
Weighting Finite-State Morphological Analyzers
using HFST tools

Krister Lindén and Tommi Pirinen

University of Helsinki
Helsinki, Finland

{krister.linden,tommi.pirinen}@helsinki.fi

Abstract. In a language with very productive compounding and a rich
inflectional system, e.g. Finnish, new words are to a large extent formed
by compounding. In order to disambiguate between the possible com-
pound segmentations, a probabilistic strategy has been found effective
by Lindén and Pirinen [7]. In this article, we present a method for im-
plementing the probabilistic framework as a separate process which can
be combined through composition with a lexical transducer to create a
weighted morphological analyzer. To implement the analyzer, we use the
HFST-LexC and related command line tools which are part of the open
source Helsinki Finite-State Technology package. Using Finnish as a test
language, we show how to use the weighted finite-state lexicon for build-
ing a simple unigram tagger with 96-98 % precision for Finnish words
and word segments belonging to the vocabulary.

1 Introduction

In English the received wisdom is that traditional morphological analysis is too
complex for statistical taggers to deal with; a simplified tagging scheme is needed.
The disambiguation accuracy will otherwise be too low even with an n-gram
tagger because there is not enough training material. However, currently training
material for morphological disambiguators is abundantly available. At the same
time, one could argue that the interest in tagging has disappeared, because
we can do more complex things such as syntactic dependency analysis and get
the morphological disambiguation as a side effect. As a matter of curiosity, we
will still pursue statistical tagging, because there is also the initial result often
attributed to Ken Church that approximately 90 % of the readings in English
will be correct if one simply gives each word its most frequent morphosyntactic
tag. We wish to derive a similar baseline for Finnish.

In addition, a morphologically complex language like Finnish is different than
English. In English there are hardly any inflectional endings and applying tra-
ditional morphological analysis to English necessarily creates massive ambiguity
that can only be resolved by context, whereas morphologically complex lan-
guages like Finnish in each word most often carry the morphemes referred to by
the morphological tags. As the morphological tags have a physical correspon-
dence in the strings, it should be possible to use much less context, or perhaps

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14922746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

none at all, to disambiguate the traditional morphological analysis of languages
like Finnish. After all, the reduced tag sets of English statistical taggers can be
viewed as an attempt to simplify the tag set to refer only to the visible surface
morphemes in a locally constrained context.

There are some initial encouraging results by Lindén and Pirinen [7] for
disambiguating Finnish compounds using unigram statistics for the parts in
a productive compounding process. The results show that segment counting
and unigram statistics are equally effective. Unigram statistics for compounds is
essentially the same as taking the most likely morpheme segmentation and the
most frequent reading of each compound word. Similar results for disambiguating
compounds using a slightly different basis for estimating the probabilities have
been demonstrated for German by Schiller [11] and by Marek [9]. These results
further encouraged us to pursue the topic of full morphological tagging for a
complex language like Finnish using only a lexicon and unigram statistics for
the words and their compound parts.

In [7], Lindén and Pirinen suggest a method which essentially requires the
building of a full form lexicon and an estimate for each separate word form. This
is not particularly convenient, instead we introduce a simplified way to weight
the different parts of the lexicon with frequency data from a corpus by using
weighted finite-state transducer calculus. We use the open source software tools
of HFST1, which contains HFST-LexC similar to the Xerox LexC tool [2]. In
addition to compiling LexC-style lexicons, HFST-LexC has a mechanism for
adding weights to compound parts and morphological analyses. The HFST tools
also contain a set of command line tools that are convenient for creating the final
weighted morphological analyzer using transducer calculus.

We apply the weighted morphological analyzer to the task of morphologi-
cally tagging Finnish text. As expected, it turns out that a highly inflecting
and compounding language with a free word order like Finnish solves many of
its linguistic ambiguities during word formation. This pays back in the form of
approximately 97 % tagger precision using only a very simple unigram tagger
in the form of a weighted morphological lexicon for the words and word parts
that are in the lexicon. For words that contain some unknown part, the lexi-
calized strategy is, however, rather toothless. For such words it seems, we may,
after all, need a traditional guesser and some n-gram statistics for morphological
disambiguation.

