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Abstract—There are numerous formats for writing spell-
checkers for open-source systems and there are many descriptions
for languages written in these formats. Similarly, for word hy-
phenation by computer there are TEX rules for many languages.
In this paper we demonstrate a method for converting these
spell-checking lexicons and hyphenation rule sets into finite-state
automata, and present a new finite-state based system for writer’s
tools used in current open-source software such as Firefox,
OpenOffice.org and enchant via the spell-checking library voikko.

I. INTRODUCTION

CURRENTLY there is a wide range of different free open-
source solutions for spell-checking and hyphenation by

computer. For hyphenation the ubiquitous solution is the
original TEX algorithm described in [1]. The most popular
of the spelling dictionaries are the various instances of *spell
software, i.e. ispell1, aspell2, myspell and hunspell3 and other
*spell derivatives. The TEX hyphenation patterns are readily
available on the Internet to cover some 49 languages. The
hunspell dictionaries provided with the OpenOffice.org suite
cover 98 languages.

The program-based spell-checking methods have their lim-
itations because they are based on specific program code that
is extensible only by coding new features into the system
and getting all users to upgrade. E.g. hunspell has limitations
on what affix morphemes you can attach to word roots with
the consequence that not all languages with rich inflectional
morphologies can be conveniently implemented in hunspell.
This has already resulted in multiple new pieces of software
for a few languages with implementations to work around the
limitations, e.g. emberek (Turkish), hspell (Hebrew), uspell
(Yiddish) and voikko (Finnish). What we propose is to use
a generic framework of finite-state automata for these tasks.
With finite-state automata it is possible to implement the
spell-checking functionality as a one-tape weighted automa-
ton containing the language model and a two-tape weighted
automaton containing the error model. This also allows simple
use of unigram training for optimizing spelling suggestion

1http://www.lasr.cs.ucla.edu/geoff/ispell.html
2http://aspell.net
3http://hunspell.sf.net

results [2]. With this model, extensions to context-based n-
gram models for real-word spelling error problems [3] are
also possible.

We also provide a method for integrating the finite-state
spell-checking and hyphenation into applications using an
open-source spell-checking library voikko4, which provides a
connection to typical open-source software, such as Mozilla
Firefox, OpenOffice.org and the Gnome desktop via enchant.

II. DEFINITIONS

In this article we use weighted two-tape finite-state
automata—or weighted finite-state transducers—for all pro-
cessing. We use the following symbol conventions to denote
the parts of a weighted finite-state automaton: a transducer
T = (Σ,Γ, Q, q0, Qf , δ, ρ) with a semi-ring (S,⊕,⊗, 0, 1) for
weights. Here Σ is a set with the input tape alphabet, Γ is a
set with the output tape alphabet, Q a finite set of states in the
transducer, q0 ∈ Q is an initial state of the transducer, Qf ⊂ Q
is a set of finite states, δ : Q×Σ×Γ×S → Q is a transition
relation, ρ : Qf → S is a final weight function. A successful
path is a list of transitions from an initial state to a final state
with a weight different from 0 collected from the transition
function and the final state function in the semi-ring S by
the operation ⊗. We typically denote a successful path as a
concatenation of input symbols, a colon and a concatenation of
output symbols. The weight of the successful path is indicated
as a subscript in angle brackets, input:output<w>. A path
transducer is denoted by subscripting a transducer with the
path. If the input and output symbols are the same, the colon
and the output part can be omitted.

The finite-state formulation we use in this article is based
on Xerox formalisms for finite-state methods in natural lan-
guage processing [4], in practice lexc is a formalism for
writing right linear grammars using morpheme sets called
lexicons. Each morpheme in a lexc grammar can define their
right follower lexicon, creating a finite-state network called
a lexical transducer. In formulae, we denote a lexc style
lexicon named X as LexX and use the shorthand notation
LexX ∪ input:output Y to denote the addition of a lexc string
or morpheme, input:output Y ; to the LEXICON X. In

4http://voikko.sf.net
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the same framework, the twolc formalism is used to describe
context restrictions for symbols and their realizations in the
form of parallel rules as defined in the appendix of [4]. We
use TwolZ to denote the rule set Z and use the shorthand
notation TwolZ∩a:b↔ l e f t_r i g h t to denote the addition
of a rule string a:b <=> l e f t _ r i g h t ; to
the rule set Z, effectively saying that a:b only applies in the
specified context.

