250 250 0.9 0.89605 4.01465 0.08756 0.09041 0.00752 0.00767
500 250 250 1 0.99587 4.01348 0.08267 0.07801 0.00667 0.00616

1000 500 500 0.1 0.09883 4.00443 0.03133 0.03115 0.00251 0.00234
1000 500 500 0.2 0.19794 4.00581 0.03600 0.03437 0.00312 0.00274
1000 500 500 0.3 0.29752 4.00713 0.03978 0.03723 0.00360 0.00321
1000 500 500 0.4 0.39815 4.00421 0.04267 0.04128 0.00395 0.00363
1000 500 500 0.5 0.49996 4.00258 0.04467 0.04488 0.00417 0.00424
1000 500 500 0.6 0.60032 4.00047 0.04578 0.04450 0.00426 0.00411
1000 500 500 0.7 0.70094 3.99755 0.04600 0.04613 0.00422 0.00428
1000 500 500 0.8 0.80053 3.99887 0.04533 0.04503 0.00405 0.00415
1000 500 500 0.9 0.89964 4.00025 0.04378 0.04196 0.00376 0.00368
1000 500 500 1 1.00405 3.98547 0.04133 0.03952 0.00333 0.00322
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Table 5.5: Simulation results for T = .1 (two stage additive optional RRT
model) at various levels of n and W using equal n1 and n2 with μx = 4, σ

2
x = 4,

θ1 = 2, σ
2
S1 = 2, θ2 = 5, σ

2
S2 = 5

n n1 n2 W cW bμx V (bμx) bV (bμx) V (cW ) bV (cW )
100 50 50 0.1 0.08908 4.03871 0.30818 0.30998 0.03019 0.02989
100 50 50 0.2 0.18310 4.05299 0.35138 0.35210 0.03715 0.03746
100 50 50 0.3 0.28611 4.05210 0.38738 0.38299 0.04281 0.04181
100 50 50 0.4 0.38697 4.04851 0.41618 0.40827 0.04719 0.04610
100 50 50 0.5 0.48501 4.05369 0.43778 0.43458 0.05028 0.05012
100 50 50 0.6 0.59470 4.00865 0.45218 0.45009 0.05208 0.05216
100 50 50 0.7 0.69173 4.01467 0.45938 0.45449 0.05259 0.05248
100 50 50 0.8 0.79327 4.01125 0.45938 0.45328 0.05181 0.05093
100 50 50 0.9 0.89584 4.00930 0.45218 0.44900 0.04975 0.04995
100 50 50 1 0.99130 4.02123 0.43778 0.44233 0.04639 0.04719

500 250 250 0.1 0.09576 4.01446 0.06164 0.06035 0.00604 0.00583
500 250 250 0.2 0.19577 4.01540 0.07028 0.07052 0.00743 0.00759
500 250 250 0.3 0.29731 4.01070 0.07748 0.07915 0.00856 0.00878
500 250 250 0.4 0.39522 4.01354 0.08324 0.08257 0.00944 0.00923
500 250 250 0.5 0.49550 4.01191 0.08756 0.08618 0.01006 0.00971
500 250 250 0.6 0.59594 4.01667 0.09044 0.09354 0.01042 0.01038
500 250 250 0.7 0.69591 4.01535 0.09188 0.09201 0.01052 0.01011
500 250 250 0.8 0.79472 4.01652 0.09188 0.09037 0.01036 0.00995
500 250 250 0.9 0.89583 4.01339 0.09044 0.09309 0.00995 0.00994
500 250 250 1 0.99561 4.01465 0.08756 0.09041 0.00928 0.00947

1000 500 500 0.1 0.09875 4.00427 0.03082 0.03077 0.00302 0.00283
1000 500 500 0.2 0.19791 4.00554 0.03514 0.03371 0.00371 0.00325
1000 500 500 0.3 0.29737 4.00689 0.03874 0.03693 0.00428 0.00382
1000 500 500 0.4 0.39773 4.00492 0.04162 0.03941 0.00472 0.00423
1000 500 500 0.5 0.49902 3.99983 0.04378 0.04193 0.00503 0.00456
1000 500 500 0.6 0.59926 4.00453 0.04522 0.04515 0.00521 0.00517
1000 500 500 0.7 0.70017 4.00009 0.04594 0.04573 0.00526 0.00521
1000 500 500 0.8 0.80083 3.99750 0.04594 0.04531 0.00518 0.00523
1000 500 500 0.9 0.90046 3.99892 0.04522 0.04509 0.00497 0.00508
1000 500 500 1 0.99960 4.00025 0.04378 0.04196 0.00464 0.00454
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Table 5.6: Simulation results for T = .3 (two stage additive optional RRT
model) at various levels of n and W using equal n1 and n2 with μx = 4, σ