The remainder of the article is structured as follows. In Sections 2, we briefly
present some aspects of Finnish morphology that may be problematic for statis-
tical tagging. In Section 3, we introduce the probabilistic formulation of how to
weight lexical entries. In Section 4, we introduce the test and training corpora.
In Section 5, we evaluate the weighted lexicon on tagging Finnish text. Finally,
in Sections 6 and 7, we discuss the results and draw the conclusions.

1 hfst.sourceforge.net

2 Finnish Morphology

We present some aspects of Finnish inflectional and compounding morphology
that may be problematic for statistical tagging in Sections 2.1 and 2.2. For a more
thorough introduction to Finnish morphology, see Karlsson [5], and for an im-
plementation of computational morphology, see Koskenniemi [6]. In Section 2.2,
we present an outline of how to implement the morphology in sublexicons which
are useful for weighting.

2.1 Inflection in Finnish

In Finnish morphology, the inflection of typical nouns produces several thousands
of forms for the productive inflection. E.g. a noun has more than 12 cases in
singular and plural as well as possessive suffixes and clitic particles resulting in
more than 2000 forms for every noun.

Mostly the traditional linguistically motivated morphological analysis of Finn-
ish is based on visible morphemes. However, for illustrational purposes we will
discuss two prototypical cases where the analysis needs context. One such case
is where a possessive suffix overrides the case ending to create ambiguity: taloni
’my house/of my house/my houses’, i.e. either talo ’house’ nominative singular,
talon ’of the house’ genitive singular or talot ’houses’ nominative plural followed
by a possessive suffix. This ambiguity is systematic, so either the distinctions
can be left out or one can create a complex underspecified tag +Sg+Nom/-
+Sg+Gen/+Pl+Nom for this case.

Another case, which is common in most languages, is the distinction between
nouns or adjectives and participles of verbs. This often affects the choice of base-
form for the word, i.e. the baseform of ’writing’ is either a verb such as ’write’
or a noun such as ’writing’. In Finnish, we have words like taitava ’skillful Ad-
jective’ or ’know Verb Present Participle’ and kokenut ’experienced Adjective’
or ’experience Verb Past Participle’. Since the two readings have different base-
forms, it is not be possible to defer the ambiguity to be resolved later by using
underspecification. In some cases, one of the forms is rare and can perhaps be
ignored with a minimal loss of information, but sometimes both occur regularly
and in overlapping contexts, in which case both forms should be postulated and
eventually disambiguated. However, sufficient information for doing this reliably
may not be available before some degree of syntactic or semantic analysis.

In Sections 5 and 6, we will return to the significance of these problems in
Finnish and their impact on the morphological disambiguation.

2.2 Compounding in Finnish

Finnish compounding theoretically allows nominal compounds of arbitrary length
to be created from initial parts of certain noun forms. The final part may be
inflected in all possible forms.

Normal inflected Finnish noun compounds correspond to prepositional phrases
in English, e.g. ostoskeskuksessa ’in the shopping center’. The morphological

analysis in Finnish of the previous phrase into ostos#keskus+N+Sg+Ine cor-
responds in English to noun chunking and case analysis into ’shopping center
+N+Sg+Loc:In’.

In extreme cases, such as the compounds describing ancestors, nouns are
compounded from zero or more of isän ‘father singular genitive’ and äidin
‘mother singular genitive’ and then one of the inflected forms of isä or äiti
creating forms such as äidinisälle ‘to (maternal) grandfather’ or isänisänisänisä
‘great great grandfather’. As for the potential ambiguity, Finnish also has the
noun nisä ‘udder’, which creates ambiguity for any paternal grandfather, e.g.
isän#isän#isän#isä, isän#isä#nisän#isä, isä#nisä#nisä#nisä, ...

