
Finite-State Spell-Checking with Weighted Language and Error
Models—Building and Evaluating Spell-Checkers with Wikipedia as Corpus

Tommi A Pirinen, Krister Lindén

University of Helsinki—Department of Modern Languages
Unioninkatu 40 A—FI-00014 Helsingin yliopisto
{tommi.pirinen,krister.linden}@helsinki.fi

Abstract
In this paper we present simple methods for construction and evaluation of finite-state spell-checking tools using an existing finite-state
lexical automaton, freely available finite-state tools and Internet corpora acquired from projects such as Wikipedia. As an example,
we use a freely available open-source implementation of Finnish morphology, made with traditional finite-state morphology tools, and
demonstrate rapid building of Northern Sámi and English spell checkers from tools and resources available from the Internet.

1. Introduction
Spell-checking is perhaps one of the oldest most researched
application in the field of language technology, starting
from the mid 20th century (Damerau, 1964). The task of
spell-checking can be divided into two categories: isolated
non-word errors and context-based real-word errors (Ku-
kich, 1992). This paper concentrates on checking and cor-
recting the first form, but the methods introduced are ex-
tendible to context-aware spell-checking.
To check whether a word is spelled correctly, a language
model is needed. For this article, we consider a language
model to be a one-tape finite-state automaton recognising
valid word forms of a language. In many languages, this
can be as simple as a word list compiled into a suffix tree
automaton. However, for languages with productive mor-
phological processes in compounding and derivation that
are capable of creating infinite dictionaries, such as Finnish,
a cyclic automaton is required. In order to suggest correc-
tions, the correction algorithm must allow search from an
infinite space. A nearest match search from a finite-state
automaton is typically required (Oflazer, 1996). The reason
we stress this limitation caused by morphologically com-
plex languages is that often even recent methods for opti-
mizing speed or accuracy suggest that we can rely on finite
dictionaries or acyclic finite automata as language models.
To generate correctly spelled words from a misspelled word
form, an error model is needed. The most traditional and
common error model is the Levenshtein edit distance, at-
tributed to (Levenshtein, 1966). In the edit distance algo-
rithm, the misspelling is assumed to be a finite number of
operations applied to characters of a string: deletion, in-
sertion, change, or transposition1. The field of approxi-
mate string matching has been extensively studied since the
mid 20th century, yielding efficient algorithms for simple
string-to-string correction. For a good survey, see (Kukich,
1992). Research on approximate string matching has also
provided different fuzzy search algorithms for finding the
nearest match in a finite-state representation of dictionar-
ies.

1Transposition is often attributed to an extended Levenshtein-
Damerau edit distance given in (Damerau, 1964)

For the purpose of the article, we consider the error model
to be any two-tape finite state automaton mapping any
string of the error model alphabet to at least one string of
the language model alphabet. As an actual implementation
of Finnish spell-checking, we use a finite-state implemen-
tation of a traditional edit distance algorithm. In the lit-
erature, the edit distance model has usually been found to
cover over 80 % of the misspellings at distance one (Dam-
erau, 1964). Furthermore, as Finnish has a more or less
phonemically motivated orthography, the existence of ho-
mophonic misspellings are virtually non-existent. In other
words, our base assumption is that biggest source of errors
for Finnish spell checking is slip of finger style of typos, for
which the edit distance is a good error model.

The statistical foundation for the language model and the
error model in this article is similar to the one described
in (Norvig, 2010), which also gives a good overview of
the statistical basis for the spelling error correction problem
along with a simple and usable python implementation.

For practical applications, the spell-checker typically needs
to provide a small selection of the best matches for the
user to select from in a relatively short time span, which
means that when defining corrections, it is also necessary
to specify their likelihood in order to rank the correction
suggestions. In this article, we show how to use a standard
weighted finite-state framework to include probability esti-
mates for both the language model and the error model. For
the language model, we use simple unigram training with a
Wikipedia corpus with the more common word forms to be
suggested before the less common word forms. In the error
model, we design the weights in the edit distance automa-
ton so that suggestions with a greater Levenshtein-Damerau
edit distance are suggested after those with fewer errors.