2
x = 4,

θ1 = 2, σ
2
S1 = 2, θ2 = 5, σ

2
S2 = 5

n n1 n2 W cW bμx V (bμx) bV (bμx) V (cW ) bV (cW )
100 50 50 0.1 0.08530 4.03893 0.29760 0.29768 0.04707 0.04641
100 50 50 0.2 0.17981 4.04799 0.33307 0.33162 0.05656 0.05599
100 50 50 0.3 0.28069 4.05072 0.36418 0.36641 0.06477 0.06633
100 50 50 0.4 0.38343 4.04964 0.39093 0.38377 0.07168 0.06952
100 50 50 0.5 0.48390 4.04645 0.41333 0.40860 0.07731 0.07691
100 50 50 0.6 0.58369 4.04918 0.43138 0.42506 0.08165 0.08008
100 50 50 0.7 0.67859 4.05747 0.44507 0.44233 0.08470 0.08440
100 50 50 0.8 0.79187 4.01109 0.45440 0.45206 0.08647 0.08602
100 50 50 0.9 0.88936 4.01467 0.45938 0.45449 0.08694 0.08675
100 50 50 1 0.99136 4.01485 0.46000 0.45704 0.08612 0.08596

500 250 250 0.1 0.09600 4.01088 0.05952 0.05867 0.00941 0.00909
500 250 250 0.2 0.19511 4.01404 0.06661 0.06500 0.01131 0.01110
500 250 250 0.3 0.29655 4.01077 0.07284 0.07511 0.01295 0.01354
500 250 250 0.4 0.39668 4.01115 0.07819 0.07957 0.01434 0.01462
500 250 250 0.5 0.49482 4.01289 0.08267 0.08332 0.01546 0.01543
500 250 250 0.6 0.59511 4.01115 0.08628 0.08518 0.01633 0.01572
500 250 250 0.7 0.69280 4.01478 0.08901 0.08647 0.01694 0.01625
500 250 250 0.8 0.79516 4.01654 0.09088 0.09192 0.01729 0.01704
500 250 250 0.9 0.89474 4.01535 0.09188 0.09201 0.01739 0.01671
500 250 250 1 0.99425 4.01586 0.09200 0.09054 0.01722 0.01666

1000 500 500 0.1 0.09850 4.00353 0.02976 0.03022 0.00471 0.00451
1000 500 500 0.2 0.19913 4.00231 0.03331 0.03283 0.00566 0.00524
1000 500 500 0.3 0.29664 4.00663 0.03642 0.03457 0.00648 0.00565
1000 500 500 0.4 0.39674 4.00718 0.03909 0.03735 0.00717 0.00645
1000 500 500 0.5 0.49679 4.00620 0.04133 0.03912 0.00773 0.00693
1000 500 500 0.6 0.59757 4.00343 0.04314 0.04201 0.00817 0.00764
1000 500 500 0.7 0.69756 4.00241 0.04451 0.04325 0.00847 0.00784
1000 500 500 0.8 0.79916 4.00429 0.04544 0.04494 0.00865 0.00845
1000 500 500 0.9 0.90022 4.00009 0.04594 0.04573 0.00869 0.00862
1000 500 500 1 1.00135 3.99755 0.04600 0.04613 0.00861 0.00874
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Using equations (4.11) and (4.12), V ar (bμx), as given in equation (4.15), can
be written as

V ar (bμx) =
1

(θ2 − θ1)2

"
θ22

Ã
σ2Z1
n1

!
+ θ21

Ã
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n2

!#
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where c =
³
θ22
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+
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´
σ2x.

