
Conflict Resolution Using Weighted Rules in HFST-TWOLC

Miikka Silfverberg
Department of General Linguistics

University of Helsinki
Helsinki, Finland

miikka.silfverberg@helsinki.fi

Krister Lindén
Department of General Linguistics

University of Helsinki
Helsinki, Finland

krister.linden@helsinki.fi

Abstract

In this article we demonstrate a novel way
to resolve conflicts in two-level grammars
by weighting the rules. The rules are
transformed into probabilistic constraints,
which are allowed to compete with each
other. We demonstrate a method to auto-
matically assign weights to the rules. It
acts in a similar way as traditional conflict
resolution, except that traditionally unre-
solvable left-arrow rule conflicts do not
cause lexical forms to be filtered out. The
two-level lexicon and probabilistic two-
level grammar are combined using the new
transducer operation weighted intersecting
composition. The result is a weighted lex-
ical transducer. To the best of our knowl-
edge, this is the first time probabilistic
rules have been used to solve two-level
rule conflicts. The possible applications
of probabilistic lexical transducers range
from debugging flawed two-level gram-
mars to computer-assisted language learn-
ing. We test our method using a two-
level lexicon and grammar compiled with
the open source tools HFST-LEXC and
HFST-TWOLC.

1 Introduction

In a two-level phonological grammar the rules are
parallel constraints whose joint effect determines
the surface realizations for lexical analyses. A
valid correspondence between a lexical string and
its surface realization has to be accepted by all of
the rules, otherwise it is filtered out (Koskenniemi,
1983).

Situations where correspondences are filtered
out because two rules require a lexical form to be
realized in two different ways are called rule con-
flicts. In the worst case, all surface forms corre-

sponding to a lexical analysis are lost and the anal-
ysis is filtered out by the grammar.

Conflict resolution is an automated mechanism
in two-level rule compilers, which attempts to find
conflicting rules and modify them so that no lex-
ical analyses are lost. Traditional conflict resolu-
tion can resolve arbitrary conflicts between right-
arrow rules, but it is limited to special cases in the
case of left-arrow rule conflicts as we explain in
section 2.1.

Instead of traditional conflict resolution we pro-
pose a method, which builds on making the whole
two-level grammar probabilistic in section 2.2.
The rules become weighted violable constraints,
which are allowed to compete against each other.

Weighting rules is not a new idea. All statisti-
cal parser use the idea. However, casting conflict
resolution in probabilistic terms is new. We are
not aware, of other systems, which use probabilis-
tic rules for conflict resolution. In finite-state syn-
tax, weighted parallel constraints have been con-
sidered by Voutilainen (Voutilainen, 1994). Vouti-
lainen considered the use of weighting to order
sentence parses by typicality. The weights could
be assigned by a linguist or corpus data could be
used. The method he proposes is based on penalty
weights like our method.

In section 3 we propose a general method for
assigning weights to rules. In section 4 we use
this method to weight rules in a way, that paral-
lels traditional conflict resolution, when all rule
conflicts are solvable. The difference between
traditional conflict resolution and our method is,
that our method preserves lexical analyses for sur-
face forms even in conflict situations, although
these might not have a preferred order, since their
weight may be the same. The rule writer may
choose to refine the weighting we propose either
according to her intuition or by using corpus-data.

The applications of the new kind of conflict
resolution might include identifying typical gram-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14922738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

matical errors made by children and language
learners or in information retrieval, since the
grammar becomes violable and some erroneous
forms are retained, although these are less prob-
able, than their correct counterparts. A very sig-
nificant use is for debugging two-level grammars.
Since forms are not filtered out in a conflict sit-
uation, the linguist, who is writing the two-level
grammar gets a clearer picture of the way the
grammar is broken.

In section 5 we use a new transducer opera-
tion, weighted intersecting composition to com-
bine a two-level lexicon and a two-level gram-
mar. Weighted intersecting composition allows
the weights in the rules to be passed to the re-
sulting lexical transducer. The operation has been
modelled on unweighted intersecting composi-
tion, which was introduced by Karttunen (Kart-
tunen, 1994).

We test our method using an example lexicon
and grammar in sections 6 and 7. The exam-
ple concerns gradation of stops in Finnish. The
example lexicon was compiled using the open
source two-level lexicon compiler HFST-LEXC1

and the example grammar was compiled using the
open source two-level grammar compiler HFST-
TWOLC2. Both compilers belong to the finite-state
morphology toolkit HFST Morphology Tools3.

