
HFST Runtime Format - A Compacted

Transducer Format Allowing for Fast Lookup

Miikka Silfverberg and Krister Lindén

University of Helsinki
Helsinki, Finland

miikka.silfverberg,krister.linden@helsinki.fi

Abstract. Lexical transducers form part of most language-aware appli-
cations, which means that less time spent on lexical lookup will have
wide-ranging effects. The efficiency of a morphological analyzer stems
mainly from the properties of the underlying transducer, but the way
its transition sets are represented also plays a large role, since this de-
termines how efficiently transitions can be accessed. We consider three
principal ways to represent transition sets leading to three different trans-
ducer formats. We call them the linked list model, the ordered array
model and the random access model. As test material for evaluating
the speed allowed by the formats, we use two full-fledged morphologi-
cal descriptions: Morphalou for French, which is a full-form morpholog-
ical lexicon resulting in an acyclic transducer, and the Divvun lexicon

for Northern Sámi, which is a morphological description with a pro-
ductive compounding mechanism resulting in a cyclic transducer. Both
have sufficient coverage to be used in real applications. The random ac-
cess model using Liang compaction implemented in the HFST−Helsinki

Finite-State Technology runtime is the fastest and achieves a through-
put of 119 000-408 000 w/s on running text with a moderate memory
consumption.

1 Introduction

Lexical transducers form part of most language-aware applications which means
that less time spent on lexical lookup will have wide-ranging effects. Especially
when continuously processing large amounts of data, the speed of lexical access
becomes essential, e.g. indexing large amounts of text for information retrieval,
or for on line processing of document collections for data-mining purposes. The
efficiency of a morphological analyzer stems mainly from the properties of the
underlying transducer (e.g. whether its input side is deterministic), but the way
its transition sets are represented also plays a large role, since this determines
how efficiently transitions can be accessed.

We consider three principal ways to represent transition sets leading to three
different transducer formats. We call them the linked list model, the ordered
array model and the random access model according to the kind of access they
allow. All are well known in literature, see e.g. [5]. The linked list model rep-
resents transition sets as linked lists. This allows for easy modification of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14922744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

transducer, but it makes lookup slow requiring linear time according to the
number of transitions of a state. The ordered array model represents the transi-
tions of each state in an array sorted according to the input symbol. This allows
using binary search to find transitions requiring only logarithmic lookup time.
The random access model makes it possible to find transitions for a given input
symbol in a state in constant time. A drawback of this format is that the trans-
ducers may require a lot of space unless properly compacted1. Further properties
of the formats are discussed in Section 2.

Kiraz [4] describes both the ordered array and random access models for
finite-state automata (FSAs), but he does not consider any method for space
reduction for the the random access model. Liang [7] describes a compacted ran-
dom access model for FSAs when storing lexicons for the hyphenation algorithm
of the TEX82 typesetting system. Tarjan and Yao [11] and Aho and Ullman [1]
describe similar compactifications. Liang’s compaction for FSAs is not directly
applicable to finite-state transducers (FSTs). We can, however, modify the ran-
dom access model for FSAs by factoring the transducer into a deterministic input
acceptor (i.e. an FSA) and a (possibly non-deterministic) array of transitions.
This forms the basis for the HFST runtime format. The space requirement of
the input acceptor in random access format can be reduced considerably using
the Liang compaction. We note that the transitions in the transition array can
be stored densely as they are indexed by the input acceptor and each output
always needs to be considered for a particular input. We make one additional
optimization, i.e. states with transitions with one single input symbol only need
to be represented in the transition array. Additional details of the HFST runtime
format are presented in Section 3.

As all HFST tools the runtime format and drivers are utf-8 compatible.

We evaluate the speed allowed by the formats using two full-fledged mor-
phological descriptions described in section 4: the full-form lexicon Morphalou
for French, and the Divvun lexicon for Northern Sámi, which has a productive
compounding mechanism. In evaluation HFST runtime format represents the
random access format. The HFST standard format used in the HFST finite-
state calculus tools represents the linked list format with unordered transition
lists. The compact format of Stuttgart Finite-State Transducer Tools (SFST)
[10] represents an ordered array transducer similar to the one presented by Kiraz
[4]. For a comparison of their speed and memory consumption, see Section 5

2 Sketches of Three Different Transducer Formats

We consider three different transducers formats: the linked list format, the or-
dered array format and the random access format. All of the transducer formats
share two aspects, which are central for our needs. They can easily represent

1 We use the terms packing for sequentially storing items in an archive, compacting

for storing by removing empty or redundant space and compressing for storing by
encoding with fewer bits

both deterministic and non-deterministic transducers and they require minimal
changes in order to allow for weights in transitions and final states.