It can be verified that
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(5.1)

is a point of maxima for V ar (bμx). If we let n1 = n2, the maximal point is given by
W =

2θ21θ
2
2 + σ2S1θ

2
2 + σ2S2θ

2
1

4θ21θ
2
2(1− T )

. (5.2)
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For our simulations, where, θ1 = 2, σ
2
S1 = 2, θ2 = 5, and σ2S2 = 5, we can expect to

see the maximum V ar (bμx) at W = .675
(1−T ) . For example, for T = .3, we should see

the maximum for V ar (bμx) at W = .675/.7 = .964 and this is confirmed by looking

at Table 5.6 above (the maximum is at about W = 1.0). Similarly, we should see

the maximum for T = 0 at W = .675 and for T = .1 at W = .75.

We can similarly find the value ofW for which V ar
³cW´

, becomes maximum

for a given value of T . This point of maxima is given by

W =

(σ2S1+θ
2
1)

n1
+

(σ2S2+θ
2
2)

n2

2
³
θ21
n1
+

θ22
n2

´
(1− T )

. (5.3)

If we let n1 = n2, then V ar
³cW´

is maximum at

W =
(σ2S1 + θ21 + σ2S2 + θ22)

2(θ21 + θ22)(1− T )
. (5.4)

So for our simulations, where, θ1 = 2, σ
2
S1 = 2, θ2 = 5, and σ2S2 = 5, we can expect

to see the maximum V ar
³cW´

at W = .621
(1−T ) . For example, for T = .3, we should

see the maximum for V ar
³cW´

at W = .621/.7 = .887 and this is confirmed by

looking at Table 5.6 above (the maximum is at about W = .9). Similarly, we

should see the maximum for T = 0 at W = .621 and for T = .1 at W = .69.

We would like to point out one other aspect of the comparison of a one-

stage optional RRT model (T = 0) with a two-stage optional RRT model (T > 0).

Tables 5.7 through 5.10 take a closer look at how V ar (bμx) and V ar(cW ) change as
T increases from T = 0 (aka the one-stage optional model) to T = .9 for different

values of W . Tables 5.7 and 5.8 use optimal sample sizes, while Tables 5.9 and

5.10 use equal sample sizes. For any fixed value of W , we expect V ar (bμx) to
decrease and V ar(cW ) to increase as T increases. This is because as more and
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more respondents tell the truth, the estimation of μx should improve. At the same

time, as more respondents tell the truth, there is a smaller pool of respondents that

scramble their responses, and hence V ar(cW ) increases. However, this trend is valid
only up to moderate values of W . One should note that the penalty for using any

RRT model is dependent on the sample size involved. So as T increases, on one

hand there is a “gain”, since more respondents are providing truthful responses,

but on the other hand there is a “loss” since a smaller sample size is involved in

the RRT part, thus increasing the penalty. For a two-stage model to be better

than a one-stage model, the “gain” should be greater than the “loss”. For highly

sensitive questions (W > .7), a large value of T is needed to make this happen. As

expected, V ar(cW ), is always smaller for a one-stage model as compared to a two-
stage model. Since the focus is more on effective estimation of μx, we recommend

using a two-stage optional RRT model with small to moderate values of T for less

sensitive questions and using higher values of T for more sensitive questions.
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Table 5.7: Comparison of V (bμx) (shown in bold) and bV (bμx) (not in bold)
at various levels of W and T using optimum choices of n1 and n2 that

minimize {V (bμx) + V (cW )} for μx = 4, σ2x = 4, θ1 = 2, σ2S1 = 2, θ2 = 5, σ2S2 = 5
n W T = 0 T = .1 T = .3 T = .5 T = .7 T = .9

100 0.1 0.28059 0.27514 0.26479 0.25447 0.24950 0.25665
0.27909 0.27429 0.25858 0.25720 0.25984 0.26553

0.3 0.36946 0.35893 0.33631 0.31088 0.28922 0.27538
0.37025 0.36049 0.34433 0.31994 0.29918 0.28027

0.5 0.41852 0.40995 0.38681 0.35660 0.32132 0.29058
0.38996 0.41574 0.40040 0.36909 0.33317 0.29728

0.7 0.42945 0.42988 0.41917 0.39161 0.35341 0.30574
0.41703 0.39911 0.43281 0.40764 0.36907 0.31006

