
HFST Tools for Morphology – An Efficient
Open-Source Package for Construction of

Morphological Analyzers

Krister Lindén, Miikka Silfverberg, and Tommi Pirinen

Department of General Linguistics, University of Helsinki, Finland

Abstract. Morphological analysis of a wide range of languages can be
implemented efficiently using finite-state transducer technologies. Over
the last 30 years, a number of attempts have been made to create tools
for computational morphologies. The two main competing approaches
have been parallel vs. cascaded rule application. The parallel rule appli-
cation was originally introduced by Koskenniemi [7] and implemented in
tools like TwolC and LexC. Currently many applications of morpholo-
gies could use dictionaries encoding the a priori likelihoods of words and
expressions as well as the likelihood of relations to other representa-
tions or languages. We have made the choice to create open-source tools
and language descriptions in order to let as many as possible partici-
pate in the effort. The current article presents some of the main tools
that we have created such as HFST-LexC, HFST-TwolC and HFST-
Compose-Intersect. We evaluate their efficiency in comparison to some
similar tools and libraries. In particular, we evaluate them using several
full-fledged morphological descriptions. Our tools compare well with sim-
ilar open source tools, even if we still have some challenges ahead before
we can catch up with the commercial tools. We demonstrate that for var-
ious reasons a parallel rule approach still seems to be more efficient than
a cascaded rule approach when developing finite-state morphologies.

1 Introduction

Morphological analysis of a wide range of languages can be implemented effi-
ciently using finite-state technologies based on finite-state transducers. Our goal
is to implement efficient tools for creating and manipulating finite-state trans-
ducer morphologies for different uses and purposes. The task is daunting and we
cannot do it alone.

Over the last 30 years, a number of attempts have been made to create
tools for computational morphologies and some of them have withstood the test
of time better than others. A major effort that has shaped the landscape and
incorporated many lasting ideas is the morphological development tools created
by Xerox. It started with the insight that we can use transducers to describe or
encode phonological processes and relate various levels of linguistic abstraction
using tools like TwolC introduced by Koskenniemi and Karttunen [7, 6, 3]. To
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efficiently compile large-scale lexicons into transducers, we need special lexicon
compilers like LexC described by Karttunen [4, 5].

Such tools do not solve all the problems. Writing full-scale dictionaries in
LexC may well be compared to having programmers write sophisticated appli-
cations in C without access to any of the modern high-level libraries. It is pos-
sible, but unless it is done in some principled way, one may easily end up with
spaghetti-code that is difficult to maintain. This is not the fault of the lexicon
compiler, but the general programming solution is to create several descriptions
that are small and independent, i.e. modular. With this insight and as comput-
ers became more powerful, the initial calculus that was conceived for abstract
objects like automata and transducers in TwolC and LexC was expanded and
migrated into the lexical programming environment xfst documented by Beesly
and Karttunen [2], where smaller lexical modules for various purposes can be
tailored and combined using finite-state calculus operations.

The previous effort is well-worth studying, but currently additional ideas
have established themselves such as weighted transducers for modeling aspects
of language that deal with preferences or trends rather than strict rules or on/off
phenomena. Many applications of morphologies could use dictionaries encoding
the a priori likelihoods of words and expressions as well as the likelihood of their
relations to phonetic representations or their lexical relations to other words
in the same language or in different languages. The efforts to explore weighted
finite-state transducers for natural language processing are ongoing in informa-
tion retrieval, speech processing and machine translation to name a few of the
main application areas involved.

Since we do not pretend that we could develop all the morphologies for all
the languages ourselves, or even all the aspects of the tools needed to develop
these morphologies, we have made the choice to create open-source tools and
language descriptions. We hope as many as possible will participate in the effort
by developing the tools further for common needs and special purposes.

In addition to the open source tools, we also encourage the commercial use
of the final transducers created by the tools by providing runtime software1 that
is free for commercial purposes. Eventually this will allow software applications
simply to select the appropriate transducer in order to process a language cor-
rectly allowing the programmer to ignore special characteristics of individual
languages.

Recently, a number of open-source finite-state processing environments have
emerged, e.g. for unweighted transducers there are the SFST–Stuttgart Finite-
State Transducer Tools2 by Schmid [12], foma: a finite-state machine toolkit and
library3 by Huldén, etc., and for weighted transducers there are Vaucanson4 by

1 https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstRuntimeInterface
2 http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
3 http://foma.sourceforge.net/
4 http://www.lrde.epita.fr/cgi-bin/twiki/view/Projects/Vaucanson



Lombardy et al. [8], OpenFST Library5 by Allauzen et al. [1], etc. These are
valuable contributions to the open source software that we can build on.

Our particular goal currently is in providing the basic facilities for efficiently
developing, compiling and running morphologies with or without weights. To
achieve our goal, we decided to create a unified API6, which is capable of in-
terfacing various weighted and unweighted finite-state transducer libraries al-
lowing us to incorporate new libraries as needed. Currently, we have inter-
faces to SFST and OpenFST. On top of the unified API, we created a set
of basic tools7, e.g. HFST-TwolC, HFST-LexC, HFST-Compose-Inter-
sect, HFST-Test, HFST-Lookup, etc. With these tools, we created or used
real full-fledged morphological descriptions of different languages from different
language-families8, e.g. English, Finnish, French, Northern Sámi and Swedish.
We used the morphological descriptions for testing the functionality of the tools
and for evaluating the performance of the different libraries through a unified
interface on the morphological development and compilation tasks.