Linked list transducers are easy to modify and to maintain. Adding and
removing states and transitions is fast. Hence their main use is during construc-
tion of transducers, whereas they are comparatively slow for runtime lookup
purposes. The HFST standard format represents the linked list format.

In comparison to linked list transducers, ordered array transducers are rigid.
Since ordered array transducers build on an array structure, adding or remov-
ing transitions and states may require some extra work. Adding and removing
transitions and states is efficient only near the end of the array. Instead trans-
ducers in the ordered array format allow for fast load times. Analysis is fast as
well, since suitable transitions may be found using a binary search algorithm.
The Stuttgart Finite-State Transducer Tools (SFST) compact format (Schmidt
[10]) represents the ordered array format with some additional optimizations,
which reduce the size of the transducer binaries. The ordered array format and
its possible optimizations are more thoroughly described by Kiraz [4].

The random access format represents a further optimization for lookup time
in transducers. Transducers in the random access format represent all states
as equal length random access arrays. The arrays may be indexed, using the
symbols in the input alphabet of the transducer. Indexing the array with an
input symbol gives an address to the set of transitions of the state, with that
input symbol. A special address ∅ is reserved to signify an empty transition
set in case the state doesn’t have transitions with a given input symbols. The
relevant transitions for a given input symbol may always be found in constant
time regardless of the number of transitions in a state. The down-side of constant
time transition recovery is the huge size of the transducer, since every input
symbol in the input alphabet requires an entry in every state of the transducer.
Fortunately, the space requirement may be dramatically reduced with little or
no effect on lookup speed using a technique first introduced by Liang [7] for
compacting lexicon automata used in hyphenation. The HFST runtime format2

represents a compacted version of the random access format, where empty space
in one state may be reused for storing input symbol entries of another state
under certain conditions. We describe the compacted format in section 3.

2.1 The Linked List Format

Transducers in the linked list format are sets of states. Each state is a structure
having a unique address, a bit indicating finality and a set of transitions. If
the transducer is weighted, the binary finality-bit is replaced by a final weight
from the relevant weight semi-ring. Each transition consists of a label and a
target state address. If the transducer is weighted, the transitions also include a
transition weight.

The transition sets are represented as a linked list. Since it is fast to add new
transitions to a linked structures, the transition sets in linked list transducer can

2 https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstRuntimeBinaryFormat

easily be modified either by insertion or deletion. Lookup among the transitions
requires iteration through all transitions until a transition with the correct input
symbol is found. Even if the transitions are sorted, all of them need to be checked
in the worst case. Lookup in a state with n transitions is O(n).

An optimized version of the linked list format represents the transitions sets of
each state as vectors, which allows for binary search of transitions. Hence lookup
in a state with n transitions in the optimized version is O(log n). Removing
transitions can be done by marking them as deleted, but adding new transitions
either requires shifting the old transitions towards the end of the transition
vector in order to maintain the sorting for an efficient lookup, or adding new
transitions at the end of the transition vector and periodically sorting.

2.2 The Ordered Array Format

The ordered array format represents transducers in a few large arrays. The tran-
sition array, stores all transitions in the transducers. The transitions for each
state occupy a dense sub-array in the transition array. The transitions are sorted
according to input symbol in order to allow binary search. Lookup in a state with
n transitions is O(log n). Transitions consist of input and output symbols as well
as pointers to a second array, the state array, which stores the index of the first
transition of each state in the transition array. A third array stores the finality
bits of the states.

Modifying an ordered array transducer in any way is generally inefficient but
both loading the transducer into memory and lookup of forms are fast. Loading
is fast, since the entire transducer can be read into memory in one read operation
and it can be used directly. The ordered array format is mainly used for runtime
lookup applications.

Bit-level compression techniques may be used to reduce the size of ordered
array transducers on hard-drive as explained by Kiraz [4]. Weights may be added
e.g. by adding a weight array in parallel to the transition array and replacing
the array for finality bits with an array of final weights.

2.3 The Random Access Format

In the random access format the transitions of a state are stored in an array
having one entry for every input symbol in the input alphabet of the transducer.
If the state has transitions with a given symbol, its entry contains a pointer to
a set of transitions with that input symbol, otherwise the entry is ∅. The first
entry in the input symbol array codes finality.