0.9 0.40073 0.41852 0.43222 0.41559 0.37645 0.31639
0.39366 0.40787 0.41713 0.43285 0.38918 0.32196

500 0.1 0.05610 0.05503 0.05289 0.05094 0.04998 0.05160
0.05509 0.05416 0.05174 0.05107 0.04788 0.05118

0.3 0.07392 0.07182 0.06722 0.06224 0.05775 0.05478
0.07720 0.07495 0.06842 0.05987 0.05587 0.05365

0.5 0.08370 0.08206 0.07741 0.07132 0.06448 0.05780
0.08352 0.08155 0.07798 0.07205 0.06216 0.05597

0.7 0.08582 0.08601 0.08378 0.07824 0.07043 0.06081
0.08312 0.08425 0.07941 0.07801 0.07113 0.05793

0.9 0.08009 0.08374 0.08633 0.08320 0.07555 0.06345
0.07899 0.08420 0.08498 0.08105 0.07711 0.05930

1000 0.1 0.02805 0.02751 0.02643 0.02547 0.02497 0.02580
0.02811 0.02755 0.02708 0.02586 0.02534 0.02610

0.3 0.03695 0.03592 0.03362 0.03113 0.02885 0.02739
0.03614 0.03553 0.03316 0.03136 0.02948 0.02754

0.5 0.04185 0.04103 0.03872 0.03564 0.03224 0.02894
0.04026 0.04055 0.03777 0.03468 0.03230 0.02897

0.7 0.04290 0.04301 0.04189 0.03914 0.03519 0.03036
0.04131 0.04228 0.04188 0.03799 0.03401 0.03033

0.9 0.04005 0.04187 0.04316 0.04162 0.03774 0.03177
0.03726 0.03950 0.04204 0.04142 0.03713 0.03071
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Table 5.8: Comparison of V (cW ) (shown in bold) and bV (cW ) (not in bold)
at various levels of W and T using optimum choices of n1 and n2 that

minimize {V (bμx) + V (cW )} for μx = 4, σ2x = 4, θ1 = 2, σ2S1 = 2, θ2 = 5, σ2S2 = 5
n W T = 0 T = .1 T = .3 T = .5 T = .7 T = .9

100 0.1 0.02922 0.03498 0.05324 0.09558 0.23426 1.86223
0.02842 0.03389 0.05037 0.09484 0.24178 1.91306

0.3 0.04118 0.04889 0.07237 0.12382 0.28168 2.01198
0.04086 0.04743 0.07522 0.12753 0.28524 2.02801

0.5 0.04725 0.05699 0.08604 0.14539 0.32573 2.15743
0.04410 0.05777 0.08995 0.15113 0.33994 2.21298

0.7 0.04769 0.05957 0.09321 0.16196 0.36001 2.29585
0.04779 0.05736 0.09604 0.16995 0.38306 2.27753

0.9 0.04315 0.05674 0.09557 0.17448 0.39408 2.43178
0.04369 0.05726 0.09536 0.18236 0.40528 2.41371

500 0.1 0.00586 0.00700 0.01071 0.01907 0.04677 0.37215
0.00590 0.00702 0.01060 0.01974 0.04578 0.36529

0.3 0.00821 0.00975 0.01452 0.02470 0.05643 0.40267
0.00886 0.01054 0.01521 0.02459 0.05452 0.39207

0.5 0.00945 0.01133 0.01716 0.02908 0.06492 0.43178
0.00911 0.01135 0.01774 0.03009 0.06357 0.41281

0.7 0.00960 0.01188 0.01869 0.03247 0.07224 0.45947
0.00926 0.01134 0.01797 0.03275 0.07434 0.43202

0.9 0.00869 0.01131 0.01922 0.03481 0.07855 0.48617
0.00847 0.01111 0.01850 0.03381 0.08142 0.44777

1000 0.1 0.00293 0.00350 0.00537 0.00953 0.02341 0.18607
0.00279 0.00334 0.00526 0.00947 0.02354 0.18114

0.3 0.00411 0.00487 0.00725 0.01233 0.02824 0.20134
0.00399 0.00473 0.00692 0.01210 0.02774 0.19468

0.5 0.00473 0.00566 0.00857 0.01456 0.03246 0.21585
0.00452 0.00549 0.00820 0.01386 0.03114 0.20769