To evaluate the spell-checker even in the simple case of cor-
recting non-word errors in isolation, a corpus of spelling
mistakes with expected corrections is needed. A construc-
tion of such a corpus typically requires some amount of
manual labour. In this paper, we evaluate the test results
both against a manually collected misspelling corpus and
against automatically misspelled texts. For a description of
the error generation techniques, see (Bigert, 2005).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14922732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. Goal of the paper
In this article, we demonstrate how to build and evalu-
ate a spell-checking and correction functionality from an
existing lexical automaton. We present a simple way
to use an arbitrary string-to-string relation transducer as
a misspelling model for the correction suggestion algo-
rithm, and test it by implementing a finite-state form of
the Levenshtein-Damerau edit distance relation. We also
present a unigram training method to automatically rank
spelling corrections, and evaluate the improvement our
method brings over a correction algorithm using only the
edit distance. The paper describes a work-in-progress ver-
sion of a finite state spell-checking method with instruc-
tions for building the speller for various languages and from
various resources. The language model in the article is an
existing free open-source implementation of Finnish mor-
phology2 (Pirinen, 2008) compiled with HFST (Lindén et
al., 2009)—a free, featurewise fully compliant implementa-
tion of the traditional Xerox-style LexC and TwolC tools3.
One aim of this paper is to demonstrate the use of
Wikipedia as a freely available open-source corpus4. The
Wikipedia data is used in this experiment for training the
lexical automaton with word form frequencies, as well as
collecting a corpus of spelling errors with actual correc-
tions.
The field of spell-checking is already a widely researched
topic, cf. the surveys in (Kukich, 1992; Schulz and Mihov,
2002). This article demonstrates a generic way to use freely
available resources for building finite-state spell-checkers.
The purpose of using a basic finite-state algebra to cre-
ate spell-checkers in this article is two-fold. Firstly, the
amount of commonly known implementations of morpho-
logical language models under different finite-state frame-
works suggest that a finite-state morphology is feasible as
a language model for morphologically complex languages.
Secondly, by demonstrating the building of an applica-
tion for spell-checking with a freely available open-source
weighted finite-state library, we hope to outline a generally
useful approach to building open-source spell-checkers.
To demonstrate the feasibility of building a spell-checker
from freely available resources, we use basic composition
and n-best-path search with weighted finite-state automata,
which allows us to use multiple arbitrary language and er-
ror models as permitted by finite-state algebra. To the best
of our knowledge, no previous research has used or docu-
mented this approach.
To further evaluate plausibility of rapid conversion from
morphological or lexical automata to spell checkers we also
sought and picked up a free open implementation of North-
ern Sámi morphological analyzer5, a word list of English
from (Norvig, 2010), and briefly tested them with the same
methods and error model as for Finnish. While the main
focus of the article is creation and evaluation of Finnish fi-
nite state spell checker, we show examples of building and

2http://home.gna.org/omorfi
3http://hfst.sf.net
4Database dumps available at http://download.

wikimedia.org
5http://divvun.no

evaluation for other languages.