2 Rule Conflicts

Rule conflicts occur when two-level rules require,
that a lexical symbol is realized in two different
ways in the same context. Conflict resolution is
a process, which aims to modify the two-level
grammar in such a way, that rule conflicts van-
ish. Traditionally it has been restricted to con-
flicts between several right-arrow rules or two left-
arrow rules. We shall make the same restriction,
although conflicts occur in other types of rulesets
as well (Yli-Jyrä and Koskenniemi, 2006).

2.1 Traditional Conflict Resolution

A number of right-arrow rules, with equal centers
are conflicting if their contexts represent different

1For documentation:
https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstLexC

2For documentation:
https://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstTwolC

3For downloading HFST programs:
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/
sources.shtml

languages. E.g. the right-arrow rules

a:b ⇒ c ; and a:b ⇒ d ;

are in conflict. Since the first one limits the real-
ization of lexical a as surface b into contexts where
c precedes and the second one into contexts, where
d precedes, the result is that a can’t be realized as b

anywhere. The reasonable way to interpret the two
rules, is that a:b should occur either in context c

or context d because we may assume, that the
grammar writer intends all rules to be true. Sim-
ilar considerations apply to other right-arrow rule
conflicts as well. Such conflicts may therefore be
resolved by joining the conflicting rules into one
rule whose context is the union of the contexts of
the conflicting rules. Our example becomes

a:b ⇒ c | d ;

Obviously right-arrow conflicts may always be re-
solved.

In contrast to right-arrow rule conflicts, left-
arrow conflicts may not always be resolved. Two
left-arrow rules concerning the same lexical sym-
bol are in conflict if they require the symbol to be
realized in two different ways in the same context.
Consider the rules

a:b ⇐ X ; and a:c ⇐ x x ;

where X = {x, y, z}. In the context x x the
rules have conflicting requirements.

Here the context of the second rule is subsumed
by the context of the first rule, so the second rule
may be considered a special case of the first rule
(Karttunen et al., 1987). The first rule applies ev-
erywhere in the context X except in the context
x x. This means that the rule conflict is resolved
by modifying the first rule by subtracting the more
specific context x x from the more general X .
This kind of left-arrow conflicts reflect the fact,
that linguists tend to split rules into general ten-
dencies and absolute laws, which are exceptions
to those tendencies.

We use the general restriction (later GR) opera-
tion introduced by Yli-Jyrä (Yli-Jyrä and Kosken-
niemi, 2004) to compile two-level rules. Rule con-
texts are compiled into regular expressions, which
allows us to operate on them with regular expres-
sion operations. Hence, it is possible to resolve
a left-arrow conflict by subtracting the context of
a sub case rule from the context of a more gen-
eral rule. It is also possible to resolve right-arrow

conflicts simply by uniting them into one rule. Its
context is the union of the contexts of the conflict-
ing rules.

Left-arrow conflicts between rules neither of
which is a sub case of the other were not resolved
in the first two-level rule compiler (Karttunen et
al., 1987). Nor are they resolved by the current
Xerox two-level compiler (Karttunen, 1992). The
result is that lexical forms are filtered out by the
grammar.

2.2 A Probabilistic Interpretation of Rule
Conflicts

Consider a grammar, which has two left-arrow
rules R1 and R2 concerning the lexical symbol x.
The rules are defined

x:y ⇐ C1 and x:z ⇐ C2

respectively. If the set C1 ∩ C2 is nonempty, the
rules are conflicting.4

Clearly rule R1 should hold vacuously in the set
C1 \ C2 and so should R2 in the set C2 \ C1. We
may interpret the situation probabilistically. The
rule R1 should apply with probability 1 in the con-
text C1 \ C2. Similarly rule R2 should apply with
probability 1 in context C2 \ C1. Since we have
no information concerning the relative importance
of R1 and R2, it is reasonable to assume, that the
rules have equally high probability p of applying
in the context C1 ∩ C2. Traditional conflict reso-
lution corresponds to assigning p the value 0, but
one could equally well argue, that p should have
the value 0.5.