0.7 0.00481 0.00593 0.00935 0.01622 0.03615 0.22978
0.00467 0.00576 0.00918 0.01537 0.03326 0.21666

0.9 0.00434 0.00566 0.00961 0.01738 0.03931 0.24304
0.00411 0.00539 0.00935 0.01691 0.03715 0.21989
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Table 5.9: Comparison of V (bμx) (shown in bold) and bV (bμx) (not in bold)
at various levels of W and T using equal sample sizes for μx = 4, σ

2
x = 4,

θ1 = 2, σ
2
S1 = 2, θ2 = 5, σ

2
S2 = 5

n W T = 0 T = .1 T = .3 T = .5 T = .7 T = .9

100 0.1 0.31333 0.30818 0.29760 0.28667 0.27538 0.26373
0.31203 0.30998 0.29768 0.29232 0.28027 0.26937

0.3 0.39778 0.38738 0.36418 0.33778 0.30818 0.27538
0.39283 0.38299 0.36641 0.33942 0.30998 0.28027

0.5 0.44667 0.43778 0.41333 0.38000 0.33778 0.28667
0.43499 0.43458 0.40860 0.38058 0.33942 0.29232

0.7 0.46000 0.45938 0.44507 0.41333 0.36418 0.29760
0.45704 0.45449 0.44233 0.40860 0.36641 0.29768

0.9 0.43778 0.45218 0.45938 0.43778 0.38738 0.30818
0.44233 0.44900 0.45449 0.43458 0.38299 0.30998

500 0.1 0.06267 0.06164 0.05952 0.05733 0.05508 0.05275
0.06182 0.06035 0.05867 0.05604 0.05387 0.05158

0.3 0.07956 0.07748 0.07284 0.06756 0.06164 0.05508
0.08060 0.07915 0.07511 0.06626 0.06035 0.05387

0.5 0.08933 0.08756 0.08267 0.07600 0.06756 0.05733
0.09532 0.08618 0.08332 0.07707 0.06626 0.05604

0.7 0.09200 0.09188 0.08901 0.08267 0.07284 0.05952
0.09054 0.09201 0.08647 0.08332 0.07511 0.05867

0.9 0.08756 0.09044 0.09188 0.08756 0.07748 0.06164
0.09041 0.09309 0.09201 0.08618 0.07915 0.06035

1000 0.1 0.03133 0.03082 0.02976 0.02867 0.02754 0.02637
0.03115 0.03077 0.03022 0.02911 0.02786 0.02661

0.3 0.03978 0.03874 0.03642 0.03378 0.03082 0.02754
0.03723 0.03693 0.03457 0.03281 0.03077 0.02786

0.5 0.04467 0.04378 0.04133 0.03800 0.03378 0.02867
0.04488 0.04193 0.03912 0.03608 0.03281 0.02911

0.7 0.04600 0.04594 0.04451 0.04133 0.03642 0.02976
0.04613 0.04573 0.04325 0.03912 0.03457 0.03022

0.9 0.04378 0.04522 0.04594 0.04378 0.03874 0.03082
0.04196 0.04509 0.04573 0.04193 0.03693 0.03077



63

Table 5.10: Comparison of V (cW ) (shown in bold) and bV (cW ) (not in bold)
at various levels of W and T using equal sample sizes for μx = 4, σ

2
x = 4,

θ1 = 2, σ
2
S1 = 2, θ2 = 5, σ

2
S2 = 5

n W T = 0 T = .1 T = .3 T = .5 T = .7 T = .9

100 0.1 0.02513 0.03019 0.04707 0.08647 0.22355 1.85713
0.02478 0.02989 0.04641 0.08856 0.22533 1.89456

0.3 0.03598 0.04281 0.06477 0.11331 0.27173 2.01198
0.03571 0.04181 0.06633 0.11320 0.26902 2.02801

0.5 0.04167 0.05028 0.07731 0.13500 0.31475 2.16167
0.04055 0.05012 0.07691 0.13606 0.31443 2.21403

0.7 0.04220 0.05259 0.08470 0.15153 0.35262 2.30620
0.04212 0.05248 0.08440 0.15075 0.36114 2.27419