3. Methods
The framework for implementing the spell-checking func-
tionality in this article is the finite-state library HFST
(Lindén et al., 2009). This requires that the underlying mor-
phological description for spell-checking is compiled into a
finite-state automaton. For our Finnish and Northern Sámi
examples, we use a traditional linguistic description based
on the Xerox LexC/TwolC formalism (Beesley and Kart-
tunen, 2003) to create a lexical transducer that works as a
morphological analyzer. As the morphological analyses are
not used for the probability weight estimation in this arti-
cle, the analysis level is merely discarded to get a one-tape
automaton serving as a language model. The word list of
English is merely compiled to a one tape suffix tree automa-
ton.
The language model can be as simple as a list of words
compiled into a suffix tree automaton or as elaborate as a
full-fledged morphological description in a finite-state pro-
gramming language, such as Xerox LexC and TwolC6. The
words that are found in the transducer are considered cor-
rect. The rest are considered misspelled.
It has previously been demonstrated how to add weights to
a cyclic finite-state morphology using information on base-
form frequencies. The technique is further described in
(Lindén and Pirinen, 2009). In the current article, the word
form counts are based on data from Wikipedia. The training
is in principle a matter of collecting the corpus strings and
their frequencies and composing them with the finite-state
lexical data. Deviating from the article (Lindén and Piri-
nen, 2009), we only count full word forms. No provisions
for compounding of word forms based on the training data
are made, i.e. the training data is composed with the lexical
model. This gives us an acyclic lexicon with the frequency
data for correctly spelled words.
The actual implementation goes as follows. Clean up the
Wikipedia dump to extract the article content from XML
and Wikipedia mark-up by removing the mark-up and con-
tents of mark-up that does not constitute running text, leav-
ing only the article content untouched. The tokenization
is done by splitting text from white space characters and
separating word final punctuation. Next we use the spell-
checking automaton to acquire the correctly spelled word
forms from the corpora, and count their frequencies. The
formula for converting the frequencies f of a token in the
corpus to a weight in the finite-state lexical transducer is
Wt = − log ft

CS , where CS is the corpus size in tokens.
The resulting strings with weights can then be compiled
into paths of a weighted automaton, i.e. into an acyclic tree
automaton with log probability weights in the final states
of the word forms. The original language model is then
weighted by setting all word forms not found in the corpus
to a weight greater than the word with frequency of one, e.g.
Wmax = − log 1

CS+1 . The simplest way to achieve this is
to compose the Σ? automaton with final weightWmax with

6It is also possible to convert aspell and hunspell style de-
scriptions into transducers. Preliminary scripts exist in http:
//hfst.sf.net/.



the unweighted cyclic language model. Finally, we take the
union of the cyclic model and the acyclic model. The word
forms seen in the corpus will now have two weights, but the
lexicon can be pruned to retain only the most likely reading
for each string.
For example in Finnish Wikipedia there were 17,479,297
running tokens7, and the most popular of these is ‘ja’ and
with 577,081 tokens, so in this language model the Wja =
− log 577081

17479297 ≈ 4.44. The training material is summa-
rized in the Table 1. In the token count is total number of
tokens after the preprocessing and tokenization. The unique
strings is the number of unique tokens that belonged to the
language model, that is the size of actual training data, af-
ter uniqification and discarding potential misspellings and
other strings not recognized by language model. For this
reason the English training model is rather small, despite
the relative size of the corpus, since the finite language
model only covered a very small part of unique tokens.

Language Finnish Northern Sámi English
Token count 17,479,297 258,366 2,110,728,338
Unique language strings 968,996 44,976 34,920
Download size 956 MiB 8.7 MiB 5.6 GiB
Version used 2009-11-17 2010-02-22 2010-01-30

Table 1: Token counts for wikipedia based training material

For finding corrections using the finite-state methodol-
ogy, multiple approaches with specialized algorithms have
been suggested, e.g. (Oflazer, 1996; Schulz and Mihov,
2002; Huldén, 2009). In this article, we use a regular
weighted finite-state transducer to represent a mapping of
misspellings to correct forms. This allows us to use any
weighted finite-state library that implements composition.
One of the simplest forms of mapping misspellings to cor-
rect strings is the edit distance algorithm usually attributed
to (Levenshtein, 1966) and furthermore in the case of spell-
checking to (Damerau, 1964). A finite-state automaton rep-
resentation is given in e.g. (Schulz and Mihov, 2002). A
transducer that corrects strings can be any arbitrary string-
to-string mapping automaton, and can be weighted. In this
article, we build the edit distance mapping transducer al-
lowing two edits.
Since the error model can also be weighted, we have ap-
plied a weight Wmax, which is greater than any of the
weights given by the language model. As a consequence,
our weighted edit distance will function like the traditional
edit distance algorithm when generating the corrections for
a language model, i.e. any correct string with edit dis-
tance one is considered to be a better correction than a
misspelling with edit distance two. For example assuming
misspelling ‘jq’ for ‘ja’, the error model would find ‘ja’ at
distance of Wmax, but also e.g. ‘jo’ already and so on. In
this case the frequency data obtained from Wikipedia will
give us the popularity order of ‘ja’ > ‘jo’. A fraction of
this weighted edit distance two transducer is given in Fig-
ure 1. The transducer in the figure gives full edit distance
2 transducer for language of two alphabet; a transducer for

