
GARRETT, STEPHANI LEE, M.A. On the Quadratic Sieve. (2008)
Directed by Dr. Paul Duvall. 34pp.

Factoring large integers has long been a subject that has interested mathe-

maticians. And although this interest has been recently increased because of the

large usage of cryptography, the thought of factoring integers that are hundreds of

digits in length has always been appealing. However it was not until the 1980’s

that this even seemed fathomable; in fact in 1970 it was extremely difficult to factor

a 20-digit number. Then in 1990 the Quadratic Sieve factored a record 116-digit

number.

While the Quadratic Sieve is not the most recent development in factoring, it

is more efficient for factoring numbers below 100-digits than the Number Field Sieve.

This paper will discuss the methodology behind the Quadratic Sieve, beginning in

its roots in Fermat and Kraitchik’s factoring methods. Furthermore our objective is

to fully describe the Quadratic Sieve with the goal that the reader could implement

a reproduction of the sieve for small numbers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/149228863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON THE QUADRATIC SIEVE

by

Stephani Lee Garrett

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Arts

Greensboro
2008

Approved by

Committee Chair

c© 2008 by Stephani Lee Garrett

This thesis is dedicated to

My family, without whose support and inspiration
I would never have had the courage to follow my dreams.

ii

APPROVAL PAGE

This thesis has been approved by the following committee of the Faculty of

The Graduate School at The University of North Carolina at Greensboro.

Committee Chair

Committee Members

Date of Acceptance by Committee

Date of Final Oral Examination

iii

ACKNOWLEDGMENTS

I would especially like to thank Paul Duvall for his guidance and encourage-

ment throughout the preparation of this thesis. I greatly appreciate the time and

effort that Paul dedicated to helping me complete my Master of Arts degree, as well

as his support and advice over the past two years.

I would also like to thank the thesis committee members for their time and

efforts in reviewing this work.

iv

TABLE OF CONTENTS

Page

CHAPTER

I. PRELIMINARIES . 1

II. DEFINITIONS . 3

III. FACTORIZATION METHODS . 4

Fermat’s Difference of Squares Method . 4
Kraitchik’s Alterations . 5

IV. SMOOTH NUMBERS. .8

Identifying B-Smooth Numbers . 9
Choosing B . 13

V. THE QUADRATIC SIEVE . 16

Basic Algorithm . 16
Example . 21
Parallel Quadratic Sieve . 24
Multiple Polynomial Quadratic Sieve . 25
Zhang’s Special Quadratic Sieve . 26
Time Approximation for Factoring n . 28

VI. DEVELOPING NEW METHODS. .30

Pollard’s Algorithm . 30
Development of the General Number Field Sieve . 31
Further Factoring Interests . 33

BIBLIOGRAPHY . 35

v

1

CHAPTER I

PRELIMINARIES

Mathematicians have long been concerned with factoring large numbers. Fac-

toring has always been an important process in mathematical computations, but

has become increasingly more important because of its role in modern cryptosys-

tems. In fact, the security of some widely used cryptography systems is based on

the difficulty surrounding the factorization of large numbers, mainly upwards of 100

digits. It is this fact that has mathematicians seeking the most efficient ways to

factor these large integers.

Since the development of public key cryptography in the 1970’s, the difficulty

of factoring large numbers has granted security to companies and organizations

alike. Although the infeasibility of factoring makes these systems secure, public key

cryptosystems are not widely used for encrypting general information, but rather

for the exchange of the key. This probably stems from the fact that it takes large

amounts of both memory and time to encrypt and decrypt messages using public

key cryptography on computers, much more than other methods such as the Data

Encryption Standard (DES). As previously mentioned, public key cryptography is

used to exchange keys for DES on other systems. Moreover, because the secrecy

of the public key cryptosystem depends entirely on the difficulty of discovering the

decryption key it is imperative that the numbers used require large amounts of time

to factor [22].

Introduced in 1978 by Ronald Rivest, Adi Shamir and Leonard Aldeman,

the most renowned public key cryptosystem is the RSA Cryptosystem. This cryp-

2

tosystem revolves around finding two large primes, call them p and q, which are

ideally at least 100-digits in length. Then one would let n = p · q. Additionally, let

m = (p − 1) · (q − 1). Next the person establishing the key would find a number

E such that gcd(E, m) = 1, by choosing random integers E until the E described

above is found. We then use the Euclidean Algorithm to find an integer D such

that DE ≡ 1 (mod m). Next the author of the key publishes n and E, keeping

the rest secret [17]. Now, according to the RSA website, the current recommended

length of this number m should be approximately 231 digits; if one plans to keep

this particular m for long term usage the website recommends a number of approx-

imately 308 digits [23]. Hence it is believed that for someone else to find the integer

D, that person would have to factor n and there is no efficient, reasonable, way to

do so [17].

Therefore many ways have been developed with the purpose of factoring

larger numbers in the least possible amount of time; from Fermat’s Difference of

Squares to the Quadratic Sieve. Each method has developed upon the last, improv-

ing upon efficiency and offering different strategies that ultimately seem to become

stepping stones for the next factorization method. Notably, the most practical fac-

toring algorithms as of the late 1980’s were the Quadratic Sieve and the Elliptic

Curve Method. It is typical of methods such as the Quadratic Sieve that they in-

volve a great deal of overhead in implementation, so that they only become practical

for truly big numbers. In this report, we will focus on the Quadratic Sieve. It has

been superseded by the more complicated Number Field Sieve, but it illustrates the

main features of modern factor base methods, and is still the most efficient method

for moderate sized numbers around one hundred digits in length.

3

CHAPTER II

DEFINITIONS

Before we can discuss the Quadratic Sieve and ideas that led to its develop-

ment we must define some terminology.

A residue class is the set of integers that are congruent to some integer k

modulo n. In other words, it is the set S such that for all l ∈ S, we have that

l ≡ k (mod n).

A number a is said to be a quadratic residue mod m if for coprime integers

m, a with m > 0, the congruence

x2 ≡ a (mod m) (2.1)

has a solution. If equation (1.1) is unsolvable then a is said to be a quadratic

nonresidue [6].

An exponent vector for a factored integer is an integer vector v (m) such that

each entry represents the exponent on the ith prime, where the integer 2 is the first

prime, 3 the second and so forth. For example if we have m = 56 = 23 · 7 then

v (m) = (3, 0, 0, 1).

The Legendre Symbol is, for an odd prime p, defined as

(
n

p

)
=

0 if n ≡ 0 (mod p)
1 if n is a quadratic residue (mod p)
−1 if n is a quadratic nonresidue (mod p)

(2.2)

We will also be interested in working with numbers that have only small

prime factors. So if B is a positive integer, we say that an integer m is B-smooth if

its prime divisors are all less than or equal to B [19].

