
Guessers for Finite-State Transducer Lexicons

Krister Lindén

Department of General Linguistics, P.O. Box 9, FIN-00014 University of Helsinki
Krister.Linden@Helsinki.fi

Abstract. Language software applications encounter new words, e.g., acro-
nyms, technical terminology, names or compounds of such words. In order to
add new words to a lexicon, we need to indicate their inflectional paradigm. We
present a new generally applicable method for creating an entry generator, i.e. a
paradigm guesser, for finite-state transducer lexicons. As a guesser tends to
produce numerous suggestions, it is important that the correct suggestions be
among the first few candidates. We prove some formal properties of the method
and evaluate it on Finnish, English and Swedish full-scale transducer lexicons.
We use the open-source Helsinki Finite-State Technology [1] to create finite-
state transducer lexicons from existing lexical resources and automatically de-
rive guessers for unknown words. The method has a recall of 82-87 % and a
precision of 71-76 % for the three test languages. The model needs no external
corpus and can therefore serve as a baseline.

1 Introduction

New words and new usages of old words are constantly finding their way into daily
language use. This is particularly prominent in rapidly developing domains such as
biomedicine and technology. The new words are typically acronyms, technical termi-
nology,  loan  words,  names  or  compounds  of  such  words.  They  are  likely  to  be  un-
known by most hand-made morphological analyzers. In some applications, hand-
made guessers are used for covering the low-frequency vocabulary or the strings are
simply added as such.

Mikheev [2] and [16] noted that words unknown to the lexicon present a substan-
tial problem to part-of-speech tagging and he presented a very effective supervised
method for inducing a guesser from a lexicon and an independent training corpus.
Oflazer & al. [3] presented an interactive method for learning morphologies and
pointed out that an important issue in the wholesale acquisition of open-class items is
that of determining which paradigm a given citation form belongs to.

Recently, unsupervised acquisition of morphologies from scratch has been studied
as a general problem of morphology induction in order to automate the morphology
building procedure. For overviews, see Wicentowski [4] and Goldsmith [5]. If we do
not need a full analysis, but only wish to segment the words into morph-like units, we
can use segmentation methods like Morfessor [6]. For a comparison of some recent
successful segmentation methods, see the Morpho Challenge [7].

Although unsupervised methods have advantages for less-studied languages, for
the well-established languages, we have access to fair amounts of lexical training ma-
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terial in the form of analyzes in the context of more frequent words. Especially for
Germanic and Fenno-Ugric languages, there are already large-vocabulary descriptions
available and new words tend to be compounds of acronyms and loan words with ex-
isting words. In English, compound words are written separately or the junction is in-
dicated with a hyphen, but in other Germanic languages and in the Fenno-Ugric lan-
guages, there is usually no word boundary indicator within the compounds. It has
previously been shown by Lindén [8] that already training sets as small as 5000 in-
flected word forms and their manually determined base forms will give a reasonable
result for guessing base forms of new words by analogy, which was tested on a set of
languages from different language families. In addition, there are a host of large but
shallow hand-made morphological descriptions available, e.g., the Ispell collection of
dictionaries [9] for spell-checking purposes, and many well-documented morphologi-
cal analyzers are commercially available, e.g. [10].

In this paper, we propose a new method that takes an existing finite-state trans-
ducer lexicon and creates a guesser using only generally applicable formal properties
of weighted transducers. The method is implemented using the open-source Helsinki
Finite-State Technology [1]. In Section 2, we describe the methodology and present
some formal properties. In Section 3, we present the training and test data. In Section
4, we evaluate the model on Finnish, English and Swedish transducer lexicons. In
Section 5, we discuss the method and the test results in light of previous literature on
guessers.

2 Methodology

Assume that we have a finite-state transducer lexicon T which relates base forms,
b(w), to inflected words, w. Let w belong to the input language LI and b(w) to the out-
put language LO of the transducer lexicon. Our goal is to create a guesser for inflected
words that are unknown to the lexicon, i.e. we wish to provide the most likely base
forms b(u) for an unknown input word u ∉ LI.

In 2.1, we describe the theoretical foundation of the guesser model and, in 2.2, we
prove some of the fundamental properties of the guesser model.