7with relatively naive preprocessing and tokenization, splitting
at spaces and filtering html and Wikipedia markup

full alphabet is just a union of transducer like that for each
pair of alphabets in the language8.

Figure 1: Edit distance transducer of alphabet a, b length
two and weight π.

To get a ranked set of spelling correction suggestions, we
simply compile the misspelled word into a path automa-
ton Tword. The path automaton is composed with the cor-
rection relation TE—in this case the weighted edit dis-
tance two transducer—to get an automaton that contains
all the possible spelling corrections Tsug = Tword ◦ TE .
We then compose the resulting automaton with the original
weighted lexical data TL to find which string corrections
are real words of the language model Tf = Tsug ◦ TL. The
resulting transducer now contains a union of words along
with the combination of weights for the frequency of the
word form and the weight for the edit distance. From this
transducer, the ranked list of spelling suggestions is gained
by a standard n-best-path algorithm listing unique sugges-
tions.

4. Test Data Sets
For the Finnish test material, we use two types of samples
extracted from Wikipedia. First, we use a hand-picked se-
lection of 761 misspelled strings found by browsing the
strings that the speller rejected. These strings were then
manually corrected using a native reader’s best judgement
from reading the misspelled word in context to achieve a
gold standard for evaluation.
Another larger set of approximately 10,000 evaluation
strings was created by using the strings from the same

8for source code of the Finnish edit distance in HFST frame-
work, see http://svn.gna.org/viewcvs/omorfi/
trunk/src/suggestion/edit-distance-2.text



Wikipedia corpus, and automatically introducing spelling
errors similar to the approach described in (Bigert et al.,
2003), using isolated word Damerau-Levenshtein type er-
rors with a probability of approximately 0.33 % per char-
acter. This error model could also be considered an error
model applied in reverse compared to the error model used
when correcting misspelled strings. As there is nothing lim-
iting the number of errors generated per word than the word
length, this error model may introduce words with an edit
distance greater than two.
For Northern Sámi gold standard evaluation we used the
test suite included in the svn distribution9, it seems to be
set of common typos of a sort.
For English gold standard evaluation material we use the
same Birkbeck spelling error corpus as in article (Norvig,
2010), although the corpus has only restricted free licens-
ing, restrictions being such that it cannot be used e.g. in
free open source project.

5. Evaluation
To evaluate the correction algorithm, we use the two data
sets introduced in the previous section. However, we use a
slightly different error model to automatically correct mis-
spellings than we use for generating them, i.e. some errors
exceeding the edit distance of two are unfixable by the error
model we use for correction.
The evaluation of the correction suggestion quality is given
in Tables 2 and 3. The Table 2 contains precision values
for the spelling errors from real texts, and Table 3 for the
automatically introduced spelling errors. The precision is
measured by ranked suggestions. In the tables, we give re-
sults separately for ranks 1—4, and for the remaining lower
ranks. The lower ranks ranged from 5—440 where the
number of total suggestions ranged from 1—600. In the last
column, we have the cases where a correctly written word
could not be found with the proposed suggestion algorithm.
The tables contain both the results for the weighted edit dis-
tance relation, and for a combination of the weighted edit
distance relation and the word form frequency data from
Wikipedia.10

Material Rank 1 2 3 4 Lower No rank Total
Weighted edit distance 2

Finnish 371 118 65 33 103 84 761
49 % 16 % 9 % 4 % 14 % 11 % 100 %

Northern 2221 697 430 286 2743 2732 9115
Sámi 24 % 8 % 5 % 3 % 30 % 30 % 100 %
English 8739 2695 1504 940 3491 17738 35106