A spell-checking dictionary is essentially a single-tape
finite-state automaton or a language model TL, where the
alphabet ΣL = ΓL are characters of a natural language. The
successful paths define the correctly spelled word-forms of
the language [2]. If the spell-checking automaton is weighted,
the weights may provide additional information on a word’s
correctness, e.g. the likelihood of the word being correctly
spelled or the probability of the word in some reference
corpus. The spell-checking of a word s is performed by
creating a path automaton Ts and composing it with the
language model, Ts ◦ TL. A result with the successful path
s<W>, where W is greater than some threshold value, means
that the word is correctly spelled. As the result is not needed
for further processing as an automaton and as the language
model automaton is free of epsilon cycles, the spell-checking
can be optimized by performing a simple traversal (lookup)
instead, which gives a significant speed-advantage over full
composition [5].

A spelling correction model or an error model TE is a
two-tape automaton mapping the input text strings of the text
to be spell-checked into strings that may be in the language
model. The input alphabet ΣE is the alphabet of the text to
be spell-checked and the output alphabet is ΓE = ΣL. For
practical applications, the input alphabet needs to be extended
by a special any symbol with the semantics of a character
not belonging to the alphabet of the language model in order
to account for input text containing typos outside the target
natural language alphabet. The error model can be composed
with the language model, TL ◦ TE , to obtain an error model
that only produces strings of the target language. For space
efficiency, the composition may be carried out during run-
time using the input string to limit the search space. The
weights of an error model may be used as an estimate for
the likelihood of the combination of errors. The error model
is applied as a filter between the path automaton Ts compiled
from the erroneous string, s /∈ TL, and the language model,
TL, using two compositions, Ts ◦ TE ◦ TL. The resulting
transducer consists of a potentially infinite set of paths relating
an incorrect string with correct strings from L. The paths,
s : si

<wi>, are weighted by the error model and language
model using the semi-ring multiplication operation, ⊗. If
the error model and the language model generate an infinite
number of suggestions, the best suggestions may be efficiently
enumerated with some variant of the n-best-paths algorithm
[6]. For automatic spelling corrections, the best path may
be used. If either the error model or the language model is
known to generate only a finite set of results, the suggestion
generation algorithm may be further optimized.

A hyphenation model TH is a two-tape automaton mapping
input text strings of the text to be hyphenated to possibly
hyphenated strings of the text, where the input alphabet, ΣE ,
is the alphabet of the text to be hyphenated and the output
alphabet, ΓE , is ΣE∪H , where H is the set of symbols mark-
ing hyphenation points. For simple applications, this equals
hyphens or discretionary (soft) hyphens H = −. For more
fine-grained control over hyphenation, it is possible to use
several different hyphens or weighted hyphens. Hyphenation
of the word s is performed with the path automaton Ts by
composing, Ts◦TH , which results in an acyclic path automaton
containing a set of strings mapped to the hyphenated strings
with weights s : sh

<wh>. Several alternative hyphenations may
be correct according to the hyphenation rules. A conservative
hyphenation algorithm should only suggest the hyphenation
points agreed on by all the alternatives.

III. MATERIAL

In this article we present methods for converting the hun-
spell and TEX dictionaries and rule sets for use with open-
source finite-state writer’s tools. As concrete dictionaries we
use the repositories of free implementations of these dictio-
naries and rule sets found on the internet, e.g. for the hunspell
dictionary files found on the OpenOffice.org spell-checking
site5. For hyphenation, we use the TEX hyphenation patterns
found on the TEXhyphen page6.

In this section we describe the parts of the file formats
we are working with. All of the information of the hunspell
format specifics is derived from the hunspell(4)7 man
page, as that is the only normative documentation of hunspell
we have been able to locate. For TEX hyphenation patterns,
the reference documentation is Frank Liang’s doctoral thesis
[1] and the TEXbook [7].

A. Hunspell File Format

A hunspell spell-checking dictionary consists of two files:
a dictionary file and an affix file. The dictionary file contains
only root forms of words with information about morpholog-
ical affix classes to combine with the roots. The affix file
contains lists of affixes along with their context restrictions
and effects, but the affix file also serves as a settings file for
the dictionary, containing all meta-data and settings as well.

