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Abstract.
Technical term translations are important for cross-lingual information retrieval. In many

languages, new technical terms have a common origin rendered with different spelling of the
underlying sounds, also known as cross-lingual spelling variants (CLSV).

To find the best CLSV in a text database index, we contribute a formulation of the problem
in a probabilistic framework, and implement this with an instance of the general edit distance
using weighted finite-state transducers. Some training data is required when estimating the
costs for the general edit distance. We demonstrate that after some basic training our new mul-
tilingual model is robust and requires little or no adaptation for covering additional languages,
as the model takes advantage of language independent transliteration patterns.

We train the model with medical terms in seven languages and test it with terms from
varied domains in six languages. Two test languages are not in the training data. Against a
large text database index, we achieve 64–78 % precision at the point of 100 % recall. This is a
relative improvement of 22 % on the simple edit distance.

Keywords: Term translations, Cross-lingual information retrieval, Systematic spelling vari-
ants, General edit distance

1. Introduction

Finding term translations as cross-lingual spelling variants on the fly is an
important problem for cross-lingual information retrieval (CLIR). CLIR is
typically approached by automatically translating a query into the target lan-
guage. For an overview of the approaches to cross-lingual information re-
trieval, see (Oard and Diekema, 1998). When automatically translating the
query, specialized terminology is often missing from the translation dictio-
nary. The analysis of query properties in (Pirkola and Järvelin, 2001) shows
that proper names and technical terms often are prime keys in queries, and if
not properly translated or transliterated, query performance may deteriorate
significantly. As proper names often need no translation in languages using
the same writing system, a trivial solution is to include the untranslatable keys
as such into the target language query. However, technical terms often have
common roots, which allows for a more advanced solution using approximate
string matching

�
to find the target words, most similar to the source keys, in

the index of the target language text database (Pirkola et al., 2001).
In European languages, the loan words are often borrowed with minor, but

language specific, modifications of the spelling of a common Greek or Latin
root. This allows for initial testing of some straight forward approximate

c
�

2005 Kluwer Academic Publishers. Printed in the Netherlands.

clsv04.tex; 28/03/2005; 16:10; p.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14922748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Krister Lindén

string matching methods. A comparison of methods applied to cross-lingual
spelling variants in CLIR for a number of European languages is provided
in (Keskustalo et al., 2003). They compare exact match, simple edit dis-
tance, longest common subsequence, digrams, trigrams, tetragrams, as well
as skipgrams, i.e., digrams with gaps. Skipgrams perform best in their com-
parison with a relative improvement of 7.5 % on the average on the simple
edit distance baseline. They also show that among the baselines, the simple
edit distance baseline is in general the hardest baseline to beat. They use no
explicit n-gram transformation information. Such transformations are used in
(Pirkola et al., 2003), where they are based on digrams and trigrams. Trigrams
are better than digrams, but they make no comparison to the edit distance
baseline. However, in both of the previous studies on European languages,
the distance measures based on n-grams use a bag of n-grams ignoring their
sequential order.

Between languages with different writing systems, foreign words are often
borrowed based on phonetic rather than orthographic transliterations suggest-
ing a phoneme-based rather than a grapheme-based approach. In (Knight
and Graehl, 1998), a phoneme-based generative model is introduced which
transliterates words from Japanese to English using weighted finite-state trans-
ducers. In (Qu et al., 2003), this approach is successfully evaluated in an
information retrieval context. This model uses context-free transliterations,
which produces heavily overgenerating systems. Context-sensitivity requires
more training data, but training data is less readily available for phoneme-
based approaches, which lately have been rivaled by grapheme-based ap-
proaches, e.g., to Arabic (Al-Onaizan and Knight, 2002), Japanese (Ohtake
et al., 2004; Bilac and Tanaka, 2004), and Chinese (Zhang et al., 2004). Until
now, such models have included only one language pair.

Our first contribution is to present a formulation of finding cross-lingual
spelling variants in a probabilistic framework. The second contribution is
to reformulate this as an instance of the general edit distance and to show
how this is efficiently implemented with weighted finite-state transducers us-
ing context-sensitive transliterations. The costs for the general edit distance
are learned from a training sample of term pairs. The third contribution is
to demonstrate that a distance measure, which explicitly accounts for the
sequential order of the n-grams, significantly outperforms models based on
unordered bags of n-grams. The final contribution of this article is to demon-
strate that our model needs little or no adaptation for covering new lan-
guage pairs and that the model is robust, i.e., adding a new language does
not adversely affect the performance of the model for the already trained
languages.