25 % 8 % 4 % 3 % 10 % 51 % 100 %
Wikipedia word form frequencies and edit distance 2

Finnish 451 105 50 22 62 84 761
59 % 14 % 7 % 3 % 8 % 11 % 100 %

Northern 2421 745 427 266 2518 2732 9115
Sámi 27 % 8 % 5 % 3 % 28 % 30 % 100 %
English 9174 2946 1489 858 2902 17738 35106

26 % 8 % 4 % 2 % 8 % 51 % 100 %

Table 2: Precision of suggestion algorithms with real
spelling errors

9https://victorio.uit.no/langtech/trunk/
gt/sme/src/typos.txt

10For full tables and test logs, see http://home.gna.
org/omorfi/testlogs.

Material Rank 1 2 3 4 Lower No rank Total
Weighted edit distance 2

Finnish 4442 1148 565 361 1863 1469 10076
44 % 11 % 6 % 4 % 18 % 15 % 100 %

Northern 1269 257 136 80 528 7730 10000
Sámi 13 % 3 % 1 % 1 % 5 % 77 % 100 %
English 4425 938 337 290 1353 2657 10000

44 % 10 % 3 % 3 % 14 % 27 % 100 %
Wikipedia word form frequencies and edit distance 2

Finnish 4885 1128 488 305 1407 1635 10076
49 % 11 % 5 % 3 % 14 % 16 % 100 %

Northern 1726 253 76 29 186 7730 10000
Sámi 17 % 3 % 1 % 1 % 2 % 77 % 100 %
English 5584 795 307 196 461 2657 10000

56 % 8 % 3 % 2 % 5 % 27 % 100 %

Table 3: Precision of suggestion algorithms with generated
spelling errors

As a first impression we note that mere Wikipedia training
does improve the results in all cases; the number of sug-
gestions in first position rises in all test sets and languages.
This would suggest in fact that more mistakes are made in
more common words than rare ones, since the low ranking
word count did not increase as a result of Wikipedia train-
ing.
In Finnish tests, for the actual errors in the real texts’
spelling-error corpus which dominate the lowest ranks of
correction suggestions, haplological cases like ‘kokonais-
malmivaroista’ from total ore resources spelled as ‘konais-
malmivaroista’ came in at the top of the list for both meth-
ods, because the correct word form is probably non-existent
in the training corpus, and the multi-part productive com-
pound with an ambiguous segmentation produces lots of
nearer matches at edit distance one. A more elaborate error
model considering haplology as misspelling with a weight
equal or less than a single traditional edit distance would of
course improve the suggestion quality in this case.
The number of words getting no ranks is common to all
methods. They indicate the spelling errors for which the
correct form was not among the ones covered by the er-
ror model of edit distance two. A good number of these
are cases which were not considered in the error model,
e.g. a missing space causing run-on words (‘ensisijassa’ in-
stead of ‘ensi sijassa’ in the first place). A good number
of mistakes also comes from the use of spoken or infor-
mal language forms for very common words, which tend
to deviate more than edit distance two (‘esmeks’ instead of
‘esimerkiksi’ for example), with a few more due to miss-
ing forms in the language model. E.g. ‘bakterisidin’ is one
edit from ‘bakterisidina’ as bactericide, but the correction
is not made because the word does not exist in the language
model. Both of these error types are correctable by adding
words to the lexicon, i.e. the language model, e.g. using
special-purpose dictionaries, such as spoken language or
medical dictionaries. Finally there is a handful of errors
that seem legitimate spelling mistakes of more than two ed-
its (‘assosioitten’ instead of ‘assosiaatioiden’). For these
cases, a different error model than the basic edit distance
might be necessary.
For Northern Sámi spelling error corpus we notice, that
large amount of errors is not covered by the error model.
This means that the error model is not sufficient for North-