4

CHAPTER III

FACTORIZATION METHODS

As previously enunciated, factoring can be extremely lengthy, so mathemati-

cians have developed a sort of order of operations for factoring large integers. Once

presented with a number n, one begins the factoring process with trial division; usu-

ally we perform trial division on n by all primes p < log(n) [15]. Next one would

try using the Pollard-Rho method and following that the Elliptic Curve Method,

which while these will not be described in this paper can be found in Prime Num-

bers by Carl Pomerance. Then finally one would use some version of the Quadratic

Sieve. We should mention that the reason that the Quadratic Sieve is reserved for

the last is because of all these methods it is the most lengthy to initiate. But to un-

derstand the Quadratic Sieve we must briefly discuss its roots, which are embedded

in previous factoring methods.

Many factorization methods currently exist such as that of the Continued

Fraction Algorithm, the Miller-Western Algorithm, and Schroeppel’s Linear Sieve,

however most stem from Fermat’s Difference of Squares Method and Kraitchik’s

Algorithm. But even Kraitchik’s algorithm begins by altering that of Fermat.

3.1 Fermat’s Difference of Squares Method

One of the more elementary methods for factoring is Fermat’s Difference of Squares

Method. Suppose we want to factor a large odd composite number n [19] and

let a be the first perfect square larger than n. Now say a = t2 for some t ∈ Z,

then we look at a − n and see if it too is a perfect square, if not then we examine

5

(t+ 1)2 − n to see if it is a perfect square and so on until we find an integer k such

that k2−n = u2 for some u ∈ Z. Subsequently, we look at n = k2−u2 which factors

as (k − u) (k + u). Finally we then check these two numbers by division on n [15].

Example. Suppose n = 2257, which is both odd and composite. As an initial step,

we perform trial division by all primes up to 7, none of which divide n. Now because

d
√
ne = 48, we begin by looking at a = 482. So we have that a− n = 47, which is

not a perfect square. Consequently, we examine the next square, 492 = 2401 and

2401 − n = 144 = 122. Thus we have that n = 492 − 122 which is the difference

of squares so it factors as (49 − 12)(49 + 12) = (37)(61). We can easily confirm

that both numbers divide n evenly; because both numbers divide n, they are both

factors of our number. Finally, since our goal is to find the prime factorization of

n, we must check to see if both numbers are prime. Since n has no prime divisors

below log 2257 = 7.7, and we only need to check primes below the square roots of

37 and 61 it is clear that both numbers must be prime [19].

3.2 Kraitchik’s Alterations

In the 1920’s Maurice Kraitchik developed the idea that rather than u2−v2 = n, as

in Fermat’s method, it might suffice for u2−v2 to just be a multiple of n. Then it is

only necessary to find integers u and v such that u2 ≡ v2 (mod n). Equations of this

nature, assuming they have solutions, have solutions that look like u ≡ ±v (mod n)

or u 6≡ ±v (mod n). If we have the second of these two options, it is true that while

we have n | (u2 − v2), n divides neither (u− v) nor (u+ v). This means that the

factors of n must somehow be split between the above sums, so we must take the

greatest common divisor of n with each of u− v and u+ v. These greatest common

divisors should be factors of n and from there we can completely factor the number

[15].

6

Example. For our example of Kraitchik’s Method suppose n = 3427. Then since

d
√
ne = 59, the first square above n is 592 = 3481, so then we take the next few

squares modulo n. This gives us the list:

592 ≡ 54 (mod n)

602 ≡ 173 (mod n)

612 ≡ 294 (mod n)

622 ≡ 417 (mod n)

632 ≡ 542 (mod n)

642 ≡ 669 (mod n) .

With no obvious square in sight, we move to the next step in Kraitchik’s Method;

we now factor each one of the above equivalences:

54 = 2 · 33

173 = 173

294 = 2 · 3 · 72

417 = 3 · 139

542 = 2 · 271

669 = 3 · 223.

Using the above factorizations we get that the product of 592 and 612, modulo n,

is 22 · 34 · 72 which is a perfect square. Hence we have u2 ≡ v2 (mod 3427) where

u = 59 · 61 ≡ 172 (mod 3427) and v = 2 · 32 · 7 ≡ 126 (mod 3427). Since 172 6≡

±126(mod 3427), then we take the gcd (172− 126, 3427) = gcd (46, 3427) = 23

and gcd (172 + 126, 3427) = gcd (298, 3427) = 149. Thus we get the factorization

3427 = 23 · 149. Note, this example contains the central idea of the quadratic sieve

7

method. In the Fermat Method we search exhaustively to find u2 − v2 = n, but

in this example we compute relatively few squares, reduce them modulo n, factor

them and try to put them together to form a square.

In the Quadratic Sieve our goal is to find two integers x and y such that

x2 ≡ y2 (mod n). So, in practice, we will set a bound B and then we search for

integers N , such that N2 − n is B-smooth. The idea behind this, which will be

discussed in greater detail as the article proceeds, is that we will use the products

of these N2 − n to find the above integers x and y by multiplying these integers

together.

8

CHAPTER IV

SMOOTH NUMBERS

We will later describe in detail the Quadratic Sieve but it is helpful to have

a general idea of what lies ahead. So, in general in Kraitchik’s idea we want to find

a large number of integers N1, N2, . . . , Nt with (Ni
2mod n) = p1

e1 · p2
e2 · · · · · prer ,

for primes p1, . . . , pr < B. Then one would multiply some of the Ni together to

find a square that is congruent to another square modulo n. To do this we will

need to solve a system of equations. In this system of equations our goal will be to

create an even exponent for each of the pi; because then we are guaranteed to have

a square. Therefore we have two computational issues: the first is the difficulty of

finding the B-smooth Ni
2, and the second is how big a system we will deal with.

We first will study the smoothness issue.

As noted in the previous section we need to find a large number of B-smooth

integers of the form N2 − n. So when given an integer n with the intention of

factoring it, is important to be able to determine a value for B. However, we must

first be able to identify the number of primes below our chosen B. Consequently,

define the number π (B) as the number of primes on the interval [1, B] [19]. Using

this, in order to identify B we will be using some powerful results from number

theory. The celebrated estimate for π (B), given in the Prime Number Theorem

gives us the following.

Theorem 1. As B −→∞, π (B) ∼ B

ln (B)
[6].

9

We mentioned before that our goal was to find a sequence of B-smooth

numbers so that we get a product that is a square, so that we can factor with the

Quadratic Sieve. So it is ideal that we find a theorem that proves that this is always

possible with certain constraints.

Theorem 2. If m1,m2, . . . ,mk are positive B-smooth integers and k > π (B) then

some non-empty subsequence of mi has a product that is a square [19].

Proof. Let m be a B-smooth number, and let v (m) be the exponent vector of m.