In our first experiment, we train and test a multilingual model with terms
from the medical domain. Against an index of a large English newspaper
database, we achieve 80–91 % precision at the point of 100 % recall for a set
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Multilingual Spelling Variants 3

of medical terms in Danish, Dutch, French, German, Italian, Portuguese and
Spanish. On the average, this is a relative improvement of 26 % on the simple
edit distance baseline. In our second experiment, we use the medical terms
as training data and test with a set of terms from varied domains. We achieve
64–78 % precision at the point of 100 % recall in French, German, Italian,
Spanish, Swedish and Finnish. On the average, this is a relative improvement
of 22 % on the simple edit distance baseline. For Swedish, there is no training
data, and for Finnish, we need only a small amount of training data for adapt-
ing the multilingual model, which demonstrates that the model has captured
essential language independent transliteration patterns.

The rest of this article is organized as follows. Sect. 2 Methodology in-
troduces the probabilistic framework and outlines its implementation with
weighted finite-state transducers. Sect. 3 Data Sets presents the training, test
and adaptation data collections as well as the baselines. In Sect. 4 Experi-
ments, we present the experiments and evaluate the results and their impor-
tance. In Sect. 5 Discussion, we discuss the linguistic motivations for the
model and some related work.

2. Methodology

First we describe a method for finding the best cross-lingual spelling variants
(CLSV) for a given search key with an unknown translation and present it in
terms of a probabilistic framework. We then outline how the framework can
be implemented with a cascade of weighted finite-state transducers.

2.1. PROBABILISTIC FRAMEWORK

Assume that we have a word in a foreign language. We call this the source
word � . The word looks familiar and we want to know the possible meanings
of this word in a language known to us, but we do not have a translation
dictionary, only a word list of the words in the known language. We take the
word and compare it to all the words in the word list � in order to determine
which word is most similar to the unknown word. We call the most similar
word the target word � . In the beginning we can only compare how many
letters are similar or different, but having done so a few times, we start to learn
the regularities involved where some letters are likely to be inserted, deleted
or replaced with others. We also observe that the likelihood for insertion,
deletion and replacement for each letter is different in different contexts.

A model for this procedure is to find, in the target word list � , the target
word � which is most likely to convey the meaning of the source word �
by accounting for all the sounds encoded by the source word letter sequence.
To find the most likely target word for any given source word, we need to
maximize the probability �����
	��� , i.e.,
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���������������� �����
	������ (1)

In order to automate this procedure we take a sample of source words,
whose target words we have already determined. We then align the source
words and their target words using the minimum simple edit distance as-
suming that most of the corresponding letters of the alphabets of the two
languages represent roughly the same sounds. For the simple edit distance,
the cost of editing the original string with a replacement, insertion or deletion
is one, whereas keeping the same letter has zero cost. In Table I, we see an
example of two words aligned with the minimum simple edit distance.

Table I. Minimum edit distance alignment of the target
word capacity in English and source words capacidad
in Spanish at cost 3 and Kapazität in German at cost 4,
when  is the empty string

Src Trgt Src Trgt

c c K ! c (rep)

a a a a

p p p p

a a a a

c c z ! c (rep)

i i i i

d ! t (rep) t t

a ! y (rep) ä ! y (rep)

d !  (del) t !  (del)

From the set of source words aligned with their target words, we derive the
frequency of each edit operation in context. We take into account a context
of at most four letters, cf. Sect. 5.1 Cross-lingual Spelling Changes, in the
source word � including the letter "�# aligned with the letter $%# in the target
word � . Fixing the alignment of the target and source word letters requires
that we also consider the possibility that a target word letter is aligned with no
letter at all, i.e., the empty string, in the source word and vice versa. We need
to consider at most &('*)+��	 �
	-,.	��/	�� positions in the target word � , 	��0	213	 �4	
of which are empty strings if 	��0	�56	 �
	 . If we fix the context of the letter "7# ,
e.g., to be one letter to the left and two to the right, we need to pad each word
with a placeholder at the beginning and two at the end of the word extending
the alphabet with a padding letter. We use 8 as a padding letter.

We denote the context "�#:9 � ";#<"=#?> � "=#?>A@ in the source word with �B#DC , where" # occurs after " #�9 � and before " #?> � and " #?>A@ in the source word, and " #:9 � ,
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";#?> � and ";#?>A@ can be any letters of the source language alphabet. The expres-
sion $E#�	��F#DC can be seen as a transformation of "�# into $E# in the context �B#DC .
Here ";# and $E# can be any letter of the source and target language alphabet,
respectively, as well as the empty string G . In the Equation

�����
	����H I#?J �%K�K LNMPO�Q:R � R STR UVR W ���:$X#P	��F#DC;��, (2)

the probability of the transformation $�#�	��F#DC is estimated with the count for the
transformation divided by the count for the context �Y#DC , i.e., the probability���:$ # 	�� #DC �[ZH]\_^ $`�:$ # 	�� #DC �%a \_^ $b�c� #DC � . This defines a probability distribution for
the transformations of "�# into $E# in the source word context ��#DC .