2.1 Guesser Model

In order to create a guesser, we first define the left quotient and the weighted uni-
versal language with regard to a lexical transducer. For a general introduction to
automata theory and weighted transducers, see e.g. Sakarovitch [23].

If L1 and L2 are formal languages, the left quotient of L1 with regard to L2 is  the
language consisting of strings w such that xw is in L1 for some string x in L2. In sym-
bols, we write the left quotient as:

L1 \ L2 = { a | ∃x (( x ∈ L2 ) ∧ ( xa ∈ L1 )) } (1)

We can regard  the  left  quotient  as  the  set  of  postfixes  that  complete  words  from L2,
such that the resulting word is in L1.



If L is a formal language with alphabet Σ,  a universal language, U, is a language
consisting of strings in Σ*. The weighted universal language, W, is a language con-
sisting of strings in Σ* with weights p(w) assigned to each string. For our purposes, we
define the weight p(w) to be proportional to the length of w. We define a weighted
universal language as:

W = { w |∃w ( w ∈ Σ* ) } with weights p(w)=C·|w| , (2)

where C is a constant.
A finite-state transducer lexicon, T, is a formal language relating the input lan-

guage LI to the output language LO. The pair alphabet of T is the set of input and out-
put symbol pairs related by T. An identity pair relates a symbol to itself.

We create a guesser, G, for the lexicon T by constructing the weighted universal
language W for identity pairs based on the alphabet of LI concatenating it with the left
quotient of T for the universal language U of the pair alphabet of T:

G(T) = W T \ U (3)

2.2 Properties of the Guesser Model

Lemma 1. For the lexicon, T, a guesser, G(T), composed with an unknown word, u,
generates the entry guesses b(u) = y b(w), where b(w) is a postfix of LO and w is  a
postfix of LI.

Proof.  Assume that we have an unknown word u ∈ Σ*, where Σ is the input alphabet
of T. We decompose u into y w,  such  that y ∈ Σ* and
w ∈ { s | ∃p (( p ∈ LI ) ∧ ( ps ∈  Σ* )) }. We then have u ○ G(T) = ( y w )○( W
T \ U ) = ( y ○W )( w ○ T \ U ) = y b(w).             □

Lemma 2. For the weight-free transducer, T, the entry guesses with the minimal
weight, bmin (u), for an unknown word, u, composed with the guesser, G(T), is gener-
ated by the set of longest matching postfixes of u and the input language of T.

Proof.  Assume that we have an unknown word u ∈ Σ*, where Σ is the input alphabet
of T. The b(u) with minimal weight is bmin (u) = arg minp(v) {  v  |  v  =  u○G(T)  }  =
arg minp(v) { v | v = y b(w) }. The weight of y b(w) is proportional to the length of y,
i.e. |y|*C.           □

Lemma 3. If T is a weighted transducer, the guesses with minimal weight, bmin (u),
are the longest matching postfixes of u with minimal weight by T provided that the
weight C of the symbols in the universal language W is greater than the weight of any
symbol pair related by T.

Proof. Assume that we have an unknown word u ∈ Σ*, where Σ is the input alphabet
of T. We decompose u into y1 w1 and y2 w2, such that y1, y2 ∈ Σ* and w1, w2 ∈ { s |
∃p (( p ∈ LI ) ∧ ( ps ∈  Σ* )) } and | y1 |  =  | y2 |  -  1.  As  | w1 |  =  | w2 |  +  1,  we  have



p(b(w1)) ≥ p(b(w2)) + C and consequently p( y1 b(w1) ) ≥ p( y2 b(w2) ).
            □

Theorem. To create a longest matching postfix guesser, G(T) = W T \ U, from the
weighted lexical transducer, T, we take the maximum transition weight, ω, of T and
assign the prefix transition weight C to ω+δ.

Proof. The result follows directly from Lemma 3.
□

For prefixing languages, we can create a guesser using the right quotient and the
universal postfix. For circumfixing languages, we can concatenate the prefixing and
postfixing guessers to create a circumfixing guesser.

Generally, one can characterize our weighted finite-state entry generator as induc-
ing an ordering over the possible entries for a new and previously unseen inflected
form preferring entries that have inflected forms and parts of the stem in common
with  previously  seen  entries.  As  a  corollary,  entries  for  already  seen  words  will  be
generated first. If the forms of the lexical transducer, T, are weighted according to the
frequency of the paradigms in the lexicon, the most frequent paradigms are generated
first if there are several paradigm candidates for the same affix.