Suppose that the prime factorization of m is:

m =
π(B)∏
i=1

pvi
i ,

where pi is the ith prime number and each exponent, vi, is a nonnegative integer

such that v (m) =
(
v1, v2, . . . , vπ(B)

)
. Then we can see that a subsequence of the

above mi has a product that is a square if and only if the sum of their exponent

vectors has all even entries, that is, if and if the sum of their exponent vectors is

congruent to the zero vector modulo 2. Now let F2 be the field with two elements

and F
π(B)
2 be the F2 vector space of dimension π (B). By assumption we have that

k > π (B); hence by theorems of linear algebra the sequence of exponent vectors

is linearly dependent. Therefore since this work is over the field F
π(B)
2 there exists

some subsequence whose sum is the zero vector. As a consequence, the product of

the subsequence is a square [19].

4.1 Identifying B-Smooth Numbers

One option when trying to find B-smooth numbers is of course trial division. Now

if B is small then there are few primes below B to check; so the number of trial

divisions is max (log2 n, π (B)). However since that division takes the most time of

10

all the operations we will be performing, from modular arithmetic to multiplication.

Hence this quickly becomes very time-consuming. Therefore one can easily see

that if B is a large number, say more than even fifteen digits, then the amount

of time that trial division would take is unreasonable for our situation, especially

considering that there are other possibilities. Hence, to find B-smooth numbers we

will be avoiding division and instead use other methods to manipulate the data. In

order to do this one may want to sieve through a sequence of numbers; a sieve is

an algorithm that takes a given set and extracts numbers with desirable properties.

The classic example of this is the Sieve of Eratosthenes which takes a list of n

numbers and pulls out the primes. So, before defining our method of identifying

B-smooth numbers we will first discuss the Sieve of Eratosthenes [15].

Sieve of Eratosthenes

Eratosthenes developed what we today call the Sieve of Eratosthenes which is a

way of finding prime numbers by eliminating multiples of primes. This sieve begins

with a list of numbers, starting with the number 2 and running integrally through

any bound one may set; say that our bound is X = 40. Then the sieve allows us to

find all prime numbers between 2 and 40. So we set it up as follows:

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40

So we begin by circling or skipping the number 2, and crossing out every multiple

of 2.

11

↓︷︸︸︷
2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40

Then the next number that we have that is not crossed out is 3; so we do the same

as above with this prime, to get:

2

↓︷︸︸︷
3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40

Continuing in this manner, one identifies the next number that is not crossed out

and eliminates the multiples of that number as well. This persists until all numbers

are either prime or eliminated.

Still, aside from identifying primes, this sieve also allows one to find all of the

prime factors of each number– if one additionally crosses out or records divisibility

of all powers of p, the number we are currently sieving by, each time. One way to

optimize the usefulness of this idea is to replace each number with the quotient of it

with the current prime that is being sieved. If we also were to sieve with all powers

of primes up to a number B then the entries with a 1 remaining are B-smooth. One

can better understand the time that this process takes when we recognize that the

time is similar to taking X times the sum of the reciprocals of each prime p and the

reciprocals of all the powers and multiples of each p up to X. This is approximately

X · log (log (B)). Hence, the sieve gives us all B-smooth numbers up to X [15].

For our purposes, we are interested in finding B-smooth numbers in the

sequence of polynomial x2−n as x→∞. This will allow us to find numbers whose

product is a square, thus using and then to apply Kraitchik’s idea, with a few extra

12

complexities. Suppose we begin sieving with a prime p; we evaluate the congruence

x2 − n ≡ 0 (mod p). There are three possible results: zero, one or two solutions. If

there are no solutions, there is no sieving to do; on the other-hand if there are two

solutions, call them s1 and s2 with both (s1)
2 − n and (s2)

2 − n are congruent to 0

modulo p. Then we find sets of numbers also congruent to 0 modulo p by adding

multiples of p to each of the si. In this case, too, we have that the number of steps

for each prime p is log (log (B)). As a result we gather B-smooth numbers by the

above process [15].

Example. Suppose n = 4183 and let B = 13. So this sieve should gather all the 13-

smooth numbers in the sequence of values, x2−n. Note that our quadratic residues

need only go to
⌊√

4183
⌋

= 64. Then we look at the congruences x2 − 4183 ≡

0 (mod p) for p ∈ {2, 3, 5, 7, 11, 13}. Then evaluating the congruences we get:

x2 − 4183 ≡ 0 (mod 2) x2 − 4183 ≡ 0 (mod 3)
x2 − 1 ≡ 0 (mod 2) x2 − 1 ≡ 0 (mod 3)

x2 ≡ 1 (mod 2) x2 ≡ 1 (mod 3)
x ≡ 1 (mod 2) x ≡ 1, 2 (mod 3)

x2 − 4183 ≡ 0 (mod 5) x2 − 4183 ≡ 0 (mod 7)
x2 − 3 ≡ 0 (mod 5) x2 − 4 ≡ 0 (mod 7)

x2 ≡ 3 (mod 5) x2 ≡ 4 (mod 7)
x 6≡ 1, 2, 3, 4, 0 (mod 5) x ≡ 2, 5 (mod 7)

x2 − 4183 ≡ 0 (mod 11) x2 − 4183 ≡ 0 (mod 13)
x2 − 3 ≡ 0 (mod 11) x2 − 3 ≡ 0 (mod 13)

x2 ≡ 3 (mod 11) x2 ≡ 3 (mod 13)
x ≡ 5, 6 (mod 11) x ≡ 6, 7 (mod 13)

Then by the above equivalences we can see that for p = 2 there is one solution, for

p = 3, 7, 11, 13 there are two solutions and for p = 5 there are no solutions. We now

take these solutions and add multiples of the modulus to them, giving us a set of

quadratic residues for each modulus. For example if we look at p = 3, the solutions

13

are 1 and 2 modulo 3; then we add multiples of 3 to 1 getting {1, 4, 7, . . . , 61, 64} and

do the same with 2, getting that the residue class for 3 is {1, 2, 4, 5, . . . , 61, 62, 64}.

So we obtain sets of possible B-smooth values, bounded by 64 to be odd inte-

gers, {1, 2, 4, 5, . . . , 61, 62, 64}, {2, 5, 9, 12, . . . , 60, 63}, {5, 6, 16, 17, . . . , 60, 61}, and

{6, 7, 19, 20, . . . , 58, 59}. Consequently we have a large list of B-smooth numbers,

which we can combine using multiplication to fully factor our number, n = 4183.

4.2 Choosing B

As a general rule the choice of B is an important part of the Quadratic Sieve; this

is because with a proper value for B, we can limit and shorten the time necessary

for the overall process of sieving and consequently the entire sieve. Choosing the

parameter B involves a delicate balance of size; if we choose B too small then while

there are not many B-smooth residues to find, we may not have enough B-smooth

values to use [6]. On the other hand if B is too large, even though B-smoothness

is more common, we have to find many more numbers in order to get a linearly

dependent set. So in order to be efficient we must find a balance, and to do so we

need a measure of the probability that x2 − n is B-smooth [19].