ern Sámi spell checking, as we can see a number of errors
with edit distance of greater than 2 (e.g. ‘sáddejun’ instead
of ‘sáddejuvvon’).
Comparing our English test results with previous research
using programmatic implementation of same language and
error model, we first note again that great number of words
are out of reach by error model of mere edit distance 2,
some of them are even real word spelling errors, such as
‘gone’ in stead of ‘went’, but unfortunately they were inter-
mixed with other spelling error material so we did not have
time to weed them out from corpus. The rest of spelling
errors beyond edit distance 2 are mostly caused by En-
glish orthography being relatively distant from pronunci-
ation, such as ‘negoshayshauns’ in stead of ‘negotiations’,
which usually are corrected with very different error mod-
els such as soundex or other phonetic keys as demonstrated
in e.g. (Mitton, 2009). The results of evaluation of cor-
rection suggestions for the testing materials show similar
tendency as found in the original article (Norvig, 2010).
The impact on performance of using non-optimized meth-
ods to check spelling and get suggestion lists was not
thoroughly measured, but to give an impression of meth-
ods general applicability, we note that for Finnish mate-
rial of generated misspellings, the speed of spell-checking
was 3.18 seconds for 10,000 words or approx. 3,000
words per second, and the speed of generating sugges-
tion lists (all possible corrections) for misspelled words
took 10,493 seconds for 10,000 words or approx. 1 word
per second, when measured using GNU time utility and
hfst-omor-evaluate program from HFST toolset,
which batch processes spell-checking tasks on tokenized
input and evaluates precision and recall against correction
corpus. The space requirements for Finnish spell checking
automata are 9.2 MiB for Finnish morphology and 378 KiB
for Finnish edit distance 2 automaton for alphabet of size
72. As a comparison the English language model obtained
from the word list is only 3.2 MiB in size, and correspond-
ingly the error model 273 KiB for alphabet of size 54.

6. Discussion
The obvious and popular development is to extend the lan-
guage model to support n-gram dictionaries with n > 1,
which has been shown to be a successful technique for En-
glish e.g. in (Mays et al., 1991). The extension using the
same framework is not altogether trivial for a language like
Finnish, where the number of forms and unique strings are
considerable giving most n-grams a very low-frequency.
Even if the speed and resource use for spell-checking and
correction was found to be reasonable in this article, it may
still be interesting to optimize for speed as has been shown
in the literature (Oflazer, 1996; Schulz and Mihov, 2002;
Huldén, 2009). At least the last of these is readily available
in the open-source finite-state implementation in foma11,
and is expandable for at least a non-homogeneous non-unit-
weight edit distance with a context restriction. However, it
does not yet cater to general weighted language models.
Other manual extensions to the spelling error model should
also be tested. Our method ensures that arbitrary weighted

11http://foma.sf.net

relations can be used. Especially the use of a non-
homogeneous non-unit-length edit distance can easily be
achieved. Since it has been successfully used in e.g. hun-
spell12 it should be further evaluated. Other obvious and
common improvements to the edit distance model is to
scale the weights of the edit distance by the physical dis-
tance of the keys on a QWERTY keyboard.
The acquisition of an error model or probabilities of er-
rors in the current model is also possible (Brill and Moore,
2000), but this requires the availability of an error corpus
containing a large (representative) set of spelling errors and
their corrections, which usually are not available nor easy
to create. One possible solution for this may of course be to
implement an adaptive error model that modifies the prob-
abilities of the errors by each selected correction made by
user.
The next step is to improve the free open-source Voikko13

spell-checking library with the HFST transducer-based
spell-checking library. Voikko has been successfully used
in open-source software such as OpenOffice.org, Mozilla
Firefox, and the Gnome desktop (in the enchant spell-
checking library).