3 Data Sets

To test the entry generator for finite-state transducer lexicons, we created transducer
lexicons from existing lexical resources for three different languages: Finnish, Swed-
ish and English using the Helsinki Finite-State Technology [1].  We drew words  un-
known to these lexicons from three language-specific text collections and manually
determined their correct entries. In 3.1, we describe the lexical resources and outline
the procedure for creating the finite-state transducer lexicon. In 3.2, we describe the
test data and, in 3.3, we describe the evaluation method and characterize the baselines.

3.1 Lexical Data for Finite-State Transducer Lexicons

The lexical descriptions relate base forms to inflected word forms. This can be done
either through each base form classified with a paradigm and a list of paradigms with
model words, or it can be done as a full-form lexical description with all the inflected
forms of each base form. The final lexicon and is implemented with finite-state trans-
ducer technology. Regardless of the initial form of the lexical description, the finite-
state transducer lexicon maps a word in dictionary form to all of its inflected forms.
For an introduction, see e.g. Koskennimiemi [11]. Essentially this means that compos-
ing the transducer lexicon with an inflected word form will create a new transducer
containing all the possible base forms and the morphological analyses of how the in-
flected word form is related to the base form.

A weighted finite-state transducer lexicon can contain weights in many different
ways. A fruitful set of weights would be to estimate the relative frequency of the word



forms and encode them as a priori probabilities or weights in the lexicon. This re-
quires a disambiguated corpus. Above we only have lexical descriptions and, assum-
ing that there are or we have created inflectional paradigms, we can estimate the rela-
tive frequency of the paradigms. It has also been demonstrated by Karlsson [12] that it
is preferable to have as few parts as possible in a multipart compound analysis. For
lack of better estimates, the weighted finite-state transducer lexicon lists the analyses
primarily according to the number of analyzed compound parts and secondarily in
paradigm frequency order.

Most languages have ready-made inflectional paradigms with the lexical descrip-
tion. From this a finite-state transducer lexicon can be manually compiled. However,
for languages which typically have few inflected forms for each base form, it is feasi-
ble  to  have  a  full-form  description  of  all  the  lexical  entries.  If  we  only  have  a  full-
form lexical description, we need to extract paradigms, in order to be able to generate
lexical entries for new words.

Finnish. In order to create the Finnish dictionary, we used the Finnish word list Nyky-
suomen sanalista [13], which contains 94 110 words in base form. Of these, approxi-
mately 43 000 are non-compound base forms classified with paradigm information.
The word list consists of words in citation form annotated with paradigm and grada-
tion pattern. There are 78 paradigms with 13 gradation patterns. For example, the en-
try for käsi (= ’hand’) is ‘käsi 27’ referring to paradigm 27 without gradation, whereas
the word pato (= ‘dam’) is given as ‘pato 1F’ indicating paradigm 1 with gradation
pattern F. From this description a lexical transducer is compiled with a cascade of fi-
nite-state operations [22]. For nominal paradigms, inflection includes case inflection,
possessive suffixes and clitics creating more than 2 000 word forms for each nominal.
For the verbal inflection, all tenses, moods and personal forms are counted as inflec-
tions, as well as all infinitives and participles and their corresponding nominal forms
creating more than 10 000 forms for each verb. In addition, the Finnish lexical trans-
ducer also covers nominal compounding.

English. For English we use FreeLing 2.1 [14]. The FreeLing English lexical re-
source was automatically extracted from WSJ, with manual post-editing and comple-
tion. It contains about 55 000 forms corresponding to some 40 000 different combina-
tions of lemma and part-of-speech. For each part-of-speech, English only has a small
set of forms for phonological or semantic reasons, but most often due to the fact that
the form did not occur in the Brown corpus.

We extract paradigms from the full-form lexical description for English in the fol-
lowing manner: we automatically align the characters of the base form and the in-
flected forms and determine the longest common prefix for the base form and all the
inflected forms. The remaining set of endings, possibly with some characters from the
stem, is considered a paradigm. Since the words may have individual patterns with
left out forms, the automatically extracted set of paradigms becomes relatively large.
We get 489 paradigms for English out of which 151 occur more than once.