The dictionary file starts with a number that is intended
to be the number of lines of root forms in the dictionary
file, but in practice many of the files have numbers different
from the actual line count, so it is safer to just treat it as a
rough estimate. Following the initial line is a list of strings
containing the root forms of the words in the morphology.
Each word may be associated with an arbitrary number of
classes separated by a slash. The classes are encoded in one
of the three formats shown in the examples of Figure 1: a list
of binary octets specifying classes from 1–255 (minus octets
for CR, LF etc.), as in the Swedish example on lines 2–4, a

5http://wiki.services.openoffice.org/wiki/Dictionaries
6http://www.tug.org/tex-hyphen/
7http://manpages.ubuntu.com/manpages/dapper/man4/hunspell.4.html
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1 # Swedish
abakus /HDY

3 a b a l i e n a t i o n /AHDvY
a b a l i e n e r a /MY

5 # N o r t h e r n Sámi
o k t a / 1

7 g uo k t e / 1 , 3
golbma / 1 , 3

9 # Hungar i an
üzé r / 1 1

11 ü z l e t ág / 2 2
ü z l e t v e z e t ö / 3 1

13 ü z l e t s z e r z ö / 4 1

Fig. 1. Excerpts of Swedish, Northern S|-á-|mi and Hungarian dictionaries

list of binary words, specifying classes from 1–65,535 (again
ignoring octets with CR and LF) or a comma separated list
of numbers written in digits specifying classes 1–65,535 as
in the North Sámi examples on lines 6–8. We refer to all of
these as continuation classes encoded by their numeric decimal
values, e.g. ’abakus’ on line 2 would have continuation classes
72, 68 and 89 (the decimal values of the ASCII code points
for H, D and Y respectively). In the Hungarian example,
you can see the affix compression scheme, which refers to
the line numbers in the affix file containing the continuation
class listings, i.e. the part following the slash character in the
previous two examples. The lines of the Hungarian dictionary
also contain some extra numeric values separated by a tab
which refer to the morphology compression scheme that is
also mentioned in the affix definition file; this is used in the
hunmorph morphological analyzer functionality which is not
implemented nor described in this paper.

The second file in the hunspell dictionaries is the affix file,
containing all the settings for the dictionary, and all non-root
morphemes. The Figure 2 shows parts of the Hungarian affix
file that we use for describing different setting types. The
settings are typically given on a single line composed of the
setting name in capitals, a space and the setting values, like
the NAME setting on line 6. The hunspell files have some
values encoded in UTF-8, some in the ISO 8859 encoding,
and some using both binary and ASCII data at the same time.
Note that in the examples in this article, we have transcribed
everything into UTF-8 format or the nearest relevant encoded
character with a displayable code point.

The settings we have used for building the spell-checking
automata can be roughly divided into the following four
categories: meta-data, error correction models, special contin-
uation classes, and the actual affixes. An excerpt of the parts
that we use in the Hungarian affix file is given in Figure 2.

The meta-data section contains, e.g., the name of the dic-
tionary on line 6, the character set encoding on line 8, and the
type of parsing used for continuation classes, which is omitted
from the Hungarian lexicon indicating 8-bit binary parsing.

The error model settings each contain a small part of the

actual error model, such as the characters to be used for edit
distance, their weights, confusion sets and phonetic confusion
sets. The list of word characters in order of popularity, as seen
on line 12 of Figure 2, is used for the edit distance model. The
keyboard layout, i.e. neighboring key sets, is specified for the
substitution error model on line 10. Each set of the characters,
separated by vertical bars, is regarded as a possible slip-of-
the-finger typing error. The ordered confusion set of possible
spelling error pairs is given on lines 19–27, where each line
is a pair of a ‘mistyped’ and a ‘corrected’ word separated by
whitespace.

The compounding model is defined by special continuation
classes, i.e. some of the continuation classes in the dictionary
or affix file may not lead to affixes, but are defined in
the compounding section of the settings in the affix file. In
Figure 2, the compounding rules are specified on lines 14–
16. The flags in these settings are the same as in the affix
definitions, so the words in class 118 (corresponding to lower
case v) would be eligible as compound initial words, the words
with class 120 (lower case x) occur at the end of a compound,
and words with 117 only occur within a compound. Similarly,
special flags are given to word forms needing affixes that
are used only for spell checking but not for the suggestion
mechanism, etc.

