=

View metadata, citation and similar papers at core.ac.uk brought to you by .i CORE

provided by Helsingin yliopiston digitaalinen arkisto

Reactive oxygen species and SRO proteins as regulators of gene expression in

Arabidopsis thaliana

Tiina Blomster

Faculty of Biological and Environmental Sciences
Viikki Doctoral Programme in Molecular Biosciences

University of Helsinki

Academic dissertation

To be presented for public examination with the permission of the Faculty of Biological and
Environmental Sciences of the University of Helsinki in the auditorium 1041 at the Viikki

Biocenter 2 (Viikinkaari 5), on March 9" 2012 at 12 o’clock noon.

Helsinki 2012


https://core.ac.uk/display/14922897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisors

Professor Jaakko Kangasjarvi
Department of Biosciences
University of Helsinki, Finland

Docent Kirk Overmyer
Department of Biosciences
University of Helsinki, Finland

Reviewers

Professor Paula Elomaa
Department of Agricultural Sciences
University of Helsinki, Finland

Professor Hely Haggman
Department of Biology
University of Oulu, Finland

Opponent

Professor Frank Van Breusegem
Department of Plant Systems Biology
Ghent University, Belgium

Custos

Professor Yka Helariutta
Department of Biosciences
University of Helsinki, Finland

ISSN 1799-7372

ISBN 978-952-10-7701-2 (paperback)

ISBN 978-952-10-7702-9 (PDF), http://ethesis.helsinki.fi
Unigrafia Helsinki 2012



1”

“To infinity ... and beyond

Buzz Lightyear (from Toy Story)



Table of Contents

Original publications

Abbreviations
Abstract

N oY ot o o TSP SPRR 1
1.1 Reactive oxygen species (ROS): matters of life and death.........c.ccccevvveiciieiicieeecieees 1
1.1.1 Aerobic metabolism produces ROS...........oeiiiiieeeiiee et et e 1
1.1.2 ROS production in reSPOoNSE tO SErESS .....uuvierieiieciiiieeeeeeccirre e e e eerrrer e e e e eesirrreeeeeeeanes 2
1.1.3 ROS in plant growth, development and stomatal function ..........cccccoveeeiiieeeeiieeenns 4
1.1.4 ROS have unique and overlapping functions in stress signaling.......cccccoccvvveeeiveenns 5
1.1.5 Programmed cell death and ROS ......ccc.ooiiiiiiiiiiiiieeieeeeeee e 7
1.1.5.1 Programmed cell death in plants.......ccocceeieiiiiiiiniieeeeeee 7
1.1.5.2 Hypersensitive reSPONSE ....ccceiiiiii e 7
1.1.5.3 Ozone is an abiotic inducer of defense responses ..........cccceceevvveeeciieeenns 9
1.2 PIant hormone SIZNAliNG.......cccuuie ittt e et e e e e sabe e e e snraeeennes 13
L 2. L B NY BN et e et e e e ta e e e etre e e eaareaeaanes 14
1.2.2 SAlICYIIC @CHT .ttt 15
1.2.3 JASMONIC @CHU .eeutieiiiieiiieriee ettt ettt sttt e e e e st e e sabeesbaeesaeesabee s 16
L2014 AAUXIN ottt e e ettt e e e e ettt e e e e et e e e e e e e bbb b e e e e aeaanreeeeeeaeaas 17
0T €1 o] o Y=Y =Y 1 L o T PSPPSRt 19
1.2.6 ADSCISIC @CIH .vviiiiiiiieiiieeie et sttt st st sba e e nb e sbee s 20
1.2.7 BrasSiNOSTEIOIT ....cccueeiiiieriieiiieiieetee st e ste e site e e st e steesiae e s baeebeesabeesnaeessaeesseeenbee s 21
1.2.8 CYtOKININ cuteeetie ettt ettt e e e et e e st e e aeeebaeerbeesateesaaeessaeenseeenreeas 22
1.3 RADICAL-INDUCED CELL DEATH 1 (RCD1): a tip of anice berg? ......cceovevvvcevvervennnen. 22
1.3.1 Mutation in RCD1 causes altered development and stress responses................... 22
1.3.2 SRO Protein family.....ccueiceecie et st e s en 23
2 AIMS OF the STUAY ..o e e e st e e e nre e e nneaeas 24

3 Materials aNd METNOAS ............ooooiiiiiiiiii e 25



4 ReSUILS aNd DISCUSSION .........evvviiiiiiiiiiiiiicc ettt e et e e e e s e e e e e sabbeeeeeesenabaaeeeeas 27

4.1 Redundancy within SRO gene family .......cccoeiiriiiiiiiiieeeee e 27
4.1.1 Complementation Of FCAT .......cueeeeiee e 27
4.1.2 Single and double mutants reveal in planta functions of SROS .......ccccceevveeeiieeenns 28
4.1.3 SRO conservation within plant kingdom: Why? .........c..cooiiiiiiiiiic e, 30

4.2 Apoplastic ROS and tranSCriptomIiCs .....ceeveerieerieeiieeiee sttt 31
4.2.1 Apoplastic ROS regulate thousands of stress-responsive transcripts..........cc.e..... 31
4.2.2 Apoplastic ROS alter auxin Signaling .........coovuiiiiiiiiiiiie e 33
4.2.3 Stress-induced MOrphOgENIC FESPONSE ...eiivviieeriieeeetieeeceeeesteeeeeareeereeeesereeeenees 36
4.2.4 Cell death and gENE EXPIreSSION ....cc.vieeeciiiicieeeciee et et e et e e e ere e e s sare e e e areeeeaees 38

4.2.4.1 Are rcd1 stress phenotypes pre-determined by clean air gene

1 oL =E] (o] SR UUPPPPRRN 38

4.2.4.2 Marker enes OF PCD......ccuiiuiiiiiieniieieeie ettt s 39
5 Conclusions and future Perspectives.............cccccuveiiiiiieiiiie e e 44
6 ACKNOWIEAZEMENLS ..........oiiiiiiee e e et eaa e e e eab e e e e ar e e e enraeas 46

T REFEIEINCES ...t e e e e e e e e et e e e e e e bt e e e e e s e saabaaeeeeeeenabaaeeeeeas 48



Original publications

This thesis is based on the following original publications, which are referred to in the text
by their Roman numerals (I-IV). The publications are reprinted with the kind permission
from Blackwell Publishing (1), BioMed Central (lI) and the American Society of Plant
Biologists (l1). Additional unpublished data is presented in the thesis.

1) Jaspers P, Blomster T, Brosché M, Salojarvi J, Ahlfors R, Vainonen JP, Reddy RA, Immink R,
Angenent G, Turck F, Overmyer K, Kangasjarvi J (2009) Unequally redundant RCD1 and SRO1 mediate
stress and developmental responses and interact with transcription factors. Plant J 60: 268-279

II) Jaspers P*, Overmyer K*, Wrzaczek M*, Vainonen JP, Blomster T, Salojarvi J, Reddy RA,
Kangasjarvi J (2010) The RST and PARP-like domain containing SRO protein family: analysis of protein
structure, function and conservation in land plants. BMC Genomics 11: 170

IIl) Blomster T, Salojarvi J, Sipari N, Brosché M, Ahlfors R, Keinanen M, Overmyer K, Kangasjarvi J
(2011) Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-
induced morphogenic response in Arabidopsis. Plant Physiol 157: 1866-1883

IV) Blomster T*, Brosché M*, Salojarvi J, Sipari N, Lamminmadki A, Cui F, Narayanasamy S, Reddy RA,
Keindnen M, Overmyer K, Kangasjarvi J. Transcriptomics and functional genomics of ROS-induced cell
death regulation by RADICAL-INDUCED CELL DEATH1. Manuscript.

* Equal contribution

Author’s contribution

1) TB isolated rcd1-3, rcd1-4, and srol-1 mutants and identified the rcd1 srol plants. TB cloned the
promoter reporter lines and initialized the complementation lines. TB performed the microarray
hybridizations. This publication was part of PJ’s doctoral thesis.

II) TB isolated the sro5-2 mutant, carried out microarray hybridizations and designed qPCR primers.
This publication was part of PJ’s doctoral thesis.

Ill) TB performed plant experiments, RNA isolation, and microarray hybridizations. NS and TB
collected samples for the microarrays, NS ground the samples, scanned the microarrays and
analyzed hormone concentrations. KO and TB performed SIMR experiments. JS analyzed the
microarray data and publicly available data with input from TB, MB and KO, and performed
statistical analysis. MB, KO and TB designed and performed qPCR experiments. TB, MB, KO and JK
wrote the paper.

IV) Microarray practical work was done as in Il by TB and NS. TB, MB, AL, FC and RAR performed ion
leakage experiments. JS and SN made statistical analysis and data clustering with input from MB and
TB. TB, MB, KO and JK wrote the manuscript.



Abbreviations

102
ABA
AFB
AOX
APX
ARF
Aux/1AA
BR

BTH

CAT
CK
Col
Col-0
ERF

ETI
flg22
GA
GO
H,0,
HR
IAA
ICS
JA
MPK

NO
NPR
0"
O3

OH

singlet oxygen

abscisic acid

auxin signaling F-box protein
alternative oxidase
ascorbate peroxidase

auxin response factor
auxin/IAA

brassinosteroid

SA-analog benzothiadiazole
S-methylester

catalase

cytokinin

coronatine insensitive
Columbia-0 ecotype
ethylene-responsive element
binding factor
effector-triggered immunity
flagellin peptide

gibberellin

gene ontology

hydrogen peroxide
hypersensitive response
indole-3-acetic acid
isochorismate synthase
jasmonic acid
mitogen-activated protein
kinase

nitric oxide

non-expressor of PR proteins
superoxide

ozone

hydroxyl radical

PAMP

PARP
PCD
PQ
PR
PS
PTI

qPCR
RBOH

RCD
ROS
RST
SA
SAUR
SCF
SIMR

SKP

SoD
SRO
TAF
TBP
TF
TIR
UPOX

uv

pathogen-associated
molecular pattern
poly-ADP-ribose polymerase
programmed cell death
paraquat (methyl viologen)
pathogenesis-related
photosystem
pathogen-triggered
immunity

quantitative real-time PCR
respiratory burst oxidase
homolog

radical-induced cell death
reactive oxygen species
RCD1-SRO-TAF4 domain
salicylic acid

small auxin up-regulated
SKP1-CULLIN-F-box
stress-induced morphogenic
response

s-phase kinase associated
protein

superoxide dismutase
similar to rcd-one
TBP-associated factor
TATA-box binding protein
transcription factor
transport inhibitor response
upregulated by oxidative
stress

ultraviolet



Abstract

Life on earth is largely dependent on plants, which provide us energy and oxygen. Plants are
sessile organisms adapted to their respective growth environments. However, these
environmental conditions are rarely constant and changes in growth conditions require
modifications in plant metabolism. Abiotic environmental factors may suddenly become
limited or excessive, or a pathogen attack may cause biotic stress. Reactive oxygen species
(ROS) are by-products of normal aerobic metabolism and their production is enhanced by
biotic and abiotic stresses. ROS serve as signaling molecules, which regulate expression of
stress-responsive genes together with other signaling pathways in order to achieve
appropriate responses to the suboptimal environment. Human activities also modify the
environment for instance by increasing levels of air pollutant ozone (O3) which is a ROS
causing foliar damage in sensitive species and cultivars. Therefore, understanding the
mechanisms governing plant stress tolerance is of increasing importance. Importantly for
this work, Oz is known to cause production of apoplastic ROS in plants similar to other
stresses and was therefore used here as a tool to study stress signaling.

The Arabidopsis thaliana mutant radical-induced cell deathl (rcd1) harbors several stress
phenotypes related to ROS signaling. In order to identify novel genes and signaling pathways
regulating plant stress responses, RCD1 and its homologs were studied further. RCD1
belongs to a plant-specific SIMILAR TO RCD-ONE (SRO) gene family present in all land plants
analyzed. The molecular function of SROs remains unknown as they have no poly(ADP-
ribose) polymerase (PARP) activity and lack catalytic amino acids in the conserved PARP
catalytic domain. However, SROs are able to interact with transcription factors via their C-
terminal RST domain which suggests that they may regulate gene expression. In addition to
altered rosette morphology, rcd1l has changes in gene expression in normal growth
conditions which may partially be attributed to RCD1 protein-protein interactions. However,
srol and sro5 plants are similar to wild-type Col-0 regarding their growth habitus and gene
expression. A. thaliana paralogs RCD1 and SRO1 share unequal genetic redundancy: the
rcd1 srol double mutant is stunted and SRO1 can partially complement rcd1. Transcriptomic
analysis of apoplastic ROS-induced signaling triggered by O3z treatment revealed altered
expression of thousands of genes in a time-dependent manner. In rcdl, this response was
exaggerated, which may explain the triggering of programmed cell death in Oz-treated rcdl.
Transcription factor WRKY70 was identified as a positive regulator of cell death, putatively
acting through altered balance of salicylic acid and jasmonic acid signaling. A transient
decrease in auxin signaling together with altered expression of auxin-responsive transcripts
by apoplastic ROS was observed. Decreased auxin signaling did not affect the extent of cell
death caused by acute O3, but caused more severe morphological changes in chronically Os-
treated plants. Altogether, these results suggest that auxin-ROS interaction modulates plant
development under stress.



1 Introduction
1.1 Reactive oxygen species (ROS): matters of life and death
1.1.1 Aerobic metabolism produces ROS

Aerobic metabolism by definition uses oxygen (O,) in several vital reactions. O; is the final
electron acceptor in the mitochondrial electron transport chain of respiration releasing
energy from carbohydrates to cells. In plants, O, is formed after hydrolysis of water (H,0) in
the chloroplasts, and the electrons are utilized in photosynthesis to capture the energy of
light in biomolecules. However, these electron transport reactions (redox reactions) and
energy transfers also give rise to reactive oxygen species (ROS). ROS are oxygen forms,
which are strong oxidants in biological systems and can therefore cause oxidative damage to
proteins, lipids and nucleic acids with harmful effects on cellular functions. ROS include for
instance hydrogen peroxide H,0,, superoxide O,", singlet oxygen 'O, and hydroxy! radical
OH® (Fig. 1). These ROS differ in their chemical properties: for example H,0, can diffuse
across membranes, unlike 0," which is a charged molecule. Specific water channels,
aquaporins, also assist the diffusion of H,0, (Bienert et al., 2007). Different ROS may also
convert into other ROS non-enzymatically or enzymatically, for instance superoxide
dismutases (SODs) catalyze the formation of H,0, from O, (Fig. 1). This type of conversion
is also a detoxification process, because 0," is more reactive and thus more harmful than
H,0,. For the most reactive ROS, OH’, there is no known enzymatic detoxification system so
plants must simply avoid its formation from Haber-Weiss reaction (from ROS precursors
H,0, and 0,") and from Fenton reaction requiring transition metal ions (Fe2+ and Cu2+).
Therefore iron-binding ferritin proteins limit OH" formation and are considered as part of
ROS defense. Other systems for ROS detoxification include low molecular weight
antioxidants, such as ascorbate and glutathione.

e- e- e- e- e-
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Figure 1. Formation of ROS (in gray boxes) by energy transfer (marked with lightning) or
redox reactions. Adapted after Apel and Hirt (2004).