Swedish. For Swedish we use the open source full-form dictionary Den stora svenska
ordlistan [15]. For each base form, the part of speech is given. For each part-of-
speech, there is a given set of inflected forms, e.g. for nouns there are always eight



forms, i.e. all combinations of singular and plural, nominative and genitive, definite
and indefinite forms. For any word, there may be an empty slot, if the form is consid-
ered non-existent for some reason, e.g. phonologically or semantically. In addition,
each word may have an indication of whether it can take part in compounding which
is prolific in Swedish.

We  use  the  same  procedure  for  creating  paradigms  for  Swedish  as  we  used  for
English. We get 1333 paradigms out of which 544 occur more than once with the rest
in a Zipfian distribution.

3.2 Test Data

A set  of  previously  unseen words  in  inflected  form serve  as  a  test  set  for  which  we
wish to determine their inflectional paradigm. In order to extract word forms that rep-
resent relatively infrequent and previously unseen words we used various text collec-
tions for Finnish, Swedish and English. We drew 5000 word and base form pairs at
random from the frequency rank 100 001-300 000 as test material for each language.
Since we are interested in new words, we only counted inflected forms that were not
recognized by the lexical transducers we had created. In addition, we removed strings
containing numbers, punctuation characters or only upper case from the test data.

Finnish. For  Finnish,  we  used  the Finnish Text Collection, which is an electronic
document collection of the Finnish language. It consisted of 180 million running text
tokens. The corpus contains news texts from several current Finnish newspapers. It
also contains extracts from a number of books containing prose text, including fiction,
education and sciences. Gatherers are the Department of General Linguistics, Univer-
sity of Helsinki; The University of Joensuu; and CSC–Scientific  Computing Ltd. The
corpus is available through CSC [www.csc.fi].

Of the selected strings, 1715 represented words not previously seen by the lexical
transducer. For these strings, correct entries were created manually. Of these, only 48
strings had a verb form reading. The rest were noun or adjective readings. Only 43
had more than one possible reading.

A sample of test strings are: ulkoasultaan, kilpailulainsäädännön, epätasa-arvoa,
euromaan, työvoimapolitiikka, pariskunnasta, vastalausemyrskyn, kolmeentoista,
haudatut, liioitellun, ruuanlaiton, valtaannousun, suurtapahtumaan, ostamiaan, …

English. For English, we used part of The Project Gutenberg text collection, which
consists of thousands of books. For this experiment we used the English texts released
in the year 2000 [http://www.gutenberg.org/]. The tokens consisted of 266 000 forms
of 175 000 base forms.

Of the selected strings, 3100 represented words not previously seen by the lexical
transducer. For these strings, correct entries were created manually for the first 25 %,
i.e. 775 new entries. Of these, 60 strings had verb form readings, 610 noun readings
and 161 adjective readings, and 14 adverb readings. Only 79 strings had more than
one reading.



A sample of test strings are: florin, disfranchised, chimney-pieces, Beechwood,
warbled, sureness, sitting-rooms, marmoset, landscape-painter, half-burnt, Burling-
ton, …

Swedish. For  Swedish,  we  used  the Finnish-Swedish Text Collection, which is an
electronic document collection of the Swedish language of the Swedish speaking mi-
nority in Finland. It consisted of 35 million tokens. The tokens were 765 000 inflected
forms of 445 000 base forms. The corpus contains news texts from several current
Finnish-Swedish newspapers. It also contains extracts from a number of books con-
taining fiction prose text. Gatherers are The Department of General Linguistics, Uni-
versity of Helsinki; CSC–Scientific Computing Ltd. The corpus is available through
CSC [www.csc.fi].

Of the selected strings, 1756 represented words not previously seen by the lexical
transducer. For these strings, correct entries were created manually for first 25 %, i.e.
439 new entries. Of these, 37 strings had a verb form reading, 387 noun readings, 47
adjective readings. Only 48 strings had more than one reading.