The actual affixes are defined in three different parts of the
file: the compression scheme part on the lines 1–4, the suffix
definitions on the lines 30–33, and the prefix definitions on
the lines 35–37.

The compression scheme is a grouping of frequently co-
occurring continuation classes. This is done by having the first
AF line list a set of continuation classes which are referred
to as the continuation class 1 in the dictionary, the second
line is referred to the continuation class 2, and so forth. This
means that for example continuation class 1 in the Hungarian
dictionary refers to the classes on line 2 starting from 86 (V)
and ending with 108 (l).

The prefix and suffix definitions use the same structure. The
prefixes define the left-hand side context and deletions of a
dictionary entry whereas the suffixes deal with the right-hand
side. The first line of an affix set contains the class name,
a boolean value defining whether the affix participates in the
prefix-suffix combinatorics and the count of the number of
morphemes in the continuation class, e.g. the line 35 defines
the prefix continuation class attaching to morphemes of class
114 (r) and it combines with other affixes as defined by the Y
instead of N in the third field. The following lines describe the
prefix morphemes as triplets of removal, addition and context
descriptions, e.g., the line 31 defines removal of ’ö’, addition
of ’ős’ with continuation classes from AF line 1108, in case
the previous morpheme ends in ’ö’. The context description
may also contain bracketed expressions for character classes
or a fullstop indicating any character (i.e. a wild-card) as in
the POSIX regular expressions, e.g. the context description on
line 33 matches any Hungarian vowel except a, e or ö, and
the 37 matches any context. The deletion and addition parts
may also consist of a sole ‘0’ meaning a zero-length string.



1 AF 1263
AF VË−jxLnÓéè3ÄäTtYc , 4 l # 1

3 AF UmÖyiYcÇ # 2
AF ÖCWRÍ− j þÓíyÉÁÿYc2 # 3

5
NAME Magyar I s p e l l h e l y e s í r á s i s zó t á r

7 LANG hu_HU
SET UTF−8

9 KEY öüó | q w e r t z u i o p őú | # wrap
a s d f g h j k l éáűíyxcvbnm

11 TRY íóú t a e s l z á n o r h g k i é # wrap
dmyőpvö b u c f j üyxwq−.á

13
COMPOUNDBEGIN v

15 COMPOUNDEND x
ONLYINCOMPOUND |

17 NEEDAFFIX u

19 REP 125
REP í i

21 REP i í
REP ó o

23 REP o l i e r e o l i é r e
REP cc gysz

25 REP cs t s
REP cs ds

27 REP c c s t s
# 116 more REP l i n e s

29
SFX ? Y 3

31 SFX ? ö ős /1108 ö 20973
SFX ? 0 ös /1108 [ ^ aáeé i íoóöőuüű ] 20973

33 SFX ? 0 s /1108 [ áé i íoóúőuúüű−] 20973

35 PFX r Y 195
PFX r 0 l e g ú j r a /1262 . 22551

37 PFX r 0 l e g ú j j á /1262 . 22552
# 193 more PFX r l i n e s

Fig. 2. Excerpts from Hungarian affix file

As can be seen in the Hungarian example, the lines may also
contain an additional number at the end which is used for the
morphological analyzer functionalities.

B. TEX Hyphenation Files

The TEX hyphenation scheme is described in Frank Liang’s
dissertation [1], which provides a packed suffix tree structure
for storing the hyphenation patterns, which is a special opti-
mized finite-state automaton. This paper merely reformulates
the finite-state form of the patterns, for the purpose of ob-
taining a general finite-state transducer version of the rules
to be combined with other pieces of the finite-state writer’s
tools. In principle, the TEX hyphenation files are like any TEX
source files, they may contain arbitrary TEX code, and the only