Theorem 3. The probability that a number, n, is B-smooth is approximately u−u,

where u =
ln (n)

ln (B)
.

Proof. For our purposes we will assume that this theorem is true. However, the proof

of this theorem can be found in the article On a problem of Oppenheim concerning

‘factorisatio numerorum’ in the 1983 Journal of Number Theory [6].

To find the size of B we need to compute the frequency of B-smooth numbers

as a function of B and n. We search for B, computing the values of x2 − n from

x = d
√
ne to x′ =

⌈√
2n
⌉
. Now if

√
n < x <

√
n + nε where ε > 0 is small, then

14

the order of magnitude of x2 − n is nε+
1
2 . So then we should change our value

of u to equal
ln (n)

2 ln (B)
which is smaller than the previous u, allowing for a greater

probability that a number is B-smooth [6].

Now if we let K be the number of primes up to B that we are going to sieve

over then, heuristically, we have that K ∼ π (B)

2
. Then we need K + 1 vectors so

that we are guaranteed to have linear dependence, which is what we are striving to

get. If the probability that x leads us to a B-smooth number is u−u then the odds

that a number will give us a successful result is 1 in uu. So because we need to get

K + 1 values then the time to find them, T (B), is represented as the function:

T (B) = uu · (K + 1) · ln (ln (B)) where u =
ln (n)

2 ln (B)
[6].

Using the Prime Number Theorem paired with the fact that K ∼ π (B)

2
,

we get that ln (T (B)) ∼ S (B) where S (B) = u · ln (u) + ln (B). Then if we

differentiate u with respect to B, we get
du

dB
=
− ln (n)

2 · ln2 (B)
. By the definition of u

we have, ln (u) = ln (ln (n))− ln 2− ln (ln (B)). Then

dS

dB
=

du

dB
· ln (u) +

du

dB
+

1

B

=
du

dB
(ln (u) + 1) +

1

B

=
− ln (n)

2 · ln2 (B)
· (ln (ln (n))− ln 2− ln (ln (B)) + 1) +

1

B
.

Now in order to find an optimal value for B with the goal of minimizing time, we

set the derivative equal to zero, getting that

c ·
√

ln (n) < ln (B) < d ·
√

ln (n) · ln (ln (n)),

15

where c and d are constants. Hence ln (ln (B)) ∼ 1
2
· ln (ln (n)) [19]. Then using this

we get that

ln (B) ∼ 1
2
·
√

ln (n) · ln (ln (n)), u ∼

√
ln (n)

ln (ln (n))
, S (B) ∼

√
ln (n) · ln (ln (n)) .

Thus we get that the optimal value for B is the upper bound of

L (n) = e
1
2
·
√

ln(n)·ln(ln(n)). (4.1)

Hence we can accurately choose a value B to be the upper bound for our primes.

In addition this adds some efficiency to the process of sieving– if we do not choose

a B at least close to the optimal value identified in (4.1) the time may be lost, by

sieving through unnecessary integers [19].

16

CHAPTER V

THE QUADRATIC SIEVE

Created in 1981 by Carl Pomerance, the Quadratic Sieve out-performed all

previously known methods. In fact by 1990 it had doubled the previous factorable

length of a number to 116-digits. And in 1994, Pomerance’s Sieve factored the 126-

digit RSA challenge number. This method is based, as its predecessors, on finding

squares whose difference is 0 modulo n, where n is the number to be factored [15].

5.1 Basic Algorithm

We assume the integer n that we are given to factor, is an odd composite integer

that is not a power of some number a, in other words n 6= at, ∀ a, k ∈ Z+; it is safe

to assume this because otherwise it would be easily factored. Let B =
⌈
L (n)1/2

⌉
and set p1 = 2, a1 = 1 with, as above, K ∼ 1

2
π (B). We now need to find our factor

base; a factor base is a set, M , of primes such that each element of M is less than B,

the smoothness bound, and for q ∈M we have that

(
n

q

)
= 1 [11]. It is important

to mention that the calculation of the Legendre symbol is not difficult and the time

approximation to do so is O(lnm2) where m is essentially the number of digits of n;

for more information one may look to Prime Numbers by Carl Pomerance [6]. Now,

as we find these primes we shall label them p2, p3, . . . , pK . It is then necessary to

find the values ±ai such that a2
i ≡ n (mod pi). We can do so in one of two methods:

evaluate the primes modulo 8 or use Fp2 arithmetic [6].

17

Using the above conditions, the first method evaluates primes modulo 8. It

is important to note that since p is an odd prime and 8 is an even integer, we have

no cases where p is congruent to an even number modulo 8. For this method we

will need to recall a well-known fact from number theory, namely for p a prime,

np−1 ≡ 1 (mod p) for an integer n with gcd(n, p) = 1. As in [6] we have, for

p ≡ 3, 5, 7 (mod 8)

the square root of n (mod p) is as follows. If p ≡ 3, 7 (mod 8) then

x ≡ n(p+1)/4 (mod p)

If p ≡ 5 (mod 8) then

x ≡ n(p+3)/8 (mod p)

Then let c ≡ x2 (mod p), which implies that c ≡ ±n (mod p). Suppose that c 6=

x (mod p), then x = x · 2(p−1)/4 (mod p). Next we consider the case where p ≡

1 (mod 8), and begin by picking an integer d ∈ [2, p− 1] such that

(
d

p

)
= −1.

Now because p is an odd prime, it is clear that p − 1 is even; so let p − 1 = 2s · t

where t is odd. Also let A = at (mod p), D = dt (mod p) and m = 2µ where

0 ≤ µ < 2s−1. So for 0 ≤ i < s, i an integer, we get that ADm ≡ 1 (mod p). Hence

x = n(t+1)/2Dm/2 (mod p)

The second option for solving the congruence a2 ≡ n (mod p) is to solve

using Fp2 arithmetic. To do so we use the same criterion as in the first method,

noting that p is an odd prime. We begin by finding an integer t ∈ [0, p− 1] such

that

(
t2 − n
p

)
= −1. Now the probability that any particular t will be successful

18

in this step is (p− 1) /2p. But once such a t is found, we can let

x =
(
t+
√
t2 − n

)(p+1)/2

in Fp2 . From here, we need only do simple arithmetic to solve the congruence

x2 ≡ n (mod p) [6]. So with this step completed, we have found a solution for the

congruence a2
i ≡ n (mod pi).