The transitions with an input symbol a in a state are found by indexing the
input symbol array of that state with symbol a. Lookup of transitions is therefore
O(1) w.r.t. the number of transitions in a state. The downside of constant time
transition access is the large size of the transducer. For a transducer with input
alphabet Σ and state set Q, the input symbol array occupies |Σ|× |Q|×p bytes,
where p is the size of the pointer to the transition array. E.g. a lexical transducer
with 150 000 states and 100 input symbols, where the pointers occupy 4 bytes,

needs approximately 57 MB in order to store the input symbol arrays (1 MB is
1024 × 1024 bytes). In addition it also needs to store the actual transitions.

Both Liang and Kiraz note that linguistic transducers have far less tran-
sitions than they could have in theory. Accordingly most space in the random
access transducers is taken by ∅ pointers. The transducers can be compacted con-
siderably, using an algorithm by Liang, whilst maintaining random access. The
compactification makes the transducer very hard to modify, so the compressed
random access format is mainly suited as an end storage format for transducers
which need not be modified (e.g. lexical transducers).

3 The HFST Runtime Format

The HFST Runtime Format combines the constant time requirement for finding
transitions, in a random access transducer, with a compaction technique, which
reduces the size of the transducer almost to the same level as a linked list trans-
ducer. We first factor the transducer into a deterministic finite state acceptor
and a transition array. The finite state acceptor is then coded as a compacted
random access automaton.

The factoring of a state p′ in the original transducer is illustrated in Table 1.
Every state p′ in the original transducer corresponds directly to a state p in the
acceptor. The acceptor has one transition for each input symbol of state p′. A
transition with input symbol a in the acceptor corresponds to a set of transitions
in the transition array (the transitions at indices q and q + 1 in Table 1). All
the transitions with input symbol a in the state p′ of the original transducer are
stored contiguously in the transition array beginning at index q.

Table 1. The state p′ in the original acceptor (above), the state p in the input acceptor
(middle) and the corresponding transition array (below)

p′

a:a a:b c:c

p

a: q . . . c: q + 2 . . .

q q + 1 q + 2

. . . a:a s1 a:b s2 c:c s2 . . .

E.g. the state p′ corresponding to the acceptor state p in Table 1 has transi-
tions with input symbols a and c. There are 2 transitions with input symbol a

in state p corresponding to a state p′ in the original transducer. The transitions
with symbol a can be found at index q in the transition array and the transitions
with input symbol c can be found at index q + 2 in the transition array.

3.1 The Transition Index Array

For input symbols with transitions, the corresponding entry in the acceptor is
an index of the transition array. The acceptor in the random access format has
entries ∅ for input symbols without corresponding transitions. This is illustrated
in in Table 2. We interchangeably call the acceptor a transition index array.

Table 2. The state p in the input acceptor, i.e. transition index array, (above) and the
corresponding transition array (below)

p:

a: q b: ∅ c: q + 2 d: ∅

q q + 1 q + 2

. . . a:a s1 a:b s2 c:c s2 . . .

If we follow the example in Table 2, and store the input symbol together
with the pointer to the relevant transition set, in each state and for each input
symbol, we may utilize the entries with pointer ∅ in the transition index array
for overlaying symbol pointer pairs of other states. Doing this, we can compact
the transition index array considerably.

We observe that indexing with a in state p in Table 2 gives the symbol a

and the index q. Indexing with b gives the symbol b and the empty index ∅,
which signifies that there are no transitions for the input symbol b. We also
observe that another way to signify the lack of transitions is to mark the symbol
b as something else, e.g. a or c. These two observations permit the overlaying
of states in the transition index array, which is the compacted random access
format suggested by Liang.

Table 3. The state v in the input acceptor

v:

a : w b: ∅ c: ∅ d: w + s

The state v in Table 3 only has transitions with input symbols a and d. The
states p and v in the input acceptor can be compacted without losing information
about their transitions, as shown in Tables 4 and 5, by letting the states partially
overlap.