The current article presents some of the main tools that we have created:
HFST-LexC in Sect. 2, HFST-TwolC in Sect. 3 and HFST-Compose-Inter-
sect in Sect. 4. For each tool, we present the main theoretical underpinnings
of the implementation and illustrate them with some examples. We highlight
the main design decisions that influenced the efficiency of the implementation
and how, if at all, our implementations differ from their namesakes. In Sect. 5,
we briefly present the morphological descriptions that we use for demonstrating
and comparing the efficiency of the implementation. In Sect. 6, we evaluate the
performance of our tools for parallel-rule application and compare them with
the performance of the foma LexC compiler and the Xerox tools, as well as
the cascaded rule compiler of SFST. In Sect. 7, we discuss the test results and
present some aspects of future research and development. In Sect. 8, we draw
the conclusions.

2 HFST-LexC

A lexicon compiler is a program that reads sets of morphemes and their mor-
photactic combinations in order to create a finite-state transducer of a lexicon.
This finite state transducer was called a lexical transducer by Karttunen [5]. The
lexical transducer may be further adjusted with e.g. phonological rules. The ex-
ample for our lexicon compiler is set by LexC of Xerox [2]. In LexC, morphemes
are arranged into named sets called sub-lexicons. Each entry of a sub-lexicon is

5 http://www.openfst.org/
6 http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/documentation.shtml
7 https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstHome
8 http://www.ling.helsinki.fi/kieliteknologia/tutkimus/omor/index.shtml



a pair of finite possibly empty strings9 separated by ’:’ and associated with the
name of a sub-lexicon called a continuation class.

Below, we highlight the main design decisions that influenced the efficiency of
the implementation and the main theoretical underpinning of compiling a LexC
description into a finite-state transducer. Our morphology example outlines the
nominal inflection of four Finnish nouns as shown in Table 1. This example is a
highly simplified version of the actual morphology.

Table 1. A simplified HFST-LexC lexicon for some Finnish nouns.

Multichar_Symbols

+noun +1 +a +d +h +m +AV+ +AV- +AVA +AVD +AVH +AVM

+all +gen +ptv +sg ~A ~K ~P

LEXICON Root

akku+noun+1+a:ak~Ku+AVA N1b "battery";

alku+noun+1+d:al~Ku+AVD N1b "beginning";

kumpu+noun+1+h:kum~Pu+AVH N1b "heap";

kyky+noun+1+m:ky~Ky+AVM N1b "capability";

LEXICON N1b

NounSg ;

NounPtvA ;

LEXICON NounPtvA

+sg+ptv:~A+AV+ Ennd ;

LEXICON NounSg

+sg+gen:n+AV- Ennd ;

+sg+all:l+AV-le Ennd ;

:n+AV- Compounding ;

LEXICON Compounding

Root ;

LEXICON Ennd

# ;

There are at least three time consuming parts of the HFST-LexC compila-
tion process. First the compiler needs to parse the strings representing the entry
9 Entries of regular expression form are not covered here to simplify the presentation,

but a full definition of an entry in this formalism allows an entry to be a regular
language.



morphemes. Traditionally LexC allows multiple characters in a single symbol.
The problem of finding the optimal partition of a string when compiling it into
a finite-state transducer is optimizing the tokenization algorithm. The tokeniza-
tion is discussed in Sect. 2.1. The set of entries in each sub-lexicon form a union.
There are a few alternative strategies for creating unions, which are briefly out-
lined in Sect. 2.2. The combining of sub-lexicons is described in Sect. 2.3 on
morphotax.

2.1 Efficient Tokenizing of a Sub-Lexicon Entry

Lexicon entries are tokenized using a simple left-to-right longest match tokenizer
algorithm. The entry is tokenized by going through the entry string, position by
position, and looking up the longest symbols available using a very simple greedy
tokenizer. If the tokenizer is incremental, it memorizes new tokens as it parses
the input assuming that multicharacter tokens have been declared in advance.
An alternative, but less efficient, strategy is to determine all the tokens in a
separate pass in order to compose the entry string with a tokenizer-transducer
implementing a greedy left-to-right matching or some other strategy to achieve
the desired partitionings.

2.2 Efficient Union of Sub-Lexicon Entries

The finite-state form of a sub-lexicon is a union of entry transducers. Building
a union of entry transducers is a relatively straight-forward process. However,
iteratively taking the union of n entries with the n+1th entry is not ideal. A
faster approach, given that all our entries are simple finite strings is to build
the sub-lexicon transducer as one large prefix tree, trie. Each entry starts with
a label of the sublexicon it belongs to and ends with a label of its continuation
class.

2.3 Efficient Implementation of Morphotax over Sublexicons

The strategy for combining sub-lexicons can be described with operations on
finite-state algebra using named auxiliary symbols with overgenerating combi-
nations which are filtered by composition to achieve legal combinations. This is
further described in the next subsection. An optimized strategy for making the
sub-lexicon combinations is to minimize the trie into an acyclic transducer, after
which the sublexicon labels can be dropped by replacing the transitions of the
entry final sublexicon labels with transitions to the target states of the entry
initial sublexicon labels creating a possibly cyclic transducer.

Combining sublexicons using standard finite-state transducer algebra.
We assume all standard finite state operations to be known. For an introduction,
see Beesly and Karttunen [2]. We use the following notation: ∪ is union, ∩ is
intersection, ◦ is composition, juxtaposition is concatenation. Latin characters



represent symbols of language and the ε symbol is used for a zero-length string.
Capital Greek letters Σ,Γ represent subsets of an alphabet. We define Σ =
{a, b, . . .} as a subset of the alphabet used for representing the morphophonology
of the language in LexC definitions. Γ is the alphabet of the auxiliary symbols
used in our rules in the morphotax implementation. We assume that Σ ∪Γ = ∅.
We use the symbol J ∈ Σ for joiners to delimit and combine morphemes in our
morphotax. A joiner for an entry with a continuation class named x is denoted
as Jx and a joiner for a sub-lexicon named y is denoted as Jy.