7. Conclusions
In this article we have demonstrated an approach for creat-
ing spell-checkers from various language models—ranging
from as simple as word list to as complex as full fledged
implementation of morphology—built into a finite-state au-
tomata. We also demonstrated simple approach to train-
ing the models using word frequency data extracted from
Wikipedia. Further, we have presented a construction of a
simple edit distance error model in the form of a weighted
finite-state transducer, and proven usability of this basic fi-
nite state approach by evaluating produced spell-checkers
against both manually collected smaller and automatically
created larger error corpora. Given the amount of finite-
state implementations of morphological language models
it seems reasonable to expect support for use of general
finite-state methodology and language models is possible
to support spell-checking for large array of languages. For
the fact that arbitrary weighted two-tape automaton may
be used to implement error model, it will also be possi-
ble to easily extend the error models with basic available
finite-state toolsets without developing additional tools. We
also showed that combining the basic edit distance error
model with a simple unigram frequency model already im-
proves the quality of the error corrections. We also note that
even using basic finite-state transducer algebra from freely
available finite-state toolkits and no specialized algorithms,
the speed and memory requirements of the spell-checking
seems sufficient for typical interactive usage.

8. Acknowledgements
We thank the colleagues in HFST research team and anony-
mous reviewers for valuable suggestions regarding the arti-
cle.

12http://hunspell.sf.net
13http://voikko.sf.net/



9. References
Kenneth R Beesley and Lauri Karttunen. 2003. Finite State

Morphology. CSLI publications.
Johnny Bigert, Linus Ericson, and Antoine Solis. 2003.

Autoeval and missplel: Two generic tools for automatic
evaluation. In Nodalida 2003, Reykjavik, Iceland.

Johnny Bigert. 2005. Automatic and unsupervised meth-
ods in natural language processing. Ph.D. thesis, Royal
institute of technolog (KTH).

Eric Brill and Robert C. Moore. 2000. An improved error
model for noisy channel spelling correction. In ACL ’00:
Proceedings of the 38th Annual Meeting on Association
for Computational Linguistics, pages 286–293, Morris-
town, NJ, USA. Association for Computational Linguis-
tics.

F J Damerau. 1964. A technique for computer detection
and correction of spelling errors. Commun. ACM, (7).

Måns Huldén. 2009. Fast approximate string matching
with finite automata. Procesamiento del Lenguaje Nat-
ural, 43:57–64.

Karen Kukich. 1992. Techniques for automatically cor-
recting words in text. ACM Comput. Surv., 24(4):377–
439.

V. I. Levenshtein. 1966. Binary codes capable of correct-
ing deletions, insertions, and reversals. Soviet Physics—
Doklady 10, 707710. Translated from Doklady Akademii
Nauk SSSR, pages 845–848.

Krister Lindén and Tommi Pirinen. 2009. Weighting finite-
state morphological analyzers using hfst tools. In Bruce
Watson, Derrick Courie, Loek Cleophas, and Pierre
Rautenbach, editors, FSMNLP 2009, 13 July.

Krister Lindén, Miikka Silfverberg, and Tommi Pirinen.
2009. Hfst tools for morphology—an efficient open-
source package for construction of morphological ana-
lyzers. In Cerstin Mahlow and Michael Piotrowski, edi-
tors, sfcm 2009, volume 41 of Lecture Notes in Computer
Science, pages 28—47. Springer.

Eric Mays, Fred J. Damerau, and Robert L. Mercer. 1991.
Context based spelling correction. Inf. Process. Man-
age., 27(5):517–522.

Roger Mitton. 2009. Ordering the suggestions of a
spellchecker without using context*. Nat. Lang. Eng.,
15(2):173–192.

Peter Norvig. 2010. How to write a spelling correc-
tor. Web Page, Visited February 28th 2010, Available
http://norvig.com/spell-correct.html.

Kemal Oflazer. 1996. Error-tolerant finite-state recogni-
tion with applications to morphological analysis and
spelling correction. Comput. Linguist., 22(1):73–89.

Tommi Pirinen. 2008. Suomen kielen äärellistilainen
automaattinen morfologinen analyysi avoimen
lähdekoodin menetelmin. Master’s thesis, Helsin-
gin yliopisto.

Klaus Schulz and Stoyan Mihov. 2002. Fast string correc-
tion with levenshtein-automata. International Journal of
Document Analysis and Recognition, 5:67–85.