\ p a t t e r n s {
2 . ach4

. ad 4d e r
4 . a f 1 t

. a l 3 t
6 . am5at

f 5 f i n .
8 f 2 f 5 i s

f 4 f l y
10 f 2 f y

}
12 \ h y p h e n a t i o n {

as−so−c i a t e
14

p r o j e c t
16 ta−b l e

}

Fig. 3. Excerpts from English TEX hyphenation patterns

requirement is that they have the ‘patterns’ command and/or
the ‘hyphenation’ command. In practice, it is a convention that
they do not contain anything else than these two commands, as
well as a comment section describing the licensing and these
conventions. The patterns section is a whitespace separated
list of hyphenation pattern strings. The pattern strings are
simple strings containing characters of the language as well as
numbers marking hyphenation points, as shown in Figure 3.
The odd numbers add a potential hyphenation point in the
context specified by non-numeric characters, and the even
numbers remove one, e.g. on line 8, the hyphen with left
context ‘f’ and right context ‘fis’ would be removed, and a
hyphen with left context ‘ff’ and right context ‘is’ is added.
The numbers are applied in ascending order. The full-stop
character is used to signify a word boundary so the rule
on line 2 will apply to ‘ache’ but not to ‘headache’. The
hyphenation command on lines 13–16 is just a list of words
with all hyphenation points marked by hyphens. It has higher
precedence than the rules and it is used for fixing mistakes
made by the rule set.

IV. METHODS

This article presents methods for converting the existing
spell-checking dictionaries with error models, as well as
hyphenators to finite-state automata. As our toolkit we use the
free open-source HFST toolkit8, which is a general purpose
API for finite-state automata, and a set of tools for using legacy
data, such as Xerox finite-state morphologies. For this reason
this paper presents the algorithms as formulae such that they
can be readily implemented using finite-state algebra and the
basic HFST tools.

The lexc lexicon model is used by the tools for describing
parts of the morphotactics. It is a simple right-linear grammar

8http://HFST.sf.net
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for specifying finite-state automata described in [4], [8]. The
twolc rule formalism is used for defining context-based rules
with two-level automata and they are described in [9], [8].

This section presents both a pseudo-code presentation for
the conversion algorithms, as well as excerpts of the final
converted files from the material given in Figures 1, 2 and
3 of Section III. The converter code is available in the HFST
SVN repository9 , for those who wish to see the specifics of
the implementation in lex, yacc, c and python.

A. Hunspell Dictionaries

The hunspell dictionaries are transformed into a finite-
state transducer language model by a finite-state formulation
consisting of two parts: a lexicon and one or more rule sets.
The root and affix dictionaries are turned into finite-state
lexicons in the lexc formalism. The Lexc formalism models
the part of the morphotax concerning the root dictionary and
the adjacent suffixes. The rest is encoded by injecting special
symbols, called flag diacritics, into the morphemes restricting
the morpheme co-occurrences by implicit rules that have been
outlined in [10]; the flag diacritics are denoted in lexc by at-
sign delimited substrings. The affix definitions in hunspell also
define deletions and context restrictions which are turned into
explicit two-level rules.

The pseudo-code for the conversion of hunspell files is
provided in Algorithm 1 and excerpts from the conversion
of the examples in Figures 1 and 2 can be found in Figure 4.
The dictionary file of hunspell is almost identical to the lexc
root lexicon, and the conversion is straightforward. This is
expressed on lines 4–9 as simply going through all entries
and adding them to the root lexicon, as in lines 6—10 of the
example result. The handling of affixes is similar, with the ex-
ception of adding flag diacritics for co-occurrence restrictions
along with the morphemes. This is shown on lines 10—28 of
the pseudo-code, and applying it will create the lines 17—
21 of the Swedish example, which does not contain further
restrictions on suffixes.

To finalize the morpheme and compounding restrictions, the
final lexicon in the lexc description must be a lexicon checking
that all prefixes with forward requirements have their requiring
flags turned off.

B. Hunspell Error Models

The hunspell dictionary configuration file, i.e. the affix file,
contains several parts that need to be combined to achieve a
similar error correction model as in the hunspell lexicon.

The error model part defined in the KEY section allows
for one slip of the finger in any of the keyboard neighboring
classes. This is implemented by creating a simple homoge-
neously weighted crossproduct of each class, as given on
lines 1–7 of Algorithm 2. For the first part of the example
on line 10 of Figure 2, this results in the lexc lexicon on
lines 11–18 in Figure 5.