Finnish compounding also includes forms of compounding where all parts of
the word are inflected in the same form, but this is limited to a small fraction
of adjective initial compounds and to the numbers if they are spelled out with
letters. In addition, some inflected verb forms may appear as parts of compounds.
These are much more rare than nominal compounds [4] so they do not interfere
with the regular compounding.

2.3 Finnish Computational Morphology

Pirinen [10] presented an open source implementation of a finite state morpho-
logical analyzer for Finnish, which has been reimplemented with the HFST tools
and extended with data collected and classified by Listenmaa [8]. We use the
reimplemented and extended version as our unweighted lexicon. Pirinen’s an-
alyzer has a fully productive noun compounding mechanism. Fully productive
noun compounding means that it allows compounds of arbitrary length with
any combination of nominative singulars, genitive singulars, or genitive plurals
in the initial part and any inflected form of a noun as the final part.

The morphotactic combination of morphemes is achieved by combining sub-
lexicons as defined in [2]. We use the open source software called HFST-LexC
with a similar interface as the Xerox LexC tool. The interested reader is referred
to [2] for an exposition of the LexC syntax. The HFST-LexC tool extends the
syntax with support for adding weights on the lexical entries.

We note that the noun compounding can be decomposed into two concate-
natable lexicons separated by a word boundary marker, i.e. any number of noun
prefixes CompoundNonFinalNoun∗ in Figure 1 separated by ’#’ and from the
inflected noun forms CompoundFinalNoun in Figure 2. Similar decompositions
can be achieved for other parts of speech as needed. For a further discussion of
the structure of the lexicon, see [7].

3 Methodology

Assume that we want to know the probability of a morphological analysis with
a morpheme segmentation A given the token a, i.e. P(A|a). According to Bayes
rule, we get Equation 1.

LEXICON Root
CompoundNonFinalNoun ;
#;

LEXICON Compound
#:0 CompoundNonFinalNoun;
#:0 #;

LEXICON CompoundNonFinalNoun
isä Compound "weight: 0, gloss: father" ;
isän Compound "weight: 0, gloss: father’s" ;
äiti Compound "weight: 0, gloss: mother" ;
äidin Compound "weight: 0, gloss: mother’s" ;

Fig. 1. Unweighted fragment for {CompoundNonFinalNoun}∗ i.e. noun prefixes.

LEXICON Root
CompoundFinalNoun ;

LEXICON CompoundFinalNoun
isä:isä+sg+nom ## "weight: 0, gloss: father" ;
isän:isä+sg+gen ## "weight: 0, gloss: father’s" ;
isälle:isä+sg+all ## "weight: 0, gloss: to the father" ;

LEXICON ##
;

Fig. 2. Unweighted fragment for CompoundFinalNoun, i.e. noun forms.

P(A|a) = P(A, a)/P(a) = P(a|A)P(A)/P(a) (1)

We wish to retain only the most likely analysis and its segmentation A. As
we know that P(a|A) is almost always 1, i.e. a word form is known when its
analysis is given. Additionally, P(a) is constant during the maximization, so the
expression simplifies to finding the most likely global analysis A as shown by
Equation 2, i.e. we only need to estimate the output language model.

arg max
A

P(A|a) = arg max
A

P(a|A)P(A)/P(a) = arg max
A

P(A) (2)

In order to find the most likely segmentation of A, we can make the additional
assumption that the probability P(A) is proportional to the product of the prob-
abilities P(si) of the segments of A, where A = s1s2...sn, defined by Equation 3.
This assumption based on a unigram language model of compounding has been
demonstrated by Lindén and Pirinen [7] to work well in practice.