We introduce the compilation of lexicons using the example-lexicon in Ta-
ble 1.

A single entry in a sub-lexicon, i.e., a line of code in a LexC file, is referred
to as a morpheme denoted by M. A morpheme can be a subset of the language
Σ? appended with the joiner of a continuation class (1).

M = Σ? J (1)

E.g. the LexC string entry akku:ak∼Ku+AVA with a continuation class N1b
becomes a k k:∼K u:+AVA ε:JN1b.

A sub-lexicon L defined by (2) is a union of morphemes as specified in
Sect. 2.2.

L = J
⋃

Mx∈M
( Mx ) (2)

E.g. the lexicon named Root consisting of akku and alku with continuation
class N1b becomes JRoot ( a k k u JN1b | a l k u JN1b ).

We create a filter F defined by (3) for legal morpheme combinations by
pairing up adjacent joiners.

F =
⋃

Jx∈J

( Jx Jx ) (3)

To account for the special starting lexicon and the special ending lexicon,
we define JRoot ∈ J and J# /∈ J . The root lexicon can be used in continuation
classes as a target, e.g. for the compounding mechanism, but the end lexicon is
not available as a lexicon name, so it is not part of the regular morphotax. To
accommodate this, we extend the filter definition to F ′ as in (4).

F ′ = JRoot ( Σ? F )? Σ? J# (4)

This allows us to create the final transducer R with only legal combinations
of sub-lexicons by composition (5).

R =
⋃
Lx∈L

( Lx )? ◦ F ′ (5)

E.g., for the sublexicons Root, N1b, NounSg, and Ennd in Table 1, and their
entries akku and +sg+all:lle, we get the disjunction of lexicons L?, which we
filter using L? ◦ F ′ as shown in Table 2.



Table 2. Filtering a single path in HFST-LexC with a morphotax filter.

L? = ( JRoot a k k u JN1b | JN1b JNounSg |
JNounSg +sg : l + all : l ε :e JEnnd | JEnnd J# )?

F = JRoot JRoot | JN1b JN1b | JNounSg JNounSg | JEnnd JEnnd

L? ◦ F ′ = JRoot a k k u JN1b JN1b JNounSg

JNounSg +sg : l +all : l ε :e JEnnd JEnnd J#

Finally, all the symbols in Γ are removed. While this is trivial, it introduces
some indeterminism in the final transducer, which would otherwise have been
introduced by building direct epsilon arcs. Its influence on the performance is
further detailed in Sect. 6.

According to our experiments, attaching weights to each entry works without
modification of the lexicon compilation method.

3 HFST-TwolC

Two-level rules are parallel constraints on symbol-pair strings governing the
realizations of lexical word-forms as corresponding surface-strings. They were
introduced by Koskenniemi [7] and have been used for modeling the phonology
of numerous natural languages. HFST-TwolC is an accurate and efficient open-
source two-level rule compiler. It compiles grammars of two-level rules into sets
of finite-state transducers. The rules are represented as regular-expression oper-
ations closely resembling familiar phonological re-write rules both to appearance
and semantics.

The most widely known two-level rule-compiler existing at the moment is the
Xerox Two-Level Rule Compiler (later TwolC) presented by Karttunen el al.
[3]. It is proprietary software, which imposes some limitations upon its use. The
HFST-TwolC compiler has been designed to be an open-source substitute for
the TwolC compiler and has a syntax and semantics very similar to those of
the TwolC compiler. Hence existing two-level grammars, designed to compile
under the TwolC compiler, require very few modifications to compile correctly
under HFST-TwolC.

Besides being an open-source program, HFST-TwolC also has other ben-
efits compared with the TwolC compiler. Resolution of rule-conflicts is an
important part of compiling two-level grammars. We know of at least one in-
stance, where the TwolC compiler resolves rule-conflicts in an incorrect way
(see Sect. 3.2). It also compiles epenthesis rules in a way, which denies the
grammar-writer the full expressive power of two-level rules (see Sect. 3.2). In
HFST-TwolC we have been able to remedy these shortcomings by compiling
the rules with the generalized restriction-operation (later GR-operation), pre-
sented by Yli-Jyrä and Koskenniemi [13]. It allows compilation of two-level rules
in a uniform way and makes conflict-resolution easy to tackle, while still permit-
ting efficient compilation.



In Sect. 3.1, we demonstrate the syntax and semantics of a two-level grammar-
file using a small example from Finnish morphology. The example grammar maps
the lexical forms given by the example lexicon in Table 1, presented in Sect. 2,
into surface-forms.

It is not possible to demonstrate all features of HFST-TwolC in this article,
but we try to highlight the few most important differences to show that it is easy
to migrate from the TwolC compiler to HFST-TwolC.

We use the GR-operation to compile the grammar-rules in HFST-TwolC.
In Sect. 3.2, we explain how the different types of two-level rules are compiled.
Rule-conflicts and their resolution are covered in Sect. 3.2.

3.1 An Example Grammar

An input-file for HFST-TwolC consists of five parts: the Alphabet, the Rule-
variables, the Sets, the Definitions and the Rules. The file-format has been mod-
eled on the format used by the TwolC compiler, and all parts of the grammar
are present also in the TwolC compiler except for the part declaring rule-
variables. There are a few other differences, as well, most of which we will mention
below. A complete list of known differences can be found in the HFST-TwolC
documentation10.

The Alphabet. The alphabet of a two-level grammar contains all lexical sym-
bols specified in the HFST-LexC grammar together with their possible surface
realizations. In the example grammar in Table 3, the alphabet contains all letters
used in Finnish words together with the vowel-harmony archphoneme ~A, the
gradation morphophonemes ~K and ~P, as well as, the gradation-markers +AV+,
+AV-, +AVA, +AVD, +AVH, +AVM.