0.9 0.03758 0.04975 0.08694 0.16291 0.38533 2.44558
0.03822 0.04995 0.08675 0.16238 0.37629 2.42121

500 0.1 0.00503 0.00604 0.00941 0.01729 0.04471 0.37143
0.00490 0.00583 0.00909 0.01665 0.04332 0.35945

0.3 0.00720 0.00856 0.01295 0.02266 0.05435 0.40240
0.00729 0.00878 0.01354 0.02244 0.05247 0.38988

0.5 0.00833 0.01006 0.01546 0.02700 0.06295 0.43233
0.00854 0.00971 0.01543 0.02748 0.06232 0.41617

0.7 0.00844 0.01052 0.01694 0.03031 0.07052 0.46124
0.00816 0.01011 0.01625 0.03025 0.07373 0.44539

0.9 0.00752 0.00995 0.01739 0.03258 0.07707 0.48912
0.00767 0.00994 0.01671 0.03147 0.07905 0.47224

1000 0.1 0.00251 0.00302 0.00471 0.00865 0.02236 0.18571
0.00234 0.00283 0.00451 0.00844 0.02168 0.17901

0.3 0.00360 0.00428 0.00648 0.01133 0.02717 0.20120
0.00321 0.00382 0.00565 0.01023 0.02544 0.19509

0.5 0.00417 0.00503 0.00773 0.01350 0.03148 0.21617
0.00424 0.00456 0.00693 0.01186 0.02840 0.21100

0.7 0.00422 0.00526 0.00847 0.01515 0.03526 0.23062
0.00428 0.00521 0.00784 0.01359 0.03077 0.22084

0.9 0.00376 0.00497 0.00869 0.01629 0.03853 0.24456
0.00368 0.00508 0.00862 0.01478 0.03442 0.22900
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5.3 Concluding Remarks

This thesis attempts to carry forward the work in the area of RRT models, par-

ticularly in the area of sensitivity estimation. One can see that using the two

independent sample technique works very well when it comes to simultaneous es-

timation of mean and sensitivity levels. Also, the additive RRT models provide

more efficient estimators as compared to multiplicative RRT models. One should

also note that the additive RRT models are more user-friendly. Another important

issue is that of maintaining anonymity. There is a problem in using a multiplica-

tive model since a non-zero reported response would generally indicate the presence

of the sensitive behavior to some degree, thus revealing a respondent’s true sta-

tus in a face-to-face situation with the interviewer (therefore encouraging response

distortion or non-response on the part of the respondent.) We also note that a

two-stage optional RRT model generally produces lower V ar (bμx) but a somewhat
higher V ar(cW ) as compared to the one-stage model. However, as we remarked

earlier, there is generally a greater emphasis on the estimation of μx. Hence a

two-stage optional RRT model will be more effective than a one-stage optimal RRT

model.



65

5.4 SAS Code

*************************************************************;

* SAS code -- Two-Stage Additive Optional Model *

*************************************************************;

%macro runit(par1,par2,par3,par4,par5,par6,par7);

data calc_ns;

seed=&par1; theta_1=&par2; theta_2=&par3; mu_X=&par4; T=&par5;

n=&par6; W=&par7;

/** sigma_sq_x = mu_x since poisson **/

/** sigma_sq_s1 = theta_1 since poisson **/

/** sigma_sq_s2 = theta_2 since poisson **/

sigma_sq_z1 = mu_X + theta_1*W*(1-T)

+ theta_1*theta_1*W*(1-T)*(1-W*(1-T));

sigma_sq_z2 = mu_X + theta_2*W*(1-T)

+ theta_2*theta_2*W*(1-T)*(1-W*(1-T));

/* calculate optimum n1 and n2 (that minimize variance) */

/* interim build vars */

sqrt_th1 = sqrt((theta_1*theta_1) + (1/((1-T)*(1-T))));

sqrt_th2 = sqrt((theta_2*theta_2) + (1/((1-T)*(1-T))));

n1 = round((n*(sqrt(sigma_sq_z1))*sqrt_th2)/

(((sqrt(sigma_sq_z2))*sqrt_th1)+((sqrt(sigma_sq_z1))*sqrt_th2)),1);

n2 = round((n*(sqrt(sigma_sq_z2))*sqrt_th1)/

(((sqrt(sigma_sq_z2))*sqrt_th1)+((sqrt(sigma_sq_z1))*sqrt_th2)),1);
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chk_N = n1 + n2;