Plant cells are divided into several compartments each carrying out their specific functions.
Similarly, also the ROS forming reactions, the particular ROS produced and the
detoxification pathways are characteristic for each subcellular compartment. Chloroplasts
produce mostly 102 and 0, as metabolic side-products and mitochondria O, 102 is
quenched by a-tocopherol and carotenoids in the chloroplast, whereas both chloroplasts
and mitochondria contain specific SODs for conversion of 0," into H,0,. Mitochondrial,
chloroplastic and also cytosolic H,0, can be reduced into H,O by ascorbate peroxidases
(APXs) utilizing ascorbate as the reductant. The recycling of oxidized ascorbate back to the
reduced form, the Halliwell-Asada pathway, includes glutathione and several enzymes
(monodehydroascorbate reductase, dehydroascorbate reductase, gluthatione reductase
and reduced ferredoxin). Large quantities of H,0, formed in peroxisomes during
photorespiration and in fatty acid catabolism in glyoxysomes are reduced into H,O by
catalases (CAT) at the respective subcellular locations. Taken together, normal plant
metabolism produces several interconvertible ROS hazardous for life, which differ in their
chemical properties, sites of production and their detoxification pathways.

1.1.2 ROS production in response to stress

The oxidative state of a cell is determined by the balance between ROS formation and
detoxification. Disturbance in this balance can be caused by environmental factors
increasing ROS formation thereby creating so called oxidative stress. The increased ROS
production by environmental perturbations can be divided into two main mechanisms:
metabolic accumulation and regulated burst accumulation (Apel and Hirt 2004; Foyer and
Noctor 2009). Firstly, metabolic ROS accumulation may increase at the sites of electron
transport in chloroplasts and mitochondria when these electron transport chains become
overreduced and can no longer adequately accept electrons. For instance, high light stress
inhibits function of photosystem Il (PSIl) proteins (a process called photoinhibition), causing
energy from exited chlorophyll to be transferred to O, resulting in the increase of *0,. To
reduce photoinhibition, plants revert to alternative electron sinks such as photorespiration
or the water-water cycle (Asada 1999). Photorespiration increases ROS in peroxisomes (Apel
and Hirt 2004). The role for plant mitochondria in ROS production is estimated to be
miniscule compared to chloroplasts and peroxisomes under normal and high light conditions
(Foyer and Noctor 2003). In addition to the major role of photosynthetic light reactions as
ROS sources, the presence of mitochondrial alternative oxidase enzyme complex (AOX)
provides an optional, plant-specific electron sink in mitochondria without producing energy
(Maxwell et al., 1999). The increase of ROS in chloroplast and mitochondria has been mainly
attributed to abiotic stresses such as high light, cold, heat and mechanical stress with a
concomitant increase in ROS detoxification processes (Apel and Hirt 2004).

Due to the intimate linkage of ROS and metabolism, ROS formation is an important cue for
plants to adjust their metabolism according to the environmental change. The role of ROS as



signaling molecules and not only toxic by-products of aerobic metabolism has nowadays
been widely accepted. The dual nature of ROS is also indicated by the capability of plant
cells to actively produce ROS, which is the second mechanism by which ROS concentrations
are regulated by environmental factors. The rapid production of large amounts of ROS, the
so called oxidative burst, by enzymes localized to plasma membrane and cell walls was first
discovered in response to biotic stress. Plasma membrane bound O,"-generating NADPH-
oxidases are called RESPIRATORY BURST OXIDASE HOMOLOGS (RBOHs) according to the
similarity with enzyme complexes in mammalian neutrophils (Torres et al., 2002; Suzuki et
al., 2011). This demonstrates that the ROS signaling network has similarities between plants
and animals. There is genetic evidence that RBOHD and RBOHF are the main O," producers
in plant defense using the model species Arabidopsis thaliana (Torres et al., 2002) but also
other sources of apoplastic ROS, such as peroxidases, may play an important role in some
cases of plant-pathogen interactions (Bindschedler et al., 2006). In plants, cell wall bound
peroxidases participating in lignin formation may act also as NADPH oxidases and produce
0," and consequently H,0,. Horse-radish peroxidase has been demonstrated also to
catalyze formation of highly reactive OH® in the presence of 0, and H,0, (Chen and
Schopfer 1999). Also xanthine and amine oxidases may cause ROS production during
pathogen attack. The increase of extracellular ROS has been interpreted as an attempt to kill
the invading pathogen similarly to the action of phagocytes in animal cells. Recently it was
shown that NADPH-oxidase activity causes changes in the cellular pH, which drives the
antipathogenic effect (Segal 2008). Similarly, alkalinization of apoplastic environment is co-
occurring with RBOH activity in plants due to Ca?" influx (Monshausen et al., 2009), which
may lead to elevated peroxidase activity and H,0, production in the apoplast (Bolwell et al.,
2002).

Importance of endogenously produced ROS as signals promoting plant stress survival and
fitness is reinforced by the simultaneous decrease in antioxidant defenses, which is not
usually the case in abiotic stress responses. However, ROS production and accumulation in
response to environmental pertubations is complex with spatial and also temporal variation.
Recently RBOHD was shown to generate O, in response to high light, wounding, heat, cold
and salt stress as well (Miller et al., 2009). Therefore, abiotic stresses induce ROS production
also in the apoplast and not merely in the electron transport chains of the mitochondria or
chloroplast. Plants defective in RBOH function exhibit reduced salt tolerance (Leshem et al.,
2007; Kaye et al., 2011). In addition to apoplastic ROS, pathogens may cause also
mitochondrial ROS production (Amirsadeghi et al., 2007). Plants impaired in mitochondrial
complex Il and mitochondrial ROS production have increased pathogen susceptibility and
partially lack plant hormone salicylic acid (SA) responses (Gleason et al., 2011b). Nuclear
ROS accumulation has been observed in tobacco treated with fungal elicitor protein
cryptogein (Ashtamker et al., 2007) and in salt-treated Arabidopsis roots (Kaye et al., 2011),
but no specific role for nuclear ROS in stress signaling has yet been demonstrated.



In Arabidopsis at least 289 genes are directly involved in the production or detoxification of
ROS (Gechev et al., 2006) thereby establishing a basal network for ROS signaling. It is
noteworthy that although chloroplast and mitochondria possess their own genomes, still
the majority of their proteins are encoded in the nucleus. Retrograde signaling, the process
by which organellar signals affect nuclear gene expression is yet largely unresolved. Because
ROS-derived signals interact with other signaling molecules, such as lipid-derived
messengers, plant hormones and nitric oxide (NO), the number of genes involved in the
fine-tuning of ROS signaling is even larger.

1.1.3 ROS in plant growth, development and stomatal function

ROS are important signaling molecules mediating stress responses, but ROS production is
also necessary for plant development. Interestingly, analysis regarding the evolutionary
history of 0, -generating NADPH oxidases within the plant kingdom revealed that the basal
plants do have a sophisticated antioxidative capacity, but they lack the NADPH oxidases,
which have arisen with increased plant size presumably for advanced signaling purposes
(Mittler et al., 2011). ROS produced by RBOHD triggers systemic signaling across large
distances (Miller et al., 2009), which is in line with this interpretation. The rbohd and rbohf
plants are smaller than the respective wild type (Torres et al., 2002), which supports the
importance of ROS production in also plant development and growth. RBOH-produced ROS
in stomatal guard cells regulate plant gas exchange by promoting stomatal closure (Kwak et
al., 2003; Joo et al., 2005a). ROS are produced by NADPH oxidases also in the elongating
root hairs (Foreman et al., 2003), pollen tubes (Potocky et al., 2007) and maize (Zea mays)
leaves (Rodriguez et al., 2007). Concomitantly, the halt of Z. mays leaf elongation caused by
salt stress could be reversed by ROS application (Rodriguez et al., 2004). However, it has
also been frequently reported that plants defective in the antioxidant defenses or under
constitutive stress have reduced growth, which highlights the importance of well-controlled
ROS concentrations. Stress-induced morphogenetic response (SIMR) is a term used to
describe similar alterations in plant growth and architecture caused by different stresses.
These features include increased number of lateral organs (roots and shoots), decreased cell
divisions in the apical meristems and decreased cell elongation. At molecular level SIMR is
not well understood, but it is likely to encompass interaction between ROS and plant
hormone auxin (Potters et al., 2007). Several plant hormones regulate plant growth and
development also via ROS-dependent signals. This provides a regulatory node between
development and stress responses, which will be addressed in chapter 1.2.



1.1.4 ROS have unique and overlapping functions in stress signaling

Increased ROS levels are among the most rapidly responding markers of several stresses.
How are these signals transmitted further and converted into cellular responses? Many
aspects of ROS signaling are still unknown, starting from the ROS perception. Several
mechanisms for sensing extracellular ROS have been proposed, including yet unidentified
ROS-receptors on the plasma membrane. Lipid peroxidation products resulting from
oxidative damage could also account for secondary messengers sensed by the plant.
Furthermore, the general redox-status of the cell may regulate the activity of transcription
factors (Wormuth et al., 2007). An example of plant-specific redox-sensitive transcriptional
regulator is NON-EXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) (discussed in
detail in chapter 1.2.2). ROS perception and signaling in plants may be a combination of all
these mechanisms. Intracellular ROS signals may be transmitted from one part of the cell to
another, for instance ROS accumulation in chloroplasts and mitochondria is regulating the
expression of nucleus-encoded genes (Woodson and Chory 2008). Enhancement of vesicle
trafficking has been established as a ROS response, which may allow ROS themselves to be
transported within the cell as intracellular signaling molecules (Leshem et al., 2007; Kaye et
al., 2011). In the algae Chlamydomonas reinhardtii, chloroplast-derived 'O, can diffuse to
nucleus and therefore act as putative intracellular signaling molecule (Fischer et al., 2007).

The signaling role of ROS has been studied by addressing the ROS-regulated transcriptome.
Changes in transcript abundance can be measured reliably and in a high-throughput manner
with the microarray hybridization-method. Different ROS in different subcellular
compartments have unique effects on gene expression, but a subset of genes is also
similarly regulated by different ROS (Gadjev et al., 2006; Suzuki et al., 2011). A fruitful
approach in modulating ROS concentrations in specific subcellular compartments has been
with the engineering of the antioxidative enzymes. High light induces abundant changes in
gene expression, and the role of photorespiratory H,0, was addressed with peroxisomal
catalase-deficient Arabidopsis (Vandenabeele et al, 2004). Lack of cytosolic ASCORBATE
PEROXIDASE1 (APX1) increases H,0; in the cytosol, but also has a detrimental effect on the
chloroplast redox status (Davletova et al., 2005a). Paraquat (PQ, also known as methyl
viologen) is a herbicide, which causes chloroplastic O, (and subsequently H,0,) production
by accepting electrons from PSI. Plants overexpressing thylakoid-specific APX (tAPX) are
tolerant to oxidative stress caused by PQ (Murgia et al., 2004) and have reduced pathogen
growth (Yao and Greenberg 2006). In contrast, overexpression of tAPX enhanced the
chloroplastic 'O, responses including electrolyte leakage and gene expression (Laloi et al.,
2007), indicating that specific ROS even within the same subcellular compartment may
antagonize one another.

The role of chloroplastic 'O, as signaling molecule has been studied with the conditional
fluorescent (flu) mutant. In darkness, the flu mutant accumulates protochlorophyllide, which
is degraded after dark-light switch thus producing 'O, within chloroplast. This leads to rapid



lipid oxidation, changes in gene expression and growth cessation (op den Camp et al., 2003).
Studies with flu mutant and high light treatment of wild type plants share largely
overlapping gene expression, which is expected due to the high amount of 0, (instead of
H,0, or 0,7) produced under both conditions (Gonzalez-Pérez et al., 2011). Furthermore,
gene expression in the flu mutant after ‘0, induction differs from the changes in gene
expression caused by PQ. This reinforces the unique signaling properties of different ROS
even within the same subcellular compartment (op den Camp et al.,, 2003). However,
because PQ needs to be externally applied it is postulated that a longer response time is
needed compared tofor instance for the dark-light shift response of the flu mutant (Gadjev
et al., 2006).

Interestingly, high light-induced transcriptional changes are similar to abscisic acid
deficient1 (abal) and more axillary branching4 (max4) mutants lacking carotenoids that are
required for dissipation of thermal energy and ROS detoxification (Gonzalez-Pérez et al.,
2011). Because abal and max4 are defective in the biosynthesis of plant hormones abscisic
acid (ABA) and strigolactone, respectively, this result provides a link between 0, and
hormone signaling. Recently another research group showed that the lack of carotenoids
lutein and zeaxanthin causes selective increase in 'O, under high light stress, but no
significant overlap with flu gene expression was detected (Alboresi et al., 2011). Shao et al.
(2007) presented a hypothesis that the differing location of 'O, production (within the
chloroplast) in flu and carotenoid-deficient plants (peripherally at thylakoid membranes or
within PSIlI reaction centers, respectively) could contribute to the non-overlapping
transcriptional responses.

As discussed previously, the stress-induced increases in ROS are complex. Gadjev et al.
(2006) studied the overlap between ROS-triggered and stress-induced gene expression.
Quite unexpectedly transcripts specific to 0, were the most abundant group of ROS-
responsive genes induced by abiotic stresses. Clustering of transcripts responsive to biotic,
abiotic and chemical stresses identified more than hundred universal stress genes, such as
UPREGULATED BY OXIDATIVE STRESS1 (UPOX1) and SIMILAR TO RCD-ONE5 (SRO5) (Ma and
Bohnert 2007). Ultimately, different ROS might regulate the same transcription factor, but
by modification of different redox-sensitive cysteine groups of protein. H,0, and 'O, induce
the HSP70A::luciferase reporter construct via distinct promoter elements in the algae C.
reinhardtii (Shao et al., 2007). The same approach in Arabidopsis could be extremely
informative when used to dissect the temporal role of individual ROS in stress responses. It
has been reported that the ascorbate peroxidase (apx) and catalase (cat) double mutant has
increased stress tolerance compared to the respective single mutants (Rizhsky et al., 2002).
Later a constitutively active DNA damage repair mechanism protecting the DNA from
oxidative damage in apx cat plants was discovered (Vanderauwera et al., 2011). Therefore,
perturbations of the ROS signaling network may result in enhanced sensitivity to another
type of ROS, and either to increased or decreased stress tolerance.