The next or second step in the Quadratic Sieve algorithm is to sieve the

sequence (x2 − n) for x = d
√
ne , d

√
ne + 1, . . . to find B-smooth values until we

have a set, call it S, of K+ 1 pairs of the form (x, x2 − n). At times it may be more

efficient to center the numbers x at d
√
ne rather than going strictly above this value;

the advantage here is that we are able to work with smaller numbers, which is more

efficient. Suppose that 2 ≤ B ≤
√
N . Then we adapt the Sieve of Eratosthenes

and sieve with not only the primes p ≤
√
N but also for each p we sieve with the

powers of p less than or equal to
√
N . Furthermore, we also must sieve with the

powers of p that do not exceed B; sieving in this manner allows for the factorization

of these numbers without using division, which as we mentioned before is expensive

time-wise. Beside each of the numbers we start a list of the prime factors as we

sieve through our factor base. And each time we sieve by a number in our factor

base it is added to the list if and only if it is indeed a factor [6].

Example. Suppose that N = 201316694471. Then by the above instructions for

selecting B, B = 10 and technically we need only sieve up to
√
N = 448683.

However, for this example we shall only sieve up to 40, since our immediate goal is

not to actually factor N . So after sieving through using our factor base, which is

{2, 5, 7} and the powers of the primes not exceeding 40 in that factor base, we get

the following list:

19

2{2} 3{3} 4{22} 5{5}
6{2,3} 7{7} 8{23} 9{32} 10{2,5}
11{11} 12{22,3} 13{13} 14{2,7} 15{3,5}
16{24} 17{17} 18{2,32} 19{19} 20{22,5}
21{3,7} 22{2,11} 23{23} 24{23,3} 25{52}
26{2,13} 27{33} 28{22,7} 29{29} 30{2,3,5}
31{31} 32{25} 33{3,11} 34{2,17} 35{5,7}
36{22,32} 37{37} 38{2,19} 39{3,13} 40{23,5}

In the above list the set to the right of each number is that number’s prime factor-

ization, for instance 2 · 7 is the prime factorization of 14. So, if we were to continue

up to 448683 we would then go through the chart and gather a list of all B-smooth

values, in other words gather a list of all numbers, x2 − n, with no prime divisor

exceeding 10 in our case. So in the above example, the B-smooth values form the

set {2, 4, 5, 7, 8, 10, 14, 16, 20, 25, 28, 32, 35, 40}.

While this is useful it is not exactly what we need to use to complete this

step of the algorithm; our algorithm asks for B-smooth values when sieving through

polynomial values, x2 − n, and thus far what we have described sieves through a

numerical sequence. To do this we let f (x) = x2 − n and we will look at the list

f (d
√
ne) , f (d

√
ne+ 1) , . . . , f (n). Now we should note that when we sieve through

with each prime from our factor base, as described above, if f (a) ≡ 0 (mod p) then

p clearly divides f (a). Then f (a+ kp) ≡ 0 (mod p), ∀ k ∈ Z. Because this is true

for each prime p in our factor base and each one can have as many solutions as

deg (f) = 2 this leaves few options for us to check. Now from here we can adopt

the above sieve to complete the process; allowing us to gather the required k + 1

B-smooth numbers [6].

The third step of the algorithm is, for each pair (x, x2 − n) ∈ S, where S

is our set of K + 1 B-smooth values, to find the prime factorization of the second

element in each pair, which we write as

20

k∏
i=1

(pi)
ei

Then we establish an exponent vector for each value xi, which we notate as

~v
(
xi

2 − n
)

= (e1, e2, . . . , ek)

Now, take the above vector for each value of x and reduce it modulo 2. Since we

have K + 1 elements in S we do the same to each element and then form a matrix

that will be of size (K + 1) × K. Using linear algebra we can, from here, find a

nontrivial subset of row vectors whose sum is the zero vector,

~v (x1) + ~v (x2) + . . .+ ~v (xk) = ~0.

This sum can be found by forming a matrix and performing Gaussian Elimination.

Now that we have the prime factorization of each x2 − n and have used the

exponent vectors to find a sum that is the zero vector modulo 2, there is one final

step, that is, let

x = x1 · x2 · · · · · xk (mod n)

With this in place, we need to define a second variable, y such that y2 is the product

of these xi
2 − n. In other words, let

y2 =
[(
x1

2 − n
)
·
(
x2

2 − n
)
· · · · ·

(
xk

2 − n
)]

(mod n) .

Then,

y =
√

(x1
2 − n) · (x2

2 − n) · · · · · (xk2 − n) (mod n) .

So finally we let d = gcd (x− y, n). Then we divide n by d, which allows us to

obtain the remaining factors of n. Upon division of n by d we can again use the

21

Quadratic Sieve Algorithm to find divisors of
n

d
, if it is needed [6]. As a general rule

for a large number, say upwards of 130 digits, one may have to apply the Quadratic

Sieve several times to find the complete factorization of n. To illustrate this we will

do a small example.

5.2 Example

Suppose we wanted to factor the number n = 62113. Then B = 4; however as

discussed in Chapter 3 of this paper, if our bound B is too small it is difficult to

find enough B-smooth values to sieve through. So for our purposes we shall let

B = 37. Then we need to find all primes smaller than B that satisfy the first step

of the Quadratic Sieve algorithm–that is, the set M = {p1, p2, . . . , pK} such that(
n

pi

)
= 1. Thus we shall begin by assigning p1 = 2 since

(n
2

)
= 1 ∀ n ∈ Z; note

this is because we would then be solving the congruence x2 ≡ 62113 (mod p). Since

the calculations for this require only simple modular arithmetic we will express our

findings in the form of a chart, as seen below [8]; an explanation of these calculations

can be found in the book Prime Numbers by Carl Pomerance.

p 2 3 5 7 11 13 17 19 23 29 31 37(
62113

p

)
1 1 -1 1 -1 -1 1 1 1 1 1 1

Table 5.1: Legendre Symbol on Primes Below B

Hence our factor base is M = {2, 3, 7, 13, 23, 29, 31, 37}. It follows that K = 8, so

we will need to find nine B-smooth values in order to factor n.

We begin by looking at an interval of length approximately fifty around

d
√
ne = 249. Now we should observe that our interval, [224, 273] was hueristically

22

x p, p | x2 − n Factorization x p, p | x2 − n Factorization
224 3, 23 249 2, 7 −1 · 24 · 7
225 2 250 3
226 3, 13 251 2, 3, 7 23 · 3 · 7
227 2, 3, 7 −1 · 23 · 33 · 72 252 13
228 7 253 2, 3
229 2, 3, 13, 31 −1 · 23 · 3 · 13 · 31 254 3
230 3, 37 255 2, 7, 13 25 · 7 · 13
231 2 256 3, 7
232 3 257 2, 3
233 2, 3 258
234 7 259 2, 3, 23 23 · 33 · 23
235 2, 3, 7 260 3, 31
236 3, 23, 31 −1 · 32 · 23 · 31 261 2
237 2 262 3, 7
238 3 263 2, 3, 7 24 · 32 · 72

239 2, 3, 13 −1 · 27 · 3 · 13 264
240 265 2, 3, 13 24 · 3 · 132

241 2, 3, 7 −1 · 26 · 32 · 7 266 3
242 3, 7, 13 −1 · 3 · 7 · 132 267 2, 31, 37 23 · 31 · 37
243 2 268 3, 13
244 3 269 2, 3, 7
245 2, 3, 29 −1 · 23 · 32 · 29 270 7, 23
246 271 2, 3
247 2, 3, 23 −1 · 24 · 3 · 23 272 3
248 3, 7, 29 −1 · 3 · 7 · 29 273 2

Table 5.2: Sieving Table

23

determined; this is because there is no algorithm that allows one to accurately

determine the sieving interval. Furthermore, if one were to pick the bound too

small, meaning that one could not find K + 1 numbers that are factorable using

the set M , then it would be relatively easy to extend the interval to a larger one.