/* check */

*proc append base=chk_all data=calc_ns;run;

*proc print data = chk_all; *run;

data scramble_it (drop = z1bar z2bar) one;

retain z1sum z1bar z2sum z2bar;

set calc_ns (keep = seed T mu_X W theta_1 theta_2

sigma_sq_z1 sigma_sq_z2 n1 n2 n);

/* calculate proportion that would give true response */

TrueCombined = T + ((1-T)*(1-W));

do i=1 to 1000;

/* Sample 1 */

z1sum = 0; z1bar = 0;

do j=1 to n1;

* Poisson random variable X with mean mu_X;

X = ranpoi(seed,mu_X);

* Poisson random variable S1 with mean theta_1;

S1 = ranpoi(seed,theta_1);

/* Simulate True Responders with BERN Var using TrueCombined */

TrueFlag = 0;
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if TrueCombined = 0 then TrueFlag=0;

else TrueFlag = ranbin(seed,1,TrueCombined);

if TrueFlag = 1 then y1 = X;

else y1 = X + S1;

Z1sum = Z1sum + y1;

output scramble_it;

end;

Z1bar = Z1sum/n1; * average n1 response E(Z1);

j = .; S1 = .; y1 =.; /* clean up */

/* Sample 2 */

z2sum = 0; z2bar = 0;

do k=1 to n2;

X = ranpoi(seed,mu_X);

S2 = ranpoi(seed,theta_2);

TrueFlag = 0;

if TrueCombined = 0 then TrueFlag=0;

else TrueFlag = ranbin(seed,1,TrueCombined);

if TrueFlag = 1 then y2 = X;

else y2 = X + S2;

Z2sum = Z2sum + y2;

output scramble_it;

end;

Z2bar = Z2sum/n2; * average n2 response E(Z2);

k = .; S2 = .; y2 =.; /* clean up */
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output one;

end;

run;

/*check*/*proc means data = scramble_it mean std var; *run;

data final; set one; drop j k TrueFlag S1 S2 y1 y2 X /*b*/;

mu_X_hat = (z1bar*theta_2 - z2bar*theta_1)/(theta_2 - theta_1);

mu_W_hat = (z2bar - z1bar)/((theta_2 - theta_1)*(1-T));

/* calculate expected expected var(mu_X) and var(W) */

var_mu_X_calculated = (1/((theta_2 - theta_1)*(theta_2 - theta_1)))*

(((theta_2*theta_2)*(sigma_sq_z1/n1))

+((theta_1*theta_1)*(sigma_sq_z2/n2)));

var_mu_W_calculated = (1/((theta_1 - theta_2)*(theta_1 - theta_2)*

(1 - T)*(1 - T)))*((sigma_sq_z1/n1)

+(sigma_sq_z2/n2));

/* check */*proc means data = final mean std var;

*var mu_X mu_X_hat W mu_W_hat; *run;

/* output variables */

proc means data = final mean std var noprint;

var t mu_X n1 n2 n W mu_W_hat mu_X_hat

var_mu_X_calculated var_mu_W_calculated;
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output out=Sumdata

mean(t)=T mean(mu_X)=TrueMuX mean(W)=TrueW

mean(n1)=n1 mean(n2)=n2 mean(n)=N

mean(mu_W_hat)=SimulatedW mean(mu_X_hat)=SimulatedMuX

var(mu_X_hat)=SimulatedVarMuX

mean(var_mu_X_calculated)=ExpectedVarMuX

var(mu_W_hat)=SimulatedVarW

mean(var_mu_W_calculated)=ExpectedVarW;

run;

data final_summary; set sumdata (drop=_type_);

proc append base=final_output data=final_summary;

proc print data = final_output; run;

%mend runit;

%runit(23,2,5,4,0,100,.1)

%runit(23,2,5,4,0,100,.2)

%runit(23,2,5,4,.1,100,.1)

%runit(23,2,5,4,.1,100,.2)

%runit(23,2,5,4,.3,100,.1)

%runit(23,2,5,4,.3,100,.2)
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