If a context occurs too seldom, e.g., less than d times, cf. Sect. 4.1 Ex-
periments on Training Data, the reliability of the estimate for the probability
distribution is low. We use an offline back-off model for smoothing the prob-
ability ���:$e#%	��A#fC;� . We define the contexts ��#Dg/Hh"=#:9 � "=#i"=#?> � , �F#j@0Hk";#�9 � ";# and�F# � Hk";# . The back-off model is defined as

lnmpocqEr stq-u`v�wx
yzz{ zz|
}%~ o�m?ocqer s�qTubvX� }%~ o�m�stq-u_v if }�~ o�m�stq-u_v������}%~ o�m?ocqer s�q-�`vX� }%~ o�m�stqf��v if }�~ o�m�stq-u_v������ }%~ o�m:stqf�_v+�����}%~ o�m?ocqer s�q-�`vX� }%~ o�m�stqf��v if }�~ o�m�stqf��v������ }%~ o�m:stqf�_v+�����}%~ o�m?o q r s qD� vX� }%~ o�m�s qj� v if }�~ o�m�s qf� v������

(3)

We use Laplace’s law for successions for discounting unseen transforma-
tions with the additional assumption that a letter is most likely to remain
untransformed in any given context. Let 	 �4	 be the size of the target language
alphabet. For each � , when ��H����b�b�P� , the transformation count \_^ $b�:$ # 	�� #�� �
is increased by �;a�� if "�#�H�$E# and by �;a�������	 �
	F1��;� 9 � if ";#��H�$E# , and
the context count \_^ $`�c�B#��;� is increased by 1. For unseen contexts, this gives
50 % @ of the probability mass to keeping a letter untransformed, and the rest
is evenly distributed among the transformations to other letters or the empty
string, thus roughly modeling the simple edit distance.

The target word � with the highest probability in the target word list � is

��������������� �����
	����H ���������������� I#?J �%K�K L�M�O�Q:R � R STR U�R W ���:$E#�	��F#DC=��� (4)

2.2. WEIGHTED FINITE-STATE TRANSDUCERS

Finding the CLSVs or target words with the highest probabilities can be ef-
ficiently implemented with a cascade of finite-state transducers g composed
into a Translation transducer.

First the source word � is expanded into an automaton of tetragrams using
a transducer called Tetrify:
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�¡  �i'¢G � \ �e£`' � \`¤ a�' \N¤ , (5)

i.e.,
�

is replaced with the regular expression of tetragrams �i'¢G � \ � £ ' � \`¤ , when' precedes
�

and
�

is followed by \ and ¤ in the source word, where ' ,
�
, \

and ¤ represent any letter of the source language alphabet. The tetragrams
are letters of the alphabet in the new automaton. The tetragrams with the G
symbol in (5) are used for introducing the positions of empty strings in the
source word that may be aligned with letters in the target word.

If a tetragram is too infrequent, i.e., it occurs less than d times, the back-
off model from (3) is implemented by replacing the tetragram with a trigram,
digram or unigram representing a more general and sufficiently frequent con-
text. In a transducer called Backoff, each n-gram symbolizes a source word
letter context:

'*) \`¤  
yzz{ zz|
'*) \`¤ if \_^ $b�i'¥) \_¤ �[¦§d3,'*) \ if \_^ $b�i'¥) \_¤ �[¨§dª© \�^ $b�i'*) \ �[¦§d3,'*) if \_^ $b�i'¥) \ �¡¨§d«© \_^ $b�i'¥)B��¦§dh,) if \_^ $b�i'¥)B�[¨§d3,

(6)

where ) may be any letter of the source language alphabet as well as the
empty string G .

A Weight transducer represents the probability distribution of the target
language letters for each source letter context. The transducer is implemented
in the tropical semi-ring giving each transduction a log-probability weight:

'*) \`¤  ¬
with 1�®i¯.°F�i��� ¬ 	 '¥) \_¤ �%��,'*) \  ¬
with 1�®i¯.°F�i��� ¬ 	 '¥) \ �%��,'*)  �¬
with 1�®i¯.°F�i��� ¬ 	 '¥)B�%��,)  ±¬
with 1�®i¯.°F�i��� ¬ 	 )A�%��,

(7)

where
¬

is any letter of the target language alphabet as well as the empty
string G . The target word list is compiled into an identity transducer called Tar-
getindex. All the possible target words � which correspond to a source word� are found by composing the cascade of transducers into the Translation
transducer:

Translation = S o Tetrify o Backoff o Weight o Targetindex � (8)

To extract the target words � , we make a projection of the Translation
transducer on the target word surface. The ² -best target words of the projec-
tion are listed, i.e., the ² target words with the smallest total log-probability
weights. C

The process is outlined in Table II for the transliteration of the German
word Kapazität into the English word capacity. The table shows all the alter-
natives of the fully trained model. The transductions are unambiguous until
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the Weight transductions. The context-sensitivity leaves fairly few options to
be considered and only for azi is the correct alternative the second best. For
brevity, we did not include in the table that Tetrify introduces a placeholder
context allowing insertions between every letter of the source word: E.g.,
between the source word letters K and a, there would be the placeholder
context k G ap corresponding in this case to an empty string in the target word.