In a situation where the rule R1 is stronger than
the rule R2 it may be given higher probability than
R2, which means that surface realizations derived
using rule R2 are more likely than realizations,
which are derived using rule R1.

Generalizing the idea of rules as tendencies and
absolute laws, we get a range of rules with dif-
ferent probabilities of applying, from laws which
always hold to less certain tendencies. Compiling
a lexical transducer becomes the equivalent of let-
ting the different rules compete with each other,
which results in an ordering of possible analyses
for lexical forms.

4We operate with rule contexts like they were regular lan-
guages. We do this, because the GR-operation allows us to
transform them into regular expressions

3 Conflict Resolution Using Weights

We propose a new method of resolving conflicts,
which is based on the idea of making the two-level
rules probabilistic. Instead of giving a probabil-
ity for each rule, we assign a penalty weight for
breaking a rule. The principle is, that breaking a
more likely rule should always result in a higher
penalty, than breaking a less likely one.

The rule R

x:y ⇐ C

is combined with a penalty weight transducer us-
ing weighted union of transducers (Allauzen et al.,
2007), so after conflict resolution it becomes the
weighted rule R′

R ∪ (Σ∗
〈WEIGHT〉)

The expression Σ∗
〈WEIGHT〉 denotes the language

of all strings of feasible pairs, where every string
receives weight WEIGHT.

In the transducer R′, correspondences which
break the rule R receive weight WEIGHT and
correspondences which do not break the rule R re-
ceive weight 0. This happens, because we use the
tropical semi-ring to represent weights, as we will
see in section 5. In the tropical semi-ring addition
of weights, performed by the weighted union, cor-
responds to taking the least of the weights.

The two-level grammar is equivalent to the in-
tersection of the weighted rule transducers. The
best paths corresponding to a surface realization
for a lexical string are those for which the sum
of the weight given by each rule transducer is the
lowest.

When two rules compete, the correspondences
which break the rule whose penalty weight is
lower get a lower penalty than the ones that break
a rule with a higher penalty. Conflict resolution
thus becomes the task of finding suitable weights
for the rules in a grammar.

4 Compiling Two-Level Rules and
Weighting them

We now demonstrate a way to weight the rules in
a two-level grammar, which will give the same re-
sults as ordinary conflict resolution, when all rule
conflicts are solvable. The process may be com-
pletely automated.

The right-arrow rules will be compiled in the
same way as usual, but we need to find penalty

weights associated with the left-arrow rules in the
grammar.

We precompile the contexts of all x:y ⇐
L R ; into context expressions L�Σ∗ �R, where
Σ is the alphabet of the two-level grammar.

We define a relation context-inclusion in the
grammar. We say that context-inclusion holds be-
tween two rules R1 and R2,whose centers have the
same lexical symbol,

x:y ⇐ Cl1 Cr1 ; and x:z ⇐ Cl2 Cr2 ;

iff

(Cl1 � Σ∗ � Cr1) ⊂ (Cl2 � Σ∗ � Cr2).

Context-inclusion is a partial ordering, so we use
the symbol < for it and write R1 < R2.

Let {X1, ..., Xn} be a set of rules in the two-
level grammar. The set is a chain beginning at X1,
iff

X1 < ... < Xn.

Specifically any set of size 1 is a chain.
We now give each rule R a penalty weight ac-

cording to the length of the longest chain begin-
ning at R.

Suppose there is a conflict between the rules R

and S. If the conflict is resolvable and R is a sub
case of S, then R < S. Since every chain begin-
ning at S may be extended to a chain beginning
at R, breaking the rule R will result in a greater
penalty weight than breaking the rule S.

Conflicts, which couldn’t be solved using tra-
ditional conflict resolution will not result in fil-
tered out lexical forms using our conflict resolu-
tion, even though there might not be a preferred
order for realizations of a lexical form. This hap-
pens because all left-arrow rules are violable.

Other ways of assigning weights for rules might
be conceivable, e.g. using corpus data to extract
probabilistic two-level rules or to extract lexical
contexts in the form of n-grams. This could also
be used to fine-tune a grammar obtained using
our method. In addition the linguist writing the
two-level grammar could assign penalty weights
for breaking the rule. The penalty weight v pre-
assigned by the linguist and the weight w given by
our conflict resolution may be combined. The ac-
tual penalty weight received for breaking the com-
piled rule becomes v⊗w, where ⊗ is the multipli-
cation of the weight semi-ring.