On the other hand, if you initially pick your sieving interval too large it will take

more time. A table with the listing of the factorizations of each value x2 − n can

be seen below; note that in the table above p ∈ M and the factorization column

only records the factorization of numbers that are completely factored when sieving

through by set M and the powers of the primes in M .

So after calculating the prime factorization for the fifty polynomial values

surrounding x2−d
√
ne we get a list of B-smooth numbers; note we only need the first

9 values. Hence we get the set S = {227, 229, 236, 239, 241, 242, 245, 247, 248}.

Using table (5.2) we can gather the exponent vectors of each element modulo 2 to

form the following matrix:

A =

−1 2 3 7 13 23 29 31 37

229 1 1 1 0 1 0 0 1 0

236 1 0 0 0 0 1 0 1 0

239 1 1 1 0 1 0 0 0 0

241 1 0 0 1 0 0 0 0 0

242 1 0 1 1 0 0 0 0 0

245 1 1 0 0 0 0 1 0 0

247 1 0 1 0 0 1 0 0 0

248 1 0 1 1 0 0 1 0 0

249 1 0 0 1 0 0 0 0 0

Then we look for a vector ~v such that

24

[A] · ~v = ~0.

Using Gaussian Elimination we find that one solution is

~v = (1, 1, 1, 0, 0, 1, 0, 1, 0, 1) .

Then we take the corresponding x values to get

x = 229 · 236 · 239 · 242 · 247 · 249

= 192245885018616

≡ 24147 (mod n)

y =
√

(2292 − n) · (2362 − n) · (2392 − n) · (2422 − n) · (2472 − n) · (2492 − n)

= 135961516255081660416

≡ 28658 (mod n)

Then we get the greatest common divisors:

gcd (x− y, n) = 347, gcd (x+ y, n) = 179.

Thus we can get that the prime factorization of n = 62113 is n = 179 · 347 [8].

5.3 Parallel Quadratic Sieve

Now in the Quadratic Sieve the most laborious part of the algorithm is the sieving

over the given interval. Consequently, one may seek to reduce the time it takes

to sieve in order to make factoring a given integer n more efficient. So we divide

the sieving interval into blocks, with the number of blocks corresponding to the

number of processors available. The benefit of performing the parallel process in

this manner is that it requires minimum communication between the processors,

allowing for a greater amount of energy to expended on the actual sieving. Other

25

than sieving, another lengthy process is the Gaussian Elimination of the exponent

matrix. However this is not as well suited for division between computers because it

requires the use of sequential steps. In most cases, the separation of these steps may

actually end up increasing the time necessary to complete the Gaussian Elimination

of the matrix.

5.4 Multiple Polynomial Quadratic Sieve

As a variation of the Quadratic Sieve, Peter Montgomery suggested taking several

polynomials instead of the one polynomial, x2−n, in the Quadratic Sieve. This Sieve

as the name suggests takes multiple polynomials of the form g (x) = ax2 + 2bx + c

with the values for a, b, c determined by guidelines defined below [21].

We begin by letting a be a perfect square. Next pick b such that b < a with

b2 ≡ n (mod a). Note that this only works if ∀ p | a, for p a prime, n is a square

modulo p. Thus we pick a such that ∀ p | a we have

(
n

p

)
= 1. In order to complete

the setup of our equation g (x) we pick c so that b2 − ac = n [21]. Then

a · g (x) = (ax)2 + 2abx+ ac

= a2x2 + 2abx+ b2 − n

= (ax+ b)2 − n,

implying that

(ax+ b)2 ≡ a · g (x) (mod n) .

Next set up the sieving interval to be 2M . With the above equation we can

see that the conditions for b can be modified to limit the possibilities further, that is

|b| ≤ 1
2
a. And so we can let the interval 2M = [−M,M]. Now in order to make use

of this we want to maximize g (x). Because a ≥ 0, which is implied by the conditions

26

above for b, then the maximization of our equation must be at its endpoints. Then

the value would be approximately (a2M2 − n) /a. Then the least or smallest value

is at x = 0, which is about −n/a. So if we set these two expressions approximately

equal to each other then we get a ≈
√

2n/M [21].

In the Quadratic Sieve our smoothness bound B was
⌈
L (n)1/2

⌉
, which made

the length of our interval M = B2. However because we have more than one

polynomial we can create a smaller bound, mainly M = B. This allows us, for a

large number n, to sieve over a much smaller interval than when we use only one

polynomial. Then if all of the above criteria for a are met, then we will get only one

possible equation using that particular a [21]. Then we have a polynomial where

|g (x) | < 1√
2
M
√
n =

M
√

2n

2

5.5 Zhang’s Special Quadratic Sieve

The speed of the quadratic sieve is determined by the size of the quadratic residues,

mainly the smaller the better. By 1998 M. Zhang created a method of making the

residues smaller than the quadratic sieve does normally, but only for certain integers

n; thus his sieve is called the special quadratic sieve, SQS. To begin using this sieve

take the number n which is an odd composite such that n 6= ad, ∀ d > 1 with

d ∈ Z. Suppose that our number can be written as

n = m3 + a2m
2 + a1m+ a0 (5.1)

with m, ai ∈ Z, i ∈ {0, 1, 2} and m = n1/3. Now let bi ∈ Z with

x = b2m
2 + b1m+ b0 (5.2)

with the same conditions on m as in the above equation. Now by (4.1) we have

m3 ≡ −a2m
2 − a1m− a0 (mod n)

27

m4 ≡
(
a2

2 − a1

)
m2 + (a1a2 − a0)m+ a0a2 (mod n) .

Then by substitution we get

x ≡ c2m
2 + c1m+ c0 (mod n) , (5.3)

with

c2 =
(
a2

2 − a1

)
b2

2 − 2a2b1b2 + b1
2 + 2b0b2

c1 = (a1a2 − a0) b2
2 − 2a1b1b2 + 2b0b1

c0 = a0a2b2
2 − 2a0b1b2 + b0

2.