3. Data Sets

First we describe the training, test and adaptation data collections. We then
motivate our choice of baseline for the task of finding CLSVs for words with
unknown translations and present a baseline for our method on the training
and test data collections.

3.1. TRAINING DATA

The problem of finding terms for unknown words crops up in many differ-
ent areas with quickly developing terminologies, e.g., medicine, economics,
technology. As training data for our model we chose technical medical termi-
nology in seven different languages as source words. We chose English as the
target language. The terminology was extracted from the web pages of the
EU project Multilingual Glossary of Technical and Popular Medical Terms
in Nine European Languages by (Stichele, 1995). Only eight languages were
available on the web server: Danish, Dutch, English, French, German, Italian,
Portuguese and Spanish. We collected 1617 words which had at least one
translation in all eight languages.

3.2. TEST DATA

To be able to compare our test results, we used the test data created by
(Keskustalo et al., 2003) at the University of Tampere. The test data consists
of three parts: the target words, the search keys, and the set of correct answers
(relevance judgments). Their characteristics are recapitulated below.

The target words consist of a list containing all words of an English full-
text database index of 84 000 documents (Los Angeles Times used in the
CLEF 2000 experiments) (Peters, 2000). It contains around 189 000 unique
word forms. The words are either in base form if recognized by the morpho-
logical analyzer ENGTWOL (Voutilainen et al., 1995) used in indexing, or in
case of unrecognized word forms, the original words as such. All words are
written in monocase.

The 271 search keys are translations into six languages of terms selected
from the English database index. The terms did not occur in a standard trans-
lation dictionary. The terms can be grouped into domains. The number of
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Table II. Transliteration of Kapazität in German to capacity in Eng-
lish with the Translation transducer. The empty string is symbolized
by  . A smaller weight means a higher probability

S Tetrify Backoff Weight Matching entries

in Targetindex

#  #ka  #ka #/0.00 #

K #kap #kap c/0.22 c

k/1.61

a kapa kap a/0.00 a

p apaz apa p/0.00 p

a pazi pa a/0.01 a

i/6.39 /6.39

z azit azi t/0.14

c/2.44 c /3.39

z/5.00

s/5.00

i zitä zitä i/0.00 i

t ität ität t/0.05 t

e/3.64

n/3.64

ä tät# tät# y/0.08 y

s/3.66

e/3.66

t ät## ät##  /0.08  
s/2.97

t/3.66

# t##  t##  #/0.00 #

# ##  c ##  c #/0.00 #
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terms in English in each domain is indicated in parenthesis: medicine or
biology (90), geographical place names (31), economics (55), technology
(36) and others (59). The terms were translated into Finnish, French, Ger-
man, Italian, Spanish and Swedish. For some terms, there are more than one
translation resulting in a slightly varying number of search keys for each test
language.

For each translated term, its English equivalent was considered the correct
answer, i.e., the relevant target word to be identified.

3.3. ADAPTATION DATA

Based on the 1617 English training data terms, we created adaptation data
for Finnish by consulting several online resources. The most significant re-
source was the online medical language database Tohtori.fi – Lääkärikirja
(Nienstedt, 2003). We found Finnish equivalents for 1480 of the medical
terms.

3.4. BASELINES AND SIGNIFICANCE TESTS

The ideal method for this task should always give the correct translation or
transliteration as the first choice. In this case the precision would be 100 % at
the level of 100 % recall. Occasionally, non-ideal methods will give ) incor-
rect suggestions before the correct one. In this case the precision is �;a¢�e��³´)A�
at 100 % recall. If the correct answer is not among the candidates suggested
by a method for a certain test word, the precision is 0 % at 100 % recall for
this test word. The overall performance of a method is the average precision
at 100 % recall. Using the precision of each test word, we can calculate the
average precision and the standard deviation. We measure the significance of
improvements in the performance with the z-test, which compares two sam-
ple means to suggest whether both samples come from the same population
(Kanji, 1999).

In order to evaluate the performance of our method on the training data,
we chose the edit distance as a baseline. This is motivated by the research
done by (Keskustalo et al., 2003), which shows that the edit distance is often
the most difficult baseline to beat for this type of task among a number of
other baselines.