A limitation of our system is, that a cor-
respondence violating a rule receives the same

weight surface form
1 ay

1 az

1 bz

2 by

Table 1: surface forms corresponding to ax.

penalty weight regardless of how many positions
in the correspondence violate the rule, since equal
penalty weights are assigned for all correspon-
dences violating a rule. This might not be a prob-
lem in practice, since correspondences exhibiting
the same rule conflict multiple times may be rather
rare.

Other possible limitations stem from complex
rule-interferences. E.g. let the alphabet Σ be

Σ = {a, a:b, x:y, x:z}

and consider the somewhat strange rules

x:y ⇐ a: ; and x:z ⇐ a:b ;

of a two-level grammar with alphabet Σ.
The second rule is a sub case of the first one,

so our method of weighting the rules will give
it a higher penalty weight. If these are the only
rules for the lexical symbol x, then the first rule
gets penalty weight 1 and the second gets penalty
weight 2. Now, consider the rule

a:b ⇐ x:y ;

If it is the only rule concerning the lexical symbol
a, it will get the penalty weight 1.

The conceivable realizations for the lexical
string ax ordered by weight are given in Table 1.

Among the three best correspondences, there is
one, which breaks the third rule, which was not in
a left-arrow or a right-arrow conflict with either of
the other rules. This example is rather contrived
and we are not sure, whether actual phonologies
contain these kinds of phenomena.

A further limitation of our system is that, it
is possible that surface forms which would not
have received any analyses, if they would have
been compiled in the normal way, receive analy-
ses. Since our system deals with relative weights,
it is not possible to see, if a form is likely to be a
good surface form for a lexical form, without gen-
erating the best surface forms corresponding to the
lexical analysis. We will see an example of this in
section 7

5 Combining a Two-Level lexicon and a
Probabilistic Two-Level Grammar

As usual, we combine the two-level lexicon and
rules to form a lexical transducer. Traditionally
this can be done using the operation intersecting
composition introduced by Karttunen (Karttunen,
1994). Since our rules are weighted, we need to
modify the operation slightly. We call the modi-
fied operation weighted intersecting composition.

The result of unweighted intersecting composi-
tion is equivalent to composing the two-level lex-
icon with the intersection of the two-level rules.
The operation was developed, since sequential in-
tersection followed by composition could be rather
slow, as computing the intersection of the rule
transducers is a resource demanding operation. In
intersecting composition the composition and in-
tersections are carried out simultaneously. This
allows both the lexicon and the rules to limit the
size of the result of the operation without large in-
termediate results.

Weighted intersecting composition is a modi-
fication of intersecting composition for weighted
lexicons and rules. The result of the operation is
equivalent to weighted composition of the lexicon
and the weighted intersection of the rules as de-
fined in (Allauzen et al., 2007).

A probability p can be interpreted as a penalty
weight w, using the standard conversion w =
− log (p). This means that high probabilities cor-
responds to low penalty weights.

We use the tropical semi-ring T =
(R+, 0̄, 1̄,⊕,⊗) to represent penalty weights.
Here R+ are the reals, 0̄ = ∞, 1̄ = 0 and the
binary operations

⊕ : R+ × R+ → R+ and ⊗ : R+ × R+ → R+

are defined

x ⊕ y = min({x, y})

and
x ⊗ y = x + y

respectively. The operation + is the regular addi-
tion of the reals.

A weighted transducer has one initial state s0

and may have several final states. A state s is final,
if its final weight s[w] 6= 0̄ = ∞

Let e be a transition from state s to state t with
the pair x:y and weight w. We represent it as a
four tuple e = (s, t, w, p) where s = e[s] is the

source state, t = e[t] is the target state, w = e[w]
is the weight and p = e[p] is the pair x:y of the
transition.

A final path P in the transducer is a sequence of
transitions

P = e0, ..., en

where the source state of e0 is s0, i.e. e0[s] = s0,
ei+1[s] = ei[t] for all 0 ≤ i < n and the target of
the last transition is a final state, i.e.

(en[t])[w] 6= 0̄ = ∞.