Note that we can choose our bi such that c2 = 0, so for b an integer, let

b2 = 2, b1 = 2b, b2 = a1 − a2
2 + 2a2b− b2

Assuming that we have these values for the above bi then we get

x (b)2 ≡ y (b) (mod n) (5.4)

for

x (b) = 2m2 + 2bm+ a1 + a2
2 + 2a2b− b2

y (b) =
(
4a1a2 − 4a0 −

(
4a1 + 4a2

2
)
b+ 8a2b

2 − 4b3
)
m+

4a0a2 − 8a0b+
(
a1 − a2

2 + 2a2b− b2
)2

Now if we sieve to find smooth values of y (b) as b runs through small numbers,

we can then use the exponent vectors from our smooth vectors. If we then form a

matrix and find a subset of the rows of the matrix then we can obtain two squares

modulo n and proceed as in the original quadratic sieve [6].

28

5.6 Time Approximation for Factoring n

To fully understand the efficiency of the Quadratic Sieve we must investigate the

time that it takes to perform it on a variety of numbers. In this section we will be

using the notion of bits; a k-bit number is an integer n such that k = log2 n. Now

to begin we will be using the computer algebra system Magma on a computer with

2 Dual Core Intel Xeon processors at 3 Ghz with 8 GB of RAM running LINUX [2].

Before observing time approximations for the Quadratic Sieve one can calcu-

late an estimate for Gaussian Elimination, used after one has obtained a matrix of

exponent vectors. Note that we expect that an n×n matrix would be similar to n3

in complexity. Now, we began by looking at a 1000 by 1000 matrix; the elimination

process was completed in 1.25 seconds. We then doubled the size of each side of

the matrix and calculated that for a 2000 by 2000 matrix it takes about 5 seconds

to complete the row reductions. Thus we can see that the time increases by a fac-

tor of four when the sides are doubled. Then for a 4000 by 4000 matrix it would

take approximately 20 seconds to row reduce this matrix. Following this pattern,

to reduce a 32000 by 32000 matrix it would take 1280 seconds which is about 21

minutes. Therefore Magma makes Gaussian Elimination of an n× n matrix closer

to n2 in complexity. Moreover, using the above information we can make a time

approximation; for an n× n where n = 2k · 1000 it will take approximately 1.25 · 4k

seconds. Hence it is clear that the time to perform Gaussian Elimination in Magma

on a matrix with entries from Z2 increases quickly.

Using the Multipolynomial Quadratic Sieve in Magma we were able to com-

pute the time it takes to factor integers of various bit sizes using the average of

our trials. In the table below we should observe that the time approximation of

numbers of bit length 120 to 210 were averaged from 200 trials while those with bit

length 210 to 250 are an average of 100 trials; the difference in the trials was mainly

29

due to time constraints. Also note that the time approximation is done in seconds.

Bit Length Time Approximation
120 .1264
130 .2192
140 .41235
150 .89385
160 1.4568
170 2.9315
180 5.75525
190 12.0601
200 24.2353
210 55.0786
220 93.4357
230 161.87
240 292.4
250 492.246

Table 5.3: Magma Time Approximation

These numbers were RSA numbers, meaning that they are of the form n = p · q,

and the time approximation estimates the time it took Magma using the above

computer, to factor numbers of the specified bit number.

In addition to these smaller integers, with a 120-bit number being approxi-

mately 36 digits in length, we used Magma to factor to two 100 digit numbers. It

took Magma 17 hours to factor the first number and 18 hours to factor the second.

Therefore one can see how important efficiency becomes when our target integers

take upward of 17 hours to factor.

30

CHAPTER VI

DEVELOPING NEW METHODS

The number field sieve, which stems from Pollard’s 1988 suggestion for fac-

toring numbers close to a power of another integer, has become the most powerful

factoring method currently in use [12]. Pollard’s method was based on the use of

algebraic number fields [15].

6.1 Pollard’s Algorithm

Pollard’s method began with a number n to be factored and an irreducible monic

polynomial, f(x), over the integers. We then find an integer m so that f (m) ≡

0 (mod n). Pollard suggested that the polynomial have deg(d), where d would be

approximately four or five for a 100 to 200 digit number. Now let α ∈ C such that

f (α) = 0. Then because

f (α) = 0, f (m) ≡ 0 (mod n)

we have a map φ : Z[α] −→ Z/nZ, defined by φ(a + bα) = a + bm (mod n) for

m ∈ Z/nZ and a, b ∈ Z. From these conditions we can easily see that φ is well-

defined and even better a ring homomorphism. Next we suppose that we have a

set, S, of coprime integer pairs 〈a, b〉 such that two properties are met:

1. the product of all the a− αb with 〈a, b〉 ∈ S is a square, say γ2 in Z[α];

2. the product of a−mb for all 〈a, b〉 ∈ S is a square, say v2 in Z.

31

So then for u ∈ Z where

φ (γ) ≡ u (mod n) . (6.1)

Then

u2 ≡ φ (γ)2 = φ
(
γ2
)

= φ
(∏

〈a,b〉∈S (a− αb)
)

=
∏
〈a,b〉∈S

φ (a− αb)

=
∏
〈a,b〉∈S (a−mb) = v2 (mod n)

Thus we have two squares which are congruent modulo n. Now if we apply Kraitchik’s

method, since u 6≡ ±v (mod n) all we have left to do is take gcd (u− v, n). Hence

we have a factor of n [15].

Now in order to find this a and b, we use the quadratic sieve by fixing b and

sieving a over a given interval so that a−mb is a square over the integers. We then

repeat this process to get all elements of S. From here we can essentially eliminate

the values for which the first property does not hold. But unfortunately this does

not generalize to work for an arbitrary integer n [15].

6.2 Development of the General Number Field Sieve

Reevaluating Pollard’s algorithm we want to find an f (x) and m such that the

polynomial f (x) is monic and irreducible over the integers and f (m) ≡ 0 (mod n).

We do this by finding f (x) last. The first step then is to pick a degree d for f (x).

Then let m =
⌊
n1/d

⌋
. We can then write

n = md + cd−1m
d−1 + · · ·+ c0

32

where 0 ≤ ci < m. One should note that if n > (2d)d then cd = 1. Then we get

that

f (x) = xd + cd−1x
d−1 + · · ·+ c0. (6.2)

With this polynomial now we must only discuss its irreducibility. So what if we

suppose that f (x) is reducible, then we can write f (x) = g (x)h (x) for some

g, h ∈ Z[x]. Then

n = f (m) = g (m)h (m)

gives us two nontrivial factors– which is our goal. So if f (x) is reducible then it

quickens our result. However since more than likely f (x) will be irreducible and we

can proceed as above– using Pollard’s method [15].