1.1.5 Programmed cell death and ROS
1.1.5.1 Programmed cell death in plants

For eukaryotes, the controlled disposal of certain cells during growth and development is
important for the benefit of the whole organism. Programmed cell death (PCD) is defined by
a series of genetically encoded events leading to the controlled disposal of the protoplast
content. PCD comes in many forms during plant development: in the formation of xylem
vessels, flower and pollen development, aerenchyma formation in response to flooding,
senescing leaves turning yellow, shaping of leaf margins or the break-down of grain
endosperm to nourish the germinating seedling (Greenberg 1996; van Doorn and Woltering
2005; Gunawardena 2008). PCD can be viewed as a series of time-dependent events: first,
signaling leads to the cellular commitment to PCD followed by the loading of vacuole with
signal-specific enzymes (proteases, cellulases, chitinases, phytoalexins and/or nucleases).
Thereafter, PCD takes place due to Ca®" flux and vacuole collapse, and the cell remnants are
further processed according to the developmental fate of the cell (Jones 2001). In addition
to genetically encoded developmental programs, also abiotic and biotic stresses induce PCD
(Love et al., 2008). To dissect PCD from external, irreversible injury causing passive cell
death, hallmarks of PCD such as chromatin condensation, fragmentation of nuclear DNA
into ladders, nuclear shrinkage, ATP depletion and vesiculation of cytosol have been
extensively studied (Jabs 1999; Jones 2001; Overmyer et al., 2005; van Doorn et al., 2011).
According to recent view, plant PCD may be divided into necrotic and vacuolar cell death
both with distinct features, which may be partially overlapping in several known cases of
PCD (van Doorn et al.,, 2011). It has been concluded that plant PCD does not fulfill the
criteria for the apoptotic cellular suicide pathway conserved in animal cells, because
formation of apoptotic bodies engulfed by surrounding cells is hindered by the plant cell
walls. However, several commonalities between PCD in plants and apoptosis exist, such as
ROS signaling (Jabs 1999). Therefore, ROS are instrumental for both plant life and death.
Due to the genetic programming of plant PCD, so called lesion mimic mutants with either
spontaneous run-away cell death or conditional cell death induced for instance by light (long
day) or SA have been isolated to elucidate signaling pathways resulting in PCD (Lorrain et al.,
2003).

1.1.5.2 Hypersensitive response

Hypersensitive response (HR) includes induction of local and systemic defense responses to
pathogens and a form of rapid plant PCD. HR cell death encompasses features of both
vacuolar and necrotic PCD (van Doorn et al., 2011). For the HR cell death to occur, plants
have to first recognize the pathogen. Pathogen presence results in conserved pathogen-
associated molecular patterns (PAMPs), which may be for instance flagellin, harpin, glucan,
chitosan, lipopolysaccharides or peptidoglycanes depending on the pathogen in question



(Torres 2010). PAMPs are recognized by the plant with pattern recognition receptors on the
cell surface or in the cytoplasm leading to PAMP-triggered immunity (PTI). However,
pathogenic effector molecules, so called virulence factors, may disturb PTI, which allows the
disease to progress. In this compatible interaction, disease but no HR cell death occurs. In an
incompatible plant-pathogen interaction the attacker’s effector molecules are avirulent,
they are identified by the plant and counteracted by R (Resistance)-genes. This line of
defense is called effector-triggered immunity (ETI), which typically includes HR cell death.
This interaction halts the spread of the disease; therefore, the plant and pathogen are
incompatible. Clearly an elegant molecular warfare takes place between the pathogen and
the plant during attempt to infect and defend, respectively (Jones and Dangl 2006). DAMPs
(damage-associated molecular patterns), such as oligogalacturonides derived from damaged
plant cell walls, may induce similar responses as PAMPs (Hématy et al., 2009).

ROS have a prominent role in the establishment of HR resulting in both local and systemic
defense. Local production of O, in response to avirulent pathogen was first reported in
Phytophtora infestans infected potato tubers, whereas a virulent race of the same pathogen
did not elicit ROS production (Doke 1985). Since then, it has been shown that ROS
production in incompatible plant-pathogen interactions is biphasic and consists of an early
and late apoplastic oxidative bursts, whereas the early apoplastic ROS burst is detected in
both compatible and incompatible pathogen responses (Baker and Orlandi 1995; Lamb and
Dixon 1997). Apoplastic ROS are produced by NADPH oxidases and peroxidases, which is
followed by defense gene activation, cell wall fortification and, in incompatible plant-
pathogen encounters, HR cell death (Torres et al., 2006; Torres 2010).

Both PTI (with PAMPS) and ETI (with effectors) induce ROS production (Torres 2010). The ETI
reaction is generally considered stronger than PTI, and HR cell death is also more
characteristic to ETI (Jones and Dangl 2006). However, flagellin (a PAMP) is able to trigger
HR cell death in Arabidopsis (Naito et al., 2008), and also in other species such as rice,
tomato and tobacco (Taguchi et al., 2003). Lipid signals from the chloroplast have been
shown to activate NADPH oxidases and increase ROS production and HR cell death in
response to avirulent bacteria Pseudomonas challenge (Yaeno et al., 2004). PCD may be
triggered by H,0, ,0," and 0, (Gechev et al., 2006). Levine et al. (1994) established that
H,0, is sufficient and required for PCD. Decreased antioxidative capaxity has been shown to
increase high-light induced active cell death similar to hypersensitive cell death in catalase-
deficient tobacco (Dat et al., 2003) and Arabidopsis (Vandenabeele et al., 2004). However,
cell death in the lesion mimic mutant lesions simulating disease resistancel (Isd1) can be
initiated with O," but not H,0, (Jabs et al., 1996). RBOHD is not necessary for pathogen-
induced cell death, but it limits the spread of the HR cell death (Torres et al., 2005).
Altogether, the roles of ROS in hypersensitive cell death and the importance of HR in the
establishment of successful defense may depend on the plant species and pathogen in
question.



1.1.5.3 Ozone is an abiotic inducer of defense responses

Ozone (03) is an air pollutant with increasing concentrations in the troposphere due to
industrialization (Sitch et al., 2007). Os is also a ROS which is harmful to plant and animal
life. O3 enters the plants via stomata, which are central in regulation of O; entry and
quantity of oxidative stress caused (Vahisalu et al., 2008; Brosché et al., 2010). Once inside
the foliar tissue, O3 reacts with plant cell walls, apoplastic fluid and plasma membranes
degrading rapidly into H,0,, O," and OH® (Heath 1994; Rao et al., 2000a). Consequently,
concentration of Oz inside the leaf even during O3 treatment is close to zero (Laisk et al.,
1989). Apoplastic ascorbate has been regarded as the first defense against Oz (Conklin and
Barth 2004; Baier et al., 2005). Reduced ascorbate levels resulted in Osz-sensitivity in vitamin
c defectivel (vtc1) Arabidopsis mutant (Conklin et al., 1996; Conklin et al., 2000) and the
cytosolic dehydroascorbate reductase mutant with significantly decreased apoplastic
ascorbate content is highly Os-sensitive (Yoshida et al., 2006). However, reaction between
ascorbate and Os; may also yield '0,, and therefore add yet another ROS to the oxidative
load generated by O3 (Kanofsky and Sima 1995; Sandermann 2008).

Apoplastic ROS formed as degradation products of O3 may cause some damage within the
tissues, but more importantly, they activate signaling events such as Ca®* influx into the
cytosol (Clayton et al., 1999; Evans et al., 2005) and endogenous production of ROS by plant
cells (Rao and Davis 1999; Pellinen et al., 1999; Overmyer et al., 2000; Wohlgemuth et al.,
2002; Mahalingam et al., 2006). Controlled O; treatments have indicated that endogenous
ROS production is biphasic in Os-sensitive species and Arabidopsis mutants, similar to
incompatible plant-pathogen interactions, whereas only the early ROS production peak is
present in Os-tolerant plants (Schraudner et al., 1998; Joo et al., 2005a). The first ROS peak
originates from stomatal guard cell chloroplasts and NADPH oxidases, which together
trigger ROS production in adjacent epidermal cells (Joo et al., 2005a). Within minutes after
the start of the O3 treatment ROS production in guard cell chloroplasts coincides with rapid
transient stomatal closure, which is dependent on the activation of guard-cell specific SLOW
ANION CHANNEL-ASSOCIATED1 (SLAC1) anion channel (Vahisalu et al., 2008; Vahisalu et al.,
2010). Peroxidases and oxidases localized at the cell wall may also be involved in the early
endogenous ROS production (Pellinen et al.,, 1999). The later endogenous ROS burst is
NADPH-oxidase dependent (Joo et al., 2005a). Intracellular ROS accumulation in cytoplasm,
mitochondria and peroxisomes has also been observed after Os-treatment in birch (Betula
pendula)(Pellinen et al., 1999).



In addition to ROS, O3 induces production of NO (Mahalingam et al., 2006; Ederli et al.,
2006; Ahlfors et al., 2009), which is known to regulate both plant development and stress
responses (reviewed in Moreau et al., 2010). Plant hormones ethylene, jasmonic acid (JA),
SA and ABA are produced in Os-treated plants in a time-dependent manner (discussed in
detail later in chapter 1.2.). Altogether, although the mechanisms by which Os-derived
apoplastic ROS are initially perceived are not completely characterized, they are known to
activate a complex signaling network composed of early and late events (summarized in Fig.
2).
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Figure 2. Summary of the Os; entry, degradation, putative perception mechanisms and
signaling events regulating gene expression and downstream responses. 1) calcium
channels, 2) ascorbate oxidation and transport 3) direct diffusion of H,0; across the plasma
membrane 4) lipid peroxidation and 5) putative transmembrane ROS receptor. Asc,
ascorbate; DHA, dehydroascorbate; LOOH, lipid hydroperoxide; TF, transcription factor; ET,
ethylene, SA; salicylic acid, JA, jasmonic acid, ABA, abscisic acid, GSSG and GSH, oxidized and
reduced glutathione, respectively.
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The overlap between molecular responses caused by Os, pathogens and other stresses has
been noticed almost 20 years ago (Kangasjarvi et al., 1994). In Arabidopsis, Oz was shown to
increase transcripts encoding antioxidative and defense-related proteins (SOD,
PHENYLALANINE AMMONIA LYASE (PAL), GLUTATHIONE S-TRANSFERASE (GST), peroxidase
and PR- proteins) (Sharma and Davis 1994; Sharma et al., 1996). Recently it was shown that
Os-derived changes in the expression of cysteine-rich receptor like kinases are the more
similar to pathogen treatments than to for instance high light stress (Wrzaczek et al., 2010).
Furthermore, Os-induced PCD is largely similar to cell death occurring in HR, and this has
allowed the use of Os; as a noninvasive method for studying the signaling leading to
programmed cell death (Rao et al., 2000a; Kangasjarvi et al., 2005). In comparison to other
ROS sources and treatments causing ROS production, O3 causes large-scale changes in gene
expression in Arabidopsis (Gadjev et al., 2006). Number of Os-responsive genes is
dependent on the Oz concentration, duration of O; exposure and experimental methods
including the hybridization platform used to analyze the transcript abundance (summarized
in Table 1). In general, acute Os-exposure induces genes mostly related to pathogen defense
and cell death, whereas chronic O3 mostly represses gene expression and may cause
premature senescence.
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HR-like cell death caused by O; treatment has been shown to be positively regulated by
plant hormones ethylene and SA, whereas JA reduces Os-triggered cell death lesions
(Kangasjarvi et al., 2005). Reports of increased O3 sensitivity due to a lack of mitochondrial
ALTERNATIVE OXIDASE1a (AOX1a) in tobacco suggest that mitochondrial ROS are important
for Os-induced cell death (Pasqualini et al., 2007). Cyclic nucleotide-gated ion (Ca**) channel
lacking from defense no death1 (dnd1) is required for Os-induced cell death and signaling
(Overmyer et al., 2005; Wrzaczek et al., 2010). Inhibitors of proteases, kinases, transcription
and translation blocked Os-induded cell death, which highlights the role of active signaling
and gene expression in PCD regulation (Overmyer et al., 2005). Anion channels (anion
efflux), Ca®* uptake and ROS were positive regulators of Os-induced PCD in cultured
Arabidopsis suspension cells and increased levels of VACUOLAR PROCESSING ENZYMEy
(VPEy, At4g32940) transcript and protein were observed (Kadono et al., 2010). VPEs have
caspase-like protease activity and may be directly involved in PCD execution (Hara-
Nishimura and Hatsugai 2011). Altogether, plant hormones, Ca**, ROS and active signaling
events including transcription have been shown to be required for Osz-induced PCD.
However, in planta O3 may induce additionally also direct necrotic damage or chlorosis,
which may coexist with HR-like damage (Pell et al., 1997; Overmyer et al., 2008). Therefore
careful assessment of morphological markers is required to determine the type of cell death
in Os-treated plants (Overmyer et al.,, 2005). HR-related cell death is perhaps the best
studied form of PCD in plants, and therefore many genes involved in the regulation of PCD
have been identified from plants altered in pathogen-triggered PCD. Using Os in the study of
for novel PCD -associated genes offers the advantage of screening large mutant populations
with easily adjustable amount of stress applied without dependence of particular pathogen.

1.2 Plant hormone signaling

By definition, plant hormones are naturally occurring, organic substances which influence
physiological processes at low concentrations. These processes entail all aspects of plant
growth, development and stress responses. Plant hormones may directly affect the tissues
in which they are synthesized, but also hormone gradients regulating plant development in
different parts are formed by hormone transport, for instance from root to shoot (cytokinin,
CK) or shoot to root (auxin). The advance of molecular tools in plant biology, especially with
the model plant Arabidopsis, has significantly increased our understanding of plant
hormone signaling within the last decade. Importantly, receptors for all major plant
hormones apart from SA have been identified. The main mode of action for plant hormones
is signaling via receptor binding, which results in changes in gene expression and eventually
in adjustments in plant metabolism. Molecular studies on hormone signaling have been
possible prior to detailed knowledge on the receptors by analysis of hormone-regulated
transcripts. Individual hormones work in a complex web of crosstalk of antagonistic and
synergistic effects between other hormones and signaling molecules, such as secondary
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messengers ROS or NO. Hormonal interactions may be classified into three groups: i) direct
crosstalk i.e. targeting the same gene or protein, ii) indirect crosstalk at the level of
perception, biosynthesis, transport or degradation and iii) co-regulation of the same process
via several input pathways determining the output response (Chandler 2009). Comparative
analysis of Arabidopsis seedling transcriptome after treatments with seven individual
hormones regulating altogether 4666 genes revealed that a low amount of transcripts is
regulated by more than one hormone. Instead, the transcripts responsive to different
hormones were suggested to overlap at the level of biological processes (Nemhauser et al.,
2006). Furthermore, the number of transcripts regulated by each phytohormone varied
between 125 (gibberellic acid) and 2936 (ABA) (Nemhauser et al., 2006).

In the next chapters, the hormonal signaling pathways regulating gene expression are
introduced together with their role in plant stress responses and development as well as
selected interactions with other signaling pathways.