P(A) ∝
∏
si

P(si) (3)

3.1 Estimating probabilities

The estimated probability of a token, a, to occur in the corpus is proportional to
the count, c(a), divided by the corpus size, cs. The probability p(a) of a token

in the corpus is defined by Equation 4. We also note that the corpus estimate
for p(a) is in fact an estimate of the sum of the probabilities of all the possible
analyses and segmentations of a in the corpus.

p(a) = c(a)/cs (4)

Tokens x known to the original lexicon but unseen in the corpus need to be
assigned a small probability mass different from 0, so they get c(x) = 1, i.e. we
define the count of a token as its corpus frequency plus 1 as in Equation 5, also
known as Laplace smoothing.

c(a) = 1 + frequency(a) (5)

3.2 Weighting the Lexicon

In order to use the probabilities as weights in the lexicon, we implement them
in the tropical semiring, which means that we use the negative log-probabilities
as defined by Equation 6.

w(a) = −log(p(a)) (6)

In the tropical semiring, probability multiplication corresponds to weight ad-
dition and probability addition corresponds to weight maximization. In HFST-
LexC, we use OpenFST [1] as the software library for weighted finite-state
transducers.

LEXICON Root
CompoundNonFinalNoun ;
CompoundFinalNoun ;

LEXICON Compound
0:# CompoudNonFinalNoun;
0:# CompoudFinalNoun;

LEXICON CompoundNonFinalNoun
isä Compound "weight: -log(c(isä)/cs)" ;
isän Compound "weight: -log(c(isän)/cs)" ;
äiti Compound "weight: -log(c(äiti)/cs)" ;
äidin Compound "weight: -log(c(äidin)/cs)" ;

LEXICON CompoundFinalNoun
isä+sg+nom ## "weight:-log(c(isä+sg+nom)/cs)" ;
isä+sg+gen ## "weight:-log(c(isä+sg+gen)/cs)" ;
isä+sg+all ## "weight:-log(c(isä+sg+all)/cs)" ;
isä+pl+ins ## "weight:-log(c(isä+sg+all)/cs)" ;

LEXICON ##
;

Fig. 3. Structure weighting scheme using token penalties on the output language. Note
that the functions in the comment field are placeholders for the actual weights.

For short, we call our unweighted compounding lexicon, Lex, and the decom-
posed noun compounding lexicon parts, i.e. the noun prefixes CompoundNon-
FinalNoun∗ in Figure 1 and the inflected noun forms CompoundFinalNoun in
Figure 2, Pref and Final, respectively.

For an illustration of how the weighting scheme can be implemented in the
weighted output language model, WLex, of the noun compounding lexicon, see
Figure 3. There is an obvious extension of the weighting scheme to the output
models of the decomposed unweighted lexicons, Pref and Final. We call these
weighted output language models WPref and WFinal, respectively.

3.3 Back Off Model

The original lexicon, Lex, can be weighted by composing it with the weighted
output language, WLex, as in Equation 7. However, there are a number of word
forms and compound segments in the lexicon, for which no estimate is available
in the corpus. We wish to assign a large weight to these forms and segments, i.e. a
weight M which is greater than any of the weights estimated from the corpus, e.g.
M = log(1+cs). To calculate the missing words, we first use the homomorphism
uw to map the WPref to an unweighted automata, which we subtract from Σ∗

and give the output model the final weight M using the homomorphism mw.
We create the following new sublexicons using automata difference and com-

position with the original decomposed transducers in Equations 8 and 9.

KnownAndSeenWords = Lex o WLex (7)
MaxUnseenPref = Pref o (mw(Σ∗ − uw(WPref))) (8)
MaxUnseenFinal = Final o (mw(Σ∗ − uw(WFinal))) (9)

These sublexicons can be combined as specified in Equation 10 to cover the
whole of the original lexicon.

WeightedLexicon = KnownAndSeenWords | Pref MaxUnseenFinal

| MaxUnseenPref F inal | MaxUnseenPref MaxUnseenFinal (10)

The WeightedLexicon will assign the lowest corpus weight to the most likely
reading and the highest corpus weight to the most unlikely reading of the original
lexical transducer.