The error model part defined in the REP section is an
arbitrarily long ordered confusion set. This is implemented

9http://hfst.svn.sourceforge.net/viewvc/hfst/trunk/conversion-scripts/

Algorithm 1 Extracting morphemes from hunspell dictionaries
finalflags← ε

2: for all lines morpheme/Conts in dic do
flags← ε

4: for all cont in Conts do
flags← flags+ @C.cont@

6: LexConts ← LexConts ∪ 0:[<cont] cont
end for

8: LexRoot ← LexRoot ∪ flags + morpheme Conts
end for

10: for all suffixes lex, deletions,morpheme/Conts, context
in aff do
flags← ε

12: for all cont in Conts do
flags← flags+ @C.cont@

14: LexConts ← LexConts ∪ 0 cont
end for

16: Lexlex ← Lexlex ∪ flags + [< lex] + morpheme Conts
for all del in deletions do

18: lc← context+ deletions before del
rc← deletions after del + [< lex] +morpheme

20: Twold ← Twold ∩ del:0⇔ lc _ rc
end for

22: Twolm ← Twolm∩[< lex] : 0⇔ context _ morpheme
end for

24: for all prefixes lex, deletions,morpheme/conts, context
in aff do
flags← @P.lex@

26: finalflags← finalflags+ @D.lex@
lex → prefixes {othewise as with suffixes, swapping
left and right}

28: end for
Lexend ← Lexend ∪ finalflags #

by simply encoding them as increasingly weighted paths, as
shown in lines 9–12 of the pseudo-code in Algorithm 2.

The TRY section such as the one on line 12 of Figure 2,
defines characters to be tried as the edit distance grows
in descending order. For a more detailed formulation of a
weighted edit distance transducer, see e.g. [2]). We created
an edit distance model with the sum of the positions of the
characters in the TRY string as the weight, which is defined
on lines 14–21 of the pseudo-code in Algorithm 2. The initial
part of the converted example is displayed on lines 20–27 of
Figure 5.

Finally to attribute different likelihood to different parts
of the error models we use different weight magnitudes on
different types of errors, and to allow only correctly written
substrings, we restrict the result by the root lexicon and
morfotax lexicon, as given on lines 1–9 of Figure 5. With
the weights on lines 1–5, we ensure that KEY errors are
always suggested before REP errors and REP errors before
TRY errors. Even though the error model allows only one
error of any type, simulating the original hunspell, the resulting

http://hfst.svn.sourceforge.net/viewvc/hfst/trunk/conversion-scripts/


LEXICON Root
2 HUNSPELL_pfx ;

HUNPELL_dic ;
4

! swed i sh l e x c
6 LEXICON HUNSPELL_dic

@C.H@@C.D@@C. Y@abakus HDY ;
8 @C.A@@C.H@@C.D@@C.v@@C. Y@aba l i ena t i on

HUNSPELL_AHDvY ;
10 @C.M@@C. Y@abal ienera MY ;

12 LEXICON HDY
0: [ <H] H ;

14 0 : [ <D] D ;
0 : [ <Y] Y ;

16
LEXICON H

18 e r HUNSPELL_end ;
e r s HUNSPELL_end ;

20 e r HUNSPELL_end ;
e r s HUNSPELL_end ;

22
LEXICON HUNSPELL_end

24 @D.H@@D.D@@D.Y@@D.A@@D.v@@D.m@ # ;

26 ! swed i sh t w o l c f i l e
Ru les

28 " S u f f i x H a l l o w e d c o n t e x t s "
%[%<H%]: 0 <=> \ a _ e r ;

30 \ a _ e r s ;
a : 0 _ e r ;

32 a : 0 _ e r s ;

34 " a d e l e t i o n c o n t e x t s "
a : 0 <=> _ %[%<H%]:0 e r ;

36 _ %[%<H%]: e r s ;

Fig. 4. Converted dic and aff lexicons and rules governing the deletions

transducer can be transformed into an error model accepting
multiple errors by a simple FST algebraic concatenative n-
closure, i.e. repetition.

C. TEX Hyphenation

The formulation of hyphenation as finite-state transducers is
simple. We use the hyphenation alphabet ΣH = −. To model
the context-based deletions and additions of hyphenation pat-
terns, we use twol rules with centers of ε : − for addition and
− : ε for deletion. The algorithm for creating the rule sets
described in Algorithm 3 simply goes through the patterns,
and for each hyphenation point of each pattern extracts left
and right context strings and adds them to the contexts of a
rule. The result is exemplified in Figure 6. There is one rule
for each of the hyphenation point numbers. The rules may
be composed into one single transducer at compile time or

Algorithm 2 Extracting patterns for hunspell error models
for all neighborsets ns in KEY do