All symbols in the grammar may be arbitrary strings of UTF-8 characters,
but characters like +, ~ or white-space, which bear special meanings for the
compiler need to be escaped using the escape-character %.

The letters in the example-grammar of Table 3 always correspond to them-
selves on the surface. The gradation-markers always correspond to zero and
the archphoneme ~A and the morphophonemes ~K and ~P have various surface-
realizations. E.g. ~A is always realized as either a or ä.

Each valid pair of a lexical symbol and its surface-correspondence has to be
listed in the alphabet. This differs from the TwolC compiler, where pairs may be
omitted from the alphabet, if they are identity-pairs or are already constrained
by some rule. Forcing the grammar-writer to declare all symbol-pairs, may result
in some extra work, but it also prevents the creation of inadvertent pairs.

Declaring all symbol-pairs in HFST-TwolC is mandatory, as we have not
yet implemented an other-symbol like the one in Xerox TwolC [3] using the
HFST interface. Besides the grammar-formalism, this also affects the compile-
time for rules, which becomes more dependent on the number of symbol-pairs
in the grammar.
10 https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstTwolC



Table 3. An example HFST-TwolC grammar governing the surface realizations of
the forms presented in the example lexicon in Table 1.

Alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Å Ä Ö

a b c d e f g h i j k l m n o p q r s t u v w x y z å ä ö

%+AV%+:0 %+AV%-:0 %+AVA:0 %+AVD:0 %+AVH:0 %+AVM:0

%~A:a %~A:ä

%~K:k %~K:0 %~K:v

%~P:p %~P:m ;

Rule-variables

Cm Cs Cw ;

Sets

Gradations = %+AV%+ %+AV%- %+AVA %+AVD %+AVH %+AVM ;

BackVowels = a o u A O U ;

UpperCaseVowels = A E I O U Y Å Ä Ö ;

LowerCaseVowels = a e i o u y å ä ö ;

Vowels = UpperCaseVowels LowerCaseVowels ;

Definitions

AlphaSeq = [ \Gradations: ]* ;

NonVowelSeq = [ \:Vowels ]* ;

Rules

"~K:0 Gradation"

%~K:0 <=> _ AlphaSeq Gradations:0 AlphaSeq %+AV%-:0 ;

"%~K:v and %~P:m Gradation"

Cs:Cw <=> _ AlphaSeq Cm:0 AlphaSeq %+AV%-:0 ;

where Cs in ( %~K %~P )

Cw in ( v m )

Cm in ( %+AVM %+AVH ) matched ;

"Vowel Harmony"

%~A:a <=> :BackVowels NonVowelSeq _ ;

The Rule-variables. Like the Xerox compiler, HFST-TwolC supports defin-
ing a set of similar two-level rules using a rule-schema with variables. During the
compilation of the grammar, each schema is compiled into actual two-level rules,



by substituting the variables with the values specified for them. All rule-variables,
which are used in the grammar, need to be declared in the Rule-variables section.

The Sets. It is often convenient to name some classes of symbols, which are used
in many rules. E.g. the class BackVowels in the example-grammar in Table 3,
which contains all vowel-segments used in the grammar. The sets in HFST-
TwolC and TwolC are very similar constructs.

In HFST-TwolC, the Cartesian product of sets, or a set and a symbol,
is always limited to the set of symbol-pairs declared in the alphabet. E.g. the
equivalent expressions BackVowel:BackVowel and BackVowel will only accept
the pairs a:a, o:o, u:u, A:A, O:O and U:U. Although it is conceivable, that they
would accept e.g. the pairs a:U and A:O, they will not, since the pairs have not
been declared.

All sets have to be declared in the sets section of the grammar. Of the five
sets we have defined in the example grammar, the first four are defined directly
using a symbol sequence. The fifth set Vowels is defined as the union of the sets
SmallVowels and BigVowels.

The Definitions. Like character-sets, also regular expressions may be stored
under a name and accessed later using that name. Named regular expressions
are called definitions and may be used freely in the rules. Sets and previous
definitions can be used in the definition of a new definition. The definitions in
HFST-TwolC and TwolC are identical.

The Rules. A two-level grammar constrains the surface-realizations of lexical
forms. The constraints are given as two-level rules, whose joint effect determines
the set of valid correspondences for each lexical form. Each of the rules governs
one realization of a lexical symbol in a context given by a regular expression of
pairs of a lexical and surface symbol.

The syntax and semantics of rules in HFST-TwolC and TwolC are very
similar11. Except for surface-restrictions concerning epsilon, i.e. epenthesis rules,
the rules also work the same way.

An example of a rule is the rule governing vowel-harmony in our example
grammar

"Vowel Harmony"
%~A:a <=> :BackVowels NonVowelSeq _ ;

It states that the archphoneme ~A has to be realized as a, if the surface-vowel
immediately preceding it is a back-vowel. It also disallows the pair ~A:a in all
other contexts.

The rule accepts the first correspondence in Table 4 since the vowel preceding
~A is y, which is not a back-vowel. It disallows both of the latter correspondences.

11 http://www.xrce.xerox.com/competencies/content-analysis/fsCompiler/fssyntax.html



In the second correspondence ~A is realized as a, even though the preceding
surface-vowel is not a back-vowel. This violates the => direction of the rule. In
the third correspondence, ~A is realized as ä, but the preceding surface-vowel is
u, which is a back-vowel. This violates the <= direction of the rule.