For the training data, the performance of the simple edit distance is shown
in Table III. The table also shows the average edit distance and the per-
centage of exact matches. The standard deviation of the baseline in each
language is approximately 1.0 %. The average baseline for all the languages
is 67.7 µ 0.4 %. An exact match has simple edit distance zero. The percentage
of exact matching terms for each of the languages with regard to the English
terminology is fairly low, i.e., on the average 17.1 % of the 1671 terms.
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Table III. The edit distance baseline, the average minimum
edit distance and the percentage of exact matches for each
language in the training data

Language Edit Distance Average Exact

Baseline Edit Distance Matches

Danish 71.0 1.86 28.1

Dutch 67.2 1.80 17.8

French 67.9 1.64 19.4

German 73.2 1.84 25.0

Italian 62.7 2.37 4.5

Portuguese 59.7 2.29 10.0

Spanish 72.5 1.75 15.1

Average 67.7 1.94 17.1

For the test data, the performance of the simple edit distance and the best
skipgrams are shown in Table IV. The table also shows the percentage of
exact matches. The numbers in the table are from (Keskustalo et al., 2003).
We grouped the table according to languages present in the training data.
The standard deviation of the baseline in each language is approximately
2.5 %. The average simple edit distance baseline for all the languages is
57.5 µ 1.2 %. The percentage of exact matching terms for each language is
on the average 17.7 % of the 271 English terms.

The percentage of exact matches for French in the training data may seem
relatively low compared to that in the test data. This is due to the differing
principles for compiling the data collections. The EU project selected pre-
ferred or recommended term translations, whereas (Keskustalo et al., 2003)
selected those term translations that are CLSVs. The percentage of exact
matches for Finnish in the test data is very low due to the Finnish syllable
structure, which almost always requires additional characters in words and
terminology borrowed from other languages.

4. Experiments

We did initial experiments with the training data in order to tune the para-
meters and gain reference values for the performance level improvements.
We then applied the trained model to the test data. Finally, we studied the
performance of our model when adapting it to an additional language.
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Table IV. The simple edit distance, the best skipgram
result and the percentage of exact matches for each
language in the test data

Language Edit distance Skipgram Exact

Baseline Precision Matches

French 72.2 75.5 40.8

German 60.8 65.7 17.6

Italian 53.2 57.2 12.8

Spanish 57.0 60.0 13.7

Finnish 45.9 49.9 1.8

Swedish 56.0 62.1 19.7

Average 57.5 61.7 17.7

4.1. EXPERIMENTS ON TRAINING DATA

In our experiments on the training data, we used part of the training data to
train the general edit distance model and the rest to evaluate how well the
model was able to pick the correct translation from the English database in-
dex. We used 10-fold cross-validation on the training data, i.e., we estimated
the parameters on 90 % of the terminology and used 10 % for testing. Each
time we used a different portion of the training data for training and testing
purposes.

When training, we pooled the training data, i.e., we derived context and
transformation counts from all the languages, paired with English as the tar-
get language, cf. Sect. 5.2 Multi-lingual Modeling. In an initial experiment,
we determined that pooling the training data gives a statistically significantly
better performance than training separately for each individual language pair.
The initial experiments also showed that using a minimum context frequencyd H � from a range of ���b�b�`¶ in the back-off model yielded the best
transliteration results on the training data.

The model is relatively fast. We achieved a performance average of
approximately 0.58 seconds per source word for computing all possible
transliterations in the target word index containing approximately 189 000
word forms. We used an Intel Pentium 4 with 1.8 GHz CPU and 1 GB of
memory. The speed is crucially dependent on the context-sensitive transfor-
mations allowing few and correct transformations in each context. Insertions
are relatively rare in most contexts, but the back-off model easily backs off
to a broad range of context-free insertions. Allowing the model to explore
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context-free insertions increases the time consumption 8.5-fold, but adds only
1.0 % to the average precision. We disallowed backing off to context-free
insertions. Further speed-up could have been achieved by generally pruning
low-probability transformations.

The overall result for all the languages was 85.4 µ 0.3 % with our method.
This is a relative improvement of 26.5 % on the simple edit distance baseline.
The average precision as well as the standard deviation for each language is
shown in Table V. The average precision is compared to that of the baseline
and the absolute and relative performance improvement is calculated.

Table V. The average precision on the training data for all the languages using English
as the target language as well as the relative and absolute improvement

Average Standard Absolute Relative

Language Baseline Precision Deviation Improvement Improvement

Danish 71.0 86.5 · 0.8 15.5 21.8

Dutch 67.2 90.6 · 0.7 23.4 34.8

French 67.9 86.9 · 0.8 19.0 28.0

German 73.2 88.7 · 0.7 15.6 21.3

Italian 62.7 80.2 · 0.9 17.6 28.0

Portuguese 59.7 82.0 · 0.9 22.3 37.3

Spanish 72.5 82.9 · 0.9 10.4 14.3

Average 67.7 85.4 · 0.3 17.7 26.5

With English as the target language, the languages from the Germanic
language family, i.e., German, Dutch and Danish, perform in the range of
86–91 %, whereas the languages from the Romance language family, i.e.,
French, Italian, Portuguese and Spanish, perform in the range of 80–87 % on
the training data. This is very highly significantly better than the baselines
with p ¨ 0.0001.