2: for all character c in ns do
for all character d in ns such that c! = d do

4: LexKEY ← LexKEY ∪ c : d<0>#
end for

6: end for
end for

8: w ← 0
for all pairs wrong, right in REP do

10: w ← w + 1
LEXREP ← LEXREP ∪ wrong : right<w>#

12: end for
w ← 0

14: for all character c in TRY do
w ← w + 1

16: LexTRY ← LexTRY ∪ c : 0<w>#
LexTRY ← LexTRY ∪ 0 : c<w>#

18: for all character d in TRY such that c! = d do
LexTRY ← LexTRY ∪c : d<w># {for swap: replace
# with cd and add Lexcd ∪ d : c<0>#}

20: end for
end for

Algorithm 3 Extracting hyphenation patterns from TEX
for all patterns p do

2: for all digits d in p do
l, r ← split p on d

4: if d odd then
l, r ← l, r << 0 : ε

6: Twold ← Twold ∩ 0 : ε↔ l_r;
else

8: l, r ← l, r << ε : 0
Twold ← Twold ∩ ε : 0↔ l_r;

10: end if
end for

12: end for
for all hyphenations h do

14: word← h− hyphens
Lexexceptions ← Lexexceptions ∪ word:h #

16: end for

applied as cascade at runtime.
The TEX hyphenation pattern also contains explicit excep-

tions to the hyphenation patterns, which are simply specific
word forms with hyphenations, and can be compiled as
simple paths: e.g. for the pattern{as-so-ciate} we create a path
asεsoεciate : as− so− ciate

V. IMPLEMENTATION AND TESTS

We have implemented the spell-checkers and hyphenators as
finite-state transducers using program code and scripts with a
Makefile. To test the code, we have converted 49 hyphenation
pattern files and more than 42 hunspell dictionaries from
various language families. They consist of the dictionaries that



LEXICON HUNSPELL_error_root
2 < ? > HUNSPELL_error_root ;

HUNSPELL_KEY " w e i gh t : 0" ;
4 HUNSPELL_REP " we i gh t : 100" ;

HUNSPELL_TRY " w e ig h t : 1000" ;
6

LEXICON HUNSPELL_errret
8 < ? > HUNSPELL_errret ;

# ;
10

LEXICON HUNSPELL_KEY
12 ö : ü HUNSPELL_errret " we i gh t : 0" ;

ö : ó HUNSPELL_errret " we i gh t : 0" ;
14 ü : ö HUNSPELL_errret " we i gh t : 0" ;

ü : ó HUNSPELL_errret " we i gh t : 0" ;
16 ó : ö HUNSPELL_errret " we i gh t : 0" ;

ó : ü HUNSPELL_errret " we i gh t : 0" ;
18 ! same f o r o t h e r p a r t s

20 LEXICON HUNSPELL_TRY
í : 0 HUNSPELL_errret " we i gh t : 1" ;

22 0 : í HUNSPELL_errret " we i gh t : 1" ;
í : ó HUNSPELL_errret " we i gh t : 2" ;

24 ó : í HUNSPELL_errret " we i gh t : 2" ;
ó : 0 HUNSPELL_errret " we i gh t : 2" ;

26 0 : ó HUNSPELL_errret " we i gh t : 2" ;
! same f o r r e s t o f t h e a l p h a b e t

28
LEXICON HUNSPELL_REP

30 í : i HUNSPELL_errret " we i gh t : 1" ;
i : í HUNSPELL_errret " we i gh t : 2" ;

32 ó : o HUNSPELL_errret " we i gh t : 3" ;
o l i e r e : o l i è r e HUNSPELL_errret " we igh t : 4" ;

34 cc : gysz HUNSPELL_errret " we igh t : 5" ;
c s : t s HUNSPELL_errret " w e i gh t : 6" ;

36 cs : ds HUNSPELL_errret " we i gh t : 7" ;
c c s : t s HUNSPELL_errret " we ig h t : 8" ;

38 ! same f o r r e s t o f REP p a i r s . . .

Fig. 5. Converted error models from aff file

1 " Hyphen i n s e r t i o n 1"
0:%− <=> # (0:%−) a (0:%−) f _ t ;

3 . . .

Fig. 6. Converted hyphenation models from TEXexamples

were accessible from the aforementioned web sites at the time
of writing. The Tables I and II gives an overview of the sizes
of the compiled automata. The size is given in binary multiples
of bytes as reported by ls -hl.