Table 4. Symbol-pair correspondences for demonstrating the vowel-harmony rules.

k y ~K y ~A k y ~K y ~A k u m ~P u ~A

k y k y ä k y k y a k u m p u ä

HFST-TwolC allows a set of rules to be defined using variables or by giving
a set of rule-centers. E.g. the rule which defines the basic constraint of gradation
in our example grammar is a rule with three variables: Cs, Cv and Cm.

"%~K:v and %~P:m Gradation"
Cs:Cw <=> _ AlphaSeq Cm:0 AlphaSeq %+AV%-:0 ;

where Cs in ( %~K %~P )
Cw in ( v m )
Cm in ( %+AVM %+AVH ) matched ;

Like ordinary alphabet-symbols, variables may be used both in the center of a
rule and in its contexts.

When a rule with variables is compiled, it is split into sub-rules. These are
obtained by substituting real alphabet symbols for the variables. The possible
values of variables are listed in the where-clause following the rule.

3.2 Compiling the Rules and Resolving Rule-Conflicts

HFST-TwolC compiles two-level rules, given as regular expressions of pairs,
into finite-state transducers. All two-level rules may be constructed from simple
surface-requirements, context-restrictions and surface-prohibitions. The compi-
lation reduces the two-sided rules and rules with variables into combinations of
such simple constructions, or subrules.

After compilation, the subrules are intersected, so that finally equally many
rule-transducers are produced as there were original two-level rules. Intersecting
the subrules of the two-level grammar rules takes up a considerable portion of
the compile-time of the grammar.

Compilation of the rules is preceded by a phase called conflict-resolution,
which modifies rule-contexts in order to prevent harmful interactions between
the rules. After conflict-resolution the modified rule-set may be compiled as
usual.

We use the GR-operation of Yli-Jyrä and Koskenniemi [13] to compile rules.
Both compiling rules and conflict-resolution is simplified using the operation.



The compilation in HFST-TwolC differs from TwolC when epenthesis
rules are compiled. As Yli-Jyrä and Koskenniemi [13] point out, epenthesis rules
may be compiled as any other surface-requirement rules using the GR-operation.
This increases the expressive power of the two-level grammar as explained below.

A general restriction of the pair-alphabet Σ is an expression W n�⇒W ′, where
the precondition W and postcondition W ′ are unions of expressions of the form
V1 � V2 � ... � Vn ⊂ Σ∗(� Σ∗)n, where � /∈ Σ is a special marker-symbol and
each Vi is a regular language of the alphabet Σ. Such an expression is compiled
into a regular expression using the GR-operation as in (6).

Σ∗ − delete�(W −W ′) (6)

The operation delete� in (6) rewrites each marker-symbol � into epsilon and
leaves all other symbols intact.

We do not need the full expressive power of the GR-operation. Instead we
use a restricted version W

2�⇒ W ′, which is limited to compiling rules with one
center and a number of contexts with a right and a left part. Hence we operate on
preconditions and postconditions with two diamonds, i.e. W,W ′ ⊆ Σ∗ �Σ∗ �Σ∗.

We discuss compiling one rule first and then conflict-resolution, although
logically conflict-resolution is done first and then the rules are compiled. This is
easier to explain, because conflict-resolution is highly dependent on the way the
rules are compiled.

Compiling one rule. Yli-Jyrä and Koskenniemi [13] explain how ordinary two-
level rules can be compiled using the GR-operation. We use slight variations of
the same methods.

Surface-requirement rules and context-restriction rules need to be compiled
in different ways. Surface-prohibition rules can be compiled in a similar manner
as surface-requirement rules and double-sided rules are compiled, by intersecting
the two directions of the rule.

The general restriction corresponding to the context-restriction rule a:b ⇒⋃n
i=0 Li Ri is given by (7).

Σ∗ � a:b �Σ∗ 2�⇒
n⋃

i=0

Li �Σ∗ �Ri (7)

The surface-requirement rule requires an auxiliary definition. We define the
inverse projection [x:] of the input-symbol x using (8). Here x may be any of the
input-symbols of pairs in Σ, including epsilon.

[x:] = {x:y | x:y ∈ Σ} (8)

The general restriction corresponding to the surface-requirement rule a:b⇐⋃n
i=0 Li Ri is given by (9).(

Σ∗ � [a:]− a:b �Σ∗ ∩
n⋃

i=0

Li �Σ∗ �Ri

)
2�⇒ ∅ (9)



The general restriction corresponding to the surface-prohibition rule a:b ⇐⋃n
i=0 Li Ri is similar. It is given by (10).

(
Σ∗ � a:b �Σ∗ ∩

n⋃
i=0

Li �Σ∗ �Ri

)
2�⇒ ∅ (10)

Using the GR-operation, epenthesis rules have the same semantics as other
surface-requirement rules. The rule 0:a ⇐ b b rejects the correspondences bb
and b0:cb, but accepts b0:ab.

The TwolC compiler compiles epenthesis rules in a different way than
HFST-TwolC. In TwolC, the rule 0:a ⇐ b b becomes equivalent to the
expression Σ∗ − (Σ∗bbΣ∗), which means that bb is rejected, but b0:cb is ac-
cepted, provided that the pair 0:c is declared in the alphabet Σ. This makes it
impossible to interpret one epenthesis rule as a special case of another epenthesis
rule.

E.g. we might want the pair 0:v between two vowels, but the pair 0:w between
two like vowels. This can be expressed by the rules

0:v ⇐ Vowel Vowel ; and 0:w ⇐ Vx Vx, Vx ∈ Vowel ;

In HFST-TwolC conflict resolution modifies the context of the more general
rule. A correspondence with 0:t between like vowels becomes disallowed, but a
correspondence with 0:s between like vowels is allowed. In the TwolC compiler
this is not possible.