1.2.1 Ethylene

The gaseous plant hormone ethylene, a simple hydrocarbon, regulates many aspects of the
plant life such as fruit ripening, leaf abscission, seed dormancy and senescence (Davies
2004). A well-studied ethylene-mediated growth response is the so called triple response
with characteristic stunted dark-grown seedlings with exaggerated apical hooks and
hypocotyl swelling (Neljubow 1901). Increased ethylene production is a rapid response to
numerous biotic and abiotic stresses therefore creating the concept of “stress ethylene”
(Yang and Hoffman 1984). Ethylene is produced from the methionine (Yang) cycle
intermediate S-adenosyl methionine (SAM) in two consecutive reactions catalyzed by 1-
aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs) and ACC oxidases (ACOs),
respectively (Yang and Hoffman 1984). The ACS activity has been estimated to be the rate-
limiting step of ethylene biosynthesis (Liu and Zhang 2004). Phosphorylation by MITOGEN-
ACTIVATED PROTEIN KINASE6 (MPK®6) stabilizes the ACS2 and ACS6 proteins and leads to
increased ethylene biosynthesis (Liu and Zhang 2004; Joo et al., 2008). MPK6 and MPK3 are
themselves rapidly activated by phosphorylation after apoplastic ROS treatment onset
independently from ethylene, JA or SA (Ahlfors et al., 2004b), which suggests that ethylene
biosynthesis represents a node between hormone and ROS signaling. Increased ACS6
expression is a marker for Os-induced gene expression (Vahala et al., 1998; Ahlfors et al.,
2009) and also ACS2 transcript levels increase in Os-treated Arabidopsis (Overmyer et al.,
2005). ACC oxidases are induced by O3 in tomato (Lycopersicon esculentum) (Moeder et al.,
2002).

Ethylene is perceived by a family of five two-component histidine kinase receptors residing
in the endoplasmic reticulum, which act as negative regulators of ethylene signaling (Hua
and Meyerowitz 1998). In the absence of ethylene they are activating a negative regulator
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of ethylene signaling, Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) (Huang et al.,
2003). CTR1 further inactivates downstream positive ethylene signaling component
ETHYLENE INSENSITIVE2 (EIN2), which is a protein of unknown biochemical function and
upstream of EIN3 and EIN3-like (EIL) transcription factors. Binding of ethylene inactivates
the ethylene receptors hence inactivating CTR1, activating EIN2, EIN3 and ElLs and allowing
ethylene-mediated gene expression. The primary targets of EIN3 and ElLs are transcription
factors ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR1 (ERF1) and ETHYLENE-
RESPONSIVE DNA BINDING FACTOR1 (EDF1) to EDF4, which further broaden ethylene
signaling to a second wave of ethylene-responsive genes (reviewed in Stepanova and Alonso
2009). These include for instance other ERFs, which bind to the ethylene responsive
promoter element GGC box and may act as either positive or negative regulators of
ethylene signaling (Fujimoto et al., 2000; Nakano et al.,, 2006). Treatment with ethylene
precursor ACC altered expression of 500 genes in Arabidopsis seedlings (Nemhauser et al.,
2006). Ethylene decreases expression of F-box ubiquitin ligases EBF1 and EBF2, which target
EIN3 and its homologue EIL1 for ubiquitin-mediated degradation (An et al., 2010). Also EIN2
can be targeted for degradation (Qiao et al., 2009).

Ethylene production is an early in response to Os;, occurring after MPK activation and
simultaneously with the first endogenous ROS burst in the mesophyll (Kangasjarvi et al.,
2005). Increased ethylene production compared to tolerant plants is a marker for Os-
sensitivity across several species and cultivars (Overmyer et al., 2003). Ethylene production
in Os-treated plants is SA-dependent (Rao et al., 2002). Interestingly, ethylene signaling is
also required for a PAMP -triggered oxidative burst (Mersmann et al., 2010), which places
ethylene upstream of ROS production in chloroplasts. Ethylene signaling is known to
interact with most, if not all, plant hormones (Yoo et al., 2009). In fact, this crosstalk is likely
the reason why ethylene has such a wide range of effects on plant development and stress
responses (Stepanova and Alonso 2009).

1.2.2 Salicylic acid

Salicylic acid (SA) is a phenolic plant hormone, which is involved in plant developmental
processes such as seed germination, senescence and flowering (Rivas-San Vicente and
Plasencia 2011). However, SA has preliminarily been regarded as a stress hormone, because
it is produced in response to abiotic and especially biotic stresses (Vlot et al. 2009 and
references therein). Arabidopsis mutants with constitutively higher SA levels have in general
reduced growth, whereas in SA-depleted plants (for instance NahG plants transformed with
bacterial SA-degrading salicylate hydroxylase) increased growth is observed (Rivas-San
Vicente and Plasencia 2011). SA has well-known significance in the establishment of
pathogen defenses, which is co-occurring with the expression of defense genes such as
PATHOGENESIS RELATED1 (PR1) and the formation of systemic acquired resistance (SAR)
(Rivas-San Vicente and Plasencia 2011). The SA signaling pathway is yet lacking knowledge
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on directly SA-binding receptors. Interestingly, there are few tobacco proteins capable of
SA-binding such as SAPB2 involved in SA methylation (Du and Klessig 1997) and a catalase
(Chen et al., 1993). SA suppresses antioxidative enzymes (CAT and APX) together with NO
(Chen et al., 1993; Durner and Klessig 1995; Klessig et al., 2000). SA and ROS have a complex
relationship, because ROS induce SA production, but SA has also been shown to cause ROS
production; therefore a self-amplifying loop between ROS and SA has been proposed
(Overmyer et al., 2003; Vlot et al., 2009). Recently SA and ROS were proposed to regulate
antagonistically the Os-responsive CYSTEINE RICH KINASE (CRK) transcripts (Wrzaczek et al.,
2010). ISOCHORISMATE SYNTHASE1 (ICS1) pathway has been shown to produce SA in
response to O3 (Ogawa et al., 2007).

SA signaling is largely dependent on NPR1 (Wang et al.,, 2006), but especially early SA-
responsive transcripts may be NPR1-independent (Uquillas et al., 2004). NPR1 is localized in
cytosol as multimers prior to stress/SA treatment, and after redox change in the cell (cytosol
is reduced due to antioxidant formation) NPR1 is translocated as monomers to nucleus to
activate gene expression through interaction with TGA transcription factors (Mou et al.,
2003). NPR1 monomerization by SA treatment was shown to be mediated by increased
thioredoxin expression followed by NPR1 S-nitrosylation (Tada et al., 2008). Furthermore,
degradation of (phosphorylated) NPR1 is required NPR1-mediated gene expression (Spoel et
al., 2009), which further adds complexity to NPR1 as a signaling protein. NPR1 may
additionally serve as a node for hormonal signal integration for instance between
brassinosteroid (BR) and SA (Divi et al., 2010) and JA and SA (Dong 2004). From the point of
signal integration, it is interesting that stress-induced SA is originated from the chloroplast
(Fragniere et al., 2011), which is a ROS-source also involved in the biosynthesis of several
other plant hormones including gibberellins (GA), auxin, BR, ABA and JA. Abundant
interactions between SA and other plant hormones, perhaps most importantly in the
regulation of pathogen tolerance, have been observed. In general, SA promotes resistance
against biotrophs, whereas JA and ET are required for tolerance against necrotrophic
pathogens (Glazebrook 2005). During immune responses, ICS1 is negatively regulated by
ethylene signaling (Chen et al., 2009).

1.2.3 Jasmonic acid

The scent of jasmine flowers includes the methyl derivative of plant hormone JA (Davies
2004). JA is a lipid-derived hormone synthesized initially in chloroplasts followed by B-
oxidation in peroxisomes (Schaller and Stintzi 2009). The biologically active form of JA,
amino acid conjugate jasmonoyl-isoleucin (JA-lle), is catalyzed by jasmonate-amido synthase
JASMONATE RESISTANT1 (JAR1) (Staswick and Tiryaki 2004). The JA-lle molecule structure is
mimicked by the bacterial phytotoxin coronatine (Staswick and Tiryaki 2004; Katsir et al.,
2008). The similarities between coronatine and methyl-jasmonate (Mela) responses led to
the isolation of coronatine insensitivel (coil) mutant, which also was insensitive to Mela,
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male sterile and increasingly tolerant to coronatine-producing Pseudomonas syringae strain
(Feys et al., 1994). COI1 encodes an F-box protein (Xie et al., 1998), which is part of a
SKP1(S-PHASE KINASE ASSOCIATED PROTEIN1)-CULLIN-F-box (SCF) E3 ubiquitin ligase
complex SCF®" (Xu et al., 2002). Binding of JA-lle to SCF°" targets the negative regulators
of jasmonate signaling, JASMONATE ZIM-domain (JAZ) proteins, to ubiquitination and
subsequent degradation via 26S proteosome (Chini et al., 2007; Thines et al., 2007). This
releases basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3 and MYC4 to
regulate expression of JA-responsive genes (Chini et al., 2007, Cheng et al.,, 2011;
Fernandez-Calvo et al., 2011). Binding of SCF*°" to JAZ-proteins not only requires JA-lle as
the molecular glue, but also inositol phosphate is a co-factor in this complex (Sheard et al.,

2010). Alternative splicing of the Jas domain interacting with the SCF<°"

complex may lead
to ubiquitination-resistant JAZs proteins still able to repress MYC2 (Yan et al., 2007; Chung

et al., 2010).

Wounding or herbivore attack results in rapid increase in JA and JA-Ile levels, which induces
expression of JAZ transcripts and JA biosynthesis genes (Chung et al., 2008). Additionally, JA-
induced genes include members of ERF and MYB TF families, genes related to secondary
metabolism and defense while genes related to abiotic stress responses are repressed by JA
treatment (Devoto et al., 2005). JA is known to reduce growth, and mechanical wounding
inducing JA has a similar effect (Yan et al. 2007). In general, JA promotes defense and
reproduction (Browse 2009), while it reduces cell divisions and growth (Zhang and Turner
2008). JA and SA are well-known antagonists in the plant defense , and JA is required as a
“pro-life” signal against necrotrophic pathogens, which benefit from cell death (Glazebrook
2005). Treatment with JA reduces the lesion formation triggered by Oz (Orvar et al., 1997;
Overmyer et al., 2000; Rao et al., 2000b; Tuominen et al., 2004) and the jar1 mutant exhibits
increased cell death in response to Os; (Overmyer et al., 2000; Rao et al., 2000b; Tuominen
et al., 2004; Overmyer et al., 2005). Increased JA levels are connected to simultaneous Os-
induced lesion occurrence in Arabidopsis (Tuominen et al., 2004; Overmyer et al., 2005) and
silver birch (Betula pendula Roth) (Vahala et al., 2003). This might result from the release of
JA precursors due to cell-death related membrane damage and subsequently synthesized JA
may participate in the lesion containment (Overmyer et al., 2005).

1.2.4 Auxin

The word auxin is of Greek origin, and means “to grow”. Since the initial studies of a
putative mobile signal regulating the phototropic movement of grass coleoptiles (Darwin
and Darwin 1880), auxin has been attributed to every aspect of plant growth and
development (Benjamins and Scheres 2008). The most abundant active form of auxin is
indole-3-acetic acid (IAA), which is perceived by a mechanism similar to JA. Indeed, the first
auxin F-box receptor identified, TRANSPORT INHIBITOR RESPONSE1 (TIR1) (Dharmasiri et al.,
2005a; Kepinski and Leyser 2005), contains high similarity to COI1. Five IAA-receptors
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homologous to TIR1 are named AUXIN SIGNALING F-BOX PROTEINS (AFB) 1 to 5 (Dharmasiri
et al., 2005b). AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are negative regulators of
IAA responses acting also as IAA co-receptors binding to SCFTRI/AB complex, which results in
their ubiquitination and degradation (Gray et al., 2001; Zenser et al., 2001; Tan et al., 2007).
Aux/IAAs have a high degree of functional redundancy (Overvoorde et al., 2005), but
promoter-swap experiments have also revealed divergent functions of for them (Muto et al.
2007). Functional specificity of Aux/IAAs relates also to specific interaction pairs with
AUXIN-RESPONSE FACTORs (ARFs), which are negatively regulated by Aux/IAAs (Weijers et
al., 2005). The ARFs can be divided into positive and negative regulators of gene expression
depending on the glutamine residues in their sequence (Guilfoyle and Hagen 2007). The
most rapid auxin-responsive transcripts belong to Aux/IAA (hence forming a negative
feedback loop), SMALL AUXIN UP-REGULATED (SAUR) and GRETCHEN HAGEN3 (GH3) gene
families (Abel and Theologis 1996). Also members of LATERAL ORGAN BOUNDARY (LOB) and
some ARFs are auxin-induced (Paponov et al., 2008). Non-transcriptional auxin response
occurs via AUXIN BINDING PROTEIN1 (ABP1)-mediated endocytosis of clathrin-coated
vesicles (Robert et al., 2010).

Recently auxin has been shown to have a role in plant stress responses. Decreased auxin
signaling in tirl afb mutants improves tolerance to PQ, H,0, and salt stress (Iglesias et al.,
2010). The tirl mutant has also elevated resistance to P. syringae and degradation of
TIR1/AFB transcripts by pathogen-induced microRNA 393 (miR393) decreases expression of
auxin-responsive genes (Navarro et al., 2006). In another study, SA decreased auxin
signaling, which was beneficial for pathogen tolerance, by the stabilization of Aux/IAAs
(Wang et al., 2007). Auxin responses are on the other hand required for tolerance against
necrotrophic fungi (Llorente et al., 2008). The relationship between ROS and auxin is
complex, because some auxin-driven developmental responses such as gravitropism (Joo et
al.,, 2001; Joo et al., 2005b) and coleoptile elongation (Schopfer et al., 2002) are ROS-
dependent. In contrast, glutathione and thioredoxin triple mutants have decreased levels of
auxin and auxin responsive reporter construct DR5-uidA expression, as well as several
developmental defects such as lack of flowers and secondary roots (Bashandy et al., 2010).
H,0, and activation of MPKs has been shown to reduce auxin-dependent gene expression
(Kovtun et al., 1998; Kovtun et al., 2000; Nakagami et al., 2006). Heat stress decreased
expression of auxin marker transcript BA and growth in cultured guard cell chloroplasts
independently of exogenous application of synthetic auxin NAA, H,0, or H,0, and O,"
scavengers (Dong et al., 2007). Expression of auxin-responsive genes was reduced by fungal
toxin ALL downstream of H,0, and ethylene production (Gechev et al., 2004). Recently
oligogalacturonides, which are plant-derived damage-associated molecules, were shown to
decrease auxin signaling without altered stability of Aux/IAAs, TIR1/AFB receptor expression
or miR393 levels and independently from RBOHD-produced ROS (Savatin et al., 2011).
Conjugation i.e. inactivation of another form of auxin, indole-3-butyric acid (IBA), was
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recently shown to be induced by H,0, and mediate tolerance to drought and salt stress
(Tognetti et al., 2010).