After compaction, indexing with symbols a or c in state p still gives the
input symbols back and the relevant transition indices. Indexing with b gives
input symbol a, which signifies that the index obtained w does not belong to

Table 4. The states p and v in the input acceptor

p:

a: q b: ∅ c: q + r d: ∅
v:

a : w b: ∅ c: ∅ d: w + s

Table 5. The partially overlapping states p and v still contain all necessary information
to find the transitions in the transition index array.

p:

v:

a: q a : w c: q + r c: ∅ d: w + s

state p. Indexing with d gives the input symbols c. Again we know that state p

has no transitions with input symbol d.
Similarly we see that the transitions for the state v are preserved in the com-

paction. In fact, it is easy to see that transitions are never lost or misinterpreted
provided that two states do not begin at the same index and two positions in
the transition index array corresponding to original transitions are not super-
imposed.

With compaction, the ability to change the transition sets of states is severely
limited, hence the compacted random access format is not suited for transducers,
whose states need to be modified. The HFST runtime format is intended to be
used as the end format of a morphological analyzer, but it can also be used for
other lexical lookup applications like stemmers and translation dictionaries.

3.2 The Transition Array

Compacted random access transducers and ordered array transducers have al-
most identical transitions arrays. The difference is that in the ordered array
format, there is no additional array indicating the boundaries between states
in the compacted random access format. Hence the transitions of two adjacent
states need to be separated, e.g. by a ∅ transition.

To see why the separating transition is needed, consider the fragment of a
transition array in Table 6. The transitions at indices q − 2 and q − 1 belong
to one state and the transitions at q + 1 belong to another. If there were no
∅ transitions between the transitions beginning at indices q − 2 and q + 1, the
transitions beginning at q + 1 would be mistaken for a continuation of the tran-
sitions beginning at q − 2, since the input symbol a for the transitions at q − 2
and q − 1 is the same as the input symbol for the first transitions at q + 1. A ∅
transition always delimits the search for further transitions of a state.

As an optimization, states with a single input symbol may be omitted in the
transition index array. Transitions to such states point directly to an index in

Table 6. Two adjacent states in a transition array with the same input symbol in
neighboring transitions need to be separated by a ∅ transition.

q − 2: q − 1: q q + 1:

. . . a:a pn−1 a:b pn ∅:∅ ∅ a:a r0 . . .

the transition array instead of an index in the transition index array like other
transitions. The states which are omitted need to code for finality vs. non-finality
in the transition array itself. The ∅ transition preceding the state is used for this
purpose. The input and output symbols are still ∅, but the transition index is 1
if the state is final and ∅ otherwise.

By reserving some extra space, weights may be associated with transitions.

3.3 An Example of a Compacted Transducer in HFST format

6 7

s:+PL

0:+Sg

d o

ac

g

t

0
1 2

3 4
5

0:+N

Fig. 1. A very small morphological analyzer T with input alphabet Σ =
{0, a, c, d, g, o, s, t}

We give the transition index array and transition array (in Table 7) for
transducer T in Figure 1. States 0 and 6 have entries both in the index array
and the transition array, since they have transitions with more than one input
symbol. We use roman numerals to index the transition index array and Arabic
numerals to index the transition array.

4 Test Data

Our test material consists of two morphological analyzers, one for French and
the other for Northern Sámi together with text-corpora to be analyzed. The
morphological analyzer for French was converted to a Xerox LexC lexicon de-
scription format from an existing XML lexicon Morphalou3 and compiled using
HFST-LexC

4. It recognizes some 550 000 word-forms. There is no produc-
tive compounding mechanism. The resulting transducer is acyclic. The mor-
phological analyzer for Sámi was compiled from a Xerox LexC lexicon descrip-
tion and TwolC two-level morphology grammar description using HFST-LexC

3 http://www.cnrtl.fr/lexiques/morphalou/
4 https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstLexC

Table 7. The first two rows show the index arrays of states 0 and 6 of T . Below them
are the compacted index array and transition array for the transducer in Figure 1.

∅ ∅ 0: ∅ a: ∅ c: 0 d: 1 g: ∅ o: ∅ s: ∅ t: ∅
∅ ∅ 0: 13 a: ∅ c: ∅ d: ∅ g: ∅ o: ∅ s: 14 t: ∅

The transition index array of T :

∅ ∅ 0: ∅ a: ∅ c: 0 d: 1 0: 13 a: ∅ c: ∅ d: ∅ g: ∅ o: ∅ s: 14 t: ∅

I II III IV V VI VII VIII IX X XI XII XIII

The transition array of T :

c:c 2 d:d 6 ∅ ∅ a:a 4 ∅ ∅ t:t 10 ∅ ∅ o:o 8 ∅ ∅
0 1 2 3 4 5 6 7 8

g:g 10 ∅ ∅ 0:+N V ∅ ∅ 0:+Sg 15 s:+Pl 15 ∅ 1

9 10 11 12 13 14 15

and HFST-TwolC5. The lexicon and grammar were developed by the Divvun
project6. The LexC lexicon contains some 105 000 entries. The analyzer also has a
productive compounding mechanism, which means that the resulting transducer
is cyclic. Regarded as automata with pair-labels in transitions, both analyzers
are deterministic, but they are not subsequential transducers.