4 Data Sets

As training and test data, we use a compilation of three years, 1995-1997, of daily
issues of Helsingin Sanomat, which is the most wide-spread Finnish newspaper.
We disambiguated the corpus using Machinese for Finnish2 which provided one
reading in context for each word using syntactic parsing. This provided us with
a mechanically derived standard and not a human controlled gold standard.
2 Machinese is available from Connexor Ltd., www.connexor.com

4.1 Training Data

The training data actually spanned 2.5 years with 1995 and 1996 of equal size
and 1997 only half of this. This collection contained approximately 2.4 million
different words, i.e. types, corresponding to approximately 70 million words of
Finnish, i.e. tokens, divided into 29 million tokens for 1995, 29 for 1996 and 11
for 1997. We used the training data to count the non-compound tokens and their
analyses.

4.2 Test Data

From the three years of training data we extracted running text from compara-
ble sections of the news paper data. We chose articles from the section reporting
on general news with normal running text (as a contrast to e.g. the economy or
sports section with significant amounts of numbers and tables). The extracted
test data sets contained 118 838, 134 837 and 193 733 tokens for 1995, 1996 and
1997, respectively. We used the test data to verify the result of the disambigua-
tion.

4.3 Baseline

As a baseline method, we use the training data as such to create statistical
unigram taggers as outlined in Section 3. In Table 1, we show the baseline result
for the test data samples with a given training data tagger, the number of tokens
with 1st correct reading, the number of tokens with some other correct reading,
the number of tokens with some readings but no correct and the number of
tokens with no reading. The first correct results are at approximately 97 % of
the tokens with some correct analysis. We also include the results of testing and
training with data from the same year as an upper reference limit.

Table 1. Baseline of the tagger test data.

Train Test 1st nth No No Comment
Year Year Correct (%) Correct (%) Correct (%) Analysis (%)
1995 1995 96.3 3.7 0.0 0.0 Max.
1995 1996 92.2 3.3 0.3 4.1
1995 1997 91.9 3.3 0.3 4.6
1996 1995 91.9 3.4 0.4 4.5
1996 1996 96.4 3.6 0.0 0.0 Max.
1996 1997 92.4 3.2 0.3 4.1
1997 1995 89.6 3.3 0.5 6.6
1997 1996 90.1 3.2 0.4 6.2
1997 1997 96.7 3.3 0.0 0.0 Max.

5 Tests and Results

We created two versions of the weighted lexicon for disambiguating running text.
One weights the lexicon using the current corpus and tests the result using only

the weighted lexicon data. The second test adds the baseline tagger to the lexicon
in order to ensure additional domain specific data for lack of a guesser.

5.1 Lexicon-based Unigram Tagger

We did our first tagging experiment using a full year of news paper articles
as training data for the lexicon and testing with the test data from the other
two years. The first correct results are consistently at 98 % of the tokens with
some correct analysis. However, the coverage is dependent on the still somewhat
restricted lexicon as shown in Table 2.

Table 2. Lexicon-based unigram tagger results for Finnish.

Train Test 1st nth No No Comment
Year Year Correct (%) Correct (%) Correct (%) Analysis (%)
1995 1995 68.2 1.2 12.0 18.5 Max.
1995 1996 69.4 1.3 12.0 17.3
1995 1997 69.4 1.4 11.7 17.5
1996 1995 67.9 1.4 12.0 18.5
1996 1996 69.7 1.0 12.0 17.3 Max.
1996 1997 69.4 1.3 11.7 17.5
1997 1995 67.9 1.6 12.0 18.5
1997 1996 69.4 1.3 12.0 17.3
1997 1997 69.6 1.3 11.7 17.5 Max.

5.2 Extended Lexicon-based Unigram Tagger

We did our second tagging experiment with the addition of using the full year of
news paper data for extending the lexicon. Again, we tested with the test data
from the other two years. The first correct results are still at approximately
96 % of the tokens with some correct analysis. The coverage is now considerably
better as shown in Table 3.

Table 3. Extended lexicon-based unigram tagger results for Finnish.