1.2.5 Gibberellin

Gibberellins (GAs) are a vast group of diterpenoid compounds present in plants, animals and
fungi. Bioactive GAs regulate plant processes such as stem elongation (cell divisions and
elongation), bolting/flowering, seed germination and endosperm utilization in grains (Davies
2004). Indeed, GA; secreted by the pathogenic fungi Gibberella fujikuroi to promote stem
growth in rice (Oryza sp.) led to the isolation of first GA which was named accordingly
(Yabuta and Sumiki 1938). Somewhat later, the nuclear-localized soluble GA-receptor
GIBBERELLIN INSENSITIVE DWARF1 (GID1) of rice was identified (Ueguchi-Tanaka et al.,
2005). GID1 is has three functional orthologs (AtGID1a, AtGID1b and AtGID1c) acting also as
GA receptors in Arabidopsis (Nakajima et al., 2006).The basic GA signaling pathway shows
functional similarity to auxin and JA perception: GA receptors are nucleus-residing F-box
proteins (E3 ligases) which upon binding to GA, are activated to bind to the inhibitors of GA
signaling, the DELLA proteins. This leads to the polyubigitination of DELLAs and their
subsequent degradation by the 26S proteosome, thereby allowing the expression of GA-
responsive genes (reviewed in Hirano et al., 2008). There are five DELLA proteins in
Arabidopsis (Dill and Sun 2001), towards which AtGIDs possess different binding affinities
(Suzuki et al., 2009). Also the mere formation of the GA-GID1-DELLA complex releases DELLA
targets from their inhibitory effect independently from proteolysis both in rice (Ueguchi-
Tanaka et al., 2008) and Arabidopsis (Ariizumi et al., 2008). Knowledge on DELLA function
and targets is crucial for the understanding of GA signaling. Several hundreds of GA-
responsive genes have been identified by treating GA biosynthesis gal-3 mutant seeds,
flowers or seedlings with GA (Ogawa et al., 2003; Cao et al., 2006; Zentella et al., 2007), and
overlap between DELLA-regulated genes has been observed (Cao et al., 2006; Zentella et al.,
2007). DELLA proteins increase (and GA treatment decreases) the expression of GA
biosynthesis genes and also GID receptors, thereby establishing a feedback regulation loop
(Zentella et al., 2007). DELLAs have been shown to directly bind and inhibit bHLH
transcription factors PHYTOCHROME INTERACTING FACTOR3 (PIF3) and PIF4 (Feng et al.,
2008; de et al., 2008), and DELLA and PIF target genes are partially shared (Gallego-
Bartolomé et al., 2011). Transcriptomic studies have also identified genes belonging to other
hormone signaling pathways (such as ethylene, auxin, JA and ABA) as GA and/or DELLA
responsive transcripts (Ogawa et al., 2003; Cao et al., 2006; Zentella et al., 2007; Gallego-
Bartolomé et al.,, 2011). DELLAs have thereby emerged as integrators of several plant
hormone signaling pathways.

Additionally, GA-GID1-DELLA pathway regulates plant growth and stress tolerance in
adverse environmental conditions such as salt, flooding, cold and pathogen stress (Harberd
et al., 2009). Plants lacking DELLAs were susceptible to necrotrophic pathogens due to
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increased sensitivity to JA, a likely explanation why necrotrophic G. fujikuroi produces GA
(Navarro et al., 2008). Interestingly for this study, DELLAs have been shown to induce
expression of genes encoding antioxidative enzymes and thereby decrease ROS levels
(Achard et al., 2008). H,0, was shown to induce GA biosynthetic genes in germinating
Arabidopsis seeds (Liu et al., 2010). Another putative link between ROS and GA might be
GAST1 PROTEIN HOMOLOG4 (GASA4), transcript induced by GA, which regulates flowering
time and germination likely through activation of redox-regulated cysteins (Rubinovich and
Weiss 2010).

1.2.6 Abscisic acid

Abscisic acid (ABA) regulates stomatal closure, inhibits seed germination and controls
dormancy, but unlike the name would allow to assume, has no direct role in organ
abscission (Davies 2004). ABA biosynthesis is induced under water-limiting conditions such
as drought or salinity (Nambara and Marion-Poll 2005). ABA is important also for cold
tolerance (Gilmour and Thomashow 1991) and wounding responses (Hildmann et al., 1992).
The transcriptional responses to these stresses are partially ABA-dependent (Yamaguchi-
Shinozaki and Shinozaki 2006). Members of soluble ABA-binding receptor family have in the
past few years been identified by several independent research groups with different
methods and therefore named in a complex manner as PYRABACTIN RESISTANCE
(PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family (Ma et
al., 2009; Park et al., 2009; Santiago et al., 2009; Nishimura et al., 2010). Binding of ABA to
PYR/PYL/RCAR receptors facilitates their interaction with type 2 C protein phosphatases
(PP2C), which are well-known negative regulators of ABA signaling. This relieves the
SUCROSE-NONFERMENTING PROTEIN (SNF1)-RELATED KINASE 2 (SnRK2) kinases from
negative regulation by PP2Cs and allows them to activate ABA responsive element (ABRE)
binding factors (ABFs) by phosphorylation. ABFs belong to the family of bZIP transcription
factors, which together with APETALA2 (AP2) transcription factors binding to GC-rich
coupling elements regulate the expression of ABA-responsive genes. The PYR/PYL/RCAR-
PP2C-SnRK2 pathway is regarded as the ABA core signaling pathway of transcriptional
regulation, which may be modified for instance by other ABA-binding proteins, additional
kinases phosphorylating ABFs, ABF-ABA INSENSITIVE3 (ABI3) interaction, regulation of ion
channel activity by OPEN STOMATA1 (OST1/SnRK2.6), ABA-responsive transcription factors
of other families than ABFs (NAC, HD-Zip, Zn-finger, WRKY) and cross-talk with other
hormone signaling pathways (reviewed in Raghavendra et al., 2010; Cutler et al., 2010;
Weiner et al., 2010).

Interestingly, ABA-mediated stomatal closure is dependent on ROS production by RBOHD
and RBOHF (Kwak et al., 2003) and this ROS production is impaired in ost1 mutant (Mustilli
et al., 2002). This is because OST1 interacts with RBOHF and activates it by phosphorylation
(Sirichandra et al., 2009). ABA amendment was shown to cause a rapid ROS production and
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the H,0, scavenger dimethylthiourea (DMTU) altered ABA-responses of a subset of 3494
ABA-regulated genes in Arabidopsis suspension cells (Bohmer and Schroeder 2011). The
ABA-regulated genes overlap largely with drought and salinity responses, but also with H,0,
treatment (Seki et al., 2002; Takahashi et al., 2004), thereby validating ABA’s importance in
abiotic stress tolerance and the close connection between ABA and ROS signaling. The role
of ABA in pathogen responses is complex: it has been presented that ABA has either a
positive or negative effect depending on the pathogen life style (Robert-Seilaniantz et al.,
2007). For instance, ABA signaling antagonizes SA-mediated defenses independently of the
ethylene/JA pathway (Yasuda et al., 2008).

1.2.7 Brassinosteroid

First plant steroid hormone, brassinolide was isolated from Brassica napus flowers (Grove et
al., 1978), after which approximately 70 additional brassinosteroids (BRs) have been
identified. BRs are required for normal plant growth, development and reproduction, and
the lack of the main BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) results in severe
dwarfism and male sterility (Clouse et al., 1996; Li and Chory 1997). BR1 belongs to a family
of plasma-membrane localized leucine-rich repeat receptor kinases which can also bind BR
(Kinoshita et al., 2005). The BR signal is transferred, by protein-protein interaction, to
another plasma membrane localized leucine rich repeat-receptor like kinase (LRR-RLK),
BRASSINOSTEROID ASSOCIATED KINASE1 (BAK1) and its homologs (Li et al., 2002; Karlova et
al., 2006). Further downstream, BR signal leads to dephosphorylation of kinase
BRASSINOSTEROID INSENSITIVE2 (BIN2) and subsequent activation of BRASSINOZOL
RESISTANT1 (BZR1) and BZR2 (also known as BES1) transcription factors regulating
expression of BR-responsive genes (Kim et al., 2009). The direct targets of these two
transciption factors have been studied with chromatin immunoprecipitation microrrays (Sun
et al,, 2010; Yu et al., 2011), but only approximately 25% of them overlap with BR-regulated
genes (Gudesblat and Russinova 2011), which suggests that the mechanical understanding
of BR-mediated transcriptional changes is yet incomplete. Indeed, the number of BR-
regulated genes identified from microarray experiments from BR-treated plants and BR
mutants may be several thousands (Yu et al.,, 2011). BR signaling and responses are
entwined with other hormones such as ABA, ethylene, auxin, CK, GA and JA (Zhang et al.,
2009; Bajguz and Hayat 2009; Sun et al., 2010). The especially close synergistic connection
between BR and auxin may be explained by shared components of the auxin signaling
cascade (Nakamura et al., 2006; Vert et al., 2008). BRs are involved also in responses to
extreme temperatures, osmotic and oxidative stress, and pathogens (Bajguz and Hayat
2009). At the molecular level, BAK1 and its paralog BAK1-LIKE1 (BKK1) may directly act as
co-receptors in the perception of PAMPs and further establishment of PTI (Roux et al.,
2011).
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1.2.8 Cytokinin

Cytokinins (CKs) are a group of adenine derivates, which are named after their classical role
in promoting cell divisions. Cytokinins also regulate cell elongation and differentiation as
well as delay senescence. Cytokinin is sensed by two-component histidine kinases AHK2,
AHK3 and AHK4/CRE1 (AHKs) located on the plasma membrane and/or endoplasmic
reticulum. Cytokinin binding triggers a phosphorelay cascade similar to animal two-
component systems and ethylene signaling (Schaller et al.,, 2011). AHKs phosphorylate
histidine phosphotransferase proteins (AHPs), which in the nucleus phosphorylate (and
activate) response regulators (ARRs). Based on the domain structure, ARRS can be divided to
types A, B and C. Types A and C lack DNA binding domain present in type-B ARRs, which are
predominant positive regulators of cytokinin-mediated transcription (Argueso et al., 2010).
In addition to type-B ARRs, several other transcription factors respond to cytokinin stimulus,
such as CYTOKININ RESPONSE FACTORS (CRFs) (Rashotte et al., 2006). Recently CK has also
been associated with abiotic stress responses, as plants deficient in CK were more tolerant
to salt and drought (Nishiyama et al., 2011). Arabidopsis histidine kinase AHK1 has been
identified as an osmotic sensor acting likely via ARRs (Tran et al., 2007, Wohlbach et al.,
2008). It has been suggested that osmotic stress affects CK signaling pathway and that ARRs
promote cytokinin signaling but inhibit stress/ABA responsive genes (Tran et al., 2010). CK
and auxin have a complex interaction in the regulation of plant development and examples
of this relationship are for instance ARF-ARR interactions in the shoot apical meristem (Zhao
et al., 2010), cytokinin-induced auxin biosynthesis (Jones et al.,, 2010) and cytokinin-
transport regulated radial auxin distribution in roots (Bishopp et al., 2011). Pathogen-
produced CK delays senescence which is apparent as “green islands” remaining nutrient-rich
in otherwise senescing tissue; however, plant-produced CK promotes defense responses in
concert with SA by interaction between ARR and TGA transcription factors (Choi et al.,
2011).

As a conclusion, the boundary between so called stress hormones (ABA, SA, ethylene and
JA) and developmental hormones (GA, auxin, BR and CK) has become more and more
elusive. Both in plant stress and development, hormonal signals originating from deceivingly
simplistic, linear pathways are integrated at multiple levels in order to achieve appropriate
gene expression and responses. This output depends not only on the environmental stress
but also the tissue type and developmental stage of the plant.

1.3 RADICAL-INDUCED CELL DEATH 1: a tip of an ice berg?
1.3.1 Mutation in RCD1 causes altered development and stress responses
Forward genetics approach utilizes mutagenized plant populations in the screen for mutants

with altered phenotypes of interest, such as development or stress responses. RADICAL-
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INDUCED CELL DEATH1 (RCD1) mutant sensitive to Oz treatment was isolated from one of
such pools of ethylmethylsulfonate (EMS)-mutagenized Arabidopsis seeds (Overmyer et al.,
2000). The rcd1 mutant is sensitive to apoplastic O," but not to apoplastic H,0, (Overmyer
et al., 2000) and tolerant to chloroplastic O," resulting from PQ treatment (Ahlfors et al.,
2004a; Fujibe et al., 2004). Sensitivity to H,0, in the growth media was detected together
with salt sensitivity of rcd1 (Katiyar-Agarwal et al., 2006). Indeed, these rcdl phenotypes
again demonstrate the specificity of different ROS as well as the role of subcellular
localization in ROS signaling. Later on the lesions forming in rcdl in response to Oz were
confirmed to fulfill the hallmarks of PCD (Overmyer et al., 2005). Additional reported stress
phenotypes of rcd1 include UV-B tolerance (Fujibe et al., 2004; Jiang et al., 2009), glucose
tolerance (Ahlfors et al.,, 2004a; Teotia and Lamb 2009), mannitol tolerance (Teotia and
Lamb 2009) and freezing tolerance of unacclimated plants (Fujibe et al., 2004). The rcd1
mutant is also characterized by developmental phenotypes such as altered rosette
morphology with more erected, curled leaves, premature flowering and increased stomatal
conductance (Overmyer et al., 2000; Ahlfors et al., 2004a). Marker genes for ABA, ethylene
and JA responses (RAB18, CHIB and VSP1, respectively) were all expressed at lower levels in
rcd1l under normal growth conditions suggesting that RCD1 is an integrative node of
hormone signaling (Ahlfors et al., 2004a). In clean air conditions, rcdl also slightly
overproduces ethylene (Overmyer et al., 2000) and NO (Ahlfors et al., 2009). Overall, rcd1
displays pleiotropic phenotypes regarding stress responses, hormone signaling and
development.

1.3.2 SRO protein family

RCD1 belongs to a small gene family with five homologs named SIMILAR TO RCD-ONE (SRO)
1-5in A. thaliana (Ahlfors et al., 2004a). The protein function of RCD1 and SROs is unknown,
but conserved domains have been assigned to them. RCD1 and its closest paralog SRO1
contain nuclear localization signals and a WWE domain (PS50918) predicted to mediate
protein-protein interactions involved in ubiquination and poly-ADP-ribosylation reactions
(Aravind 2001). The WWE domain is absent from other SROs. Common to the whole RCD1-
SRO protein family is the domain of the catalytic core of POLY-ADP-RIBOSE POLYMERASE
(PARP) (PS51059) and a C-terminal domain participating in protein-protein interactions
named RCD1-SRO-TAF4 (RST) domain (Belles-Boix et al., 2000; Citarelli et al., 2010; Jaspers
et al., 2010; I; Il). Interestingly, several interaction partners of RCD1 were either known or
putative transcription factors (Belles-Boix et al., 2000; 1). None of the SROs 1 to 5 had been
identified through the forward genetics approach, until Borsani et al. (2005) isolated sro5-1
as a salt sensitive mutant. However, the SRO5 function was assigned to endogenous RNA
silencing mechanism due to sequence overlap with neighboring P5CDH-gene involved in
proline catabolism: induction of SRO5 by oxidative stress (salt/H,0;) results in degradation
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of P5CDH transcript and therefore proline accumulates to protect the plant from the stress
(Borsani et al., 2005).

2 Aims of the study

The aim of this study was to obtain novel information regarding ROS signaling and
responses. For this purpose, several Arabidopsis mutants representing SRO gene family
were isolated from T-DNA insertion mutant collections available from stock centers. Gene
expression of respective plants was studied by microarrays in clean air conditions and in
response to Ostreatment.