4.2. EXPERIMENTS ON TEST DATA

For the experiments on the test data we used a model that was trained on
all of the pooled training data. The average precision as well as the standard
deviation for each test language is shown in Table VI. The average precision
is compared to that of the baseline and the absolute and relative performance
improvement is calculated.

The languages that were present in the training data improved significantly
as expected, except French, which improved less than expected. There was
no training data for Finnish and Swedish. Finnish from the Fenno-Ugric lan-
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guage family performed below the baseline. Swedish, however, was in line
with German from the same Germanic language family.

Table VI. The test results for each of the languages on the test data without training
or adaptation data for Swedish and Finnish

Standard Absolute Relative

Language Baseline Precision Deviation Improvement Improvement

French 72.2 77.1 · 2.3 4.9 6.8

German 60.8 73.2 · 2.4 12.4 20.4

Italian 53.2 65.7 · 2.6 12.5 23.6

Spanish 57.0 65.3 · 2.6 8.3 14.6

Finnish 45.9 40.7 · 2.8 -5.2 -11.3

Swedish 56.0 73.5 · 2.5 17.5 31.2

4.3. EXPERIMENTS WITH ADAPTATION DATA

We wanted to study the robustness of our model when adapting it to a new
language. As the results from the experiments on the test data suggested,
no further adaptation was needed when adding a language from a language
family present in the training data, so we studied a language from a new
language family by adapting the model to Finnish from the Fenno-Ugric
language family.

We gradually added adaptation data for Finnish and observed the per-
formance of the model on the test data. We did 10 test runs with random
permutations of the adaptation data. The result is shown in Fig. 1. When
adding approximately 19 randomly selected Finnish-English term pairs to
the training data, we reached the baseline. When adding approximately 37
randomly selected term pairs, we reached the skipgram performance. After
approximately 150 term pairs no further statistically significant improvement
could be observed with the test data.

The final overall result for all the languages was 70.2 µ 1.0 % when the
model was fully adapted to Finnish. This is very highly significantly better
than the baseline and the skipgram performance with p ¨ 0.0001. The relative
improvement of the average precision is 22.1 % on the simple edit distance
baseline. The average precision as well as the standard deviation for each
language is shown in Table VII. The average precision is compared to that
of the baseline and the absolute and relative performance improvement is
calculated.
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Figure 1. General edit distance (GED) performance on all the test data when adding Finnish
adaptation data to the model

As can be seen in Fig. 1 and by comparing the precision of the unadapted
model with the precision of the adapted model in Table VII, the performance
of the other languages than Finnish did not change in any significant way
while we added the Finnish adaptation data to the pool of training data. In
Table VIII, we see that 64–77 % of the translations are found in the top two
positions.

4.4. IMPORTANCE OF THE RESULTS

We have evaluated our method on terminology from several domains, and the
prediction of a 26 % relative improvement of the average precision gained
from the field of medical terminology was confirmed as a 22 % relative im-
provement on a test set composed of several domains. The improvement over
the simple edit distance and skipgram baselines is statistically significant with
more than 99.99 % confidence, which shows that observing the sequential
ordering of the n-grams is important.

The fact that no training data was needed for Swedish and that very lit-
tle adaptation data was actually needed for Finnish from a language family
not present in the training data, indicates that the model has captured the
essentials of transliterating technical terminology in a language independent
way and even in a language-family independent way for languages using the
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Table VII. The test results for each of the languages in the test data before and after the model
is fully adapted to Finnish

Precision Precision Standard Absolute Relative

Language Baseline Before After Deviation Improvmnt Improvmnt

French 72.2 77.1 77.5 · 2.3 5.3 7.3

German 60.8 73.2 73.7 · 2.4 12.9 21.2

Italian 53.2 65.7 66.2 · 2.6 13.0 24.4

Spanish 57.0 65.3 65.0 · 2.6 8.0 14.0

Finnish 45.9 40.7 64.5 · 2.7 18.6 40.5

Swedish 56.0 73.5 74.1 · 2.4 18.1 32.3

Average 57.5 65.9 70.2 · 1.0 12.6 22.1

Table VIII. The recall percentage in positions 1, 2, 3–5, 6–10, 11–, and infinity (=not
found) for each of the languages in the test data in the final model

Positions 1 2 3–5 6–10 ¸ 10 ¹ Total

French 71 (198) 6 (18) 3 (11) 1 ( 4) 5 (14) 11 (32) 100 (277)

German 67 (193) 7 (21) 2 ( 6) 1 ( 4) 5 (16) 15 (45) 100 (285)

Italian 59 (172) 7 (21) 3 (11) 3 ( 9) 4 (14) 21 (62) 100 (289)

Spanish 57 (161) 7 (22) 4 (12) 3 (11) 6 (17) 20 (57) 100 (280)

Finnish 56 (154) 9 (25) 5 (14) 1 ( 5) 5 (15) 21 (60) 100 (273)

Swedish 66 (183) 8 (24) 3 ( 9) 1 ( 3) 5 (16) 14 (39) 100 (274)

Latin script. The fact that the performance of the other languages did not
significantly change while adding Finnish adaptation data confirms that the
model is robust with regard to training.