We define the weight of P

w(P) = (en[t])[w] ⊗
⊗

i

ei[w]

For a transducer T and pair-string

x:y = x1:y1 ... xn:yn

we define the set of final paths

Px:y,T = {P = (e0, ..., en) | ei[p] = xi:yi,
w(P) 6= 0̄}

and the weight of Px:y,T

w(Px:y,T) =
⊕

P∈Px:y,T

w(P).

The weight of the string x:y is w(Px:y,T).
Let L be a weighted two-level lexicon and

R1, ..., Rm weighted two-level rules. We mark
their intersecting composition by

L ◦∩(R1, ..., Rm).

It contains paths corresponding to a pair-string

x:z = x1:z1, ..., xn:zn,

if there are pair-strings

x:y = x1:y1, ..., xn:yn,

and
y:z = y1:z1, ..., yn:zn,

s.t. Px:y,L 6= ∅ and Py:z,Ri
6= ∅ for each i. Follow-

ing from the definitions of weighted composition
and intersection, the weight for x:z is

w(Px:y,L) ⊗
⊗

i

w(Py:z,Ri
).

The weighted rule transducers are more com-
plex, than unweighted ones, so the role of inter-
secting composition is even bigger in the weighted
situation. It might not even be feasible to compute
the intersection of weighted rule transducers.

6 A Test Grammar: Gradation of k in
Finnish

We tested weighted conflict resolution using a
small two-level lexicon and grammar. The gram-
mar consists of three rules governing the gradation
of k in Finnish. The grammar we used is a part of
a two-level grammar for Finnish gradation of k, p

and t, which appeared in (Karttunen et al., 1987).
Gradation is an alternation in the stems of a

number of Finnish words. The quality of the final
stop k, p or t depends on, whether it is in an open
(CV) or closed syllable (CVC). The lenited form of
the stop may be a fricative, or the stop may vanish.
This is determined by the phonological context.

We use K to mark the morphophoneme partici-
pating in k-gradation. In surface forms, it may be
realized as 0, j, k, or v. The correspondence K:k
is the default correspondence. Our rules govern
the realization of K as 0, j and v.

The compiler we use is HFST-TWOLC, an
open source two-level rule.compiler, whose syn-
tax is very similar to Xerox TwolC. The sets we
use in the rules are We also use the named regular

Cons = h j k l n r s t v ;
Vowel = a e i o u ;
Liquid = l r ;
HighLabial = u y ;

expressions

ClosedOffset =
Cons: [Cons: | #:0] ;

ClosedCoda =
Vowel: ClosedOffset ;

where ClosedCoda is the coda of a closed
syllable.

The grammar has three rules

"Gradation of K to 0"
K:0 <=>
[h | Liquid | Vowel:] _ ClosedCoda;

"Gradation of k to j"
K:j <=>
[Liquid | h] _ [:i | e:] ClosedOffset;

"Gradation of k to v"
K:v <=>
Cons :HighLabial _ :HighLabial
ClosedOffset;

All the rules are double-arrow rules and will be
split down into a left-arrow rule and a right-arrow

rule (this is usually done when two-level rules are
compiled).

E.g. the rule Gradation of K to 0 will
be broken down into two sub-rules

K:0 <=
[h | Liquid | Vowel:] _ ClosedCoda;

K:0 =>
[h | Liquid | Vowel:] _ ClosedCoda;

We call the left-arrow rules, which are formed,
L0, Lj and Lv and the right-arrow rules R0, Rj

and Rv according to the surface symbol in their
center. Our grammar now has six rules.

The two-level lexicon we use is defined by the
HFST-LEXC file.

Multichar_Symbols K +NOUN +NOM +GEN +SG

LEXICON Root

arki+NOUN:arK CASE1 ;
arka+NOUN:arKa CASE2 ;
luku+NOUN:luKu CASE2 ;

LEXICON CASE1

+SG+NOM:0i# # ;
+SG+GEN:en# # ;

LEXICON CASE2

+SG+NOM:0# # ;
+SG+GEN:n# # ;

It covers the singular nominative and singu-
lar genitive cases of three words arki (workday),
arka (timid) and luku (number) exhibiting differ-
ent kinds of gradation of k. The surface forms,
which correspond to the cases, are given by Table
2.