1) To characterize the functional redundancy within the SRO gene family in the
regulation of plant development and stress responses (1, II, 1V)

2) To identify novel signaling pathways and biological processes regulated by apoplastic
ROS (111)

3) To identify genes and signaling pathways responsible for Os-triggered PCD in rcd1
mutant (V)
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3 Materials and methods

The methods used in this study are described in the respective publications I, Il, Ill and IV
(Table Il). Plant material used is listed in Table IlI.

Table Il. Methods used in publications I-IV. Parenthesis indicates that the method was used
only by the co-authors in that publication.

Method Publication

Auxin quantification ()
Floral dip transformation |
Flowering time determination (1
GUS activity staining
lon leakage

Leaf shape determination 1l

Microarray hybridizations (I

O3 treatment
Paraquat treatment

PARP-activity assay

I, v
(1)
(1)

L1, (1), (V)
(), 11, 11, (1Iv)
Rosette diameter measurement 1]

(1), ()

(1), (1)

(1, (m

Plant line genotyping and cloning

Quantitative real-time PCR

Subcellular localization

Western hybridization

Yeast two hybrid
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Table Ill. Arabidopsis mutants and transgenic lines used in this study. Additional double

mutants were created as described in |, Il and IV.

Genotype Ecotype Description Publication
PRCD1:uidA Col-0 RCD1 promoter fused to uidA B-glucuronidase |
pSRO1:uidA Col-0 SRO1 promoter fused to uidA B-glucuronidase |
pRCD1:RCD1 Col-0 RCD1 promoter fused to genomic RCD1 gene |
pSRO1:RCD1 Col-0 RCD1 promoter fused to genomic SRO1 gene |
srol-1 Col-0 similar to rcd-onel-1 I
red1-2 Col-0 radical induced cell death1-2 I
rcd1-3 Col-0 radical induced cell death1-3 |
rcd1-4 Col-0 radical induced cell death1-4 I
red1-1 Col-0 radical induced cell death1-1 1,1, 1V
sro5-2 Col-0 similar to rcd-one5-2 I
axrl-3 Col-0 auxin resistant1-3 1
DR5:uidA Col-0 synthetic auxin responsive promoter fused to uidA I
ein2 Col-0 ethylene insensitive2 1
NahG Col-0 transgene encoding bacterial salicylate hydroxylase 1}
nprl Col-0 non-expressor of pathogenesis related genes1 1
sid2 Col-0 salicylic acid induction deficient2 1}
aux1-7 Col-0 auxin resistant1-7 1}
nitl-3 Col-0 nitrilase1-3 I
coil-16 Col-0 coronatine insensitivel-16 1}
iaa28-2 Col-0 indole-3-acetic acid inducible28-2 1
iaa28-1 Ws-0 indole-3-acetic acid inducible28-1 1
tirl-1 afb2-3 Col-0 transport inhibitor responsel-1/ auxin signaling F-box2-3 1
mpk3 Col-0 mitogen activated protein kinase3 1]
mpk6 Col-0 mitogen activated protein kinase6 1
wrky70 Col-0 wrky DNA-binding protein70 v
Isd1 Col-0 lesions simulating disease resistancel v
acd2 Col-0 accelerated cell death2 v
acd5 Col-0 accelerated cell death5 v
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4 Results and Discussion
4.1 Redundancy within SRO gene family
4.1.1 Complementation of rcd1

In this study, T-DNA insertion alleles rcd1-3 and rcd1-4 were isolated in order to dissect the
role of a putative truncated rcd1 protein in rcd1-1 (1). The rcd1-1 mutation is a guanine to
adenosine transition at the third exon-intron junction, in the middle of the conserved PARP
catalytic domain, which leads to two different sizes of misspliced transcripts each with
premature stop codons (Ahlfors et al., 2004a). Also the rcd1-2 mutation causes a premature
stop codon in exon Ill and rcd1-2 plants contain a mutant transcript (Fujibe et al., 2006). The
rcd1-3 mutant harbors a T-DNA insertion in exon IV also within the putative PARP domain
and contains a mutant transcript (I) approximately the same size as in wild type Col-0 (data
not shown). The rcd1-4 line is mutated within the WWE domain (I) and no rcd1 transcript
has been detected (I). All these rcd1 alleles result in a similar mutant habitus in clean air
growth conditions. Comparison of gene expression in rcd1-1, rcd1-3 and rcd1-4 mutants
studied with a full-genome microarray yielded in similar results and enabled pooling of the
data (I). Because the T-DNA insertion in rcd1-4 is disrupting the WWE-domain and neither
rcd1 transcript nor truncated protein is present in rcd1-4 plants, this result suggests that
also rcdi1-1 is a loss-of-function mutant. The premature flowering, plant habitus, PQ
tolerance and expression of ANAC087 in both rcd1-2 and rcd1-4 were complemented by a
RCD1 genomic construct pRCD1:RCD1 (), which supports the conclusion of a-loss-of
function mutant. Ahlfors et al. (2004a) suggested a gain-of-function by a truncated protein
in rcd1-1 based on a gene dosage experiment and due to the O3 sensitivity and PQ tolerance
of 35S::rcd1 plants. However, Fujibe et al. (2006) observed that overexpression of a genomic
RCD1 fragment caused a weak rcdl phenotype quantified as smaller plant size and slight
increase in O3z sensitivity in Col-0 background, but also complemented the rcd1-2
phenotype. During this study, several transgenic RCD1 cDNA constructs under cauliflower
mosaic virus-derived 35S promoter were cloned, but neither rcdl growth habitus
complementation nor reporter gene/epitope tag expression in Col-0 background was
achieved (data not shown). Altogether the complex results from 35S::rcd1 and 35S::RCD1
plants point towards the RCD1 expression level being under tight control.

The establishment of rcdl complementation was necessary for testing functional
redundancy between RCD1 and SRO1 in planta (1). Whereas the pRCD1:RCD1 construct fully
complemented rcdl mutation, RCD1 promoter fused to SRO1 coding sequence provided
partial complementation regarding flowering time while ANAC087 gene expression and no
complementation of the PQ tolerance was observed (I). This established that paralogous
RCD1 and SRO1 proteins are functionally partially overlapping, which may be expected due
to the strong sequence similarity. The phenotype specific degree of rcd1 complementation
by SRO1 may suggest that the common function of RCD1 and SRO1 is mostly conserved in
plant development (flowering, gene expression in clean air) whereas RCD1 has unique roles
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in stress responses (such as PQ tolerance). However, because the recessive rcd1 growth
habitus was not complemented by pRCD1:SRO1 in the T1 plants (data not shown), RCD1 is
responsible for some unique functions also regarding plant development. The reason for
only partial complementation of pleiotropic rcd1 phenotypes by SRO1 is perhaps due to
differences in protein catalytic activities, post-translational modifications or protein-protein
interactions (discussed later in chapter 4.1.3).

4.1.2 Single and double mutants reveal in planta functions of SROs

Based on complementation studies, RCD1 and SRO1 display partial functional redundancy. A
T-DNA insertion allele of SRO1, srol-1 was isolated and crossed to rcd1-3 to study this
redundancy further. The stunted, hardly viable rcd1-3 srol-1 double mutant phenotype
suggested that srol-1 plants are deficient in a major developmental function shared
between RCD1 and SRO1 (I). The rcd1 srol plants were only recovered when grown in vitro,
and after transfer to soil the number of seeds produced was miniscule. Abnormal
development in rcdl srol double mutants is apparent already during embryonic
development (Teotia and Lamb 2009). The rcd1/rcd1 SRO1/srol plants are larger than the
homozygous double mutant, which states that even a single functional SRO1 allele is able to
partially rescue the severe rcd1 srol double mutant (I).

Comparison of GUS activity in pRCD1:uidA and pSRO1:uidA plants show that RCD1 and SRO1
are expressed in the same tissues in leaves, roots and flowers (l). However, only RCD1 was
expressed in the stomatal guard cells (Katiyar-Agarwal et al., 2006; |). Transient expression
analysis of 35S::RCD1-YFP and 35S::SRO1-YFP showed that both RCD1 and SRO1 are
localized to nucleus, which is in accordance with the nuclear localization sequences in both
proteins (I). RCD1 has previously been reported to localize to nucleus (Fujibe et al., 2006)
but also to cytosol under salt stress (Katiyar-Agarwal et al., 2006).

Both developmental and stress-induced phenotypes of srol-1 plants characterized so far
have been absent or non-severe (I; Teotia and Lamb 2009). Gene expression of sro1-1 under
normal growth conditions is very similar to Col-0, and the only gene with robustly altered
expression was thylakoidal ascorbate peroxidase (tAPX; Atlg77490) with two-fold
decreased transcript level (I). The lowered amount of tAPX in srol was confirmed with a
western blot using a tAPX-specific antibody (Dr. S. Kangasjarvi, unpublished results).
However, rcdl tapx plants were indistinguishable from rcdl according to their growth
phenotype (data not shown), which suggests that decrease in tAPX in srol was not
responsible for the severe developmental defects in rcd1 srol plants. The sro1-1 mutation
resides in the C-terminal RST domain and a transcript is present upstream of this T-DNA
insertion site (I). It is possible that the transcript present in srol could yield a yet partially
functional sro1l protein with WWE and the PARP catalytic core domains that may explain the
lack of a more marked single mutant phenotype. However, the severe phenotype of rcdl
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srol double mutant and the partial complementation of rcd1 mutation with pRCD1:SRO1
construct point towards a severe loss-of-function of sro1-1 allele lacking the C-terminus.

Like srol mutants, sro5 plants are indistinguishable from Col-0 under clean air growth
conditions and show only minor alterations in gene expression (Il). SRO5 transcript itself was
over 500-fold induced in sro5-2 plants suggesting that SRO5 transcript levels are negatively
regulated by SROS5 (Il). Because SRO5 is consistently induced by a range of stresses (Gadjev
et al.,, 2006; Il), this may provide a necessary negative feedback loop. This feed-back
regulation could possibly be associated with SRO5 being able to interact with transcription
factors (ll). The sro5 plants were not more Oz-sensitive than Col-0 and rcd1 sro5 mutants
have the same degree of cell death as rcd1 (Fig. 3), thereby reinforcing the view that SRO5
does not regulate sensitivity to apoplastic ROS. Instead the sro5 plants are salt sensitive,
which has been linked to inadequate proline accumulation (Borsani et al., 2005; Babajani et
al., 2009). Also the rcd1 mutant is salt sensitive, which may be caused by the lack of RCD1
interaction with plasma membrane Na'/H" antiporter SALT OVERLY SENSITIVE1 (SOS1)
(Katiyar-Agarwal et al., 2006). Interestingly, rcd1 has a constitutively higher level of proline
(N. Sipari, unpublished results), which might buffer the lack of proline accumulation caused
by sro5 mutation in rcd1 sro5 plants. Proline is considered to protect plants from salt and
cold stress, and perhaps also scavenge ROS directly (Szabados and Savouré 2010). However,
proline degradation by proline dehydrogenase (ProDH) causes hypersensitive cell death in
response to pathogens (Cecchini et al.,, 2011). Elevated proline levels resulted in heat
sensitivity and increased mitochondrial ROS formation (Lv et al., 2011). More studies are
needed in order to evaluate whether proline metabolism is involved in any of the stress-
related phenotypes of rcd1.

The phenotypes of sro2, sro3 or sro4 mutants are currently not characterized. Expression of
SRO2, SRO3 and SRO5, but not SRO1, is elevated in rcd1 in clean air (Il). All the SROs with
detectable expression levels (all apart from SRO4) are induced by Os and salt stress (ll). The
biological roles of SRO2, SRO3 and SRO4 will remain to be determined in future studies.
SRO2 was induced by high light (1) and its expression is elevated in tapx sapx plants that lack
chloroplast and mitochondria localized ascorbate peroxidases (Kangasjarvi et al., 2008),
which suggests a connection to ROS signaling.
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4.1.3 SRO conservation within plant kingdom: why?

Several plant genomes were analyzed for the presence of SROs (Il). Two structural groups of
SROs, type A and type B, could be identified based on the domains present in Arabidopsis
thaliana SROs (ll). Type A contains the longer WWE-PARP-RST structure, and type B consists
of only PARP-RST domains. Interestingly, cryptogams (Physcomitrella patens and Selaginella
moellendorffii) and monocots (Oryza sativa ssp. japonica and Brachypodium distachyon)
contained only the type A, whereas eudicots (Arabidopsis thaliana, Arabidopsis lyrata,
Populus trichocarpa, Ricinus communis and Vitis vinifera) contained both type A and type B
SROs (ll). SROs were absent from green algae, photosynthetic cyanobacteria, yeast and
plant pathogen genomes (Il), which suggests that SROs have evolved and diversified along
the complexity and size of plants. The number of SROs falling into different structural types
varied between the species studied: for instance, only in Brassicaceae RCD1 and SRO1 (both
type A SROs) could be clearly defined. The Populus genome contained three type A SROs,
which were equally related to both RCD1 and SRO1 of A. thaliana. Therefore, a unified
nomenclature based on the SRO type was introduced, according to which only A. thaliana
contains RCD1 (AtRCD1) (II).

What is the function that SROs perform? Biochemical data together with sequence analysis
showed that RCD1 does not bind NAD* nor can function as a PARP (ll). Still, the PARP
domain is highly conserved within the SRO family. RCD1, SRO1 and SROS5 all interact with
transcription factors and these interaction partners may be identical or represent different
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members of the same protein family (I, II). These partially unique but also overlapping
protein-protein interactions might explain the partially redundant functions of RCD1 and
SRO1. However, these interactions should be verified with further in planta experiments.
The putative role of SROs in transcriptional regulation is also suggested by the presence of
the RST-domain, which is found in plants only in SROs and in the TBP-ASSOCIATED FACTOR4
(TAF4) protein (I; 1l). TAF4 belongs to the core promoter binding transcription initiation
complex TFIID with TATA-BOX BINDING PROTEIN (TBP) and several other TAF proteins, and
is essential for the TFIID complex stability (Wright et al., 2006). The RST domain of RCD1 is
required for interactions with DREB2A and COL10 (Il). On the contrary, the lack of WWE
domain did not abolish any protein-protein interactions but resulted in even more
interaction partners for RCD1 (I; Il). This suggests that the WWE-domain is not necessary to
the protein-protein interactions of RCD1, but it rather may modulate their specificity. WWE-
domain may interact with another WWE domain (Zweifel et al.,, 2005), ankyrin domain
(Matsuno et al., 1995) or with a poly-ADP-ribose moiety attached to another protein by
PARPs (Zhang et al., 2011). The effect of poly-ADP-ribosylation on individual Arabidopsis
proteins is largely unknown, but PARP activity has been connected to both abiotic
(Vanderauwera et al., 2007) and biotic (Adams-Phillips et al., 2010) stress responses. The
only defined Arabidopsis proteins with WWE domains and thus the only candidates for
WWE-poly-ADP-ribose interaction are currently RCD1 and SRO1 (1; II).