Train Test 1st nth No No Comment
Year Year Correct (%) Correct (%) Correct (%) Analysis (%)
1995 1995 95.9 4.1 0.0 0.0 Max.
1995 1996 93.3 4.0 0.7 2.0
1995 1997 93.1 4.0 0.6 2.3
1996 1995 92.9 4.0 0.7 2.2
1996 1996 96.1 3.9 0.0 0.0 Max.
1996 1997 93.6 3.7 0.6 1.9
1997 1995 91.6 4.1 1.0 3.2
1997 1996 92.1 3.9 0.9 3.1
1997 1997 96.3 3.7 0.0 0.0 Max.

6 Discussion and Further Research

In this section we analyze the errors for which the correct tag sequence was not
first, for which there was no correct tag sequence and for which there was no
analysis at all presenting the most common by tag sequences or tokens. Finally,
we make some general observations.

6.1 Correct Tag not 1st in Analysis

The cases where the correct tag is not the first are dominated by the already
known ambiguities where a token has multiple readings and the minority read-
ing is somewhat frequent in the corpus. One big class of these is the auxiliary
verb olla ’to be’, since in the passive perfect tense the auxiliary is analyzed
to carry the passive tense of the verb chain (e.g. on kerrottu ‘has been told’
olla+pass+ind+pres kerrottu+pass+pcp2) while the most likely reading of on
’is’ is olla+act+ind+pres+sg3). This contributes 0.3 % to the errors. Also the
ambiguity between a lexicalized adjective reading and a possible participle read-
ing results in a number of erroneous choices contributing 0.3 % to the errors. For
many tokens the variation between adverb and adposition is purely syntactical,
so a unigram tagger will fail in the minority cases contributing 0.3 % to the
errors. A final major source of ambiguity was the interpretation of capitalized
words as proper nouns contributing another 0.3 % to the error rate. For a hand-
ful of verbs, the first infinitive form coincides with 3rd person singular present
tense (e.g. järjestää ’to arrange/(he) arranges’) which causes problems for the
unigram tagger. These and other remaining morphosyntactic ambiguties each
contributes less than 0.1 % to the error rate.

6.2 Analyses without Correct Tag

This category is mostly a problem for the lexicon-based tagger and as such
an indication of how much relatively high-frequent data, we are still lacking in
the current lexicon. The fact that we still get a fair amount of analyses without
correct tags in the lexicon-based analyser can be attributed to a relatively liberal
compounding mechanism that sees compounds where they were not intended.

In the reference corpus, there is a handful of underspecified analyses, i.e.
combined tags, which are not produced by the lexicon-based analyzer. For some
adverbs and adpositions that are inflected forms of nouns, the lexicon only con-
tains the non-lexicalised forms. There is also some overlap with the cases men-
tioned in the previous subsection, whe the alternate reading for an ambiguous
form is not in the lexicon.

6.3 No Analysis

For the lexicon-based tagger, the tokens which mainly dominate the missing
analyses are proper nouns, abbreviations and numbers, which are known short-
comings of the analyzer. For the other analyzers, i.e. the baseline analyzer and

the extended lexicon analyzer, the main problems are proper nouns and infre-
quent numbers. As the lexicon-based analyzer lacks productive numeral forma-
tion, many complex numeral expressions (e.g. 5—15-vuotiaat ‘5-to-15-year-olds’)
are missing in addition to specific numbers (e.g. 4029354).

6.4 Other Observations

The error analysis indicated that, when training and testing with different years,
the compounds contributed on the average 2.0 % to the overall error rate in the
baseline analysis, 1.4 % in the lexicon-based analysis and 0.6 % in the extended
lexicon analysis. For further discussions on the similarities and differences be-
tween Finnish, German and Swedish compounding, see [7].

If a disambiguated corpus is not available for calculating the word analy-
sis probabilities, it is still possible to use only the string token probabilities to
disambiguate the compound structure without saying anything about the most
likely morphological reading. This segmentation would be similar to the segmen-
tation the Morfessor software [3] tries to discover in an unsupervised way from
corpora alone.