A sample of the test strings are: finrummet, chansons, översvämmande, Valören,
tonsiller, Stollans, sjöfartspolitiska, reliken. oskött. Dylikt, antidopingkommitté, …

3.4 Evaluation Measures and Baseline

We report our test results using recall and average precision at maximum recall. Re-
call means all the inflected word forms in the test data for which an accurate base
form suggestion is produced. Average precision at maximum recall is an indicator of
the amount of noise that precedes the intended base form suggestions, where n incor-
rect suggestions before the m correct ones give a precision of 1/(n+m), i.e., no noise
before a single intended base form per word form gives 100 % precision on average,
and no correct suggestion at maximum recall gives 0 % precision. The F-score is the
harmonic mean of the precision and the recall.

The random baseline for Finnish is that the correct entry is one out of the 78 para-
digms with one out of 13 gradations, i.e. a random correct guess would on the average
end up in as guess number 507. For English, an average random guess ends up in po-
sition 245 and, for Swedish, in position 667.

4 Experiments

We test how well the guesser outlined in Section 2 is able to predict the paradigm for
an inflected word form using the test data mentioned in Section 3. Of the randomly
chosen strings from the test data range, word forms representing previously unseen
words were used as test data in the experiment. The generated entries are intended for
human post-processing, so the first correct entry suggestion should be among the top
6 candidates, otherwise the ranking is considered a failure. All the guessers were sta-
tistically highly significantly better than their random baseline.



4.1 Finnish Guesser

The Finnish Guesser generated a correct entry among the top 6 candidates for 82 % of
the test data as shown in Table 1, which corresponds to an average position of 2.3 for
the first correct entry with 82 % recall and 76 % average precision.

Table 1. Ranks of all the first correct entries by the Finnish guesser.

Rank Freq Percentage
#1 1140 66,5 %
#2 186 10,8 %
#3 64 3,7 %
#4 17 1,0 %
#5 4 0,2 %
#6 2 0,1 %
#7-∞ 302 17,6 %
 Total 1715 100,0 %

Table 2. Ranks of all the first correct entries by the English guesser.

Rank Freq Percentage
#1 477 61,5 %
#2 81 10,5 %
#3 56 7,2 %
#4 17 2,2 %
#5 14 1,8 %
#6 15 1,9 %
#7-∞ 115 14,8 %
 Total 775 100,0 %

Table 3. Ranks of all the first correct entries by the Swedish guesser.

Rank Freq Percentage
#1 243 55,4 %
#2 84 19,1 %
#3 40 9,1 %
#4 10 2,3 %
#5 5 1,1 %
#6 1 0,2 %
#N-∞ 56 12,8 %
 Total 439 100,0 %



4.2 English Guesser

The English Guesser generated a correct entry among the top 6 candidates for 83 % of
the test data as shown in Table 2, which corresponds to an average position of 2.4 for
the first correct entry with 83 % recall and 72 % average precision.

4.3 Swedish Guesser

The Swedish Guesser generated a correct entry among the top 6 candidates for 87 %
of the test data as shown in Table 3, which corresponds to an average position of 2.3
for the first correct entry with 87 % recall and 71 % average precision.

5 Discussion

In this section, we give a brief overview of previous and related work on guessers. In
5.1, we compare test results with previous efforts. In 5.2, we give some notes on the
implementation of the methods. In 5.3, we discuss future work.

5.1 Comparison with Results from Similar Efforts

Test results on identical data are not available, but similar efforts have been made and
some insights can be gleaned from a comparison between them.

Stroppa and Yvon [17] present experimental results obtained on a morphological
analysis task guessing base form and morphological features for an inflected form in
English with the following recall and precision: nouns 75 % and 95 %; verbs 95 %
and 97 %; adjectives 28 % and 88 %, respectively. It is interesting to note that verb
forms are the easiest to get right, whereas it is much trickier to guess the base forms
and syntactic features of nouns and adjectives. The explanation is probably that the
base forms of nouns and adjectives are much more varied, and that they partly overlap
with the inflected forms.