In order to evaluate the effects of using transducers encoded in the HFST

runtime format, we also produced transducer binaries for the morphological an-
alyzers in the HFST standard format and the SFST compact format. The sizes
of the binaries are compared in Table 8. Both the HFST standard format and
the SFST compact format are dense transducer formats as explained above.
Hence both of them require less space than the HFST runtime format.

Table 8. Size of the morphological analyzers in the different transducer formats.

Language HFST Standard SFST Compact HFST Runtime

Northern Sámi 2.9 MB 1.5 MB 4.8 MB
French 1.7 MB 0.8 MB 2.9 MB

The difference in storage space requirements for transducers in the SFST

compact format and the HFST standard format stems from the fact that the
compact SFST format uses a number of different compression mechanisms,
among others a bit-level compression of transitions on the hard-drive. The com-
pression is undone when the transducer is read into memory.

5 https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstTwolC
6 http://www.divvun.no

The storage space requirement for the HFST runtime format is the highest,
as the compaction of the transition index array is never perfect. In addition,
the runtime format does not currently use bit-level compression of transitions
to reduce the size on hard-drive. To make a fair evaluation of the effectiveness
of the compaction of the HFST runtime format, one should compare the size
of a compacted runtime format transducer with the size of the uncompacted
one. The uncompacted runtime binary for the French analyzer is 26 MB and
the uncompacted binary for the Northern Sámi analyzer is 61 MB. This means
that the sizes of the compacted analyzers for French and Northern Sámi are only
about 11 % and 8 % of the original sizes.

We tested the analyzers using running text. We used the Europarl parallel
corpus for French and English [6] to test the analyzer for French. The Europarl
corpus for French contains some 45 000 000 words. Of the words 94.26 % received
an analysis and on average there were 1.68 analyses per word. Of all words, 2.72 %
contained symbols, which were not known to the morphological analyzer. The
remaining 3.02 % of the words were unknown. We used a corpus containing some
2 200 000 words of running text to test the analyzer for Sámi. Of the 2 200 000
words 86.11 % received at least one analysis and there were 2.62 analyses per
word on average. Of all words 7.64 % could not be tokenized. The rest of the
words, i.e. 6.25 % could be tokenized, but were still rejected as unknown.

We evaluate the formats using running text, since a morphological analyzer
usually forms a part of a wider application (e.g. tagger or disambiguator). There-
fore it is important to show how the analyzer functions as a part of a system
dealing with running text.

5 Lookup Performance

The results of out tests are shown in Table 9. All tests were conducted on an
Intel computer with a Xeon E5450 64 bit 3.00 GHz CPU and 64 GB of memory.
In order to monitor the memory consumption, we used the GNU top command.
The times were extracted using the GNU time command in a command line
Unix script.

Table 9. Above: Analysis rate, in input words per second, of the morphological ana-
lyzers in the different transducer formats above. Below: Memory consumption of the
analysis algorithms for the morphological analyzers in the different transducer formats.

Language HFST Standard SFST Compact HFST Runtime

Northern Sami 55 000 w/s 97 000 w/s 119 000 w/s
French 146 000 w/s 270 000 w/s 408 000 w/s

Language HFST Standard SFST Compact HFST Runtime

Northern Sami 21 MB 5 MB 31 MB
French 14 MB 3 MB 18 MB

6 Discussion and Further Research

Further speed would be gained by all the formats by making sure that the input
languages of the lexicons are as minimal and deterministic as possible, by subse-
quentializing the lexical transducers [2]. If the transducers were p-subsequential,
the division into the transition index array and the transition array would not be
necessary, since each input symbol would correspond to at most one transition in
a state. This could have a profound impact on the speed of lookup, since lookup
would never need to backtrack.