The rcd1 mutant has pronounced changes in gene expression under clean air conditions (l;
IV), but only few genes were regulated in srol and sro5 plants, which suggests that SROs
have obtained unique roles as putative transcriptional co-regulators. The role of RCD1 in
transcriptional regulation is further discussed in the section “4.2.4 Cell death and gene
expression”. In addition to regulating P5CDH expression, no role of SRO5 protein itself has
been verified yet. However, the overlapping SRO5-P5CDH transcript pair is only present in A.
thaliana, so this particular function is absent from other species analyzed so far (Il).

4.2 Apoplastic ROS and transcriptomics
4.2.1 Apoplastic ROS regulate thousands of stress-responsive transcripts

Apoplastic ROS are formed in response to a variety of environmental stresses, and O3
treatment has been established as a sophisticated method to trigger apoplastic ROS
production. To gain a comprehensive view on the cellular signaling cascade and responses,
including cell death, downstream of Os;, we performed a time-series experiment with a
nearly full-genome (21K) microarray platform with the Arabidopsis ecotype Col-0 and the
rcd1l mutant. Samples were harvested 0, 1, 2, 4, 8 and 24h from the start of the O3
treatment (6h 350 nL L-1) (lll; 1V). Altogether, expression of 3635 genes (log ratio +1;
<0.05) was changed in response to apoplastic ROS in Col-0 (Ill). This was clearly a larger
number (2211) of Osz-responsive genes than in previously reported publically available full-
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genome array experiments analyzed with the same criteria (lll). This result is mainly due to
the number of technical and biological replicates in this study yielding in statistically
significant results, because the discovery of only approximately five hundred new Os-
regulated genes resulted from the use of also late time points (8h and 24h) and different
array platform (MWG oligoarray instead of ATH1) (lll). All subsequent qPCR analysis from
independent biological repeats were largely in accordance with the obtained array results
(111; 1v), and therefore provided evidence that the used experimental conditions and analysis
methods were reproducible. Clustering showed distinct expression patterns of Os-
responsive genes which allowed the detection of time-dependent, transient changes:
expression profiles could be divided into early increased, late increased and decreased
profiles (Il1). Mahalingam et al. (2005) identified similar expression patterns in a time series
experiment with approximately 200 Os-regulated genes. A larger number of Os-induced
versus decreased transcripts in early time points (llIl) is also in concordance with a previous
study by Mahalingam et al. (2006).

To gain understanding of the biological relevance of this vast amount of Os-responsive
genes, we analyzed the Gene Ontology (GO) enrichments of Os-regulated genes at each
time point. In total this gene set represented 2219 biological processes, of which 502 were
significantly enriched among genes with increased expression and 301 among genes with
decreased expression (time point specific analysis) (lll). The large number of enriched
biological processes may be partially explained by the hierarchical overlap of GO categories.
More importantly, there was also a large range of different biological processes among the
Os-regulated genes, such as abiotic and biotic stress responses, photosynthesis and
secondary metabolism (l11). A snapshot of this is presented in Fig. 4 showing gene expression
at 4 h after the start of Oz treatment, the time point with the largest number of Os-
regulated genes. This result is as expected according to the reported role of ROS as
ubiquitous signaling molecules. Altogether one hundred biological processes were enriched
among both increased and decreased transcripts, whereas individual Os-regulated
transcripts were generally only responsive in one of the two directions (up or down) (lll). In
general, stress treatments may simultaneously both activate and repress gene expression
(Gadjev et al., 2006). The GO classifications of biological processes are based on different
data sources: experimental data of microarray experiments (IEP; Inferred from Expression
Pattern), mutant analysis (IMP; Inferred from Mutant Phenotype), but also computational
predictions based on for instance sequence similarity (ISS; Inferred from Sequence
Similarity) (http://www.geneontology.org/GO.evidence.shtml). These data sources bring
heterogeneity to the GO groups, so a variety of responses may also be expected. Albeit
there is constant updating of the annotations, the “response to ozone” classification
(G0O:0010193) contains merely 29 loci (TAIR10 annotation), which in light of the results
obtained in this study (IIl) is an underestimate.
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Figure 4. Apoplastic ROS may cause bidirectional changes in gene expression at the level of
biological processes. The multitude of biological processes regulated by apoplastic ROS is
exemplified with gene expression in Col-0 4h after the start of the O3 treatment. 2516 Os-
regulated genes (log ratio +1, q<0.05) were imported into the “cellular functions overview”
pathway of MapMan 3.0.0 with TAIR8 Arabidopsis genome annotation (Thimm et al., 2004).
The bars indicate the number of genes with increased (red) and decreased (green)
expression annotated to different cellular functions.

4.2.2 Apoplastic ROS alter auxin signaling

From the GO analysis of Os-responsive transcripts, it was apparent that apoplastic ROS
affected the signaling of several plant hormones (lll). Ethylene, SA and JA have all well
characterized roles in responses to apoplastic ROS (Kangasjarvi et al., 2005). The biological
process “response to ABA” was activated at all time points (lll).Previous study by Overmyer
et al. (2008) has shown that ABA concentration increases by Osz-treatment. In addition, auxin
responsive transcripts were regulated by apoplastic ROS: response to auxin stimulus was
enriched and comparison with transcripts regulated by IAA-treatment yielded in 60
overlapping transcripts, which comprised approximately 1/3 of the auxin responsive
transcripts (Ill). In contrast to classical stress hormones ethylene, SA, JA and ABA, to which
responses were almost exclusively induced, auxin-related transcriptional response was also
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decreased. This decrease was especially abundant among Aux/IAA transcripts in Os-treated
plants and a similar response was observed for instance in UV-B, PQ, flagellin fragment
flg22, SA-analog BTH and H,0, experiments (lIl). Because Aux/IAAs negatively regulate their
own expression via repressing ARF activity, this decrease may suggest a stabilization of
Aux/IAA proteins as previously reported in response to flg22 (Navarro et al., 2006) and BTH
(Wang et al., 2007). Because ARFs binding to AuxRE elements can be either positive or
negative transcriptional regulators, simultaneous increased repression of both types of ARFs
may explain partially reduced and increased auxin responses in Os-treated plants. A rapid
and transient decrease was observed in the expression of auxin reporter construct DR5-uidA
and an auxin marker gene, transcription factor HAT2 (lll). This could be concomitant with
transiently increased Aux/IAA protein stability: Increased stability of Aux/IAAs leads to
decreased auxin-dependent gene expression, including Aux/IAA transcripts themselves,
which would eventually reset the amount of Aux/IAA proteins (Fig. 5). This model about
apoplastic ROS-auxin interaction involving Aux/IAA stability could be in future addressed for
instance with the DII-VENUS reporter construct (Vernoux et al., 2011). The Aux/IAA stability

is known to be regulated at the SCFTR/AFB
SCFTIR/AFB

complex level: auxin-mediated interaction with
complex leads to Aux/IAA ubiquitination and targets them for proteosomal
degradation (Fig. 5, described in detail in 1.2.4).

Apoplastic ROS decreased the expression of auxin F-box receptors TIR1, AFB1, AFB3 and
AFB5 (Ill), while no change was observed in the expression levels of AFB2 or FBX14/AFB4
(11). This could explain a decrease of SCF"A8 interactions with Aux/IAA proteins leading to
higher levels of Aux/IAA proteins. The TIR1, AFB1, AFB2 and AFB3 interact with Aux/IAA
proteins in an auxin-dependent manner, are expressed in most cells and have redundant
functions in auxin signaling (Dharmasiri et al., 2005b). However, TIR1 and AFB2 exhibit the
strongest auxin-mediated Aux/IAA binding which suggests that they have more prominent
roles in auxin signaling than AFB1 or AFB3 (Parry et al., 2009). Concordantly, tirl afb2
mutants performed better than tirl afbl and tirl afb3 plants in response to salt, PQ and
H,0, (Iglesias et al., 2010), which may be due to a larger loss of auxin responsiveness
contributing to stress tolerance. FBX14/AFB4 and AFB5 also interact with IAA3 in an auxin-
dependent manner which is indicative of an auxin receptor function (Greenham et al.,
2011). Unlike AFB5, FBX14/AFB4 was unresponsive to apoplastic ROS (lll) and was recently
shown to have a negative effect on auxin responses in the hypocotyl (Greenham et al.,
2011). The role of AFB5 in mediating auxin responses is yet poorly known, because afb5
mutants are resistant to synthetic auxins picolinate and dicamba but not to IAA or 2,4-D
(Walsh et al., 2006; Greenham et al., 2011; Gleason et al., 2011a). AFB2 transcript is
decreased in response to fl|g22 by miRNA393-mediated degradation (Navarro et al., 2006).
Neither decrease of AFB2 transcript nor increase in miR393 in response to apoplastic ROS
was observed (lll), suggesting that the members of auxin F-box receptors are differentially
regulated by stresses and that there are both miR393-dependent and independent
mechanisms for their transcriptional regulation. It remains to be elucidated, whether stress-
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Figure 5. A model describing the expression levels of TIR1/AFB transcripts (green), HAT2
(red) and Aux/IAAs (yellow) in response to auxin treatment and apoplastic ROS (O3) . A) In
auxin treatment, the degradation of Aux/IAAs is enhanced in a TIR1/AFB dependent
manner. Auxin treatment is known to transiently decrease the levels of Aux/IAA proteins
(blue). B) Aux/IAA protein levels may be negatively correlated with the Aux/IAA transcript
expression also in Os-treated plants (blue, dashed line). Under Oz, the expression of several
TIR1/AFB auxin receptors is decreased and thereby Aux/IAAs may become stabilized and
have a negative effect on auxin responses, such as HAT2 expression.
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triggered reduction of TIR1/AFBs is required for the stabilization of AuX/IAAs. No role for
ethylene, SA or MPK signaling was found in the rapid decrease of auxin-regulated gene
expression in Os-treated plants (I11). MPK3 and MPK6 are rapidly and transiently activated by
O3 (Ahlfors et al., 2004b), but no effect of MPK3 or MPK6 on repression of HAT2, SAUR68 or
TIR1 was observed (lll). This might be caused by functional redundancy between MPK3 and
MPK®6, but it is also possible that for instance MPK4 is responsible for the MPK-dependent
decrease of auxin-responsive transcripts in planta (Nakagami et al., 2006).

Because auxin-responsive genes are regulated by protein-protein interactions between
TIR1/AFBs, Aux/IAAs and ARFs, these protein families with 6, 29 and 22 functional members,
respectively, offer a wide range of possible output scenarios of developmental responses
and cross-talk with other signaling pathways (Weijers et al., 2005; Teale et al., 2006;
Vernoux et al., 2011). ARFs may interact with other transcription factors such as MYB77,
which affects auxin responses (Shin et al., 2007). Also Aux/IAAs have additional interaction
partners such as co-repressor TOPLESS (Szemenyei et al., 2008), and surprisingly, RCD1 (I).
Aux/1AA transcripts are known to differ in their auxin responsiveness, and IAA28 is atypically
decreased by auxin treatment in the roots (Paponov et al., 2008). /AA10 and IAA28
expression increased in response to apoplastic ROS, which indicates a unique role in stress
responses (lll). No changes in the ARF expression or free IAA concentration by apoplastic
ROS were observed in this study (Ill), which may be interpreted that ARF activity was post-
transcriptionally regulated by apoplastic ROS. ARF activity may be also suppressed by
phosphorylation (Vert et al., 2008), and phosphorylation cascades are known to be activated
in response to Oz (l1I).

4.2.3 Stress-induced morphogenic response

Comparison between auxin-responsive genes regulated by Os and other stresses such as UV-
B, flg22, H,0,, PQ and BTH revealed both common and specific expression patterns (lll).
More generally, this may reflect how plant stress responses affect development and growth.
Indeed, in case of auxin, plant stress and development are perhaps more entwined than in
regard of any other plant hormone. It has been long established that chronic stress alters
plant morphology, which in a wider sense may be interpreted as classical allocation
between growth and defense. However, the molecular mechanisms governing the stress-
induced morphogenic response (SIMR) are not yet established. SIMR can be defined as
“growing out of trouble”, which means redistribution of growth away from apical meristems
into lateral organs (Potters et al., 2007). SIMR includes decrease in cell elongation, localized
stimulation in cell division and alterations in cell differentiation (Potters et al., 2007). In
roots, this is apparent as inhibition of root elongation and increased number of lateral roots,
whereas in shoots inhibition of shoot elongation and increased axillary branching occurs
(Potters et al., 2007). These could also be classical symptoms of increased and decreased
auxin effects in roots and shoots, respectively. Interestingly, auxin has opposing effects in
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shoots and roots: in the shoot, auxin promotes cell elongation and in roots inhibits it. Auxin
responsive HD-Zip transcription factor HAT2 is a positive regulator of auxin signaling in
shoots and negative regulator in roots (Sawa et al. 2002). The reason for such opposite
effects in different tissues is not known.

Considering the longevity of auxin research, the knowledge about the detailed signaling
mechanism is relatively new (Leyser 2010), and the molecular mechanisms of auxin in
regulation of stress adaptation are beginning to be unraveled. Long-term Oz exposure
decreased leaf area, leaf length and fresh weight of Arabidopsis (lll), and also induced
epinastic leaf curling at leaf margins as previously described by Sharma and Davis (1994) and
Booker et al. (2004). This may be viewed as a SIMR response, which was exaggerated in tirl
afb2 plants exhibiting curling also at the leaf tips marked by a larger decrease in leaf length
and increased serrations compared to Col-0 (Ill). Therefore, auxin was concluded to be a
negative regulator of SIMR in shoots in response to chronic apoplastic ROS (lll). The altered
leaf curling pattern in tirl afb2 might take place due to yet uncharacterized, cell-type
specific auxin signaling events in leaves, for instance due to presence of cell-specific
Aux/IAA-ARF protein-protein interaction pairs (Weijers et al., 2005). Auxin homeostasis is
controlled by a multi-level protein network consisting of biosynthesis, transport, signaling,
conjugation, hydrolysis and inactivation by oxidation. During chronic stress, one or several
of these processes may be altered for stress adaptation, which makes it challenging to
accomplish a comprehensive view. Auxin signaling may be decreased by several
mechanisms depending on the stress signal and tissue type. Lack of glutathione has been
shown to decrease auxin efflux carriers, PINs (Koprivova et al., 2010; Bashandy et al., 2010).
These results relate plant redox status to auxin responses and development (Tognetti et al.,
2011). Improved antioxidant status of tirl afb2 mutant was suggested as the reason for
increased oxidative stress tolerance (lglesias et al. 2010), but the precise mechanism how
this is achieved is unknown. Increased apoplastic oxidation by ascorbate oxidase
overexpression decreases responses to auxin treatment but simultaneously increases
growth in tobacco, which might be due to constitutive auxin signaling taking place
(Pignocchi et al., 2006). This may be related to the increased expression of several auxin-
induced genes observed in Os-treated plants (lll). It might be that ROS have also auxin-
independent effects on plant development (Tsukagoshi et al., 2010). Because some
pathogens actively produce auxin (Kazan and Manners 2009), pathogen-related growth
phenotypes may be due to complex effects on the plants auxin status. Detailed studies on
auxin homeostasis mutants are required to assess the role of auxin network components in
regulating SIMR in response to biotic and abiotic stress. Mutant studies should also take into
consideration both the redundancy and divergence within the gene families of this network.
Due to the importance of auxin for plant development, these studies are also complicated
by putative developmental defects of these mutant genotypes, which may have a significant
impact on the stress responses.
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4.2.4 Cell death and gene expression
4.2.4.1 Are rcd1 stress phenotypes pre-determined by clean air gene expression?