When the recall in the first two positions, 64–77 %, is compared to the
average precisions, 64–78 %, at 100 % recall for the test languages, we
can conclude that in practice we need only consider the top two translation
candidates and most often the first candidate is the one we are looking for.

5. Discussion

In this section, we discuss the nature of cross-lingual spelling changes, espe-
cially with regard to European languages. Then we discuss the context length
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and the pooling of training data in the model. Finally, we study some related
work and extensions to languages with other writing systems.

5.1. CROSS-LINGUAL SPELLING CHANGES

Most of the language independent similarity measures for finding cross-
lingual spelling variants studied in CLIR, e.g., in (Keskustalo et al., 2003)
and in (Pirkola et al., 2003), compare bags of n-grams. In natural language,
the order of the n-grams is relevant especially within words. One of the strong
points of the general edit distance is the attempt to model this ordering ex-
plicitly, e.g., the meaning of the word

� ®i¯ \`º ��» "=$%¼b½ is not particularly close
to the word

��» ";$ � ®i¯ \bº ¼b½ despite the fact that they are only separated by four
digrams: $ � , º � , $e¼ , and º ¼ . The words

� ®i¯ \bº �P» "=$%¼b½ and
� ®i¯ \bº �P» "=$E¾ ^ ° are

much more related even though they are separated by five digrams: $e¼ , ¼=½ , $E¾ ,¾ ^ , and ^ ° .
The order of the n-grams is usually preserved when words are borrowed

into another language, even if some sounds are rendered differently. In gen-
eral, when we studied the location of the sound and spelling changes for the
translations of medical terminology in European languages, we found that
60 % of all the changes take place in the last three letters of a word. The often
very systematic nature of cross-lingual spelling variants is reflected in the fact
that the word roots remain fairly intact, but the suffixes encoding a word class
are different in different languages, e.g., -tet in Danish, -tät in German, -té
in French, -tà in Italian, and -ty in English. We used this as a motivation for
extending the shape of the n-gram contexts towards the end of the words in
our general edit distance model.

Swedish has similar ways to Danish for productively forming new nouns
and adjectives as the languages are closely related, whereas Finnish is a
Fenno-Ugric language unrelated to any of the languages in the training data.
Finnish, however, imposes its differing sound structure mainly on the suffixes
of the technical terms. In the previous example, the corresponding Swedish
and Finnish suffixes would have been -tet and -teetti, respectively. These were
probably the main reasons for the good performance of Swedish and the low
initial performance of Finnish.

As can be seen from the averages of the simple edit distances in the base-
lines for the training data, the Italian and Portuguese terminologies are the
most distant ones from the English terminology. In Italian it would seem that
the Latin-based terminology has in general undergone the most orthographic
changes, to reflect the changing pronunciation of the words, in comparison to
the other languages, where the roots of the loan words have retained more of
their classical Latinate spelling.
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5.2. MULTILINGUAL MODELING

The length of the n-gram context was limited by the amount of readily avail-
able training data. Using 5-character contexts would have made most of these
contexts fall back on the 4-character contexts in our back-off model due to
lack of training data. On the other hand, the amount of available training data
for the language pairs we used was reasonable in comparison to the amount of
data available for many other language pairs. The applicability of the model
to other languages requires that the amount of training be kept to a minimum.

Initial experiments showed that pooling the training data gives a sta-
tistically significantly better performance than training separately for each
individual language. This is probably due to the overwhelming majority
of regularities present in the multilingual training data, e.g., the English
term adult with the phonologically regular corresponding medical terms in
French adulte, Danish adultus, Spanish and Portuguese adulto as well as
Dutch adult ¿ . These regularities compensate for irregularities in the German
erwachsen and Italian emancipato. The irregularities introduce random noise
in the multilingual model, which is filtered out with the frequency threshold.