Resolving rule-conflicts. Rule-conflicts are situations where different rules
require a lexical string to be realized in different ways. Since each correspon-
dence of a lexical string and surface string needs to be accepted by all rules
in a two-level grammar, such lexical strings are filtered by the grammar. Us-
ing the GR-operation to compile the rules allows separating the processes of
conflict-resolution and rule-compilation. Previously, these may have been more
entangled, which would explain, why the conflict resolution of the Xerox com-
piler sometimes works in an unexpected way (see example below).

Like TwolC, HFST-TwolC only handles two kinds of conflicts: right-
arrow conflicts and left-arrow conflicts. Right-arrow conflicts occur between
context-restrictions with the same center-pair. Left-arrow conflicts occur be-
tween surface-requirements with centers having the same lexical symbol, but
different surface-symbols.

Consider the rules
a:b⇒ x ; and a:b⇒ y ;

These are in right-arrow conflict with each other. Like Xerox TwolC, HFST-
TwolC interprets both rules as permissions and replaces them with one rule,
whose context is the union of the contexts of the conflicting rules. Joining the
contexts is easy when the rules are compiled using the GR-operation.



A left-arrow conflict is resolvable exactly when one of the rule-contexts is a
sub-context of the other. A trivial example of a resolvable left-arrow conflict is
given by the rules

a:b⇐ {d, e} ; and a:c⇐ d ;

Here the alphabet Σ consists of the pairs a:b, a:c, d and e. This is resolved
by replacing the more general context with the difference of that context and
the more specific context as given by (11), where we have written the contexts
as generalized restriction contexts.

(Σ∗{d, e} �Σ∗ �Σ∗)− (Σ∗d �Σ∗ �Σ∗) = Σ∗e �Σ∗ �Σ∗ (11)

This example does not compile as expected under TwolC. Conflict-resolution
results in a grammar, which rejects all lexical strings containing a or e.

Right-arrow conflict-resolution may result in large rule-contexts which may
be time-consuming to determinize. Left-arrow conflict resolution requires testing
all pairs of surface-restriction rules concerning the same lexical symbol. This
means that the worst-case time-requirement is quadratic w.r.t. to the number of
rules in the grammar.

4 HFST-Compose-Intersect

A lexicon compiled using HFST-LexC and a grammar of two-level rules com-
piled using HFST-TwolC are combined using the program HFST-Compose-
Intersect. It is an implementation of the intersecting composition algorithm
presented by Karttunen [5]. The result of the operation is equivalent to the com-
position of the lexicon-transducer with the intersection of the rule-transducers.

Karttunen [5] observed that the intersection of the rule-transducers alone may
be extremely large and computing it may take a long time, whereas intersecting
composition allows the lexicon to restrict the intersection of the rule-transducers.
This reduces compilation time significantly.

Although computers have become considerably faster since 1994 and they
have more memory, computing the intersection of the rule-transducers can still be
very space-consuming. We intersected the rule-transducers of the two-level imple-
mentation of OMorFi12, i.e. Pirinen’s [11] morphological analyzer for Finnish.
Without the intersecting composition, the rule intersection took eleven hours
using the same machine we used for conducting our other performance-tests.
Hence we believe that intersecting composition is still a necessary operation
when developing full-scale two-level morphological analyzers.

5 Full-Scale Morphological Analyzers using HFST
Morphological Tools

We test the performance of the HFST tools by building three full-scale mor-
phological analyzers of varying complexities for French, Finnish, and Northern
12 http://kitwiki.csc.fi/kitwiki/Main/OMorFiHome



Sámi. All of them highlight different aspects of the compilation process. To verify
the correctness of the compilation results, we analyzed corpora using the lexical
transducers.

The French analyzer was built from the existing morphological full-form lex-
icon Morphalou13. The lexicon was translated into the LexC format and it
contains some 550,000 entries in a single lexicon. Each entry represents a word
form and its analysis. We chose this lexicon for testing HFST-LexC with a
large number of real entries.

The Finnish analyzer has two implementations, i.e. the version using the
SFST compiler format of OMorFi which is Pirinen’s [11] original analyzer for
Finnish, and a reformulated version using a LexC lexicon and a TwolC gram-
mar format. The reformulation was done manually by converting the morpheme
sets of the original code into LexC sublexicons and rewriting the phonological
rules from replace cascades into TwolC rule sets. While care has been taken to
ensure the similarity of the implementations, it should be noted that the versions
are not totally equivalent. We still think they are close enough for a meaningful
comparison of the two approaches.

The Northern Sámi analyzer is an original LexC and TwolC based morpho-
logical analyzer developed in the Divvun Project14. It is a full-fledged analyzer
developed totally independently of the HFST project and it has both a large
number of sublexicons and a large number of rules.

The characteristics of the analyzers of the three languages are summarized
in Table 5. The first three of the columns summarize the HFST-LexC lexicons
stating the numbers of sublexicons, lexicon-entries and symbols used in the lex-
icons. The remaining three columns summarize the HFST-TwolC grammars.
They state the numbers of symbol-pairs, rules and subrules in the double-sided
rules and rules with variables. The example for French has no entries in the last
three columns, since it has no two-level grammar.

Table 5. Some numbers characterizing the lexicons and two-level grammars we used
for testing.

HFST-LexC HFST-TwolC
Language Sublexicons Entries Symbols Pairs Rules Subrules

French 1 553,158 87 — — —
Finnish 213 94,278 301 169 12 76
Northern Sámi 870 105,503 428 313 105 555

13 http://www.cnrtl.fr/lexiques/morphalou/
14 http://www.divvun.no



6 Performance Evaluation

The goal of the performance evaluation is to see how far we still have to go before
we reach industrial-strength performance. Additionally, we wish to see how the
performance of the LexC and TwolC approach with parallel-rules compares
to the approach with cascaded-rules. To achieve these goals, we compare HFST
with some other open source tools and an industrial strength implementation
by Xerox. By compiling the analyzers mentioned in the previous section, we can
also collect performance figures on real full-fledged morphologies for identifying
the most significant remaining bottle-necks in our tools.