In 1990 the general number field sieve was established. The remaining

changes paired with the few above made Pollard’s sieve a major stepping stone

for the general number field sieve. These changes were made by Joe Bueler, Hen-

drik Lenstra and Carl Pomerance [15]. Let norm of a−αb be notated as N (a− αb)

over the rationals. This norm is constructed by taking a polynomial g(x) ∈ F[x]

with g(β) = 0 where β ∈ F[α]. Then the norm of β is the constant term of our

function g. So we can define a map, φ from F[α] to Q such that φ(β) = N(β) and

because as in linear algebra, this is a homomorphism then we get that N (a− αb)

is the product of principal ideals P1, P2, . . . , Pk ∈ Z. Now we can see that

N (a− αb) = bdf (a/b) .

We also want to define a − αb to be Y -smooth if N (a− αb) is Y -smooth. One

should note that since the norm is multiplicative, if we have that the product of

various algebraic integers, a − αb, is the square of an algebraic integer, then so is

the product of the corresponding norms. However one should also note that the

33

reverse is not necessarily true– mainly if the product of norms of algebraic integers

is the square of an algebraic integer, the product of the corresponding a− αb need

not be a square [15].

Example. Say we have the algebraic integers 1− i, 1 + i. Now the product of these

is 2. But the norm of their product is N(2) = 4. So we can easily see that having

the norm of the product of algebraic integers be a square does not guarantee that

the product of the numbers is a square.

Now let p be prime and let Rp be the set of solutions to the congruence

f (x) ≡ 0 (mod p). Now if p | N(a − αb) then some prime ideal above p divides

(a − αb). Another problem is that we have not established whether or not Z[α]

is the full ring of algebraic integers in Q[α]. While other difficulties still exist we

should note that the reason that the Number Field Sieve is considered to be a more

attractive alternative for n over 150-digits is because the running time for large

numbers in the Number Field Sieve is much shorter than that of the Quadratic

Sieve [15]. The basic idea of the number field sieve is that if N(a− αb) factors into

small primes, then the ideal generated by (a− αb) in Z[α] factors into small prime

ideals. The gerneral plan is to use a factor base of prime ideals in Z[α], and seek to

mimic the scheme of the quadratic sieve. This can be done successfully, but there

are many technical details thus making a full discussion of this topic beyond the

scope of this paper.

6.3 Further Factoring Interests

Aside from the Quadratic Sieve and Number Field Sieve the Elliptic Curve Factor-

ization Method, referred to as the ECM, is much used. The ECM is very efficient for

finding factors of moderate size and even enormous integers n. However, generally

34

the application of this is small integers and as mentioned in a previous section, is

often tried before the Quadratic Sieve in the factoring process of a given n. For

our purposes the description of the ECM involves algebra and techniques that are

beyond the scope of this paper, but further information can be found in the book

Prime Numbers by Carl Pomerance.

It is known that the eventually the Number Field Sieve will reach its limits

of efficiency, just as in the past it was discovered that over 150-digits the Quadratic

Sieve is no longer the most efficient factorization method. Still, in any case, it is

clear that there is much to discover in the efficiency and methods of factoring.

35

BIBLIOGRAPHY

[1] Briggs, Matthew E. “An Introduction to the General Number Field Sieve.”
Thesis. Viriginia Polytechnic Institute and State U, 1998.

[2] Bosma, Wieb, et al. “The Magma algebra system I. The user language”.
J. Symbolic Comput. 24(3-4), Springer-Verlag (1997):235-265.

[3] Bowman, Kim, et al. “Analyzing the Quadratic Sieve Algorithm.” Clemson U,
2004.

[4] Case, Michael. “A Beginner’s Guide to the General Number Field Sieve.” Un-
published essay. Oregon State U, 2003.

[5] Chalkias, Konstantinos, et al. “Implementing Authentication Proto-
col for Exchanging Encrypted Messages via an Authentication Server
based on Elliptical Curve Cryptography with the ElGamal’s Algorithm.”
Proceedings of World Academy of Science, Engineering and Technology 7
(Aug. 2005): 137-42.

[6] Crandall, Richard, and Carl Pomerance. Prime Numbers. 2nd ed. New York:
Springer, 2005.

[7] Davis, J.A., and D. B. Holdridge. “Factorization Using the Quadratic Sieve
Algorithm.” Report SAND. Albuquerque, N.M.: Sandia National Labratories,
1983.

[8] Hulpke, Alexander. “Factorization of n = 87463 with the Quadratic Sieve.”
Unpublished paper. Colorado State U, 2004.

[9] Kechlibar, Marian. “The Quadratic Sieve- Introduction to Theory with Regard
to Implementation Issues.” Charles University in Prague, 2005.

[10] Landquist, Eric. “Possible Ways to Extend Zhang’s Special Quadratic Sieve.”
Unpublished essay. U of Illinois at Urbana- Champaign, 2003.

[11] Landquist, Eric. “The Quadratic Sieve Factoring Algorithm.” Unpublished Es-
ssay. U of Virginia, 2001.

[12] Lenstra, A. and H. Lenstra, Jr. Eds. “The Development of the Number Field
Sieve.” Lecture Notes in Mathematics 1554 (1993).

36

[13] Lenstra, Arjen K. “Integer Factoring.” Designs, Codes and Crytography. Vol.
19. Boston: Kluwer Academic Publishers, 2000: 101-128.

[14] Leyland, Paul, et al. “MPQS with Three Large Primes.” in
Proceedings of the 5th International Symposium on Algorithmic Number Theory.
Lecture notes in Computer Science 2369, Springer-Verlag (2002):446- 60.

[15] Pomerance, Carl. “A Tale of Two Sieves.”
Notices of the American Mathematical Society Dec. 1996: 1473-1485.

[16] Pomerance, Carl, eds. Cryptology and Computational Number Theory. Vol.
42. Providence, R.I.: American Mathematical Society, 1990.

[17] Pomerance, Carl. “Cryptology and Computational Number Theory– An Intro-
duction.” Carl Pomerance, 1-12.

[18] Pomerance, Carl. “Factoring.” Carl Pomerance, 27-48.

[19] Pomerance, Carl. “Smooth Numbers and the Quadratic Sieve.” 2005,
<http://websites.math.leidenuniv.nl/algebra/sieving.pdf>.

[20] Pomerance, Carl. “Smooth orders and Cryptographic Applications.”
Lecture notes in Computer Science 2369 (2002):338-48.

[21] Pomerance, Carl. “The Quadratic Sieve Factoring Algoritm.”
Lecture notes in Computer Science 209 (1985):169- 82.

[22] Rosen, Kenneth H. Elementary Number Theory and Its Applications. 5th ed.
Boston: Pearson, 2005.

[23] “RSA BSAFE Crptyo-J: Crypto for Java, Developer’s Guide.” RSA. 2001. 21
Apr. 2008 <http://www.rsa.com>.