The encouraging results for statistical morphological disambiguation of Finn-
ish with a full morphological tag set using only a unigram model is most likely
the result of the highly inflectional and compounding morphology of Finnish
with free word order. In order for a language to achieve a free word order,
morphological ambiguities have to be resolvable locally almost without context.

As the inflected Finnish compounds correspond to noun phrases or preposi-
tional phrases in English, this also sheds some additional light on the supposedly
free word order in Finnish, which is similar to the phrase ordering in many other
languages, i.e. similar changes in the topic of a clause occurs in Finnish when
shifting a phrase e.g. to a clause initial position.

7 Conclusions

We demonstrated how to build a weighted lexicon for a highly inflecting and
compounding Fenno-Ugric language like Finnish. Similar methods apply to a
number of Germanic languages with productive morphological compounding.
From a practical point of view, we introduced the open source command line
tools of HFST and used them successfully for compiling a weighted lexicon.
We applied the weighted lexicon as a unigram tagger of running Finnish text
achieving 96-98 % precision on words in the vocabulary. The unigram tagger is
a good baseline when tagging morphologically complex languages like Finnish
and for some purposes it may even be sufficient as such. In addition, it is easy
to implement if a full-fledged morphological analyzer and a training corpus is
available. For unknown foreign words and names, a guesser and an n-gram tagger
may still be necessary.

Acknowledgments

This research was funded by the Finnish Academy and the Finnish Ministry of
Education. We are also grateful to the HFST–Helsinki Finite State Technology
research team and to the anonymous reviewers for various improvements of the
manuscript.

References

1. Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar
Mohri. 2007. OpenFst: A General and Efficient Weighted Finite-State Transducer
Library. In Proceedings of the Ninth International Conference on Implementa-
tion and Application of Automata, (CIAA 2007), volume 4783 of Lecture Notes in
Computer Science, pages 11–23. Springer. http://www.openfst.org.

2. Kenneth R. Beesley and Lauri Karttunen. 2003. Finite State Morphology. CSLI
Publications. http://www.fsmbook.com.

3. Mathias Creutz, Krista Lagus, Krister Lindén, Sami Virpioja. 2005. Morfessor and
Hutmegs: Unsupervised Morpheme Segmentation for Highly-Inflecting and Com-
pounding Languages. In Proceedings of the Second Baltic Conference on Human
Language Technologies.

4. Auli Hakulinen, Maria Vilkuna, Riitta Korhonen, Vesa Koivisto, Tarja Riitta
Heinonen, and Irja Alho. 2008. Iso suomen kielioppi. Suomalaisen Kirjallisuuden
Seura. referred on 31.12.2008, available from http://scripta.kotus.fi/visk.

5. Fred Karlsson. 1999. Finns - An Essential Grammar. Routledge. London. First
published 1983 as Finnish Grammar.

6. Kimmo Koskenniemi. 1983. Two-Level Morphology: A General Computational
Model for Word Form Generation and Recognition. Publication No. 11. Publica-
tions of the Department of General Linguistics. University of Helsinki.

7. Krister Lindén and Tommi Pirinen. 2009. Weighted Finite-State Morphological
Analysis of Finnish Compounding with HFST-LexC. In Proceedings of NoDaLiDa
2009.

8. Inari Listenmaa. 2009. Combining Word Lists: Nykysuomen sanalista,
Joukahainen-sanasto and Käänteissanakirja (in Finnish). Bachelor’s Thesis. De-
partment of Linguistics. University of Helsinki.

9. Torsten Marek. 2006. Analysis of German Compounds using Weighted Finite State
Transducers. Technical report, Eberhard-Karls-Universität Tübingen.

10. Tommi Pirinen. 2008. Suomen kielen äärellistilainen automaattinen morfologinen
analyysi avoimen lähdekoodin keinoin. Master’s thesis, Helsingin yliopisto.

11. Anne Schiller. 2005. German Compound Analysis with wfsc. In FSMNLP, pages
239–246.