The HFST-LexC and HFST-TwolC tools mimic many of the Xerox LexC
and TwolC functionalities, so the input-files for the HFST tools require very
small modifications in order to compile using the Xerox tools, and vice versa.
This makes it is easy to compare the performance of the HFST tools with the
Xerox versions.

As the Finnish OMorFi analyzer has two almost identical versions: one using
replace-rules for the SFST compiler and one using two-level rules for the LexC
and TwolC tools, we are able to compare the efficiency of the two approaches to
building morphological analyzers. We can do this because both approaches are
built on top of the same underlying SFST software library with tools specialized
for each approach.

Below, we have five tables summarizing the results of the performance tests.
The first Table 6 compares the total compile times of the analyzers using the
HFST tools, the Xerox tools, the foma LexC tool and the SFST compiler. For
foma, only the compile-time for the analyzer of French is given, as foma only
comes with a LexC15 interface. For the SFST compiler, only the compile-time
for the Finnish lexicon is given, as our only implementation with cascaded rules
is for Finnish.

Table 6. Total compile-times using HFST tools, foma LexC, SFST compiler and
Xerox tools to compile lexical transducers. Times are in seconds.

Language HFST tools foma LexC SFST compiler Xerox tools

French 19.06 s 16.87 s — 5.46 s
Finnish 14.44 s — 1682.04 s 1.83 s
Northern Sámi 228.20 s — — 24.61 s

The following three Tables 7, 8 and 9 give the HFST compile-times for the
analyzers of Finnish, French and Northern Sámi. The times have been broken
down into sub-phases of the compilation in order to see where the bottle-necks
are. The phases are explained below the tables.

Finally, Table 10 gives an indication of the maximal memory consumption
during the lexicon compilations using the HFST tools and the Xerox tools.
15 foma also has an xfst interface.



Table 7. HFST-LexC performance broken into the different phases of the compilation
process. Times are in seconds.

1. The entry parsing and tokenization (cf. Sect 2.1)
2. Union of entries (cf. Sect 2.2)
3. Morphotactic filtering (cf. Sect 2.3)
4. Other phases (minimizing results, etc.)

Language 1 2 3 4 Total

French 5.82 s 1.45 s 0.11 s 11.67 s 19.06 s
Finnish 1.08 s 0.27 s 0.32 s 6.50 s 8.17 s
Northern Sámi 1.02 s 0.44 s 2.27 s 15.94 s 19.67 s

Table 8. HFST-TwolC performance broken into the different phases of the compila-
tion process. Times are in seconds.

1. Reading the input-file and creating auxiliary data-structures. Compiling rule-
contexts into transducers.

2. Identifying and resolving rule-conflicts.
3. Combining contexts and centers of single surface-requirements and context-

restrictions. Intersecting subrules of rules with variables and double-sided rules,
in order to form the final rule-transducers. Minimizing and storing the rule-
transducers.

Language 1 2 3 Total

Finnish 0.11 s 0.05 s 1.41 s 1.57 s
Northern Sámi 2.27 s 1.43 s 27.12 s 30.82 s

Table 9. HFST-Compose-Intersect performance broken down into the different
phases of the compilation process. Times are in seconds.

1. Reading lexicon-transducer and rule-transducers.
2. Computing intersecting composition.
3. Determinizing and minimizing the result of the operation.
4. Storing the minimized result of the operation.

Language 1 2 3 4 Total

Finnish 0.19 s 2.80 s 1.05 s 0.65 s 4.70 s
Northern Sámi 2.18 s 154.14 s 21.01 s 0.38 s 177.71 s

All tests were conducted on an Intel computer with a Xeon E5450 64 bit
3.00 GHz CPU and 64 GB of memory. For the HFST tools, the times were
extracted using the C language clock function. For other tools, the GNU time
command was used. In order to monitor the memory consumption, we used the
GNU top command.



Table 10. Maximum space required using HFST and Xerox utilities to compile the
transducers. Space indications are in megabytes (MB).

Language HFST-LexC HFST-TwolC HFST-Compose-Intersect

French 596 MB — —
Finish 181 MB 13 MB 48 MB
Northern Sámi 180 MB 291 MB 1090 MB (1.1 GB)

Language Xerox LexC Xerox TwolC

French 85 MB — —
Finnish 28 MB 3 MB —
Northern Sámi 13 MB 12 MB —

HFST has both a weighted and an unweighted implementation, but the cur-
rent tests were performed using only the unweighted implementation of HFST,
i.e. in practice we used the unweighted SFST library implementation of the
HFST tools.

7 Discussion and Future Research

In this section, we discuss the evaluation results and suggest some further lines
of research and development of the tools that the evaluation figures seem to
indicate. Comparing the total compilation times for HFST tools, Xerox tools,
foma LexC and SFST compiler, shows that HFST is still a magnitude slower
than the Xerox tools. However, HFST compares well with, foma, the other
open-source tool. The decrease in compile-time for the Finnish lexicon, when
parallel-rules are used, is considerable by improving performance with almost
two magnitudes. Most importantly, using the HFST tools is sufficiently quick
not to slow down the development of full-scale morphological analyzers. Even
large morphological analyzers like the analyzers for French compile in less than
a minute and Northern Sámi in less than ten minutes.

7.1 HFST-LexC Performance

Comparing the HFST-LexC compilation times for French and Northern Sámi
given in Table 7, we see that the entry parsing and tokenization as well as the
uniono of entries is almost linear. The lexicon for French has about five times
as many entries as the lexicons for Finnish and for Northern Sámi. This is a
result of the tokenization and trie-union described in Sect. 2, which speeds up
the building of sublexicons.