K:0 K:j K:v
sg. nom. arka arki luku
sg. gen. ar0an arjen luvun

Table 2: Surface Forms

7 Weighting the rules and Compiling the
Test Grammar

We proceed to identifying conflicts. There are no
right-arrow conflicts, since all of the rules have
different centers. There are two left-arrow con-
flicts, however. One occurs between the rules L0

and Lj and the other between L0 and Lv . There

is no conflict between the rules Lj and Lv , since
their contexts are disjoint.

To begin resolving the conflicts in the gram-
mar, we first order the left-arrow rules according
to context-inclusion

Lj < L0 and Lv < L0

We can see that the longest chain starting at L0

has length 1, since the context of rule L0 is not in-
cluded in any other rules. The longest chains be-
ginning at Lj and Lv have length two, since both
of the rules are sub cases of the rule L0.

We now compile the rules using the GR opera-
tion and and weight the rule transducer. Weight-
ing the three left-rule transducers, we obtain the
weighted transducers

L′
0 = L0 ∪ Σ∗

〈1〉,

L′
j = Lj ∪ Σ∗

〈2〉

L′
v = Lv ∪ Σ∗

〈2〉

Let the transducer obtained by compiling the
HFST-LexC file in the example be L. The lexicon
L and the unweighted rules R0, Rj and Rv may
be converted into weighted transducers, following
the principle that all transitions get weight 1̄, all
final states get final weight 1̄ and all other states
get final weight 0̄. Since all states in a weighted
transducer get a final weight and only those states,
whose final weight is infinite are non-final, we
must give the non-final states weight 0̄.

We now compile the lexical transducer using
weighted intersecting composition. It is given by
the expression

L ◦ ∩
(

R0, Rj, Rv, L′
0, L′

j, L′
v)

The result is a weighted acyclic transducer. The
pair-strings it accepts, together with their weights
are shown below as pair-strings5 .

As might be expected, the correspondences with
weight 0.0 are those, that adhere to of all the rules.

The pair-strings with weight 1.0 are those, that
violate the general rule L0, but don’t violate ei-
ther of the more specific rules Lj and Lv. One
of these is arka+NOUN:0+SG:n+GEN:0which
is erroneous, but there is a better correspondence
ark:0a+NOUN:0+SG:n+GEN:0 with weight
0.0.

5A pair-string a:bcd corresponds to the string-pair
acd:bcd

WEIGHT PATH

0.0 ark:0a+NOUN:0+SG:n+GEN:0
0.0 arka+NOUN:0+SG:0+NOM:0
0.0 luku+NOUN:0+SG:0+NOM:0
0.0 arki:0+NOUN:0+SG:i+NOM:0

1.0 arka+NOUN:0+SG:n+GEN:0
1.0 luk:vu+NOUN:0+SG:n+GEN:0
1.0 ark:ji:0+NOUN:0+SG:e+GEN:n

2.0 luk:0u+NOUN:0+SG:n+GEN:0
2.0 ark:0i:0+NOUN:0+SG:e+GEN:n

3.0 luku+NOUN:0+SG:n+GEN:0
3.0 arki:0+NOUN:0+SG:e+GEN:n

The forms ark:ji:0+NOUN:0+SG:e
+GEN:n and luk:vu+NOUN:0+SG:n+GEN:0
are the correct sg. gen. forms. They are the best
correspondences given the lexical strings arki
+NOUN+SG+GEN and luku+NOUN+SG+GEN.

Lexical forms, which occur in a rule conflict,
have no unweighted surface realizations. This is
because rule conflicts are situations, where it isn’t
possible to avoid breaking some rule.

The form arka+NOUN:0+SG:n+GEN:0
demonstrates, that we can get slightly erroneous
forms with larger weight, than the best forms.
This might be useful e.g. for finding and identify-
ing common errors in the writing of a child or a
language learner.

All paths with weight 2.0 or 3.0 are erroneous.
The paths with weight 2.0 violate the specific
rules, but keep the more general rule. The paths
with weight 3.0 violate both a specific rule and the
general one. The weight 3.0 is a maximum. There
are no paths with weight 5.0, although such paths
might be conceivable. This is a consequence of
the fact that the rules Lj and Lv never apply at the
same time, so a correspondence can’t violate both
of them.

Note, that the surface form lujun of
luku+NOUN+SG+GEN is not possible, since the
right-arrow rule Rj limits the distribution of the
pair K:j. The right-arrow rules R0, Rj and Rv

hold vacuously.