All transducers cannot be subsequentialized. Roche and Schabes give an ex-
ample in text annotation [9] (p. 48), but morphological phenomena, e.g. com-
pounding, can also give rise to non-subsequentializable transducers. Hence the
input side of the transducer cannot always be deterministic and both the transi-
tion index array and the transition array are needed7. However, there are special
cases (e.g. acyclic transducers) where a subsequential transducer suffices, which
allows for a great optimization. Subsequentialization is not likely to change the
relative speeds of the three transducer formats, since each format benefits from
the deterministic input side.

If minimal disk space is crucial, the storage requirement for the HFST run-
time format could probably be considerably reduced using similar compression
techniques as SFST utilizes and Kiraz [4] proposes. We believe this could nearly
halve the size of the binaries, though it wouldn’t effect memory consumption in
runtime. If some speed may be sacrificed but main memory storage is crucial, as
may still be the case in portable or integrated devices, another idea that might
be worth while investigating is lazy decompression of states. States in the trans-
ducer could be more or less decompressed depending on whether they have been
visited during the lookup process. It is likely that the great majority of states
never get visited during any given lookup.

The current implementation codes input symbols using two byte integers.
In some applications, specifically syntax, there might be more than 216 input
symbols. Hence input symbols would have to be coded using larger data types.
An alternative would be to use methods like stretching [3] to reduce the number
of input symbols in the transducer, although this would probably slow down
lookup.

To evaluate the HFST runtime format we compared it with two other open
source transducer formats. A more thorough evaluation would also include pro-
prietary formats like the runtime format for Xerox finite state tools.

7 Conclusions

Lexical transducers form part of most language-aware applications, which means
that less time spent on lexical lookup will have wide-ranging effects. The effi-

7 Random access in the current implementation requires that all entries in the tran-
sition index array are equally long. Hence many transitions with the same input
symbol cannot easily be coded in the transition index array.

ciency of a transducer format depends greatly on the way its transition sets are
represented. We considered three principal ways to represent transition sets, i.e.
the linked list model, the ordered array model and the random access model.
As test material for evaluating the speed allowed by the formats, we used two
full-fledged morphological descriptions. Both have sufficient coverage to be used
in real applications. While some further compression is possible without loss
of speed and some additional optimizations, we were able to achieve the fastest
throughput with the random access model implemented using Liang compaction.
The speed was 119 000-408 000 w/s on running text with a moderate memory
consumption.

Acknowledgments

This research was funded by the Finnish Academy and the Finnish Ministry of
Education. We would like to thank Kimmo Koskenniemi who brought our at-
tention to the Liang compaction and the anonymous referees for their comments
on the paper. We would also like to thank our colleagues Jan Guillen and Petri
Uusitalo for interesting discussions and insightful ideas on various aspects of
optimization of runtime transducers.

References

1. Alfred Aho and Jeffrey Ullman. 1977. Principles of Compiler Design (sect. 3.8 and
6.8).

2. Cyril Allauzen and Mehryar Mohri. 2003. p-Subsequentiable Transducers. In Sev-

enth International Conference, CIAA 2002. Eds. Jean-Marc Champarnaud and De-
nis Maurel, 24–34.

3. Noud de Beijer, Bruce Watson and Derrick Kourie. 2003. Streching and Jamming
of Automata. In Proceedings of the 2003 annual conference of the South African

institute of computer scientists and information technologists on Enablement through

technology, 198–207.
4. George Anton Kiraz. 1999. Compressed Storage of Sparse Finite-State Transducers.

In Workshop on Implementing Automata WIA99 - Pre-Proceedings, 109–121.
5. Donald E. Knuth. 1968. The Art of Computer Programming - Fundamental Algo-

rithms, Vol 1. Addison-Wesley Publishing Company.
6. Philipp Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation.

2005. In MT Summit 2005.
7. Franklin Mark Liang. 1983. Word Hy-phen-a-tion by Com-put-er. PhD Thesis.

Department of Computer Science, Stanford University.
8. Mehryar Mohri 1997. Finite-State Transducers in Language and Speech Processing.

In ACL
9. Emmanuel Roche and Yves Schabes. 1997. Introduction. In Finite State Language

Processing (eds. Emmanuel Roche and Yves Schabes).
10. Helmut Schmidt. 2005. A Programming Language for Finite State Transducers. In

Proceedings of the 5th International Workshop on Finite State Methods in Natural

Language Processing, FSMNLP 2005.
11. Robert Tarjan and Andrew Yao. 1979. Storing a Sparse Table. In Communications

of the ACM.