The observed advantage of pooling the training data also partly explains
the robustness of the model when adapting it to new languages. The model
is able to gain leverage from regularities in all the training languages without
being distracted by individual discrepancies. The experiment with adapta-
tion to Finnish shows that the rendering of the sounds in the roots is not
significantly different even in another language family. As soon as a small
but sufficient number of regular suffix transformations have been learned, the
model is able to benefit from the general sound transformations learned from
other language pairs. À
5.3. FUTURE WORK

Some methods try to deal with spelling errors and CLSVs at the same
time. However, CLSVs are fairly systematic, whereas spelling errors tend
to be accidental. For a recent survey of spelling correction methods and a
new method specifically designed for queries in information retrieval, see
(Cucerzan and Brill, 2004). Most spelling mistakes are random insertions,
deletions, changes, or transpositions of characters anywhere in a word due
to mistyping. In addition, the random nature of spelling errors affects all
words equally, and consequently it affects high-frequent words more often
than low-frequent ones, but high-frequent words are more likely to be avail-
able in translation dictionaries. Due to this differing nature of spelling errors
and CLSVs, we believe that it might be better to separate the two processes:
The CLIR query is first spelling corrected based on monolingual resources,
and then the query is translated filling in transliterations of new names and
technical terms.
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For languages with other than the Latin script, our grapheme-based model
may in fact work as well as a similar model using a phoneme-based ap-
proach. Comparisons between a phoneme and grapheme-based approach in
other models for transliterating English names and terminology to and from
Arabic (Al-Onaizan and Knight, 2002), Japanese (Ohtake et al., 2004; Bilac
and Tanaka, 2004), and Chinese (Zhang et al., 2004) support this claim. An-
other approach suitable for languages of different scripts is to extract explicit
translations or transliterations mentioned in related corpora, e.g., (Zhang and
Vines, 2004).

Another topic for further research is the impact of more advanced back-
off and smoothing techniques than the ones we used. Our motivation for the
way we applied Laplacian smoothing was mainly that it gave a uniform prior
to the unseen events, which was the prior we used for successfully creating
the training material by simple edit distance alignment. For less compatible
writing systems, additional assumptions for creating the training material may
be needed, and incorporating such assumptions in the back-off and smoothing
techniques is probably beneficial.

6. Conclusion

We presented the problem of finding cross-lingual spelling variants in a prob-
abilistic framework and formulated this as an instance of the general edit
distance. The costs for the general edit distance were learned from a training
sample of term pairs. We demonstrated that the general edit distance can be
efficiently implemented with weighted finite-state transducers using context-
sensitive transliterations. On the average, the top two candidates contained
the intended target word more than 7 times out of 10, and approximately
2 times out of 3 the first transliteration was the one we were looking for.
Our experiments also demonstrated that a distance measure, which explicitly
accounts for the order of the n-grams, very significantly outperforms models
based on unordered bags of n-grams. The improvement over the simple edit
distance and skipgram baselines is statistically very highly significant with
more than 99.99 % confidence. In addition, the experiments demonstrated
that our model needed little or no adaptation data for covering new languages
in the same script and that adding a new language did not significantly affect
the performance of the model for the already trained languages, i.e., the model
was robust under training.

In the first experiment, we trained and tested with terminology from the
medical domain. Against an index of a large English newspaper database, we
achieved 80–91 % precision at the point of 100 % recall for a set of medical
terms in Danish, Dutch, French, German, Italian, Portuguese, and Spanish.
This was a relative improvement of the average precision with 26 % on the
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simple edit distance baseline. In the second experiment, we used the medical
terminology as training data and tested with data consisting of terms from
varied domains. We achieved 64–78 % precision at the point of 100 % recall
in French, German, Italian, Spanish, Swedish, and Finnish. This is a relative
improvement of 22 % on the simple edit distance baseline of the test data. For
Swedish, we used no training data, and for Finnish, we needed only a small
amount of training data for adapting the model.
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NotesÁ
Approximate string matching is also known as string matching allowing errors. An error

model defines how different two strings are. The idea is to make the difference small when
one of the strings is likely to be a variant of the other. One of the best-studied cases is the edit
distance which allows deletions, insertions, and replacements of simple letters in both strings.
If the different operations have different costs or the costs depend on the letters involved, we
speak of the general edit distance. If all operations cost 1, we speak of simple edit distance or
just edit distance. For a survey methods for approximate string matching, see (Navarro, 2001).Â

The 50 % probability assigned to keeping a letter unchanged in an unseen context is based
on a conservative intuition for European languages. The probability could be higher, but even
a small amount of training material, i.e., seen contexts, will overshadow this default value.Ã

Publicly available toolkits for weighted finite-state transducers have been implemented
by, e.g., (Mohri, 1997; Mohri et al., 2003) and (van Noord, 2002).Ä

The general edit distance can be efficiently implemented in the tropical semi-ring, where
finding the string with the highest probability coincides with the single source shortest distance
algorithms (Mohri, 2003).Å

These are the medical terms. The popular terms for the English adult, i.e., grown-up,
would be volwassene in Dutch and voksen in Danish, see (Stichele, 1995).Æ

Finnish may have been influenced by other European languages due to its location in
Scandinavia and a comparison with, e.g., Vietnamese in its Latin script could be interesting.
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