We also see that the number of sublexicons influences the morphotactic fil-
tering in the HFST-LexC compile-time. The lexicon for French only has one
sub-lexicon, whereas the lexicon for Northern Sámi has 870 sub-lexicons and the
Finnish lexicon is inbetween.



There is one main part that dominates the time consumption in Table 7, i.e.
the final determinization and minimization. The determinization and minimiza-
tion of the final result consumes 60-80 % of the compile-time of the lexicons. We
use a standard algorithm which may have a more efficient implementation for
cyclic structures in the competing software libraries.

7.2 HFST-TwolC Performance

Examining the HFST-TwolC compile-times for Finnish and Northern Sámi
shows, that the last phase, i.e. combining contexts and intersecting subrules,
takes up approximately 90 % of the compile-time. The compile-time for this
phase depends heavily on the intersection, subtraction and determinization al-
gorithms used when implementing the HFST API.

In HFST, we have not yet implemented an other-symbol like the one in
the Xerox TwolC presented by Karttunen [3], the rule-transducers encode a
number of unnecessary transitions. This slows down intersection, difference and
determinization among other operations. It is probably the single most important
factor slowing down HFST-TwolC. Like intersection, intersecting composition
is also affected by the lack of an other-symbol, since intersecting composition is
sensitive to the number of transitions in the rule-transducers.

7.3 Parallel Rules vs. Cascaded Rules

It is interesting to see, that the two-level HFST-LexC and HFST-TwolC ap-
proach to compiling the OMorFi analyzer for Finnish is so much more efficient
than the cascade of replace-rules, which constitutes the SFST implementation
of OMorFi. We know, that the difference lies in the approach to compiling
the lexicon and the rules, as the unweighted HFST morphology tools ultimately
perform their transducer operations using the SFST library, even if this happens
through the HFST API.

One possible reason for the speed-up is that HFST-LexC and HFST-
TwolC are more constrained environments than the SFST utility fst-compiler
by Schmid [12], which is used for compiling the SFST version of the OMorFi
analyzer. We suspect that the great liberty in constructing rules using SFST
may tempt the user to indulge in unnecessarily unconstrained ways of expressing
replacements with a very local area of application. This manifests itself among
other things as an increased compile-time.

Converting the LexC and TwolC version of the Finnish lexicon from the
SFST lexicon compiler files took approximately a week of manual work. While
doing this, we were able to slightly modify and improve the rules in order to
remove some of the incorrect readings that were coming through as analyses of
the Finnish cascaded rule analyzer, which had not been corrected before. This
also indicates that the parallel rule set may be easier to test and debug than the
cascaded rules, but first and foremost it confirms the well-known effect that a
reduced compile-time is very significant for the development process as it allows
an increased number of test cycles during a fixed time-span.



7.4 The Other-symbol

We have demonstrated, that the morphology tools HFST-LexC, HFST-TwolC
and HFST-Intersect-Compose provide a realistic open-source alternative for
constructing morphological analyzers in the two-level framework. Still, there is
room for improvement, as the performance of the Xerox tools show.

Currently the performance of both HFST-TwolC and HFST-Intersect-
Compose correlates strongly with the number of symbol pairs in the alphabet of
the two-level grammar. A significant optimization for these HFST tools would
be the introduction of an other-symbol, which can represent the class of pairs
bearing no special meaning to a rule. Such a symbol would decrease the num-
ber of transitions in rule-transducers. In case the number of symbol-pairs of
the alphabet is large, this has a significant impact on the performance of both
HFST-TwolC and HFST-Intersect-Compose. In practice, the introduction
of the other-symbol makes both tools insensitive to the number of symbols in
the alphabet of the grammar. We believe, that this may help us achieve rule
compile-times closer to those of Xerox.

7.5 Future Directions

In our future research, we intend to look at various aspects of and methods
for integrating the creation and use of weighted transducers in morphologies. It
is already possible to compile both weighted two-level lexicons and grammars
using HFST tools. These can be combined into weighted lexical transducers
using the weighted version of HFST-Intersect-Compose. It is also possi-
ble to adjoin meaningful weights to lexicon-entries in HFST-LexC. Currently
HFST-TwolC only provides a way to compile weighted rules with zero-weights.
However, even this small beginning allows us to combine weighted lexicons and
two-level grammars using weighted intersecting composition. We are currently
working on useful ways to attach weights to two-level rules with applications for
weighted two-level grammars.

We were able to compare the performance of a cascaded rule approach with
a parallel rule approach using the same underlying finite-state library. However,
using our full-fledged morphologies, we could also compare different underlying
finite-state libraries on real compilation tasks in order to compare different al-
gorithms and their implementations. A future task, would be to compare the
performance of e.g. the SFST library with that of OpenFST. Our preliminary
evaluation results show that efficient and well-suited determinization and min-
imization algorithms have a significant impact on the real-world morphology
compilation task.

8 Conclusions

We have chosen to create open-source tools and language descriptions in order
to let as many as possible participate in the effort of providing morphological



analyzers for the languages of the world. The current article present some of
the main tools that we have created based on our unified API for finite-state li-
braries. The tools include HFST-LexC, HFST-TwolC and HFST-Compose-
Intersect. We have evaluated the efficiency of the current implementations in
comparison with some of the similar tools and libraries available using several
full-fledged morphological descriptions. Our tools compare well with other sim-
ilar open source tools, even if we still have some challenges ahead before we can
catch up with the commercial tools. We demonstrate that for various reasons a
parallel rule approach seems to be more efficient than the cascaded rule approach
when developing finite-state morphologies.
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