In the hyphenation table, the second column gives the
number of patterns in the rules. The total size is a result
of composing all hyphenation rules into one transducer; it
may be noted that both separate rules and a single composed
transducer are equally usable at runtime. The separated version
requires less memory whereas the single composed version
is faster. For large results, such as the Norwegian10 one, it
may still be beneficial to keep the rules separated. In the
Norwegian case, the four separately compiled rules are each
of sizes between 1.2 MiB and 9.7 MiB.

For the hunspell automata in Table II, we also give the
number of roots in the dictionary file and the affixes in affix
file. These numbers should also help with identifying the
version of the dictionary, since there are multiple different
versions available in the downloads.

The resulting transducers were tested by hand using the
results of the corresponding TEX hyphenate command and
hunspell -d as well as the authors’ language skills to
judge errors. As testing material, a wikipedia article on the
Finnish language11 were used for most languages, and some
arbitrary articles where this particular article was not found.
In both tests, the majority of differences come from the
lack of normalization or case folding. E.g. this resulted in
our converted transducers failing to hyphenate words where
uppercase letters would have been equal to their lowercase
variants.

The hunspell model was built incrementally starting from
the basic set of affixes and dictionary, and either adding
or skipping all directive types of the file format as found
in the wild. Some of the omissions show up e.g. in the
English results, where omitting of the PHONE directive for
the suggestion mechanism results in some of the differing
suggestions in English tests, e.g. first suggestion for calqued
in hunspell is catafalqued. Without implementing the phonetic
folding, we get no results within 1 hunspell error, and get word
forms like chalked, caulked, and so forth, within 2 hunspell
errors. No other language has .aff files with PHONE rules,
e.g. in French comitatif gets the suggestions commutatif and
limitatif as the first ones in both systems.

VI. CONCLUSION

We have demonstrated a method and created the software to
convert legacy spell-checker and hyphenation data to a more
general framework of finite-state automata and used it in a
real-life application. We have also referred to methods for
extending the system to more advanced error models and the
inclusion of other more complex models in the same system.
We are currently developing a platform for finite-state based
spell-checkers for open-source systems in order to improve the
front-end internationalization.

10both Nynorsk and bokmål input the same patterns
11http://en.wikipedia.org/wiki/Finnish+language and its international links

http://en.wikipedia.org/wiki/Finnish+language


TABLE I
COMPILED HYPHENATION AUTOMATA SIZES

Language Hyphenator total Number of patterns
Norwegian 978 MiB 27,166

German (Germany, 1996) 72 MiB 14,528
German (Germany, 1901) 66 MiB 14,323

Dutch 58 MiB 12,742
English (Great Britain) 38 MiB 8,536

Irish 20 MiB 6,046
English (U.S.) 19 MiB 4,948

Hungarian 15 MiB 13,469
Swedish 12 MiB 4,717
Icelandic 12 MiB 4,199
Estonian 8.8 MiB 3,701
Russian 4.2 MiB 4,820
Czech 3.1 MiB 3,646

Ancient Greek 2.4 MiB 2,005
Ukrainian 1.5 MiB 1,269

Danish 1.4 MiB 1,153
Slovak 1.1 MiB 2,483

Slovenian 939 KiB 1,086
Spanish 546 KiB 971
French 521 KiB 1,184

Interlingua 382 KiB 650
Greek (Polyton) 325 KiB 798
Upper Sorbian 208 KiB 1,524

Galician 160 KiB 607
Romanian 151 KiB 665
Mongolian 135 KiB 532

Finnish 111 KiB 280
Catalan 95 KiB 231

Greek (Monoton) 91 KiB 429
Serbian 76 KiB 2,681

Serbocroatian 56 KiB 2,681
Sanskrit 32 KiB 550
Croatian 32 KiB 1,483
Coptic 30 KiB 128
Latin 26 KiB 87

Bulgarian 24 KiB 1,518
Portuguese 19 KiB 320

Basque 15 KiB 49
Indonesian 14 KiB 46

Turkish 8 KiB 602
Chinese (Pinyin) 868 202

The next obvious development for the finite-state spell
checkers is to apply the unigram training [2] to the automata,
and extend the unigram training to cover longer n-grams and
real word error correction.
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