The oxidative signaling in rcdl was studied with microarrays to gain insight in the
transcriptional regulation involved in PCD (IV). Additionally, the role of RCD1 as
transcriptional co-regulator was addressed. The overall transcriptional responses of rcdl
and Col-0 to O3 treatment were very similar: of the 3635 and 4102 genes regulated by
apoplastic ROS in Col-0 and in rcd1, respectively, large majority (2897 genes) were similarly
regulated in both genotypes in response to apoplastic ROS (IV). Expression levels of several
hundreds of genes classified Os-responsive only in a particular genotype (419 genes in Col-0
and 845 in rcd1) showed less than two-fold differences between the genotypes (IV). The
larger number of Os-regulated genes in rcdl at every individual time point indicated that
Os—induced responses are exaggerated in rcd1 (1V). More detailed analysis revealed that the
majority of the Oz-responsive genes were more strongly regulated in rcd1 than in Col-0 at all
time points, however, with less than two-fold difference in the level of expression (IV). This
suggested that the differences between these genotypes in response to apoplastic ROS may
be mostly quantitative. Similarly, changes in Arabidopsis gene expression evoked by
incompatible and compatible pathogen, causing PCD and not, respectively, are largely also
quantitative (Tao et al. 2003). Therefore, it has been suggested that when oxidative stress
exceeds a certain (yet unidentified) threshold, PCD occurs (Van Breusegem and Dat 2006;
Mullineaux and Baker 2010). More open stomata might cause a higher initial O; dose before
stomata close in response to Oz (Ahlfors et al., 2004a; Vahisalu et al., 2008; Vahisalu et al.,
2010). This effect alone could be sufficient to render rcd1 O3 sensitive, as increasing the O3
concentration also induces lesion formation in otherwise Os-tolerant Col-0 (IV). However,
the sensitivity of rcd1 to apoplastic O," produced by infiltration of xanthine and xanthine
oxidase (Overmyer et al., 2000), which is independent of stomatal opening, suggests that
there are additional components involved in PCD in rcdl mutant. Furthermore, NO
production is increased by Os; treatment and rcdl mutant has a constitutively higher NO
level in clean air (Ahlfors et al., 2009), which might contribute to rcd1 Os sensitivity due to
its proposed role in cell death and synergistic interaction with ROS (Zago et al., 2006; Ahlfors
et al., 2009).

As most of the genes exhibited similar Os-responses in both genotypes, only 361 genes had
more than two-fold differences between the genotypes (IV). In addition to a stronger initial
response, the Oz response in rcdl was prolonged in comparison to Col-0 (lll). This is
apparent as higher numbers of Os-regulated genes still at 8 h and 24 h. The identities of
these genes largely overlapped with earlier time points. This might be due to several
reasons: stronger initial response, lack of negative regulation and/or prolonged induction of
gene expression. Degradation of defense proteins may be involved in the recovery of stress,
and proteosome function is enriched among Os-responsive transcripts in the late time
points (lll). Albeit there seems to be no difference between the genotypes in the
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proteosome-related transcripts, accumulating data hints towards proteosomal malfunction
in rcd1 (IV; Dr. J. Vainonen, unpublished data). ROS formation along the progressing lesions
in rcd1 has also been demonstrated (Overmyer et al., 2000), and this ROS source might also
contribute to the prolonged expression of Os-responsive genes in rcd1 (IV).

Is rcd1 primed for stress? And if so, to which one? A new, unexpected answer to these
questions was discovered from the similarity between rcd1 clean air gene expression and
heat stress (IV). Furthermore, a mitochondrial double mutant msh1 recA3 tolerant to heat
has constitutively higher expression of heat-induced genes such as AOX1a, UPOX1, NFXL1,
ANACO013, UNIVERSAL STRESS PROTEIN (At3g03270), mitochondrial HSP70, CRF6 and an ACC
oxidase (Shedge et al., 2010), which are also more highly expressed in rcd1 in clean air (1;
IV). Intriguingly, rcd1 may possess tolerance to heat shock (Dr. J. Vainonen, unpublished
data). However, no role for mitochondrial genes UPOX1 and AOX1 were found governing
the Os tolerance in rcd1 suggesting that mitochondrial ROS do not regulate rapid PCD in
Arabidopsis (IV). AOX1 has been interpreted to offer an alternative route for electrons in
plants therefore relieving oxidative stress in mitochondria. The aoxla mutants have
increased anthocyanin and 0," concentrations and decreased plant size in abiotic stress
responses (Giraud et al., 2008). Surprisingly, overexpression of AOX1 mediated O3 sensitivity
in tobacco (Pasqualini et al., 2007) but neither lack nor constitutive activation of AOX1a
altered Os sensitivity in our experimental conditions (V). Genes with constitutively elevated
expression in rcd1 were also shown to be less expressed during PQ treatment (1V). Whether
AOX1 and/or UPOX1 have a role in heat and PQ responses remains to be elucidated in
future studies.

4.2.4.2 Marker genes of PCD

An exaggerated, prolonged expression of Os-responsive genes was present in rcd1 mutant
(IV). However, the PCD in rcd1 has been shown to be regulated by plant hormones (SA, JA
and ethylene) and AtCNGC2, a cyclic-nucleotide-gated cation channel (Overmyer et al.,
2005), which tells that in rcd1 PCD is an active process controlled by specific signaling
pathways. Furthermore, inhibitor studies suggested a role for ATPases, kinases, Ca*",
proteolytic activity and, most importantly, transcription in this cell death regulation
(Overmyer et al., 2005). To explore these signaling pathways, several double mutants with
rcd1 defective in various defense and signaling pathways were created, and this led to the
identification of WRKY70 transcription factor as a positive regulator of Oz-induced PCD (IV).
This result is in accordance with WRKY70 acting as a positive and negative regulator of SA
and JA signaling, respectively (Li et al., 2004). To connect the transcriptional events of PCD
to decreased cell death in wrky70 and rcdl wrky70, ten marker genes differentially
expressed in rcd1 mutant were selected for gPCR analysis of Os-treated Col-0, wrky70, rcd1
and rcd1 wrky70 (IV): RAP2.6, SAP12, RAP12 and WRKY75 transcript levels were higher and
WRKY62 expression lower in Os-treated rcd1. FMO1, ALD1, WRKY70, WRKY38 and NUDX6
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had lower expression in rcd1 in clean air according to the array data (IV). The expression of
the same genes was studied also in several lesion mimic mutants (acd2, acd5 and Isd1) to
get an overview of the PCD transcriptomics. All the marker transcripts were induced by O3
and most of them had elevated expression in the lesion-containing leaves of lesion mimic
mutants, most notably in the acd2 background (V). Unlike other marker genes studied,
WRKY70 and WRKY38 were not regulated in the any of the lesion mimic mutants (IV).
Interestingly, WRKY62 and NUDX6 expression was decreased by lesion occurrence in Oz-
treated plants and no increased expression was present in acd2 either, which would be
consistent with either a role of negative regulator of cell death or, alternatively, lesion
formation may directly decrease their expression (IV). ALD1 and FMO1 have been shown to
be positive regulators of cell death (Zhang et al., 2008), but their expression was increased
in Os-treated wrky70 and rcd1l wrky70 exhibiting reduced cell death (IV). One possible
explanation might be that wrky70 plants could be defective in ALD1 and FMO1 signaling.
Future studies with rcd1 ald1 and rcd1 fmo1 plants will provide insight into the role of ALD1
and FMO1 in the regulation of PCD induced by apoplastic ROS.

RAP2.6 is an ERF transcription factor with increased expression during biotic stress (He et
al., 2004) and abiotic stress involving ABA signaling (Zhu et al., 2010). Interestingly, the
highest RAP2.6 expression was detected in rcd1 after lesion formation at 8 h, which may
indicate a role for RAP2.6 in the cell death process together with the markedly elevated
expression in acd2 (IV). However, increased ABA levels are observed in plants 8 hours after
the Os-treatment start and Os-sensitive mutants accumulate ABA more (Overmyer et al.,
2008), so this late, high RAP2.6 expression in Os-treated rcd1 may also be at least partially
ABA-stimulated. SAP12 and ZAT12 were both induced early by Os;, and an increased
response was observed in rcd1 and rcd1 wrky70 plants (V). Transcription factor ZAT12 is a
well-known marker for systemic ROS signaling (Davletova et al., 2005b; Miller et al., 2009).
SAP12 is a stress-associated, redox-regulated protein with a rapid increase in expression
levels in response to abiotic stress, which is co-expressed with ZAT12 and RAP2.6 (Stroher et
al., 2009).

Stress, defense and cell death signaling in plants are largely overlapping, which has
complicated the search for cell death marker genes. Methodological limitations also play a
role in this complexity, as the transcriptomic analysis of whole rosettes provides a mixture
of both dead tissues, cells about to die as well as parts remaining alive. Os-responsive genes
classified into the GO category “programmed cell death” (G0:0012501) had similar
expression patterns in Col-0 and rcd1 (Table IV), which may be due to this type of dilution
effect. Cell-type specific gene expression analysis utilizing either microdissection of
developing lesions or cellular sorting of dying tissues may resolve this limitation (Long 2011;
Taylor-Teeples et al.,, 2011), but these approaches may also be dependent on cell death
marker genes transgenically expressed in planta. Also protoplasts have successfully
provided a more simple experimental system for cell death studies (Asai et al., 2000).
However, gene expression of Os-treated rcdl at late time points clustered together with
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Pseudomonas syringae pv. maculicola ES4326 experiments and the accelerated cell death11
(acd11) lesion mimic mutant under cell death inducing conditions, which suggests the
presence of a cell-death specific gene expression signature. Genes directly related to lesion
occurrence and PCD progress may include for instance AUTOPHAGY 8E (At2g45170), which
belonged to cluster llla of genes misregulated in rcd1 (1V). Autophagy, a process for nutrient
cycling and controlled cellular debris management, may also regulate PCD (Hofius et al.,
2009).
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5 Conclusions and future perspectives

Plants adapt to their environment by adjusting their cellular metabolism. Different stresses
activate or repress partially overlapping signaling networks, in which plant hormones and
ROS participate and interact with each other. In this work, auxin signaling was shown to be
transiently decreased by apoplastic ROS in a manner independent from SA and ethylene
signaling. Decreased expression of several auxin F-box receptor transcripts was observed,
which may have resulted in stabilized Aux/IAA proteins. Approximately one third of auxin-
responsive transcripts were regulated (either increased or decreased) by apoplastic ROS and
similar expressional responses were observed in BTH, H,0,, UV-B, auxin transport inhibitor
TIBA and PQ treatments. Altogether, these stresses share a common effect on auxin-
regulated gene expression, which may result in similar adaptations in plant development.
Indeed, stress-induced morphogenic responses have similar features in common albeit the
initiating stresses and signals may vary.

Plants have also a wealth of gene families, which have arisen from genome duplications and
later diversified to fulfill various important tasks. However, certain functions have remained
shared (Briggs et al., 2006; Wang et al., 2011). The plant-specific SRO protein family is an
example of unequal genetic redundancy, in which RCD1 and SRO1 together regulate plant
development. RCD1 appears as a unique member of this gene family, because srol or sro5
do not have altered growth habitus or altered sensitivity to apoplastic ROS. Additionally, the
pleiotropic rcd1 mutant phenotype is also accompanied by changes of gene expression in
the clean air whereas srol and sro5 showed only few genes misregulated under the same
growth conditions. The conservation of the C-terminal RST-domain in the SRO proteins is
detected as the capability of RCD1, SRO1 and SROS5 to interact with the same proteins or
proteins belonging to the same transcription factor families. The WWE domain present in
RCD1 and SRO1 but lacking from SRO5 (and SROs 2 to 4) may be involved in the fine-tuning
of some protein-protein interactions, but altogether these interactions and their role in
plant development and stress responses will need to be verified in planta. Yet unpublished
and ongoing work with RCD1 protein has gained very interesting and promising results: It
was long unsure, whether RCD1 even exists in adult plants, but epitope-tagged RCD1 is
detected in rcd1 complementation lines at very low levels in three-week- old plants and it
has also been shown that the RCD1 protein levels are stress-regulated (Dr. J. Vainonen,
submitted). Further challenge for RCD1 work will be the low amount of the protein for the
verification of interaction partners and post-translational modifications. However, this work
is well on its way and may provide novel aspects in plants stress responses and for the
analysis of gene expression data.

Transcriptomic analysis of oxidative signaling in Os-treated rcdl revealed elevated
expression in the late time points of some target genes of DREB2A, which is an ERF
transcription factor interacting with RCD1 in the yeast-2-hybrid system. Because there are
no published studies with DREB2A and apoplastic ROS, studies with DREB2A knock-out and
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constitutively active DREB2A in the rcd1 background are needed to determine whether lack
of DREB2A interaction causes sensitivity to apoplastic ROS. The expression of Os-responsive
targets of RCD1-interacting TGA2 and AS1 was not significantly altered in rcd1. It remains a
possibility that O3 sensitivity in rcd1 is caused by a prestressed condition rather than the lack
of protein-protein interactions during stress. These alternatives may also coexist. A suitable
tool in the future studies to investigate these alternatives could an inducible RNAi line of
RCD1, of which transgenic plants already exist (T. Blomster, unpublished). Cell death has
been proposed to be regulated by a stress threshold, but clearly this threshold is adjusted in
the case of rcd1 wrky70 mutant by signaling pathways conveying the information to the cell
death machinery. For the rcdl signaling leading to PCD, double mutants in several
pathogen-related pathways are being analyzed. Future work with PCD may also try to
narrow down the “cell death signature” of Os-treated rcdl with microarray data clustering
and data mining, and compare that to cell-death specific tissue samples.

Analysis of full genome microarray experiments has provided valuable information about
the biological processes during stress. As the amount of such data continues to pile up, new
methods to analyze the results are being developed. Current understanding of the stress-
regulated transcriptome could benefit from more time-series in microarray studies. Also
next-generation sequencing tools will increase the amount of transcripts detected and
phenomena like miRNA and alternative splicing in stress responses can also be monitored.
Arabidopsis genome contains approximately two thousand transcription factors, and a
similar number is found in the human genome. The function of Arabidopsis transcription
factors is still largely unknown: even within the best-characterized TF families the individual
transcription factors may be either transcriptional regulators or activators, or even both, by
mechanisms not well defined. Also the DNA-binding sites and their specificity will need
more studies with chromatin immunoprecipitation. Therefore, the novel role for SRO
proteins as transcriptional co-regulators may yet be masked under functional redundancy
between SROs and their interacting partners. Solving the mystery of ROS perception will
address mechanisms of both local and systemic stress responses, and direct regulation of
protein (transcription factor) activity by redox changes will be of great importance for future
plant stress and development research at the transcriptional level.
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