8 Discussion and Further Work

The test, which we conducted in sections 6 and
7 shows that our method of conflict resolution
works. However, a more extensive test should be
conducted to ascertain, that the method is practi-
cal even when used on complete two-level lexi-
cons and grammars. There is some worry, that the

lexical transducer may become rather large, be-
cause it contains both grammatical and ungram-
matical forms with different weights. Complex
grammars with more intricate interplay between
the rules should also be tested.

Since the rules are weighted, standard look up
will have to be replaced by an n-best algorithm,
which will slow down the parsing process.

Previously improvements to conflict-resolution
have been considered by Yli-Jyrä, who proposes
an unweighted method for resolving general rule
conflicts (Yli-Jyrä and Koskenniemi, 2006). In ad-
dition to left-arrow conflicts and right-arrow con-
flicts, the method also resolves other kinds of rule
conflicts, but it diverges from traditional conflict
resolution, since it does not prefer rules, which are
sub cases of more general rules. Still, it would
be interesting to compare our method to the one
Yli-Jyrä proposes especially in regard to conflicts,
which represent other types of conflicts than right-
arrow or left-arrow conflicts.

The uses of our method, without modifications,
are probably limited by the fact, that ungrammat-
ical surface forms may receive analyses (as was
seen in section 7). It is possible to check the best
surface forms matching an analysis, but this means
that every surface string for which the best analy-
sis receives a penalty greater than 0.0 requires an
extra look up in the lexical transducer. This is fea-
sible for diagnostics purposes e.g. in applications
related to computer assisted language learning.

Applications, which require error tolerance
could still benefit from our method. Our method
might be used both in applications, which test two-
level grammars and in computer assisted language
learning applications. Increasing recall in infor-
mation retrieval systems, through error tolerant
analysis of queries, is also a possible area of ap-
plications. Related to information retrieval is the
task of finding corrections for forms, which have
been tagged as ungrammatical by a speller.

9 Acknowledgements

We would like to thank Kimmo Koskenniemi,
Anssi Yli-Jyrä and the anonymous referees for
their comments on the paper. We would also like
to thank our colleagues Erik Axelson and Tommi
Pirinen in the HFST team for making develop-
ment of open source finite-state tools an interest-
ing and rewarding experience.

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst: a
general and efficient weighted finite-state transducer
library. In Proceedings of the 12th International
Conference on Implementation and Application of
Automata (CIAA 2007). volume 4783 of Lecture
Notes in Computer Science, pages 11–23, Prague,
Czech Republic, July 2007. Springer-Verlag, Hei-
delberg, Germany.

Kimmo Koskenniemi. 1983. Two-Level Morphology:
A General Computational Model for Word-Form
Recognition and Production. University of Helsinki,
Department of General Linguistics, Helsinki.

Lauri Karttunen. 1994. Constructing Lexical Trans-
ducers. The Proceedings of the 15th International
Conference on Computational Linguistics COLING
94, I, pages 406–411. Association of Computa-
tional Linguistics, Morristown, NJ.

Lauri Karttunen, Kimmo Koskenniemi and Ronald M.
Kaplan. 1987. A Compiler for Two-level Phonolog-
ical Rules. In Dalrymple, M. et al. Tools for Mor-
phological Analysis. Report CSLI-87-108. Center
for the Study of Language and Information. Stanford
University.

Lauri Karttunen. 1992. CA:Two-Level Rule Compiler
- Xerox XRCE. http://www.xrce.xerox.
com/competencies/content-analysis/
fssoft/docs/twolc-92/twol92.html

Atro Voutilainen. 1994 Designing a Parsing Gram-
mar. University of Helsinki, Department of General
Linguistics, Helsinki.

Anssi Yli-Jyrä and Kimmo Koskenniemi. 2004. Com-
piling Contextual Restriction on Strings into Finite-
State Automata. In L. Cleophas and B. W. Wat-
son, eds., Proceedings of the Eindhoven FASTAR
Days 2004. Computer Science Reports 04/40. The
Netherlands: Technische Universiteit, Eindhoven.

Anssi Yli-Jyrä and Kimmo Koskenniemi. 2006. Com-
piling Generalized Two-Level Rules and Grammars
. In Advances in Natural Language Processing,
Springer Berlin/Heidelberg