Wicentowski [18] presents the WordFrame model, a noise-robust supervised algo-
rithm capable of inducing morphological analyses for languages which exhibit pre-
fixation, suffixation, and internal vowel shifts. In combination with a naive approach
to suffix-based morphology, this algorithm is shown to be remarkably effective across
a broad range of languages, including those exhibiting infixation and partial redupli-
cation. Results are presented for over 30 languages with a median accuracy of 97.5 %
on test sets including both regular and irregular verbal inflections. The excellent accu-
racy is partly explained by the fact that he uses a dictionary to filter the suggested
base forms. His intention is to learn irregular forms which are dominant among verbal
inflections, but the good results should be seen in light of the results from Yvon and
Stroppa [17], where a substantial challenge seems to be in modeling the behavior of
nouns and adjectives. They are also the most frequent categories among new words.



Claveau and L’Homme [19] label morphologically related words with their seman-
tic relations using morphological prefix and postfix analogies learned from a sample
of pre-labeled words with a recall of 72 % and precision of 65 % on separate test data.

Baldwin [20] acquires affix and prefix transformations achieving 0.6 F-score for
English using Timbl [21] as the classifier. However, the classification was for syntac-
tic features not for inflectional paradigm.

We recall that our model is developed for guessing the paradigms of unknown and
previously unseen inflected words, i.e. their base forms cannot be tested against a
lexicon. In light of the results from comparable reports from other languages, our re-
sults automatically derived guessers are very good, because the data shows that the fi-
nal guessers have 68-73 % precision and 82-87 % recall, i.e. an F-score of 78-79 %,
on all three languages with different morphological complexity. It is interesting that
our model is slightly more precise for Finnish, which is morphologically more com-
plex than Swedish and English, whereas the recall is lower for Finnish. The explana-
tion may be that inflected forms of Finnish are better indicators of the paradigm to
which they belong, if the ending is recognized. In English, word endings may occur
both in inflected and in base forms, e.g. ‘sleeping’ should be regarded as an adjective
in base form in ‘a sleeping beauty’, but as an inflected form of the verb ‘sleep’ in ‘is
sleeping’.

A quick look at the words which fail for English reveals that among them are e.g.
preacheth, Surmountheth, corruptehth, which could not have received a correct guess
as out-dated verb forms were not available as analogical models. Other words with
missing correct analogues are webbed, which gets the base form webb whereas we
expect web, even if the word is otherwise correctly identified as a verb. Similar prob-
lems seem to afflict words ending in low frequency characters in combination with
the fact that we require the correct answer to have a specific base form and a para-
digm which indicates all the correct inflected forms. E.g., we require that words like
plowman are correctly identified as having the plural plowmen. It is not enough just to
identify it is as some noun. The same goes for other words with irregular forms or ex-
ceptional paradigms. This also demonstrates that for part-of-speech tagging, the
guessing task is easier as the tagging does not require guessing all the correct forms
and only the correct forms of an out-of-vocabulary word.

Table 4. Test results for Finnish, English and Swedish guessers.

5.2 Implementation note

The models were implemented with a cascade of weighted finite-state transducers.
For conveniently creating morphological analyzers and guessers, HFST–the Helsinki
Finite-State Technology [1] is available as an Open Source toolkit. Running the

Language Recall Precision F-score
Finnish 0,82 0,76 0,79
English 0,83 0,72 0,78
Swedish 0,87 0,71 0,78



guesser in forward mode may be relatively slow, whereas running the guesser in re-
verse is almost deterministic for the n-best results and therefore very efficient.

5.3 Future work

The suggested model is completely general and requires no additional data except the
morphological analyzer in finite-state transducer format. It would be interesting to
see, whether this general model can benefit from a purely probabilistic model condi-
tioned on analogical transformations, e.g. the one suggested by Lindén [8], or some
more contextually oriented model taking the surrounding words into account.

6. Conclusion

A substantial amount of languages have been implemented as lexical transducers with
the Koskenniemi two-level model or similar formalisms, which means that there is a
wealth of lexical transducers available. As the entry generator model we suggest is
general and requires only a lexical transducer and no additional information from ex-
ternal corpora, it can serve as the baseline for entry generators on a number of lan-
guages. Compared with guessers for part-of-speech tagging, the entry guessing task is
more difficult as entry guessing requires all the correct forms and only the correct
forms of an out-of-vocabulary word to be identified. We have tested our entry guesser
on inflected forms of new words in three languages from different language families
demonstrating that the model has a recall of 82-87 % and a precision of 71-76 % for
the three test languages. This corresponds to having the first correct entry on the aver-
age in position 2.3-2.4.
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